summaryrefslogtreecommitdiffstats
path: root/src/VBox/Storage/VMDK.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/Storage/VMDK.cpp')
-rw-r--r--src/VBox/Storage/VMDK.cpp9247
1 files changed, 9247 insertions, 0 deletions
diff --git a/src/VBox/Storage/VMDK.cpp b/src/VBox/Storage/VMDK.cpp
new file mode 100644
index 00000000..f5f01ec5
--- /dev/null
+++ b/src/VBox/Storage/VMDK.cpp
@@ -0,0 +1,9247 @@
+/* $Id: VMDK.cpp $ */
+/** @file
+ * VMDK disk image, core code.
+ */
+
+/*
+ * Copyright (C) 2006-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_VD_VMDK
+#include <VBox/log.h> /* before VBox/vd-ifs.h */
+#include <VBox/vd-plugin.h>
+#include <VBox/err.h>
+
+#include <iprt/assert.h>
+#include <iprt/alloc.h>
+#include <iprt/base64.h>
+#include <iprt/ctype.h>
+#include <iprt/crc.h>
+#include <iprt/dvm.h>
+#include <iprt/uuid.h>
+#include <iprt/path.h>
+#include <iprt/rand.h>
+#include <iprt/string.h>
+#include <iprt/sort.h>
+#include <iprt/zip.h>
+#include <iprt/asm.h>
+#ifdef RT_OS_WINDOWS
+# include <iprt/utf16.h>
+# include <iprt/uni.h>
+# include <iprt/uni.h>
+# include <iprt/nt/nt-and-windows.h>
+# include <winioctl.h>
+#endif
+#ifdef RT_OS_LINUX
+# include <errno.h>
+# include <sys/stat.h>
+# include <iprt/dir.h>
+# include <iprt/symlink.h>
+# include <iprt/linux/sysfs.h>
+#endif
+#ifdef RT_OS_FREEBSD
+#include <libgeom.h>
+#include <sys/stat.h>
+#include <stdlib.h>
+#endif
+#ifdef RT_OS_SOLARIS
+#include <sys/dkio.h>
+#include <sys/vtoc.h>
+#include <sys/efi_partition.h>
+#include <unistd.h>
+#include <errno.h>
+#endif
+#ifdef RT_OS_DARWIN
+# include <sys/stat.h>
+# include <sys/disk.h>
+# include <errno.h>
+/* The following structure and IOCTLs are defined in znu bsd/sys/disk.h but
+ inside KERNEL ifdefs and thus stripped from the SDK edition of the header.
+ While we could try include the header from the Kernel.framework, it's a lot
+ easier to just add the structure and 4 defines here. */
+typedef struct
+{
+ uint64_t offset;
+ uint64_t length;
+ uint8_t reserved0128[12];
+ dev_t dev;
+} dk_physical_extent_t;
+# define DKIOCGETBASE _IOR( 'd', 73, uint64_t)
+# define DKIOCLOCKPHYSICALEXTENTS _IO( 'd', 81)
+# define DKIOCGETPHYSICALEXTENT _IOWR('d', 82, dk_physical_extent_t)
+# define DKIOCUNLOCKPHYSICALEXTENTS _IO( 'd', 83)
+#endif /* RT_OS_DARWIN */
+
+#include "VDBackends.h"
+
+
+/*********************************************************************************************************************************
+* Constants And Macros, Structures and Typedefs *
+*********************************************************************************************************************************/
+
+/** Maximum encoded string size (including NUL) we allow for VMDK images.
+ * Deliberately not set high to avoid running out of descriptor space. */
+#define VMDK_ENCODED_COMMENT_MAX 1024
+
+/** VMDK descriptor DDB entry for PCHS cylinders. */
+#define VMDK_DDB_GEO_PCHS_CYLINDERS "ddb.geometry.cylinders"
+
+/** VMDK descriptor DDB entry for PCHS heads. */
+#define VMDK_DDB_GEO_PCHS_HEADS "ddb.geometry.heads"
+
+/** VMDK descriptor DDB entry for PCHS sectors. */
+#define VMDK_DDB_GEO_PCHS_SECTORS "ddb.geometry.sectors"
+
+/** VMDK descriptor DDB entry for LCHS cylinders. */
+#define VMDK_DDB_GEO_LCHS_CYLINDERS "ddb.geometry.biosCylinders"
+
+/** VMDK descriptor DDB entry for LCHS heads. */
+#define VMDK_DDB_GEO_LCHS_HEADS "ddb.geometry.biosHeads"
+
+/** VMDK descriptor DDB entry for LCHS sectors. */
+#define VMDK_DDB_GEO_LCHS_SECTORS "ddb.geometry.biosSectors"
+
+/** VMDK descriptor DDB entry for image UUID. */
+#define VMDK_DDB_IMAGE_UUID "ddb.uuid.image"
+
+/** VMDK descriptor DDB entry for image modification UUID. */
+#define VMDK_DDB_MODIFICATION_UUID "ddb.uuid.modification"
+
+/** VMDK descriptor DDB entry for parent image UUID. */
+#define VMDK_DDB_PARENT_UUID "ddb.uuid.parent"
+
+/** VMDK descriptor DDB entry for parent image modification UUID. */
+#define VMDK_DDB_PARENT_MODIFICATION_UUID "ddb.uuid.parentmodification"
+
+/** No compression for streamOptimized files. */
+#define VMDK_COMPRESSION_NONE 0
+
+/** Deflate compression for streamOptimized files. */
+#define VMDK_COMPRESSION_DEFLATE 1
+
+/** Marker that the actual GD value is stored in the footer. */
+#define VMDK_GD_AT_END 0xffffffffffffffffULL
+
+/** Marker for end-of-stream in streamOptimized images. */
+#define VMDK_MARKER_EOS 0
+
+/** Marker for grain table block in streamOptimized images. */
+#define VMDK_MARKER_GT 1
+
+/** Marker for grain directory block in streamOptimized images. */
+#define VMDK_MARKER_GD 2
+
+/** Marker for footer in streamOptimized images. */
+#define VMDK_MARKER_FOOTER 3
+
+/** Marker for unknown purpose in streamOptimized images.
+ * Shows up in very recent images created by vSphere, but only sporadically.
+ * They "forgot" to document that one in the VMDK specification. */
+#define VMDK_MARKER_UNSPECIFIED 4
+
+/** Dummy marker for "don't check the marker value". */
+#define VMDK_MARKER_IGNORE 0xffffffffU
+
+/**
+ * Magic number for hosted images created by VMware Workstation 4, VMware
+ * Workstation 5, VMware Server or VMware Player. Not necessarily sparse.
+ */
+#define VMDK_SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */
+
+/** VMDK sector size in bytes. */
+#define VMDK_SECTOR_SIZE 512
+/** Max string buffer size for uint64_t with null term */
+#define UINT64_MAX_BUFF_SIZE 21
+/** Grain directory entry size in bytes */
+#define VMDK_GRAIN_DIR_ENTRY_SIZE 4
+/** Grain table size in bytes */
+#define VMDK_GRAIN_TABLE_SIZE 2048
+
+/**
+ * VMDK hosted binary extent header. The "Sparse" is a total misnomer, as
+ * this header is also used for monolithic flat images.
+ */
+#pragma pack(1)
+typedef struct SparseExtentHeader
+{
+ uint32_t magicNumber;
+ uint32_t version;
+ uint32_t flags;
+ uint64_t capacity;
+ uint64_t grainSize;
+ uint64_t descriptorOffset;
+ uint64_t descriptorSize;
+ uint32_t numGTEsPerGT;
+ uint64_t rgdOffset;
+ uint64_t gdOffset;
+ uint64_t overHead;
+ bool uncleanShutdown;
+ char singleEndLineChar;
+ char nonEndLineChar;
+ char doubleEndLineChar1;
+ char doubleEndLineChar2;
+ uint16_t compressAlgorithm;
+ uint8_t pad[433];
+} SparseExtentHeader;
+#pragma pack()
+
+/** The maximum allowed descriptor size in the extent header in sectors. */
+#define VMDK_SPARSE_DESCRIPTOR_SIZE_MAX UINT64_C(20480) /* 10MB */
+
+/** VMDK capacity for a single chunk when 2G splitting is turned on. Should be
+ * divisible by the default grain size (64K) */
+#define VMDK_2G_SPLIT_SIZE (2047 * 1024 * 1024)
+
+/** VMDK streamOptimized file format marker. The type field may or may not
+ * be actually valid, but there's always data to read there. */
+#pragma pack(1)
+typedef struct VMDKMARKER
+{
+ uint64_t uSector;
+ uint32_t cbSize;
+ uint32_t uType;
+} VMDKMARKER, *PVMDKMARKER;
+#pragma pack()
+
+
+/** Convert sector number/size to byte offset/size. */
+#define VMDK_SECTOR2BYTE(u) ((uint64_t)(u) << 9)
+
+/** Convert byte offset/size to sector number/size. */
+#define VMDK_BYTE2SECTOR(u) ((u) >> 9)
+
+/**
+ * VMDK extent type.
+ */
+typedef enum VMDKETYPE
+{
+ /** Hosted sparse extent. */
+ VMDKETYPE_HOSTED_SPARSE = 1,
+ /** Flat extent. */
+ VMDKETYPE_FLAT,
+ /** Zero extent. */
+ VMDKETYPE_ZERO,
+ /** VMFS extent, used by ESX. */
+ VMDKETYPE_VMFS
+} VMDKETYPE, *PVMDKETYPE;
+
+/**
+ * VMDK access type for a extent.
+ */
+typedef enum VMDKACCESS
+{
+ /** No access allowed. */
+ VMDKACCESS_NOACCESS = 0,
+ /** Read-only access. */
+ VMDKACCESS_READONLY,
+ /** Read-write access. */
+ VMDKACCESS_READWRITE
+} VMDKACCESS, *PVMDKACCESS;
+
+/** Forward declaration for PVMDKIMAGE. */
+typedef struct VMDKIMAGE *PVMDKIMAGE;
+
+/**
+ * Extents files entry. Used for opening a particular file only once.
+ */
+typedef struct VMDKFILE
+{
+ /** Pointer to file path. Local copy. */
+ const char *pszFilename;
+ /** Pointer to base name. Local copy. */
+ const char *pszBasename;
+ /** File open flags for consistency checking. */
+ unsigned fOpen;
+ /** Handle for sync/async file abstraction.*/
+ PVDIOSTORAGE pStorage;
+ /** Reference counter. */
+ unsigned uReferences;
+ /** Flag whether the file should be deleted on last close. */
+ bool fDelete;
+ /** Pointer to the image we belong to (for debugging purposes). */
+ PVMDKIMAGE pImage;
+ /** Pointer to next file descriptor. */
+ struct VMDKFILE *pNext;
+ /** Pointer to the previous file descriptor. */
+ struct VMDKFILE *pPrev;
+} VMDKFILE, *PVMDKFILE;
+
+/**
+ * VMDK extent data structure.
+ */
+typedef struct VMDKEXTENT
+{
+ /** File handle. */
+ PVMDKFILE pFile;
+ /** Base name of the image extent. */
+ const char *pszBasename;
+ /** Full name of the image extent. */
+ const char *pszFullname;
+ /** Number of sectors in this extent. */
+ uint64_t cSectors;
+ /** Number of sectors per block (grain in VMDK speak). */
+ uint64_t cSectorsPerGrain;
+ /** Starting sector number of descriptor. */
+ uint64_t uDescriptorSector;
+ /** Size of descriptor in sectors. */
+ uint64_t cDescriptorSectors;
+ /** Starting sector number of grain directory. */
+ uint64_t uSectorGD;
+ /** Starting sector number of redundant grain directory. */
+ uint64_t uSectorRGD;
+ /** Total number of metadata sectors. */
+ uint64_t cOverheadSectors;
+ /** Nominal size (i.e. as described by the descriptor) of this extent. */
+ uint64_t cNominalSectors;
+ /** Sector offset (i.e. as described by the descriptor) of this extent. */
+ uint64_t uSectorOffset;
+ /** Number of entries in a grain table. */
+ uint32_t cGTEntries;
+ /** Number of sectors reachable via a grain directory entry. */
+ uint32_t cSectorsPerGDE;
+ /** Number of entries in the grain directory. */
+ uint32_t cGDEntries;
+ /** Pointer to the next free sector. Legacy information. Do not use. */
+ uint32_t uFreeSector;
+ /** Number of this extent in the list of images. */
+ uint32_t uExtent;
+ /** Pointer to the descriptor (NULL if no descriptor in this extent). */
+ char *pDescData;
+ /** Pointer to the grain directory. */
+ uint32_t *pGD;
+ /** Pointer to the redundant grain directory. */
+ uint32_t *pRGD;
+ /** VMDK version of this extent. 1=1.0/1.1 */
+ uint32_t uVersion;
+ /** Type of this extent. */
+ VMDKETYPE enmType;
+ /** Access to this extent. */
+ VMDKACCESS enmAccess;
+ /** Flag whether this extent is marked as unclean. */
+ bool fUncleanShutdown;
+ /** Flag whether the metadata in the extent header needs to be updated. */
+ bool fMetaDirty;
+ /** Flag whether there is a footer in this extent. */
+ bool fFooter;
+ /** Compression type for this extent. */
+ uint16_t uCompression;
+ /** Append position for writing new grain. Only for sparse extents. */
+ uint64_t uAppendPosition;
+ /** Last grain which was accessed. Only for streamOptimized extents. */
+ uint32_t uLastGrainAccess;
+ /** Starting sector corresponding to the grain buffer. */
+ uint32_t uGrainSectorAbs;
+ /** Grain number corresponding to the grain buffer. */
+ uint32_t uGrain;
+ /** Actual size of the compressed data, only valid for reading. */
+ uint32_t cbGrainStreamRead;
+ /** Size of compressed grain buffer for streamOptimized extents. */
+ size_t cbCompGrain;
+ /** Compressed grain buffer for streamOptimized extents, with marker. */
+ void *pvCompGrain;
+ /** Decompressed grain buffer for streamOptimized extents. */
+ void *pvGrain;
+ /** Reference to the image in which this extent is used. Do not use this
+ * on a regular basis to avoid passing pImage references to functions
+ * explicitly. */
+ struct VMDKIMAGE *pImage;
+} VMDKEXTENT, *PVMDKEXTENT;
+
+/**
+ * Grain table cache size. Allocated per image.
