summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/math/sinf.asm
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Runtime/common/math/sinf.asm')
-rw-r--r--src/VBox/Runtime/common/math/sinf.asm185
1 files changed, 185 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/math/sinf.asm b/src/VBox/Runtime/common/math/sinf.asm
new file mode 100644
index 00000000..1d2325d1
--- /dev/null
+++ b/src/VBox/Runtime/common/math/sinf.asm
@@ -0,0 +1,185 @@
+; $Id: sinf.asm $
+;; @file
+; IPRT - No-CRT sinf - AMD64 & X86.
+;
+
+;
+; Copyright (C) 2006-2023 Oracle and/or its affiliates.
+;
+; This file is part of VirtualBox base platform packages, as
+; available from https://www.virtualbox.org.
+;
+; This program is free software; you can redistribute it and/or
+; modify it under the terms of the GNU General Public License
+; as published by the Free Software Foundation, in version 3 of the
+; License.
+;
+; This program is distributed in the hope that it will be useful, but
+; WITHOUT ANY WARRANTY; without even the implied warranty of
+; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+; General Public License for more details.
+;
+; You should have received a copy of the GNU General Public License
+; along with this program; if not, see <https://www.gnu.org/licenses>.
+;
+; The contents of this file may alternatively be used under the terms
+; of the Common Development and Distribution License Version 1.0
+; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
+; in the VirtualBox distribution, in which case the provisions of the
+; CDDL are applicable instead of those of the GPL.
+;
+; You may elect to license modified versions of this file under the
+; terms and conditions of either the GPL or the CDDL or both.
+;
+; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
+;
+
+
+%define RT_ASM_WITH_SEH64
+%include "iprt/asmdefs.mac"
+%include "iprt/x86.mac"
+
+
+BEGINCODE
+
+
+;;
+; Compute the sine of rd, measured in radians.
+;
+; @returns st(0) / xmm0
+; @param rd [rbp + xCB*2] / xmm0
+;
+RT_NOCRT_BEGINPROC sinf
+ push xBP
+ SEH64_PUSH_xBP
+ mov xBP, xSP
+ SEH64_SET_FRAME_xBP 0
+ sub xSP, 20h
+ SEH64_ALLOCATE_STACK 20h
+ SEH64_END_PROLOGUE
+
+%ifdef RT_OS_WINDOWS
+ ;
+ ; Make sure we use full precision and not the windows default of 53 bits.
+ ;
+ fnstcw [xBP - 20h]
+ mov ax, [xBP - 20h]
+ or ax, X86_FCW_PC_64 ; includes both bits, so no need to clear the mask.
+ mov [xBP - 1ch], ax
+ fldcw [xBP - 1ch]
+%endif
+
+ ;
+ ; Load the input into st0.
+ ;
+%ifdef RT_ARCH_AMD64
+ movss [xBP - 10h], xmm0
+ fld dword [xBP - 10h]
+%else
+ fld dword [xBP + xCB*2]
+%endif
+
+ ;
+ ; We examin the input and weed out non-finit numbers first.
+ ;
+ fxam
+ fnstsw ax
+ and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0
+ cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero)
+ je .finite
+ cmp ax, X86_FSW_C3 ; Zero
+ je .zero
+ cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals - treat them as zero.
+ je .zero
+ cmp ax, X86_FSW_C0 ; NaN - must handle it special,
+ je .nan
+
+ ; Pass infinities and unsupported inputs to fsin, assuming it does the right thing.
+.do_sin:
+ fsin
+ jmp .return_val
+
+ ;
+ ; Finite number.
+ ;
+.finite:
+ ; For very tiny numbers, 0 < abs(input) < 2**-25, we can return the
+ ; input value directly.
+ fld st0 ; duplicate st0
+ fabs ; make it an absolute (positive) value.
+ fld qword [.s_r64Tiny xWrtRIP]
+ fcomip st1 ; compare s_r64Tiny and fabs(input)
+ ja .return_tiny_number_as_is ; jump if fabs(input) is smaller
+
+ ; FSIN is documented to be reasonable for the range ]-3pi/4,3pi/4[, so
+ ; while we have fabs(input) loaded already, check for that here and
+ ; allow rtNoCrtMathSinCore to assume it won't see values very close to
+ ; zero, except by cos -> sin conversion where they won't be relevant to
+ ; any assumpttions about precision approximation.
+ fld qword [.s_r64FSinOkay xWrtRIP]
+ fcomip st1
+ ffreep st0 ; drop the fabs(input) value
+ ja .do_sin
+
+ ;
+ ; Call common sine/cos worker.
+ ;
+ mov ecx, 0 ; float
+ extern NAME(rtNoCrtMathSinCore)
+ call NAME(rtNoCrtMathSinCore)
+
+ ;
+ ; Run st0.
+ ;
+.return_val:
+%ifdef RT_ARCH_AMD64
+ fstp dword [xBP - 10h]
+ movss xmm0, [xBP - 10h]
+%endif
+%ifdef RT_OS_WINDOWS
+ fldcw [xBP - 20h] ; restore original
+%endif
+.return:
+ leave
+ ret
+
+ ;
+ ; As explained already, we can return tiny numbers directly too as the
+ ; output from sinf(input) = input given our precision.
+ ; We can skip the st0 -> xmm0 translation here, so follow the same path
+ ; as .zero & .nan, after we've removed the fabs(input) value.
+ ;
+.return_tiny_number_as_is:
+ ffreep st0
+
+ ;
+ ; sinf(+/-0.0) = +/-0.0 (preserve the sign)
+ ; We can skip the st0 -> xmm0 translation here, so follow the .nan code path.
+ ;
+.zero:
+
+ ;
+ ; Input is NaN, output it unmodified as far as we can (FLD changes SNaN
+ ; to QNaN when masked).
+ ;
+.nan:
+%ifdef RT_ARCH_AMD64
+ ffreep st0
+%endif
+ jmp .return
+
+ALIGNCODE(8)
+ ; Ca. 2**-26, absolute value. Inputs closer to zero than this can be
+ ; returns directly as the sinf(input) value should be basically the same
+ ; given the precision we're working with and FSIN probably won't even
+ ; manage that.
+ ;; @todo experiment when FSIN gets better than this.
+.s_r64Tiny:
+ dq 1.49011612e-8
+ ; The absolute limit of FSIN "good" range.
+.s_r64FSinOkay:
+ dq 2.356194490192344928845 ; 3pi/4
+ ;dq 1.57079632679489661923 ; pi/2 - alternative.
+
+ENDPROC RT_NOCRT(sinf)
+