+ */
+#define VMDK_GT_CACHE_SIZE 256
+
+/**
+ * Grain table block size. Smaller than an actual grain table block to allow
+ * more grain table blocks to be cached without having to allocate excessive
+ * amounts of memory for the cache.
+ */
+#define VMDK_GT_CACHELINE_SIZE 128
+
+
+/**
+ * Maximum number of lines in a descriptor file. Not worth the effort of
+ * making it variable. Descriptor files are generally very short (~20 lines),
+ * with the exception of sparse files split in 2G chunks, which need for the
+ * maximum size (almost 2T) exactly 1025 lines for the disk database.
+ */
+#define VMDK_DESCRIPTOR_LINES_MAX 1100U
+
+/**
+ * Parsed descriptor information. Allows easy access and update of the
+ * descriptor (whether separate file or not). Free form text files suck.
+ */
+typedef struct VMDKDESCRIPTOR
+{
+ /** Line number of first entry of the disk descriptor. */
+ unsigned uFirstDesc;
+ /** Line number of first entry in the extent description. */
+ unsigned uFirstExtent;
+ /** Line number of first disk database entry. */
+ unsigned uFirstDDB;
+ /** Total number of lines. */
+ unsigned cLines;
+ /** Total amount of memory available for the descriptor. */
+ size_t cbDescAlloc;
+ /** Set if descriptor has been changed and not yet written to disk. */
+ bool fDirty;
+ /** Array of pointers to the data in the descriptor. */
+ char *aLines[VMDK_DESCRIPTOR_LINES_MAX];
+ /** Array of line indices pointing to the next non-comment line. */
+ unsigned aNextLines[VMDK_DESCRIPTOR_LINES_MAX];
+} VMDKDESCRIPTOR, *PVMDKDESCRIPTOR;
+
+
+/**
+ * Cache entry for translating extent/sector to a sector number in that
+ * extent.
+ */
+typedef struct VMDKGTCACHEENTRY
+{
+ /** Extent number for which this entry is valid. */
+ uint32_t uExtent;
+ /** GT data block number. */
+ uint64_t uGTBlock;
+ /** Data part of the cache entry. */
+ uint32_t aGTData[VMDK_GT_CACHELINE_SIZE];
+} VMDKGTCACHEENTRY, *PVMDKGTCACHEENTRY;
+
+/**
+ * Cache data structure for blocks of grain table entries. For now this is a
+ * fixed size direct mapping cache, but this should be adapted to the size of
+ * the sparse image and maybe converted to a set-associative cache. The
+ * implementation below implements a write-through cache with write allocate.
+ */
+typedef struct VMDKGTCACHE
+{
+ /** Cache entries. */
+ VMDKGTCACHEENTRY aGTCache[VMDK_GT_CACHE_SIZE];
+ /** Number of cache entries (currently unused). */
+ unsigned cEntries;
+} VMDKGTCACHE, *PVMDKGTCACHE;
+
+/**
+ * Complete VMDK image data structure. Mainly a collection of extents and a few
+ * extra global data fields.
+ */
+typedef struct VMDKIMAGE
+{
+ /** Image name. */
+ const char *pszFilename;
+ /** Descriptor file if applicable. */
+ PVMDKFILE pFile;
+
+ /** Pointer to the per-disk VD interface list. */
+ PVDINTERFACE pVDIfsDisk;
+ /** Pointer to the per-image VD interface list. */
+ PVDINTERFACE pVDIfsImage;
+
+ /** Error interface. */
+ PVDINTERFACEERROR pIfError;
+ /** I/O interface. */
+ PVDINTERFACEIOINT pIfIo;
+
+
+ /** Pointer to the image extents. */
+ PVMDKEXTENT pExtents;
+ /** Number of image extents. */
+ unsigned cExtents;
+ /** Pointer to the files list, for opening a file referenced multiple
+ * times only once (happens mainly with raw partition access). */
+ PVMDKFILE pFiles;
+
+ /**
+ * Pointer to an array of segment entries for async I/O.
+ * This is an optimization because the task number to submit is not known
+ * and allocating/freeing an array in the read/write functions every time
+ * is too expensive.
+ */
+ PPDMDATASEG paSegments;
+ /** Entries available in the segments array. */
+ unsigned cSegments;
+
+ /** Open flags passed by VBoxHD layer. */
+ unsigned uOpenFlags;
+ /** Image flags defined during creation or determined during open. */
+ unsigned uImageFlags;
+ /** Total size of the image. */
+ uint64_t cbSize;
+ /** Physical geometry of this image. */
+ VDGEOMETRY PCHSGeometry;
+ /** Logical geometry of this image. */
+ VDGEOMETRY LCHSGeometry;
+ /** Image UUID. */
+ RTUUID ImageUuid;
+ /** Image modification UUID. */
+ RTUUID ModificationUuid;
+ /** Parent image UUID. */
+ RTUUID ParentUuid;
+ /** Parent image modification UUID. */
+ RTUUID ParentModificationUuid;
+
+ /** Pointer to grain table cache, if this image contains sparse extents. */
+ PVMDKGTCACHE pGTCache;
+ /** Pointer to the descriptor (NULL if no separate descriptor file). */
+ char *pDescData;
+ /** Allocation size of the descriptor file. */
+ size_t cbDescAlloc;
+ /** Parsed descriptor file content. */
+ VMDKDESCRIPTOR Descriptor;
+ /** The static region list. */
+ VDREGIONLIST RegionList;
+} VMDKIMAGE;
+
+
+/** State for the input/output callout of the inflate reader/deflate writer. */
+typedef struct VMDKCOMPRESSIO
+{
+ /* Image this operation relates to. */
+ PVMDKIMAGE pImage;
+ /* Current read position. */
+ ssize_t iOffset;
+ /* Size of the compressed grain buffer (available data). */
+ size_t cbCompGrain;
+ /* Pointer to the compressed grain buffer. */
+ void *pvCompGrain;
+} VMDKCOMPRESSIO;
+
+
+/** Tracks async grain allocation. */
+typedef struct VMDKGRAINALLOCASYNC
+{
+ /** Flag whether the allocation failed. */
+ bool fIoErr;
+ /** Current number of transfers pending.
+ * If reached 0 and there is an error the old state is restored. */
+ unsigned cIoXfersPending;
+ /** Sector number */
+ uint64_t uSector;
+ /** Flag whether the grain table needs to be updated. */
+ bool fGTUpdateNeeded;
+ /** Extent the allocation happens. */
+ PVMDKEXTENT pExtent;
+ /** Position of the new grain, required for the grain table update. */
+ uint64_t uGrainOffset;
+ /** Grain table sector. */
+ uint64_t uGTSector;
+ /** Backup grain table sector. */
+ uint64_t uRGTSector;
+} VMDKGRAINALLOCASYNC, *PVMDKGRAINALLOCASYNC;
+
+/**
+ * State information for vmdkRename() and helpers.
+ */
+typedef struct VMDKRENAMESTATE
+{
+ /** Array of old filenames. */
+ char **apszOldName;
+ /** Array of new filenames. */
+ char **apszNewName;
+ /** Array of new lines in the extent descriptor. */
+ char **apszNewLines;
+ /** Name of the old descriptor file if not a sparse image. */
+ char *pszOldDescName;
+ /** Flag whether we called vmdkFreeImage(). */
+ bool fImageFreed;
+ /** Flag whther the descriptor is embedded in the image (sparse) or
+ * in a separate file. */
+ bool fEmbeddedDesc;
+ /** Number of extents in the image. */
+ unsigned cExtents;
+ /** New base filename. */
+ char *pszNewBaseName;
+ /** The old base filename. */
+ char *pszOldBaseName;
+ /** New full filename. */
+ char *pszNewFullName;
+ /** Old full filename. */
+ char *pszOldFullName;
+ /** The old image name. */
+ const char *pszOldImageName;
+ /** Copy of the original VMDK descriptor. */
+ VMDKDESCRIPTOR DescriptorCopy;
+ /** Copy of the extent state for sparse images. */
+ VMDKEXTENT ExtentCopy;
+} VMDKRENAMESTATE;
+/** Pointer to a VMDK rename state. */
+typedef VMDKRENAMESTATE *PVMDKRENAMESTATE;
+
+
+/*********************************************************************************************************************************
+* Static Variables *
+*********************************************************************************************************************************/
+
+/** NULL-terminated array of supported file extensions. */
+static const VDFILEEXTENSION s_aVmdkFileExtensions[] =
+{
+ {"vmdk", VDTYPE_HDD},
+ {NULL, VDTYPE_INVALID}
+};
+
+/** NULL-terminated array of configuration option. */
+static const VDCONFIGINFO s_aVmdkConfigInfo[] =
+{
+ /* Options for VMDK raw disks */
+ { "RawDrive", NULL, VDCFGVALUETYPE_STRING, 0 },
+ { "Partitions", NULL, VDCFGVALUETYPE_STRING, 0 },
+ { "BootSector", NULL, VDCFGVALUETYPE_BYTES, 0 },
+ { "Relative", NULL, VDCFGVALUETYPE_INTEGER, 0 },
+
+ /* End of options list */
+ { NULL, NULL, VDCFGVALUETYPE_INTEGER, 0 }
+};
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+
+static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent);
+static int vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ bool fDelete);
+
+static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents);
+static int vmdkFlushImage(PVMDKIMAGE pImage, PVDIOCTX pIoCtx);
+static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment);
+static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete, bool fFlush);
+
+static DECLCALLBACK(int) vmdkAllocGrainComplete(void *pBackendData, PVDIOCTX pIoCtx,
+ void *pvUser, int rcReq);
+
+/**
+ * Internal: open a file (using a file descriptor cache to ensure each file
+ * is only opened once - anything else can cause locking problems).
+ */
+static int vmdkFileOpen(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile,
+ const char *pszBasename, const char *pszFilename, uint32_t fOpen)
+{
+ int rc = VINF_SUCCESS;
+ PVMDKFILE pVmdkFile;
+
+ for (pVmdkFile = pImage->pFiles;
+ pVmdkFile != NULL;
+ pVmdkFile = pVmdkFile->pNext)
+ {
+ if (!strcmp(pszFilename, pVmdkFile->pszFilename))
+ {
+ Assert(fOpen == pVmdkFile->fOpen);
+ pVmdkFile->uReferences++;
+
+ *ppVmdkFile = pVmdkFile;
+
+ return rc;
+ }
+ }
+
+ /* If we get here, there's no matching entry in the cache. */
+ pVmdkFile = (PVMDKFILE)RTMemAllocZ(sizeof(VMDKFILE));
+ if (!pVmdkFile)
+ {
+ *ppVmdkFile = NULL;
+ return VERR_NO_MEMORY;
+ }
+
+ pVmdkFile->pszFilename = RTStrDup(pszFilename);
+ if (!pVmdkFile->pszFilename)
+ {
+ RTMemFree(pVmdkFile);
+ *ppVmdkFile = NULL;
+ return VERR_NO_MEMORY;
+ }
+
+ if (pszBasename)
+ {
+ pVmdkFile->pszBasename = RTStrDup(pszBasename);
+ if (!pVmdkFile->pszBasename)
+ {
+ RTStrFree((char *)(void *)pVmdkFile->pszFilename);
+ RTMemFree(pVmdkFile);
+ *ppVmdkFile = NULL;
+ return VERR_NO_MEMORY;
+ }
+ }
+
+ pVmdkFile->fOpen = fOpen;
+
+ rc = vdIfIoIntFileOpen(pImage->pIfIo, pszFilename, fOpen,
+ &pVmdkFile->pStorage);
+ if (RT_SUCCESS(rc))
+ {
+ pVmdkFile->uReferences = 1;
+ pVmdkFile->pImage = pImage;
+ pVmdkFile->pNext = pImage->pFiles;
+ if (pImage->pFiles)
+ pImage->pFiles->pPrev = pVmdkFile;
+ pImage->pFiles = pVmdkFile;
+ *ppVmdkFile = pVmdkFile;
+ }
+ else
+ {
+ RTStrFree((char *)(void *)pVmdkFile->pszFilename);
+ RTMemFree(pVmdkFile);
+ *ppVmdkFile = NULL;
+ }
+
+ return rc;
+}
+
+/**
+ * Internal: close a file, updating the file descriptor cache.
+ */
+static int vmdkFileClose(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, bool fDelete)
+{
+ int rc = VINF_SUCCESS;
+ PVMDKFILE pVmdkFile = *ppVmdkFile;
+
+ AssertPtr(pVmdkFile);
+
+ pVmdkFile->fDelete |= fDelete;
+ Assert(pVmdkFile->uReferences);
+ pVmdkFile->uReferences--;
+ if (pVmdkFile->uReferences == 0)
+ {
+ PVMDKFILE pPrev;
+ PVMDKFILE pNext;
+
+ /* Unchain the element from the list. */
+ pPrev = pVmdkFile->pPrev;
+ pNext = pVmdkFile->pNext;
+
+ if (pNext)
+ pNext->pPrev = pPrev;
+ if (pPrev)
+ pPrev->pNext = pNext;
+ else
+ pImage->pFiles = pNext;
+
+ rc = vdIfIoIntFileClose(pImage->pIfIo, pVmdkFile->pStorage);
+
+ bool fFileDel = pVmdkFile->fDelete;
+ if ( pVmdkFile->pszBasename
+ && fFileDel)
+ {
+ const char *pszSuffix = RTPathSuffix(pVmdkFile->pszBasename);
+ if ( RTPathHasPath(pVmdkFile->pszBasename)
+ || !pszSuffix
+ || ( strcmp(pszSuffix, ".vmdk")
+ && strcmp(pszSuffix, ".bin")
+ && strcmp(pszSuffix, ".img")))
+ fFileDel = false;
+ }
+
+ if (fFileDel)
+ {
+ int rc2 = vdIfIoIntFileDelete(pImage->pIfIo, pVmdkFile->pszFilename);
+ if (RT_SUCCESS(rc))
+ rc = rc2;
+ }
+ else if (pVmdkFile->fDelete)
+ LogRel(("VMDK: Denying deletion of %s\n", pVmdkFile->pszBasename));
+ RTStrFree((char *)(void *)pVmdkFile->pszFilename);
+ if (pVmdkFile->pszBasename)
+ RTStrFree((char *)(void *)pVmdkFile->pszBasename);
+ RTMemFree(pVmdkFile);
+ }
+
+ *ppVmdkFile = NULL;
+ return rc;
+}
+
+/*#define VMDK_USE_BLOCK_DECOMP_API - test and enable */
+#ifndef VMDK_USE_BLOCK_DECOMP_API
+static DECLCALLBACK(int) vmdkFileInflateHelper(void *pvUser, void *pvBuf, size_t cbBuf, size_t *pcbBuf)
+{
+ VMDKCOMPRESSIO *pInflateState = (VMDKCOMPRESSIO *)pvUser;
+ size_t cbInjected = 0;
+
+ Assert(cbBuf);
+ if (pInflateState->iOffset < 0)
+ {
+ *(uint8_t *)pvBuf = RTZIPTYPE_ZLIB;
+ pvBuf = (uint8_t *)pvBuf + 1;
+ cbBuf--;
+ cbInjected = 1;
+ pInflateState->iOffset = RT_UOFFSETOF(VMDKMARKER, uType);
+ }
+ if (!cbBuf)
+ {
+ if (pcbBuf)
+ *pcbBuf = cbInjected;
+ return VINF_SUCCESS;
+ }
+ cbBuf = RT_MIN(cbBuf, pInflateState->cbCompGrain - pInflateState->iOffset);
+ memcpy(pvBuf,
+ (uint8_t *)pInflateState->pvCompGrain + pInflateState->iOffset,
+ cbBuf);
+ pInflateState->iOffset += cbBuf;
+ Assert(pcbBuf);
+ *pcbBuf = cbBuf + cbInjected;
+ return VINF_SUCCESS;
+}
+#endif
+
+/**
+ * Internal: read from a file and inflate the compressed data,
+ * distinguishing between async and normal operation
+ */
+DECLINLINE(int) vmdkFileInflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uOffset, void *pvBuf,
+ size_t cbToRead, const void *pcvMarker,
+ uint64_t *puLBA, uint32_t *pcbMarkerData)
+{
+ int rc;
+#ifndef VMDK_USE_BLOCK_DECOMP_API
+ PRTZIPDECOMP pZip = NULL;
+#endif
+ VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain;
+ size_t cbCompSize, cbActuallyRead;
+
+ if (!pcvMarker)
+ {
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uOffset, pMarker, RT_UOFFSETOF(VMDKMARKER, uType));
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ else
+ {
+ memcpy(pMarker, pcvMarker, RT_UOFFSETOF(VMDKMARKER, uType));
+ /* pcvMarker endianness has already been partially transformed, fix it */
+ pMarker->uSector = RT_H2LE_U64(pMarker->uSector);
+ pMarker->cbSize = RT_H2LE_U32(pMarker->cbSize);
+ }
+
+ cbCompSize = RT_LE2H_U32(pMarker->cbSize);
+ if (cbCompSize == 0)
+ {
+ AssertMsgFailed(("VMDK: corrupted marker\n"));
+ return VERR_VD_VMDK_INVALID_FORMAT;
+ }
+
+ /* Sanity check - the expansion ratio should be much less than 2. */
+ Assert(cbCompSize < 2 * cbToRead);
+ if (cbCompSize >= 2 * cbToRead)
+ return VERR_VD_VMDK_INVALID_FORMAT;
+
+ /* Compressed grain marker. Data follows immediately. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uOffset + RT_UOFFSETOF(VMDKMARKER, uType),
+ (uint8_t *)pExtent->pvCompGrain
+ + RT_UOFFSETOF(VMDKMARKER, uType),
+ RT_ALIGN_Z( cbCompSize
+ + RT_UOFFSETOF(VMDKMARKER, uType),
+ 512)
+ - RT_UOFFSETOF(VMDKMARKER, uType));
+
+ if (puLBA)
+ *puLBA = RT_LE2H_U64(pMarker->uSector);
+ if (pcbMarkerData)
+ *pcbMarkerData = RT_ALIGN( cbCompSize
+ + RT_UOFFSETOF(VMDKMARKER, uType),
+ 512);
+
+#ifdef VMDK_USE_BLOCK_DECOMP_API
+ rc = RTZipBlockDecompress(RTZIPTYPE_ZLIB, 0 /*fFlags*/,
+ pExtent->pvCompGrain, cbCompSize + RT_UOFFSETOF(VMDKMARKER, uType), NULL,
+ pvBuf, cbToRead, &cbActuallyRead);
+#else
+ VMDKCOMPRESSIO InflateState;
+ InflateState.pImage = pImage;
+ InflateState.iOffset = -1;
+ InflateState.cbCompGrain = cbCompSize + RT_UOFFSETOF(VMDKMARKER, uType);
+ InflateState.pvCompGrain = pExtent->pvCompGrain;
+
+ rc = RTZipDecompCreate(&pZip, &InflateState, vmdkFileInflateHelper);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = RTZipDecompress(pZip, pvBuf, cbToRead, &cbActuallyRead);
+ RTZipDecompDestroy(pZip);
+#endif /* !VMDK_USE_BLOCK_DECOMP_API */
+ if (RT_FAILURE(rc))
+ {
+ if (rc == VERR_ZIP_CORRUPTED)
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: Compressed image is corrupted '%s'"), pExtent->pszFullname);
+ return rc;
+ }
+ if (cbActuallyRead != cbToRead)
+ rc = VERR_VD_VMDK_INVALID_FORMAT;
+ return rc;
+}
+
+static DECLCALLBACK(int) vmdkFileDeflateHelper(void *pvUser, const void *pvBuf, size_t cbBuf)
+{
+ VMDKCOMPRESSIO *pDeflateState = (VMDKCOMPRESSIO *)pvUser;
+
+ Assert(cbBuf);
+ if (pDeflateState->iOffset < 0)
+ {
+ pvBuf = (const uint8_t *)pvBuf + 1;
+ cbBuf--;
+ pDeflateState->iOffset = RT_UOFFSETOF(VMDKMARKER, uType);
+ }
+ if (!cbBuf)
+ return VINF_SUCCESS;
+ if (pDeflateState->iOffset + cbBuf > pDeflateState->cbCompGrain)
+ return VERR_BUFFER_OVERFLOW;
+ memcpy((uint8_t *)pDeflateState->pvCompGrain + pDeflateState->iOffset,
+ pvBuf, cbBuf);
+ pDeflateState->iOffset += cbBuf;
+ return VINF_SUCCESS;
+}
+
+/**
+ * Internal: deflate the uncompressed data and write to a file,
+ * distinguishing between async and normal operation
+ */
+DECLINLINE(int) vmdkFileDeflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uOffset, const void *pvBuf,
+ size_t cbToWrite, uint64_t uLBA,
+ uint32_t *pcbMarkerData)
+{
+ int rc;
+ PRTZIPCOMP pZip = NULL;
+ VMDKCOMPRESSIO DeflateState;
+
+ DeflateState.pImage = pImage;
+ DeflateState.iOffset = -1;
+ DeflateState.cbCompGrain = pExtent->cbCompGrain;
+ DeflateState.pvCompGrain = pExtent->pvCompGrain;
+
+ rc = RTZipCompCreate(&pZip, &DeflateState, vmdkFileDeflateHelper,
+ RTZIPTYPE_ZLIB, RTZIPLEVEL_DEFAULT);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = RTZipCompress(pZip, pvBuf, cbToWrite);
+ if (RT_SUCCESS(rc))
+ rc = RTZipCompFinish(pZip);
+ RTZipCompDestroy(pZip);
+ if (RT_SUCCESS(rc))
+ {
+ Assert( DeflateState.iOffset > 0
+ && (size_t)DeflateState.iOffset <= DeflateState.cbCompGrain);
+
+ /* pad with zeroes to get to a full sector size */
+ uint32_t uSize = DeflateState.iOffset;
+ if (uSize % 512)
+ {
+ uint32_t uSizeAlign = RT_ALIGN(uSize, 512);
+ memset((uint8_t *)pExtent->pvCompGrain + uSize, '\0',
+ uSizeAlign - uSize);
+ uSize = uSizeAlign;
+ }
+
+ if (pcbMarkerData)
+ *pcbMarkerData = uSize;
+
+ /* Compressed grain marker. Data follows immediately. */
+ VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain;
+ pMarker->uSector = RT_H2LE_U64(uLBA);
+ pMarker->cbSize = RT_H2LE_U32( DeflateState.iOffset
+ - RT_UOFFSETOF(VMDKMARKER, uType));
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uOffset, pMarker, uSize);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ return rc;
+}
+
+
+/**
+ * Internal: check if all files are closed, prevent leaking resources.
+ */
+static int vmdkFileCheckAllClose(PVMDKIMAGE pImage)
+{
+ int rc = VINF_SUCCESS, rc2;
+ PVMDKFILE pVmdkFile;
+
+ Assert(pImage->pFiles == NULL);
+ for (pVmdkFile = pImage->pFiles;
+ pVmdkFile != NULL;
+ pVmdkFile = pVmdkFile->pNext)
+ {
+ LogRel(("VMDK: leaking reference to file \"%s\"\n",
+ pVmdkFile->pszFilename));
+ pImage->pFiles = pVmdkFile->pNext;
+
+ rc2 = vmdkFileClose(pImage, &pVmdkFile, pVmdkFile->fDelete);
+
+ if (RT_SUCCESS(rc))
+ rc = rc2;
+ }
+ return rc;
+}
+
+/**
+ * Internal: truncate a string (at a UTF8 code point boundary) and encode the
+ * critical non-ASCII characters.
+ */
+static char *vmdkEncodeString(const char *psz)
+{
+ char szEnc[VMDK_ENCODED_COMMENT_MAX + 3];
+ char *pszDst = szEnc;
+
+ AssertPtr(psz);
+
+ for (; *psz; psz = RTStrNextCp(psz))
+ {
+ char *pszDstPrev = pszDst;
+ RTUNICP Cp = RTStrGetCp(psz);
+ if (Cp == '\\')
+ {
+ pszDst = RTStrPutCp(pszDst, Cp);
+ pszDst = RTStrPutCp(pszDst, Cp);
+ }
+ else if (Cp == '\n')
+ {
+ pszDst = RTStrPutCp(pszDst, '\\');
+ pszDst = RTStrPutCp(pszDst, 'n');
+ }
+ else if (Cp == '\r')
+ {
+ pszDst = RTStrPutCp(pszDst, '\\');
+ pszDst = RTStrPutCp(pszDst, 'r');
+ }
+ else
+ pszDst = RTStrPutCp(pszDst, Cp);
+ if (pszDst - szEnc >= VMDK_ENCODED_COMMENT_MAX - 1)
+ {
+ pszDst = pszDstPrev;
+ break;
+ }
+ }
+ *pszDst = '\0';
+ return RTStrDup(szEnc);
+}
+
+/**
+ * Internal: decode a string and store it into the specified string.
+ */
+static int vmdkDecodeString(const char *pszEncoded, char *psz, size_t cb)
+{
+ int rc = VINF_SUCCESS;
+ char szBuf[4];
+
+ if (!cb)
+ return VERR_BUFFER_OVERFLOW;
+
+ AssertPtr(psz);
+
+ for (; *pszEncoded; pszEncoded = RTStrNextCp(pszEncoded))
+ {
+ char *pszDst = szBuf;
+ RTUNICP Cp = RTStrGetCp(pszEncoded);
+ if (Cp == '\\')
+ {
+ pszEncoded = RTStrNextCp(pszEncoded);
+ RTUNICP CpQ = RTStrGetCp(pszEncoded);
+ if (CpQ == 'n')
+ RTStrPutCp(pszDst, '\n');
+ else if (CpQ == 'r')
+ RTStrPutCp(pszDst, '\r');
+ else if (CpQ == '\0')
+ {
+ rc = VERR_VD_VMDK_INVALID_HEADER;
+ break;
+ }
+ else
+ RTStrPutCp(pszDst, CpQ);
+ }
+ else
+ pszDst = RTStrPutCp(pszDst, Cp);
+
+ /* Need to leave space for terminating NUL. */
+ if ((size_t)(pszDst - szBuf) + 1 >= cb)
+ {
+ rc = VERR_BUFFER_OVERFLOW;
+ break;
+ }
+ memcpy(psz, szBuf, pszDst - szBuf);
+ psz += pszDst - szBuf;
+ }
+ *psz = '\0';
+ return rc;
+}
+
+/**
+ * Internal: free all buffers associated with grain directories.
+ */
+static void vmdkFreeGrainDirectory(PVMDKEXTENT pExtent)
+{
+ if (pExtent->pGD)
+ {
+ RTMemFree(pExtent->pGD);
+ pExtent->pGD = NULL;
+ }
+ if (pExtent->pRGD)
+ {
+ RTMemFree(pExtent->pRGD);
+ pExtent->pRGD = NULL;
+ }
+}
+
+/**
+ * Internal: allocate the compressed/uncompressed buffers for streamOptimized
+ * images.
+ */
+static int vmdkAllocStreamBuffers(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
+{
+ int rc = VINF_SUCCESS;
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* streamOptimized extents need a compressed grain buffer, which must
+ * be big enough to hold uncompressible data (which needs ~8 bytes
+ * more than the uncompressed data), the marker and padding. */
+ pExtent->cbCompGrain = RT_ALIGN_Z( VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)
+ + 8 + sizeof(VMDKMARKER), 512);
+ pExtent->pvCompGrain = RTMemAlloc(pExtent->cbCompGrain);
+ if (RT_LIKELY(pExtent->pvCompGrain))
+ {
+ /* streamOptimized extents need a decompressed grain buffer. */
+ pExtent->pvGrain = RTMemAlloc(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (!pExtent->pvGrain)
+ rc = VERR_NO_MEMORY;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+
+ if (RT_FAILURE(rc))
+ vmdkFreeStreamBuffers(pExtent);
+ return rc;
+}
+
+/**
+ * Internal: allocate all buffers associated with grain directories.
+ */
+static int vmdkAllocGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
+{
+ RT_NOREF1(pImage);
+ int rc = VINF_SUCCESS;
+ size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
+
+ pExtent->pGD = (uint32_t *)RTMemAllocZ(cbGD);
+ if (RT_LIKELY(pExtent->pGD))
+ {
+ if (pExtent->uSectorRGD)
+ {
+ pExtent->pRGD = (uint32_t *)RTMemAllocZ(cbGD);
+ if (RT_UNLIKELY(!pExtent->pRGD))
+ rc = VERR_NO_MEMORY;
+ }
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ if (RT_FAILURE(rc))
+ vmdkFreeGrainDirectory(pExtent);
+ return rc;
+}
+
+/**
+ * Converts the grain directory from little to host endianess.
+ *
+ * @param pGD The grain directory.
+ * @param cGDEntries Number of entries in the grain directory to convert.
+ */
+DECLINLINE(void) vmdkGrainDirectoryConvToHost(uint32_t *pGD, uint32_t cGDEntries)
+{
+ uint32_t *pGDTmp = pGD;
+
+ for (uint32_t i = 0; i < cGDEntries; i++, pGDTmp++)
+ *pGDTmp = RT_LE2H_U32(*pGDTmp);
+}
+
+/**
+ * Read the grain directory and allocated grain tables verifying them against
+ * their back up copies if available.
+ *
+ * @returns VBox status code.
+ * @param pImage Image instance data.
+ * @param pExtent The VMDK extent.
+ */
+static int vmdkReadGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
+{
+ int rc = VINF_SUCCESS;
+ size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
+
+ AssertReturn(( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE
+ && pExtent->uSectorGD != VMDK_GD_AT_END
+ && pExtent->uSectorRGD != VMDK_GD_AT_END), VERR_INTERNAL_ERROR);
+
+ rc = vmdkAllocGrainDirectory(pImage, pExtent);
+ if (RT_SUCCESS(rc))
+ {
+ /* The VMDK 1.1 spec seems to talk about compressed grain directories,
+ * but in reality they are not compressed. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorGD),
+ pExtent->pGD, cbGD);
+ if (RT_SUCCESS(rc))
+ {
+ vmdkGrainDirectoryConvToHost(pExtent->pGD, pExtent->cGDEntries);
+
+ if ( pExtent->uSectorRGD
+ && !(pImage->uOpenFlags & VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS))
+ {
+ /* The VMDK 1.1 spec seems to talk about compressed grain directories,
+ * but in reality they are not compressed. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD),
+ pExtent->pRGD, cbGD);
+ if (RT_SUCCESS(rc))
+ {
+ vmdkGrainDirectoryConvToHost(pExtent->pRGD, pExtent->cGDEntries);
+
+ /* Check grain table and redundant grain table for consistency. */
+ size_t cbGT = pExtent->cGTEntries * sizeof(uint32_t);
+ size_t cbGTBuffers = cbGT; /* Start with space for one GT. */
+ size_t cbGTBuffersMax = _1M;
+
+ uint32_t *pTmpGT1 = (uint32_t *)RTMemAlloc(cbGTBuffers);
+ uint32_t *pTmpGT2 = (uint32_t *)RTMemAlloc(cbGTBuffers);
+
+ if ( !pTmpGT1
+ || !pTmpGT2)
+ rc = VERR_NO_MEMORY;
+
+ size_t i = 0;
+ uint32_t *pGDTmp = pExtent->pGD;
+ uint32_t *pRGDTmp = pExtent->pRGD;
+
+ /* Loop through all entries. */
+ while (i < pExtent->cGDEntries)
+ {
+ uint32_t uGTStart = *pGDTmp;
+ uint32_t uRGTStart = *pRGDTmp;
+ size_t cbGTRead = cbGT;
+
+ /* If no grain table is allocated skip the entry. */
+ if (*pGDTmp == 0 && *pRGDTmp == 0)
+ {
+ i++;
+ continue;
+ }
+
+ if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp)
+ {
+ /* Just one grain directory entry refers to a not yet allocated
+ * grain table or both grain directory copies refer to the same
+ * grain table. Not allowed. */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname);
+ break;
+ }
+
+ i++;
+ pGDTmp++;
+ pRGDTmp++;
+
+ /*
+ * Read a few tables at once if adjacent to decrease the number
+ * of I/O requests. Read at maximum 1MB at once.
+ */
+ while ( i < pExtent->cGDEntries
+ && cbGTRead < cbGTBuffersMax)
+ {
+ /* If no grain table is allocated skip the entry. */
+ if (*pGDTmp == 0 && *pRGDTmp == 0)
+ {
+ i++;
+ continue;
+ }
+
+ if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp)
+ {
+ /* Just one grain directory entry refers to a not yet allocated
+ * grain table or both grain directory copies refer to the same
+ * grain table. Not allowed. */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname);
+ break;
+ }
+
+ /* Check that the start offsets are adjacent.*/
+ if ( VMDK_SECTOR2BYTE(uGTStart) + cbGTRead != VMDK_SECTOR2BYTE(*pGDTmp)
+ || VMDK_SECTOR2BYTE(uRGTStart) + cbGTRead != VMDK_SECTOR2BYTE(*pRGDTmp))
+ break;
+
+ i++;
+ pGDTmp++;
+ pRGDTmp++;
+ cbGTRead += cbGT;
+ }
+
+ /* Increase buffers if required. */
+ if ( RT_SUCCESS(rc)
+ && cbGTBuffers < cbGTRead)
+ {
+ uint32_t *pTmp;
+ pTmp = (uint32_t *)RTMemRealloc(pTmpGT1, cbGTRead);
+ if (pTmp)
+ {
+ pTmpGT1 = pTmp;
+ pTmp = (uint32_t *)RTMemRealloc(pTmpGT2, cbGTRead);
+ if (pTmp)
+ pTmpGT2 = pTmp;
+ else
+ rc = VERR_NO_MEMORY;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ if (rc == VERR_NO_MEMORY)
+ {
+ /* Reset to the old values. */
+ rc = VINF_SUCCESS;
+ i -= cbGTRead / cbGT;
+ cbGTRead = cbGT;
+
+ /* Don't try to increase the buffer again in the next run. */
+ cbGTBuffersMax = cbGTBuffers;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /* The VMDK 1.1 spec seems to talk about compressed grain tables,
+ * but in reality they are not compressed. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTStart),
+ pTmpGT1, cbGTRead);
+ if (RT_FAILURE(rc))
+ {
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error reading grain table in '%s'"), pExtent->pszFullname);
+ break;
+ }
+ /* The VMDK 1.1 spec seems to talk about compressed grain tables,
+ * but in reality they are not compressed. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRGTStart),
+ pTmpGT2, cbGTRead);
+ if (RT_FAILURE(rc))
+ {
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error reading backup grain table in '%s'"), pExtent->pszFullname);
+ break;
+ }
+ if (memcmp(pTmpGT1, pTmpGT2, cbGTRead))
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname);
+ break;
+ }
+ }
+ } /* while (i < pExtent->cGDEntries) */
+
+ /** @todo figure out what to do for unclean VMDKs. */
+ if (pTmpGT1)
+ RTMemFree(pTmpGT1);
+ if (pTmpGT2)
+ RTMemFree(pTmpGT2);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: could not read redundant grain directory in '%s'"), pExtent->pszFullname);
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: could not read grain directory in '%s': %Rrc"), pExtent->pszFullname, rc);
+ }
+
+ if (RT_FAILURE(rc))
+ vmdkFreeGrainDirectory(pExtent);
+ return rc;
+}
+
+/**
+ * Creates a new grain directory for the given extent at the given start sector.
+ *
+ * @returns VBox status code.
+ * @param pImage Image instance data.
+ * @param pExtent The VMDK extent.
+ * @param uStartSector Where the grain directory should be stored in the image.
+ * @param fPreAlloc Flag whether to pre allocate the grain tables at this point.
+ */
+static int vmdkCreateGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uStartSector, bool fPreAlloc)
+{
+ int rc = VINF_SUCCESS;
+ unsigned i;
+ size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t);
+ size_t cbGDRounded = RT_ALIGN_64(cbGD, 512);
+ size_t cbGTRounded;
+ uint64_t cbOverhead;
+
+ if (fPreAlloc)
+ {
+ cbGTRounded = RT_ALIGN_64(pExtent->cGDEntries * pExtent->cGTEntries * sizeof(uint32_t), 512);
+ cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded + cbGTRounded;
+ }
+ else
+ {
+ /* Use a dummy start sector for layout computation. */
+ if (uStartSector == VMDK_GD_AT_END)
+ uStartSector = 1;
+ cbGTRounded = 0;
+ cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded;
+ }
+
+ /* For streamOptimized extents there is only one grain directory,
+ * and for all others take redundant grain directory into account. */
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ cbOverhead = RT_ALIGN_64(cbOverhead,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ }
+ else
+ {
+ cbOverhead += cbGDRounded + cbGTRounded;
+ cbOverhead = RT_ALIGN_64(cbOverhead,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ rc = vdIfIoIntFileSetSize(pImage->pIfIo, pExtent->pFile->pStorage, cbOverhead);
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ pExtent->uAppendPosition = cbOverhead;
+ pExtent->cOverheadSectors = VMDK_BYTE2SECTOR(cbOverhead);
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ pExtent->uSectorRGD = 0;
+ pExtent->uSectorGD = uStartSector;
+ }
+ else
+ {
+ pExtent->uSectorRGD = uStartSector;
+ pExtent->uSectorGD = uStartSector + VMDK_BYTE2SECTOR(cbGDRounded + cbGTRounded);
+ }
+
+ rc = vmdkAllocStreamBuffers(pImage, pExtent);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkAllocGrainDirectory(pImage, pExtent);
+ if ( RT_SUCCESS(rc)
+ && fPreAlloc)
+ {
+ uint32_t uGTSectorLE;
+ uint64_t uOffsetSectors;
+
+ if (pExtent->pRGD)
+ {
+ uOffsetSectors = pExtent->uSectorRGD + VMDK_BYTE2SECTOR(cbGDRounded);
+ for (i = 0; i < pExtent->cGDEntries; i++)
+ {
+ pExtent->pRGD[i] = uOffsetSectors;
+ uGTSectorLE = RT_H2LE_U64(uOffsetSectors);
+ /* Write the redundant grain directory entry to disk. */
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + i * sizeof(uGTSectorLE),
+ &uGTSectorLE, sizeof(uGTSectorLE));
+ if (RT_FAILURE(rc))
+ {
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write new redundant grain directory entry in '%s'"), pExtent->pszFullname);
+ break;
+ }
+ uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ uOffsetSectors = pExtent->uSectorGD + VMDK_BYTE2SECTOR(cbGDRounded);
+ for (i = 0; i < pExtent->cGDEntries; i++)
+ {
+ pExtent->pGD[i] = uOffsetSectors;
+ uGTSectorLE = RT_H2LE_U64(uOffsetSectors);
+ /* Write the grain directory entry to disk. */
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorGD) + i * sizeof(uGTSectorLE),
+ &uGTSectorLE, sizeof(uGTSectorLE));
+ if (RT_FAILURE(rc))
+ {
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write new grain directory entry in '%s'"), pExtent->pszFullname);
+ break;
+ }
+ uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
+ }
+ }
+ }
+ }
+ }
+
+ if (RT_FAILURE(rc))
+ vmdkFreeGrainDirectory(pExtent);
+ return rc;
+}
+
+/**
+ * Unquotes the given string returning the result in a separate buffer.
+ *
+ * @returns VBox status code.
+ * @param pImage The VMDK image state.
+ * @param pszStr The string to unquote.
+ * @param ppszUnquoted Where to store the return value, use RTMemTmpFree to
+ * free.
+ * @param ppszNext Where to store the pointer to any character following
+ * the quoted value, optional.
+ */
+static int vmdkStringUnquote(PVMDKIMAGE pImage, const char *pszStr,
+ char **ppszUnquoted, char **ppszNext)
+{
+ const char *pszStart = pszStr;
+ char *pszQ;
+ char *pszUnquoted;
+
+ /* Skip over whitespace. */
+ while (*pszStr == ' ' || *pszStr == '\t')
+ pszStr++;
+
+ if (*pszStr != '"')
+ {
+ pszQ = (char *)pszStr;
+ while (*pszQ && *pszQ != ' ' && *pszQ != '\t')
+ pszQ++;
+ }
+ else
+ {
+ pszStr++;
+ pszQ = (char *)strchr(pszStr, '"');
+ if (pszQ == NULL)
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrectly quoted value in descriptor in '%s' (raw value %s)"),
+ pImage->pszFilename, pszStart);
+ }
+
+ pszUnquoted = (char *)RTMemTmpAlloc(pszQ - pszStr + 1);
+ if (!pszUnquoted)
+ return VERR_NO_MEMORY;
+ memcpy(pszUnquoted, pszStr, pszQ - pszStr);
+ pszUnquoted[pszQ - pszStr] = '\0';
+ *ppszUnquoted = pszUnquoted;
+ if (ppszNext)
+ *ppszNext = pszQ + 1;
+ return VINF_SUCCESS;
+}
+
+static int vmdkDescInitStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszLine)
+{
+ char *pEnd = pDescriptor->aLines[pDescriptor->cLines];
+ ssize_t cbDiff = strlen(pszLine) + 1;
+
+ if ( pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1
+ && pEnd - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)
+ return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
+
+ memcpy(pEnd, pszLine, cbDiff);
+ pDescriptor->cLines++;
+ pDescriptor->aLines[pDescriptor->cLines] = pEnd + cbDiff;
+ pDescriptor->fDirty = true;
+
+ return VINF_SUCCESS;
+}
+
+static bool vmdkDescGetStr(PVMDKDESCRIPTOR pDescriptor, unsigned uStart,
+ const char *pszKey, const char **ppszValue)
+{
+ size_t cbKey = strlen(pszKey);
+ const char *pszValue;
+
+ while (uStart != 0)
+ {
+ if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey))
+ {
+ /* Key matches, check for a '=' (preceded by whitespace). */
+ pszValue = pDescriptor->aLines[uStart] + cbKey;
+ while (*pszValue == ' ' || *pszValue == '\t')
+ pszValue++;
+ if (*pszValue == '=')
+ {
+ *ppszValue = pszValue + 1;
+ break;
+ }
+ }
+ uStart = pDescriptor->aNextLines[uStart];
+ }
+ return !!uStart;
+}
+
+static int vmdkDescSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ unsigned uStart,
+ const char *pszKey, const char *pszValue)
+{
+ char *pszTmp = NULL; /* (MSC naturally cannot figure this isn't used uninitialized) */
+ size_t cbKey = strlen(pszKey);
+ unsigned uLast = 0;
+
+ while (uStart != 0)
+ {
+ if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey))
+ {
+ /* Key matches, check for a '=' (preceded by whitespace). */
+ pszTmp = pDescriptor->aLines[uStart] + cbKey;
+ while (*pszTmp == ' ' || *pszTmp == '\t')
+ pszTmp++;
+ if (*pszTmp == '=')
+ {
+ pszTmp++;
+ /** @todo r=bird: Doesn't skipping trailing blanks here just cause unecessary
+ * bloat and potentially out of space error? */
+ while (*pszTmp == ' ' || *pszTmp == '\t')
+ pszTmp++;
+ break;
+ }
+ }
+ if (!pDescriptor->aNextLines[uStart])
+ uLast = uStart;
+ uStart = pDescriptor->aNextLines[uStart];
+ }
+ if (uStart)
+ {
+ if (pszValue)
+ {
+ /* Key already exists, replace existing value. */
+ size_t cbOldVal = strlen(pszTmp);
+ size_t cbNewVal = strlen(pszValue);
+ ssize_t cbDiff = cbNewVal - cbOldVal;
+ /* Check for buffer overflow. */
+ if ( pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[0]
+ > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)
+ return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
+
+ memmove(pszTmp + cbNewVal, pszTmp + cbOldVal,
+ pDescriptor->aLines[pDescriptor->cLines] - pszTmp - cbOldVal);
+ memcpy(pszTmp, pszValue, cbNewVal + 1);
+ for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
+ pDescriptor->aLines[i] += cbDiff;
+ }
+ else
+ {
+ memmove(pDescriptor->aLines[uStart], pDescriptor->aLines[uStart+1],
+ pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uStart+1] + 1);
+ for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
+ {
+ pDescriptor->aLines[i-1] = pDescriptor->aLines[i];
+ if (pDescriptor->aNextLines[i])
+ pDescriptor->aNextLines[i-1] = pDescriptor->aNextLines[i] - 1;
+ else
+ pDescriptor->aNextLines[i-1] = 0;
+ }
+ pDescriptor->cLines--;
+ /* Adjust starting line numbers of following descriptor sections. */
+ if (uStart < pDescriptor->uFirstExtent)
+ pDescriptor->uFirstExtent--;
+ if (uStart < pDescriptor->uFirstDDB)
+ pDescriptor->uFirstDDB--;
+ }
+ }
+ else
+ {
+ /* Key doesn't exist, append after the last entry in this category. */
+ if (!pszValue)
+ {
+ /* Key doesn't exist, and it should be removed. Simply a no-op. */
+ return VINF_SUCCESS;
+ }
+ cbKey = strlen(pszKey);
+ size_t cbValue = strlen(pszValue);
+ ssize_t cbDiff = cbKey + 1 + cbValue + 1;
+ /* Check for buffer overflow. */
+ if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1)
+ || ( pDescriptor->aLines[pDescriptor->cLines]
+ - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff))
+ return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
+ for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--)
+ {
+ pDescriptor->aLines[i] = pDescriptor->aLines[i - 1];
+ if (pDescriptor->aNextLines[i - 1])
+ pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1;
+ else
+ pDescriptor->aNextLines[i] = 0;
+ }
+ uStart = uLast + 1;
+ pDescriptor->aNextLines[uLast] = uStart;
+ pDescriptor->aNextLines[uStart] = 0;
+ pDescriptor->cLines++;
+ pszTmp = pDescriptor->aLines[uStart];
+ memmove(pszTmp + cbDiff, pszTmp,
+ pDescriptor->aLines[pDescriptor->cLines] - pszTmp);
+ memcpy(pDescriptor->aLines[uStart], pszKey, cbKey);
+ pDescriptor->aLines[uStart][cbKey] = '=';
+ memcpy(pDescriptor->aLines[uStart] + cbKey + 1, pszValue, cbValue + 1);
+ for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
+ pDescriptor->aLines[i] += cbDiff;
+
+ /* Adjust starting line numbers of following descriptor sections. */
+ if (uStart <= pDescriptor->uFirstExtent)
+ pDescriptor->uFirstExtent++;
+ if (uStart <= pDescriptor->uFirstDDB)
+ pDescriptor->uFirstDDB++;
+ }
+ pDescriptor->fDirty = true;
+ return VINF_SUCCESS;
+}
+
+static int vmdkDescBaseGetU32(PVMDKDESCRIPTOR pDescriptor, const char *pszKey,
+ uint32_t *puValue)
+{
+ const char *pszValue;
+
+ if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey,
+ &pszValue))
+ return VERR_VD_VMDK_VALUE_NOT_FOUND;
+ return RTStrToUInt32Ex(pszValue, NULL, 10, puValue);
+}
+
+/**
+ * Returns the value of the given key as a string allocating the necessary memory.
+ *
+ * @returns VBox status code.
+ * @retval VERR_VD_VMDK_VALUE_NOT_FOUND if the value could not be found.
+ * @param pImage The VMDK image state.
+ * @param pDescriptor The descriptor to fetch the value from.
+ * @param pszKey The key to get the value from.
+ * @param ppszValue Where to store the return value, use RTMemTmpFree to
+ * free.
+ */
+static int vmdkDescBaseGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, char **ppszValue)
+{
+ const char *pszValue;
+ char *pszValueUnquoted;
+
+ if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey,
+ &pszValue))
+ return VERR_VD_VMDK_VALUE_NOT_FOUND;
+ int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ *ppszValue = pszValueUnquoted;
+ return rc;
+}
+
+static int vmdkDescBaseSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, const char *pszValue)
+{
+ char *pszValueQuoted;
+
+ RTStrAPrintf(&pszValueQuoted, "\"%s\"", pszValue);
+ if (!pszValueQuoted)
+ return VERR_NO_STR_MEMORY;
+ int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, pszKey,
+ pszValueQuoted);
+ RTStrFree(pszValueQuoted);
+ return rc;
+}
+
+static void vmdkDescExtRemoveDummy(PVMDKIMAGE pImage,
+ PVMDKDESCRIPTOR pDescriptor)
+{
+ RT_NOREF1(pImage);
+ unsigned uEntry = pDescriptor->uFirstExtent;
+ ssize_t cbDiff;
+
+ if (!uEntry)
+ return;
+
+ cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1;
+ /* Move everything including \0 in the entry marking the end of buffer. */
+ memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1],
+ pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1);
+ for (unsigned i = uEntry + 1; i <= pDescriptor->cLines; i++)
+ {
+ pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff;
+ if (pDescriptor->aNextLines[i])
+ pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1;
+ else
+ pDescriptor->aNextLines[i - 1] = 0;
+ }
+ pDescriptor->cLines--;
+ if (pDescriptor->uFirstDDB)
+ pDescriptor->uFirstDDB--;
+
+ return;
+}
+
+static void vmdkDescExtRemoveByLine(PVMDKIMAGE pImage,
+ PVMDKDESCRIPTOR pDescriptor, unsigned uLine)
+{
+ RT_NOREF1(pImage);
+ unsigned uEntry = uLine;
+ ssize_t cbDiff;
+ if (!uEntry)
+ return;
+ cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1;
+ /* Move everything including \0 in the entry marking the end of buffer. */
+ memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1],
+ pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1);
+ for (unsigned i = uEntry; i <= pDescriptor->cLines; i++)
+ {
+ if (i != uEntry)
+ pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff;
+ if (pDescriptor->aNextLines[i])
+ pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1;
+ else
+ pDescriptor->aNextLines[i - 1] = 0;
+ }
+ pDescriptor->cLines--;
+ if (pDescriptor->uFirstDDB)
+ pDescriptor->uFirstDDB--;
+ return;
+}
+
+static int vmdkDescExtInsert(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ VMDKACCESS enmAccess, uint64_t cNominalSectors,
+ VMDKETYPE enmType, const char *pszBasename,
+ uint64_t uSectorOffset)
+{
+ static const char *apszAccess[] = { "NOACCESS", "RDONLY", "RW" };
+ static const char *apszType[] = { "", "SPARSE", "FLAT", "ZERO", "VMFS" };
+ char *pszTmp;
+ unsigned uStart = pDescriptor->uFirstExtent, uLast = 0;
+ char szExt[1024];
+ ssize_t cbDiff;
+
+ Assert((unsigned)enmAccess < RT_ELEMENTS(apszAccess));
+ Assert((unsigned)enmType < RT_ELEMENTS(apszType));
+
+ /* Find last entry in extent description. */
+ while (uStart)
+ {
+ if (!pDescriptor->aNextLines[uStart])
+ uLast = uStart;
+ uStart = pDescriptor->aNextLines[uStart];
+ }
+
+ if (enmType == VMDKETYPE_ZERO)
+ {
+ RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s ", apszAccess[enmAccess],
+ cNominalSectors, apszType[enmType]);
+ }
+ else if (enmType == VMDKETYPE_FLAT)
+ {
+ RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\" %llu",
+ apszAccess[enmAccess], cNominalSectors,
+ apszType[enmType], pszBasename, uSectorOffset);
+ }
+ else
+ {
+ RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\"",
+ apszAccess[enmAccess], cNominalSectors,
+ apszType[enmType], pszBasename);
+ }
+ cbDiff = strlen(szExt) + 1;
+
+ /* Check for buffer overflow. */
+ if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1)
+ || ( pDescriptor->aLines[pDescriptor->cLines]
+ - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff))
+ {
+ if ((pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
+ && !(pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1))
+ {
+ pImage->cbDescAlloc *= 2;
+ pDescriptor->cbDescAlloc *= 2;
+ }
+ else
+ return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
+ }
+
+ for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--)
+ {
+ pDescriptor->aLines[i] = pDescriptor->aLines[i - 1];
+ if (pDescriptor->aNextLines[i - 1])
+ pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1;
+ else
+ pDescriptor->aNextLines[i] = 0;
+ }
+ uStart = uLast + 1;
+ pDescriptor->aNextLines[uLast] = uStart;
+ pDescriptor->aNextLines[uStart] = 0;
+ pDescriptor->cLines++;
+ pszTmp = pDescriptor->aLines[uStart];
+ memmove(pszTmp + cbDiff, pszTmp,
+ pDescriptor->aLines[pDescriptor->cLines] - pszTmp);
+ memcpy(pDescriptor->aLines[uStart], szExt, cbDiff);
+ for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++)
+ pDescriptor->aLines[i] += cbDiff;
+
+ /* Adjust starting line numbers of following descriptor sections. */
+ if (uStart <= pDescriptor->uFirstDDB)
+ pDescriptor->uFirstDDB++;
+
+ pDescriptor->fDirty = true;
+ return VINF_SUCCESS;
+}
+
+/**
+ * Returns the value of the given key from the DDB as a string allocating
+ * the necessary memory.
+ *
+ * @returns VBox status code.
+ * @retval VERR_VD_VMDK_VALUE_NOT_FOUND if the value could not be found.
+ * @param pImage The VMDK image state.
+ * @param pDescriptor The descriptor to fetch the value from.
+ * @param pszKey The key to get the value from.
+ * @param ppszValue Where to store the return value, use RTMemTmpFree to
+ * free.
+ */
+static int vmdkDescDDBGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, char **ppszValue)
+{
+ const char *pszValue;
+ char *pszValueUnquoted;
+
+ if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ &pszValue))
+ return VERR_VD_VMDK_VALUE_NOT_FOUND;
+ int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ *ppszValue = pszValueUnquoted;
+ return rc;
+}
+
+static int vmdkDescDDBGetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, uint32_t *puValue)
+{
+ const char *pszValue;
+ char *pszValueUnquoted;
+
+ if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ &pszValue))
+ return VERR_VD_VMDK_VALUE_NOT_FOUND;
+ int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = RTStrToUInt32Ex(pszValueUnquoted, NULL, 10, puValue);
+ RTMemTmpFree(pszValueUnquoted);
+ return rc;
+}
+
+static int vmdkDescDDBGetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, PRTUUID pUuid)
+{
+ const char *pszValue;
+ char *pszValueUnquoted;
+
+ if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ &pszValue))
+ return VERR_VD_VMDK_VALUE_NOT_FOUND;
+ int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = RTUuidFromStr(pUuid, pszValueUnquoted);
+ RTMemTmpFree(pszValueUnquoted);
+ return rc;
+}
+
+static int vmdkDescDDBSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, const char *pszVal)
+{
+ int rc;
+ char *pszValQuoted;
+
+ if (pszVal)
+ {
+ RTStrAPrintf(&pszValQuoted, "\"%s\"", pszVal);
+ if (!pszValQuoted)
+ return VERR_NO_STR_MEMORY;
+ }
+ else
+ pszValQuoted = NULL;
+ rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ pszValQuoted);
+ if (pszValQuoted)
+ RTStrFree(pszValQuoted);
+ return rc;
+}
+
+static int vmdkDescDDBSetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, PCRTUUID pUuid)
+{
+ char *pszUuid;
+
+ RTStrAPrintf(&pszUuid, "\"%RTuuid\"", pUuid);
+ if (!pszUuid)
+ return VERR_NO_STR_MEMORY;
+ int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ pszUuid);
+ RTStrFree(pszUuid);
+ return rc;
+}
+
+static int vmdkDescDDBSetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor,
+ const char *pszKey, uint32_t uValue)
+{
+ char *pszValue;
+
+ RTStrAPrintf(&pszValue, "\"%d\"", uValue);
+ if (!pszValue)
+ return VERR_NO_STR_MEMORY;
+ int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey,
+ pszValue);
+ RTStrFree(pszValue);
+ return rc;
+}
+
+/**
+ * Splits the descriptor data into individual lines checking for correct line
+ * endings and descriptor size.
+ *
+ * @returns VBox status code.
+ * @param pImage The image instance.
+ * @param pDesc The descriptor.
+ * @param pszTmp The raw descriptor data from the image.
+ */
+static int vmdkDescSplitLines(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDesc, char *pszTmp)
+{
+ unsigned cLine = 0;
+ int rc = VINF_SUCCESS;
+
+ while ( RT_SUCCESS(rc)
+ && *pszTmp != '\0')
+ {
+ pDesc->aLines[cLine++] = pszTmp;
+ if (cLine >= VMDK_DESCRIPTOR_LINES_MAX)
+ {
+ vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename);
+ rc = VERR_VD_VMDK_INVALID_HEADER;
+ break;
+ }
+
+ while (*pszTmp != '\0' && *pszTmp != '\n')
+ {
+ if (*pszTmp == '\r')
+ {
+ if (*(pszTmp + 1) != '\n')
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: unsupported end of line in descriptor in '%s'"), pImage->pszFilename);
+ break;
+ }
+ else
+ {
+ /* Get rid of CR character. */
+ *pszTmp = '\0';
+ }
+ }
+ pszTmp++;
+ }
+
+ if (RT_FAILURE(rc))
+ break;
+
+ /* Get rid of LF character. */
+ if (*pszTmp == '\n')
+ {
+ *pszTmp = '\0';
+ pszTmp++;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ pDesc->cLines = cLine;
+ /* Pointer right after the end of the used part of the buffer. */
+ pDesc->aLines[cLine] = pszTmp;
+ }
+
+ return rc;
+}
+
+static int vmdkPreprocessDescriptor(PVMDKIMAGE pImage, char *pDescData,
+ size_t cbDescData, PVMDKDESCRIPTOR pDescriptor)
+{
+ pDescriptor->cbDescAlloc = cbDescData;
+ int rc = vmdkDescSplitLines(pImage, pDescriptor, pDescData);
+ if (RT_SUCCESS(rc))
+ {
+ if ( strcmp(pDescriptor->aLines[0], "# Disk DescriptorFile")
+ && strcmp(pDescriptor->aLines[0], "# Disk Descriptor File")
+ && strcmp(pDescriptor->aLines[0], "#Disk Descriptor File")
+ && strcmp(pDescriptor->aLines[0], "#Disk DescriptorFile"))
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: descriptor does not start as expected in '%s'"), pImage->pszFilename);
+ else
+ {
+ unsigned uLastNonEmptyLine = 0;
+
+ /* Initialize those, because we need to be able to reopen an image. */
+ pDescriptor->uFirstDesc = 0;
+ pDescriptor->uFirstExtent = 0;
+ pDescriptor->uFirstDDB = 0;
+ for (unsigned i = 0; i < pDescriptor->cLines; i++)
+ {
+ if (*pDescriptor->aLines[i] != '#' && *pDescriptor->aLines[i] != '\0')
+ {
+ if ( !strncmp(pDescriptor->aLines[i], "RW", 2)
+ || !strncmp(pDescriptor->aLines[i], "RDONLY", 6)
+ || !strncmp(pDescriptor->aLines[i], "NOACCESS", 8) )
+ {
+ /* An extent descriptor. */
+ if (!pDescriptor->uFirstDesc || pDescriptor->uFirstDDB)
+ {
+ /* Incorrect ordering of entries. */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
+ break;
+ }
+ if (!pDescriptor->uFirstExtent)
+ {
+ pDescriptor->uFirstExtent = i;
+ uLastNonEmptyLine = 0;
+ }
+ }
+ else if (!strncmp(pDescriptor->aLines[i], "ddb.", 4))
+ {
+ /* A disk database entry. */
+ if (!pDescriptor->uFirstDesc || !pDescriptor->uFirstExtent)
+ {
+ /* Incorrect ordering of entries. */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
+ break;
+ }
+ if (!pDescriptor->uFirstDDB)
+ {
+ pDescriptor->uFirstDDB = i;
+ uLastNonEmptyLine = 0;
+ }
+ }
+ else
+ {
+ /* A normal entry. */
+ if (pDescriptor->uFirstExtent || pDescriptor->uFirstDDB)
+ {
+ /* Incorrect ordering of entries. */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename);
+ break;
+ }
+ if (!pDescriptor->uFirstDesc)
+ {
+ pDescriptor->uFirstDesc = i;
+ uLastNonEmptyLine = 0;
+ }
+ }
+ if (uLastNonEmptyLine)
+ pDescriptor->aNextLines[uLastNonEmptyLine] = i;
+ uLastNonEmptyLine = i;
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+static int vmdkDescSetPCHSGeometry(PVMDKIMAGE pImage,
+ PCVDGEOMETRY pPCHSGeometry)
+{
+ int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_CYLINDERS,
+ pPCHSGeometry->cCylinders);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_HEADS,
+ pPCHSGeometry->cHeads);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_SECTORS,
+ pPCHSGeometry->cSectors);
+ return rc;
+}
+
+static int vmdkDescSetLCHSGeometry(PVMDKIMAGE pImage,
+ PCVDGEOMETRY pLCHSGeometry)
+{
+ int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_CYLINDERS,
+ pLCHSGeometry->cCylinders);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_HEADS,
+
+ pLCHSGeometry->cHeads);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_SECTORS,
+ pLCHSGeometry->cSectors);
+ return rc;
+}
+
+static int vmdkCreateDescriptor(PVMDKIMAGE pImage, char *pDescData,
+ size_t cbDescData, PVMDKDESCRIPTOR pDescriptor)
+{
+ pDescriptor->uFirstDesc = 0;
+ pDescriptor->uFirstExtent = 0;
+ pDescriptor->uFirstDDB = 0;
+ pDescriptor->cLines = 0;
+ pDescriptor->cbDescAlloc = cbDescData;
+ pDescriptor->fDirty = false;
+ pDescriptor->aLines[pDescriptor->cLines] = pDescData;
+ memset(pDescriptor->aNextLines, '\0', sizeof(pDescriptor->aNextLines));
+
+ int rc = vmdkDescInitStr(pImage, pDescriptor, "# Disk DescriptorFile");
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "version=1");
+ if (RT_SUCCESS(rc))
+ {
+ pDescriptor->uFirstDesc = pDescriptor->cLines - 1;
+ rc = vmdkDescInitStr(pImage, pDescriptor, "");
+ }
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "# Extent description");
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "NOACCESS 0 ZERO ");
+ if (RT_SUCCESS(rc))
+ {
+ pDescriptor->uFirstExtent = pDescriptor->cLines - 1;
+ rc = vmdkDescInitStr(pImage, pDescriptor, "");
+ }
+ if (RT_SUCCESS(rc))
+ {
+ /* The trailing space is created by VMware, too. */
+ rc = vmdkDescInitStr(pImage, pDescriptor, "# The disk Data Base ");
+ }
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "#DDB");
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "");
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescInitStr(pImage, pDescriptor, "ddb.virtualHWVersion = \"4\"");
+ if (RT_SUCCESS(rc))
+ {
+ pDescriptor->uFirstDDB = pDescriptor->cLines - 1;
+
+ /* Now that the framework is in place, use the normal functions to insert
+ * the remaining keys. */
+ char szBuf[9];
+ RTStrPrintf(szBuf, sizeof(szBuf), "%08x", RTRandU32());
+ rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc,
+ "CID", szBuf);
+ }
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc,
+ "parentCID", "ffffffff");
+ if (RT_SUCCESS(rc))
+ rc = vmdkDescDDBSetStr(pImage, pDescriptor, "ddb.adapterType", "ide");
+
+ return rc;
+}
+
+static int vmdkParseDescriptor(PVMDKIMAGE pImage, char *pDescData, size_t cbDescData)
+{
+ int rc;
+ unsigned cExtents;
+ unsigned uLine;
+ unsigned i;
+
+ rc = vmdkPreprocessDescriptor(pImage, pDescData, cbDescData,
+ &pImage->Descriptor);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /* Check version, must be 1. */
+ uint32_t uVersion;
+ rc = vmdkDescBaseGetU32(&pImage->Descriptor, "version", &uVersion);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error finding key 'version' in descriptor in '%s'"), pImage->pszFilename);
+ if (uVersion != 1)
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: unsupported format version in descriptor in '%s'"), pImage->pszFilename);
+
+ /* Get image creation type and determine image flags. */
+ char *pszCreateType = NULL; /* initialized to make gcc shut up */
+ rc = vmdkDescBaseGetStr(pImage, &pImage->Descriptor, "createType",
+ &pszCreateType);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot get image type from descriptor in '%s'"), pImage->pszFilename);
+ if ( !strcmp(pszCreateType, "twoGbMaxExtentSparse")
+ || !strcmp(pszCreateType, "twoGbMaxExtentFlat"))
+ pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_SPLIT_2G;
+ else if ( !strcmp(pszCreateType, "partitionedDevice")
+ || !strcmp(pszCreateType, "fullDevice"))
+ pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_RAWDISK;
+ else if (!strcmp(pszCreateType, "streamOptimized"))
+ pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED;
+ else if (!strcmp(pszCreateType, "vmfs"))
+ pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED | VD_VMDK_IMAGE_FLAGS_ESX;
+ RTMemTmpFree(pszCreateType);
+
+ /* Count the number of extent config entries. */
+ for (uLine = pImage->Descriptor.uFirstExtent, cExtents = 0;
+ uLine != 0;
+ uLine = pImage->Descriptor.aNextLines[uLine], cExtents++)
+ /* nothing */;
+
+ if (!pImage->pDescData && cExtents != 1)
+ {
+ /* Monolithic image, must have only one extent (already opened). */
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image may only have one extent in '%s'"), pImage->pszFilename);
+ }
+
+ if (pImage->pDescData)
+ {
+ /* Non-monolithic image, extents need to be allocated. */
+ rc = vmdkCreateExtents(pImage, cExtents);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ for (i = 0, uLine = pImage->Descriptor.uFirstExtent;
+ i < cExtents; i++, uLine = pImage->Descriptor.aNextLines[uLine])
+ {
+ char *pszLine = pImage->Descriptor.aLines[uLine];
+
+ /* Access type of the extent. */
+ if (!strncmp(pszLine, "RW", 2))
+ {
+ pImage->pExtents[i].enmAccess = VMDKACCESS_READWRITE;
+ pszLine += 2;
+ }
+ else if (!strncmp(pszLine, "RDONLY", 6))
+ {
+ pImage->pExtents[i].enmAccess = VMDKACCESS_READONLY;
+ pszLine += 6;
+ }
+ else if (!strncmp(pszLine, "NOACCESS", 8))
+ {
+ pImage->pExtents[i].enmAccess = VMDKACCESS_NOACCESS;
+ pszLine += 8;
+ }
+ else
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+ if (*pszLine++ != ' ')
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+
+ /* Nominal size of the extent. */
+ rc = RTStrToUInt64Ex(pszLine, &pszLine, 10,
+ &pImage->pExtents[i].cNominalSectors);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+ if (*pszLine++ != ' ')
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+
+ /* Type of the extent. */
+ if (!strncmp(pszLine, "SPARSE", 6))
+ {
+ pImage->pExtents[i].enmType = VMDKETYPE_HOSTED_SPARSE;
+ pszLine += 6;
+ }
+ else if (!strncmp(pszLine, "FLAT", 4))
+ {
+ pImage->pExtents[i].enmType = VMDKETYPE_FLAT;
+ pszLine += 4;
+ }
+ else if (!strncmp(pszLine, "ZERO", 4))
+ {
+ pImage->pExtents[i].enmType = VMDKETYPE_ZERO;
+ pszLine += 4;
+ }
+ else if (!strncmp(pszLine, "VMFS", 4))
+ {
+ pImage->pExtents[i].enmType = VMDKETYPE_VMFS;
+ pszLine += 4;
+ }
+ else
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+
+ if (pImage->pExtents[i].enmType == VMDKETYPE_ZERO)
+ {
+ /* This one has no basename or offset. */
+ if (*pszLine == ' ')
+ pszLine++;
+ if (*pszLine != '\0')
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+ pImage->pExtents[i].pszBasename = NULL;
+ }
+ else
+ {
+ /* All other extent types have basename and optional offset. */
+ if (*pszLine++ != ' ')
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+
+ /* Basename of the image. Surrounded by quotes. */
+ char *pszBasename;
+ rc = vmdkStringUnquote(pImage, pszLine, &pszBasename, &pszLine);
+ if (RT_FAILURE(rc))
+ return rc;
+ pImage->pExtents[i].pszBasename = pszBasename;
+ if (*pszLine == ' ')
+ {
+ pszLine++;
+ if (*pszLine != '\0')
+ {
+ /* Optional offset in extent specified. */
+ rc = RTStrToUInt64Ex(pszLine, &pszLine, 10,
+ &pImage->pExtents[i].uSectorOffset);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+ }
+ }
+
+ if (*pszLine != '\0')
+ return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename);
+ }
+ }
+
+ /* Determine PCHS geometry (autogenerate if necessary). */
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_CYLINDERS,
+ &pImage->PCHSGeometry.cCylinders);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->PCHSGeometry.cCylinders = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_HEADS,
+ &pImage->PCHSGeometry.cHeads);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->PCHSGeometry.cHeads = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_PCHS_SECTORS,
+ &pImage->PCHSGeometry.cSectors);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->PCHSGeometry.cSectors = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ if ( pImage->PCHSGeometry.cCylinders == 0
+ || pImage->PCHSGeometry.cHeads == 0
+ || pImage->PCHSGeometry.cHeads > 16
+ || pImage->PCHSGeometry.cSectors == 0
+ || pImage->PCHSGeometry.cSectors > 63)
+ {
+ /* Mark PCHS geometry as not yet valid (can't do the calculation here
+ * as the total image size isn't known yet). */
+ pImage->PCHSGeometry.cCylinders = 0;
+ pImage->PCHSGeometry.cHeads = 16;
+ pImage->PCHSGeometry.cSectors = 63;
+ }
+
+ /* Determine LCHS geometry (set to 0 if not specified). */
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_CYLINDERS,
+ &pImage->LCHSGeometry.cCylinders);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->LCHSGeometry.cCylinders = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_HEADS,
+ &pImage->LCHSGeometry.cHeads);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->LCHSGeometry.cHeads = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor,
+ VMDK_DDB_GEO_LCHS_SECTORS,
+ &pImage->LCHSGeometry.cSectors);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ pImage->LCHSGeometry.cSectors = 0;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename);
+ if ( pImage->LCHSGeometry.cCylinders == 0
+ || pImage->LCHSGeometry.cHeads == 0
+ || pImage->LCHSGeometry.cSectors == 0)
+ {
+ pImage->LCHSGeometry.cCylinders = 0;
+ pImage->LCHSGeometry.cHeads = 0;
+ pImage->LCHSGeometry.cSectors = 0;
+ }
+
+ /* Get image UUID. */
+ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID,
+ &pImage->ImageUuid);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ {
+ /* Image without UUID. Probably created by VMware and not yet used
+ * by VirtualBox. Can only be added for images opened in read/write
+ * mode, so don't bother producing a sensible UUID otherwise. */
+ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ RTUuidClear(&pImage->ImageUuid);
+ else
+ {
+ rc = RTUuidCreate(&pImage->ImageUuid);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ }
+ else if (RT_FAILURE(rc))
+ return rc;
+
+ /* Get image modification UUID. */
+ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_MODIFICATION_UUID,
+ &pImage->ModificationUuid);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ {
+ /* Image without UUID. Probably created by VMware and not yet used
+ * by VirtualBox. Can only be added for images opened in read/write
+ * mode, so don't bother producing a sensible UUID otherwise. */
+ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ RTUuidClear(&pImage->ModificationUuid);
+ else
+ {
+ rc = RTUuidCreate(&pImage->ModificationUuid);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_MODIFICATION_UUID,
+ &pImage->ModificationUuid);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image modification UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ }
+ else if (RT_FAILURE(rc))
+ return rc;
+
+ /* Get UUID of parent image. */
+ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID,
+ &pImage->ParentUuid);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ {
+ /* Image without UUID. Probably created by VMware and not yet used
+ * by VirtualBox. Can only be added for images opened in read/write
+ * mode, so don't bother producing a sensible UUID otherwise. */
+ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ RTUuidClear(&pImage->ParentUuid);
+ else
+ {
+ rc = RTUuidClear(&pImage->ParentUuid);
+ if (RT_FAILURE(rc))
+ return rc;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_PARENT_UUID, &pImage->ParentUuid);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ }
+ else if (RT_FAILURE(rc))
+ return rc;
+
+ /* Get parent image modification UUID. */
+ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_PARENT_MODIFICATION_UUID,
+ &pImage->ParentModificationUuid);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ {
+ /* Image without UUID. Probably created by VMware and not yet used
+ * by VirtualBox. Can only be added for images opened in read/write
+ * mode, so don't bother producing a sensible UUID otherwise. */
+ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ RTUuidClear(&pImage->ParentModificationUuid);
+ else
+ {
+ RTUuidClear(&pImage->ParentModificationUuid);
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_PARENT_MODIFICATION_UUID,
+ &pImage->ParentModificationUuid);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ }
+ else if (RT_FAILURE(rc))
+ return rc;
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Internal : Prepares the descriptor to write to the image.
+ */
+static int vmdkDescriptorPrepare(PVMDKIMAGE pImage, uint64_t cbLimit,
+ void **ppvData, size_t *pcbData)
+{
+ int rc = VINF_SUCCESS;
+
+ /*
+ * Allocate temporary descriptor buffer.
+ * In case there is no limit allocate a default
+ * and increase if required.
+ */
+ size_t cbDescriptor = cbLimit ? cbLimit : 4 * _1K;
+ char *pszDescriptor = (char *)RTMemAllocZ(cbDescriptor);
+ size_t offDescriptor = 0;
+
+ if (!pszDescriptor)
+ return VERR_NO_MEMORY;
+
+ for (unsigned i = 0; i < pImage->Descriptor.cLines; i++)
+ {
+ const char *psz = pImage->Descriptor.aLines[i];
+ size_t cb = strlen(psz);
+
+ /*
+ * Increase the descriptor if there is no limit and
+ * there is not enough room left for this line.
+ */
+ if (offDescriptor + cb + 1 > cbDescriptor)
+ {
+ if (cbLimit)
+ {
+ rc = vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too long in '%s'"), pImage->pszFilename);
+ break;
+ }
+ else
+ {
+ char *pszDescriptorNew = NULL;
+ LogFlow(("Increasing descriptor cache\n"));
+
+ pszDescriptorNew = (char *)RTMemRealloc(pszDescriptor, cbDescriptor + cb + 4 * _1K);
+ if (!pszDescriptorNew)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ pszDescriptor = pszDescriptorNew;
+ cbDescriptor += cb + 4 * _1K;
+ }
+ }
+
+ if (cb > 0)
+ {
+ memcpy(pszDescriptor + offDescriptor, psz, cb);
+ offDescriptor += cb;
+ }
+
+ memcpy(pszDescriptor + offDescriptor, "\n", 1);
+ offDescriptor++;
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ *ppvData = pszDescriptor;
+ *pcbData = offDescriptor;
+ }
+ else if (pszDescriptor)
+ RTMemFree(pszDescriptor);
+
+ return rc;
+}
+
+/**
+ * Internal: write/update the descriptor part of the image.
+ */
+static int vmdkWriteDescriptor(PVMDKIMAGE pImage, PVDIOCTX pIoCtx)
+{
+ int rc = VINF_SUCCESS;
+ uint64_t cbLimit;
+ uint64_t uOffset;
+ PVMDKFILE pDescFile;
+ void *pvDescriptor = NULL;
+ size_t cbDescriptor;
+
+ if (pImage->pDescData)
+ {
+ /* Separate descriptor file. */
+ uOffset = 0;
+ cbLimit = 0;
+ pDescFile = pImage->pFile;
+ }
+ else
+ {
+ /* Embedded descriptor file. */
+ uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector);
+ cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors);
+ pDescFile = pImage->pExtents[0].pFile;
+ }
+ /* Bail out if there is no file to write to. */
+ if (pDescFile == NULL)
+ return VERR_INVALID_PARAMETER;
+
+ rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pDescFile->pStorage,
+ uOffset, pvDescriptor,
+ cbLimit ? cbLimit : cbDescriptor,
+ pIoCtx, NULL, NULL);
+ if ( RT_FAILURE(rc)
+ && rc != VERR_VD_ASYNC_IO_IN_PROGRESS)
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename);
+ }
+
+ if (RT_SUCCESS(rc) && !cbLimit)
+ {
+ rc = vdIfIoIntFileSetSize(pImage->pIfIo, pDescFile->pStorage, cbDescriptor);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename);
+ }
+
+ if (RT_SUCCESS(rc))
+ pImage->Descriptor.fDirty = false;
+
+ if (pvDescriptor)
+ RTMemFree(pvDescriptor);
+ return rc;
+
+}
+
+/**
+ * Internal: validate the consistency check values in a binary header.
+ */
+static int vmdkValidateHeader(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, const SparseExtentHeader *pHeader)
+{
+ int rc = VINF_SUCCESS;
+ if (RT_LE2H_U32(pHeader->magicNumber) != VMDK_SPARSE_MAGICNUMBER)
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect magic in sparse extent header in '%s'"), pExtent->pszFullname);
+ return rc;
+ }
+ if (RT_LE2H_U32(pHeader->version) != 1 && RT_LE2H_U32(pHeader->version) != 3)
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: incorrect version in sparse extent header in '%s', not a VMDK 1.0/1.1 conforming file"), pExtent->pszFullname);
+ return rc;
+ }
+ if ( (RT_LE2H_U32(pHeader->flags) & 1)
+ && ( pHeader->singleEndLineChar != '\n'
+ || pHeader->nonEndLineChar != ' '
+ || pHeader->doubleEndLineChar1 != '\r'
+ || pHeader->doubleEndLineChar2 != '\n') )
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: corrupted by CR/LF translation in '%s'"), pExtent->pszFullname);
+ return rc;
+ }
+ if (RT_LE2H_U64(pHeader->descriptorSize) > VMDK_SPARSE_DESCRIPTOR_SIZE_MAX)
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor size out of bounds (%llu vs %llu) '%s'"),
+ pExtent->pszFullname, RT_LE2H_U64(pHeader->descriptorSize), VMDK_SPARSE_DESCRIPTOR_SIZE_MAX);
+ return rc;
+ }
+ return rc;
+}
+
+/**
+ * Internal: read metadata belonging to an extent with binary header, i.e.
+ * as found in monolithic files.
+ */
+static int vmdkReadBinaryMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ bool fMagicAlreadyRead)
+{
+ SparseExtentHeader Header;
+ int rc;
+
+ if (!fMagicAlreadyRead)
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, 0,
+ &Header, sizeof(Header));
+ else
+ {
+ Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER);
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ RT_UOFFSETOF(SparseExtentHeader, version),
+ &Header.version,
+ sizeof(Header)
+ - RT_UOFFSETOF(SparseExtentHeader, version));
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkValidateHeader(pImage, pExtent, &Header);
+ if (RT_SUCCESS(rc))
+ {
+ uint64_t cbFile = 0;
+
+ if ( (RT_LE2H_U32(Header.flags) & RT_BIT(17))
+ && RT_LE2H_U64(Header.gdOffset) == VMDK_GD_AT_END)
+ pExtent->fFooter = true;
+
+ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || ( pExtent->fFooter
+ && !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
+ {
+ rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbFile);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot get size of '%s'"), pExtent->pszFullname);
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ pExtent->uAppendPosition = RT_ALIGN_64(cbFile, 512);
+
+ if ( pExtent->fFooter
+ && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
+ {
+ /* Read the footer, which comes before the end-of-stream marker. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ cbFile - 2*512, &Header,
+ sizeof(Header));
+ if (RT_FAILURE(rc))
+ {
+ vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading extent footer in '%s'"), pExtent->pszFullname);
+ rc = VERR_VD_VMDK_INVALID_HEADER;
+ }
+
+ if (RT_SUCCESS(rc))
+ rc = vmdkValidateHeader(pImage, pExtent, &Header);
+ /* Prohibit any writes to this extent. */
+ pExtent->uAppendPosition = 0;
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ pExtent->uVersion = RT_LE2H_U32(Header.version);
+ pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; /* Just dummy value, changed later. */
+ pExtent->cSectors = RT_LE2H_U64(Header.capacity);
+ pExtent->cSectorsPerGrain = RT_LE2H_U64(Header.grainSize);
+ pExtent->uDescriptorSector = RT_LE2H_U64(Header.descriptorOffset);
+ pExtent->cDescriptorSectors = RT_LE2H_U64(Header.descriptorSize);
+ pExtent->cGTEntries = RT_LE2H_U32(Header.numGTEsPerGT);
+ pExtent->cOverheadSectors = RT_LE2H_U64(Header.overHead);
+ pExtent->fUncleanShutdown = !!Header.uncleanShutdown;
+ pExtent->uCompression = RT_LE2H_U16(Header.compressAlgorithm);
+ if (RT_LE2H_U32(Header.flags) & RT_BIT(1))
+ {
+ pExtent->uSectorRGD = RT_LE2H_U64(Header.rgdOffset);
+ pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset);
+ }
+ else
+ {
+ pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset);
+ pExtent->uSectorRGD = 0;
+ }
+
+ if (pExtent->uDescriptorSector && !pExtent->cDescriptorSectors)
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistent embedded descriptor config in '%s'"), pExtent->pszFullname);
+
+ if ( RT_SUCCESS(rc)
+ && ( pExtent->uSectorGD == VMDK_GD_AT_END
+ || pExtent->uSectorRGD == VMDK_GD_AT_END)
+ && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)))
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: cannot resolve grain directory offset in '%s'"), pExtent->pszFullname);
+
+ if (RT_SUCCESS(rc))
+ {
+ uint64_t cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
+ if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX)
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: incorrect grain directory size in '%s'"), pExtent->pszFullname);
+ else
+ {
+ pExtent->cSectorsPerGDE = cSectorsPerGDE;
+ pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
+
+ /* Fix up the number of descriptor sectors, as some flat images have
+ * really just one, and this causes failures when inserting the UUID
+ * values and other extra information. */
+ if (pExtent->cDescriptorSectors != 0 && pExtent->cDescriptorSectors < 4)
+ {
+ /* Do it the easy way - just fix it for flat images which have no
+ * other complicated metadata which needs space too. */
+ if ( pExtent->uDescriptorSector + 4 < pExtent->cOverheadSectors
+ && pExtent->cGTEntries * pExtent->cGDEntries == 0)
+ pExtent->cDescriptorSectors = 4;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading extent header in '%s'"), pExtent->pszFullname);
+ rc = VERR_VD_VMDK_INVALID_HEADER;
+ }
+
+ if (RT_FAILURE(rc))
+ vmdkFreeExtentData(pImage, pExtent, false);
+
+ return rc;
+}
+
+/**
+ * Internal: read additional metadata belonging to an extent. For those
+ * extents which have no additional metadata just verify the information.
+ */
+static int vmdkReadMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
+{
+ int rc = VINF_SUCCESS;
+
+/* disabled the check as there are too many truncated vmdk images out there */
+#ifdef VBOX_WITH_VMDK_STRICT_SIZE_CHECK
+ uint64_t cbExtentSize;
+ /* The image must be a multiple of a sector in size and contain the data
+ * area (flat images only). If not, it means the image is at least
+ * truncated, or even seriously garbled. */
+ rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbExtentSize);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting size in '%s'"), pExtent->pszFullname);
+ else if ( cbExtentSize != RT_ALIGN_64(cbExtentSize, 512)
+ && (pExtent->enmType != VMDKETYPE_FLAT || pExtent->cNominalSectors + pExtent->uSectorOffset > VMDK_BYTE2SECTOR(cbExtentSize)))
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: file size is not a multiple of 512 in '%s', file is truncated or otherwise garbled"), pExtent->pszFullname);
+#endif /* VBOX_WITH_VMDK_STRICT_SIZE_CHECK */
+ if ( RT_SUCCESS(rc)
+ && pExtent->enmType == VMDKETYPE_HOSTED_SPARSE)
+ {
+ /* The spec says that this must be a power of two and greater than 8,
+ * but probably they meant not less than 8. */
+ if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1))
+ || pExtent->cSectorsPerGrain < 8)
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: invalid extent grain size %u in '%s'"), pExtent->cSectorsPerGrain, pExtent->pszFullname);
+ else
+ {
+ /* This code requires that a grain table must hold a power of two multiple
+ * of the number of entries per GT cache entry. */
+ if ( (pExtent->cGTEntries & (pExtent->cGTEntries - 1))
+ || pExtent->cGTEntries < VMDK_GT_CACHELINE_SIZE)
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: grain table cache size problem in '%s'"), pExtent->pszFullname);
+ else
+ {
+ rc = vmdkAllocStreamBuffers(pImage, pExtent);
+ if (RT_SUCCESS(rc))
+ {
+ /* Prohibit any writes to this streamOptimized extent. */
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ pExtent->uAppendPosition = 0;
+
+ if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
+ rc = vmdkReadGrainDirectory(pImage, pExtent);
+ else
+ {
+ pExtent->uGrainSectorAbs = pExtent->cOverheadSectors;
+ pExtent->cbGrainStreamRead = 0;
+ }
+ }
+ }
+ }
+ }
+
+ if (RT_FAILURE(rc))
+ vmdkFreeExtentData(pImage, pExtent, false);
+
+ return rc;
+}
+
+/**
+ * Internal: write/update the metadata for a sparse extent.
+ */
+static int vmdkWriteMetaSparseExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uOffset, PVDIOCTX pIoCtx)
+{
+ SparseExtentHeader Header;
+
+ memset(&Header, '\0', sizeof(Header));
+ Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER);
+ Header.version = RT_H2LE_U32(pExtent->uVersion);
+ Header.flags = RT_H2LE_U32(RT_BIT(0));
+ if (pExtent->pRGD)
+ Header.flags |= RT_H2LE_U32(RT_BIT(1));
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17));
+ Header.capacity = RT_H2LE_U64(pExtent->cSectors);
+ Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain);
+ Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector);
+ Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors);
+ Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries);
+ if (pExtent->fFooter && uOffset == 0)
+ {
+ if (pExtent->pRGD)
+ {
+ Assert(pExtent->uSectorRGD);
+ Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
+ Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
+ }
+ else
+ Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END);
+ }
+ else
+ {
+ if (pExtent->pRGD)
+ {
+ Assert(pExtent->uSectorRGD);
+ Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD);
+ Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
+ }
+ else
+ Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD);
+ }
+ Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors);
+ Header.uncleanShutdown = pExtent->fUncleanShutdown;
+ Header.singleEndLineChar = '\n';
+ Header.nonEndLineChar = ' ';
+ Header.doubleEndLineChar1 = '\r';
+ Header.doubleEndLineChar2 = '\n';
+ Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression);
+
+ int rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ uOffset, &Header, sizeof(Header),
+ pIoCtx, NULL, NULL);
+ if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname);
+ return rc;
+}
+
+/**
+ * Internal: free the buffers used for streamOptimized images.
+ */
+static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent)
+{
+ if (pExtent->pvCompGrain)
+ {
+ RTMemFree(pExtent->pvCompGrain);
+ pExtent->pvCompGrain = NULL;
+ }
+ if (pExtent->pvGrain)
+ {
+ RTMemFree(pExtent->pvGrain);
+ pExtent->pvGrain = NULL;
+ }
+}
+
+/**
+ * Internal: free the memory used by the extent data structure, optionally
+ * deleting the referenced files.
+ *
+ * @returns VBox status code.
+ * @param pImage Pointer to the image instance data.
+ * @param pExtent The extent to free.
+ * @param fDelete Flag whether to delete the backing storage.
+ */
+static int vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ bool fDelete)
+{
+ int rc = VINF_SUCCESS;
+
+ vmdkFreeGrainDirectory(pExtent);
+ if (pExtent->pDescData)
+ {
+ RTMemFree(pExtent->pDescData);
+ pExtent->pDescData = NULL;
+ }
+ if (pExtent->pFile != NULL)
+ {
+ /* Do not delete raw extents, these have full and base names equal. */
+ rc = vmdkFileClose(pImage, &pExtent->pFile,
+ fDelete
+ && pExtent->pszFullname
+ && pExtent->pszBasename
+ && strcmp(pExtent->pszFullname, pExtent->pszBasename));
+ }
+ if (pExtent->pszBasename)
+ {
+ RTMemTmpFree((void *)pExtent->pszBasename);
+ pExtent->pszBasename = NULL;
+ }
+ if (pExtent->pszFullname)
+ {
+ RTStrFree((char *)(void *)pExtent->pszFullname);
+ pExtent->pszFullname = NULL;
+ }
+ vmdkFreeStreamBuffers(pExtent);
+
+ return rc;
+}
+
+/**
+ * Internal: allocate grain table cache if necessary for this image.
+ */
+static int vmdkAllocateGrainTableCache(PVMDKIMAGE pImage)
+{
+ PVMDKEXTENT pExtent;
+
+ /* Allocate grain table cache if any sparse extent is present. */
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ pExtent = &pImage->pExtents[i];
+ if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE)
+ {
+ /* Allocate grain table cache. */
+ pImage->pGTCache = (PVMDKGTCACHE)RTMemAllocZ(sizeof(VMDKGTCACHE));
+ if (!pImage->pGTCache)
+ return VERR_NO_MEMORY;
+ for (unsigned j = 0; j < VMDK_GT_CACHE_SIZE; j++)
+ {
+ PVMDKGTCACHEENTRY pGCE = &pImage->pGTCache->aGTCache[j];
+ pGCE->uExtent = UINT32_MAX;
+ }
+ pImage->pGTCache->cEntries = VMDK_GT_CACHE_SIZE;
+ break;
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Internal: allocate the given number of extents.
+ */
+static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents)
+{
+ int rc = VINF_SUCCESS;
+ PVMDKEXTENT pExtents = (PVMDKEXTENT)RTMemAllocZ(cExtents * sizeof(VMDKEXTENT));
+ if (pExtents)
+ {
+ for (unsigned i = 0; i < cExtents; i++)
+ {
+ pExtents[i].pFile = NULL;
+ pExtents[i].pszBasename = NULL;
+ pExtents[i].pszFullname = NULL;
+ pExtents[i].pGD = NULL;
+ pExtents[i].pRGD = NULL;
+ pExtents[i].pDescData = NULL;
+ pExtents[i].uVersion = 1;
+ pExtents[i].uCompression = VMDK_COMPRESSION_NONE;
+ pExtents[i].uExtent = i;
+ pExtents[i].pImage = pImage;
+ }
+ pImage->pExtents = pExtents;
+ pImage->cExtents = cExtents;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ return rc;
+}
+
+/**
+ * Internal: Create an additional file backed extent in split images.
+ * Supports split sparse and flat images.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param cbSize Desiried size in bytes of new extent.
+ */
+static int vmdkAddFileBackedExtent(PVMDKIMAGE pImage, uint64_t cbSize)
+{
+ int rc = VINF_SUCCESS;
+ unsigned uImageFlags = pImage->uImageFlags;
+
+ /* Check for unsupported image type. */
+ if ((uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
+ || (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ || (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK))
+ {
+ return VERR_NOT_SUPPORTED;
+ }
+
+ /* Allocate array of extents and copy existing extents to it. */
+ PVMDKEXTENT pNewExtents = (PVMDKEXTENT)RTMemAllocZ((pImage->cExtents + 1) * sizeof(VMDKEXTENT));
+ if (!pNewExtents)
+ {
+ return VERR_NO_MEMORY;
+ }
+
+ memcpy(pNewExtents, pImage->pExtents, pImage->cExtents * sizeof(VMDKEXTENT));
+
+ /* Locate newly created extent and populate default metadata. */
+ PVMDKEXTENT pExtent = &pNewExtents[pImage->cExtents];
+
+ pExtent->pFile = NULL;
+ pExtent->pszBasename = NULL;
+ pExtent->pszFullname = NULL;
+ pExtent->pGD = NULL;
+ pExtent->pRGD = NULL;
+ pExtent->pDescData = NULL;
+ pExtent->uVersion = 1;
+ pExtent->uCompression = VMDK_COMPRESSION_NONE;
+ pExtent->uExtent = pImage->cExtents;
+ pExtent->pImage = pImage;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize);
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->uSectorOffset = 0;
+ pExtent->fMetaDirty = true;
+
+ /* Apply image type specific meta data. */
+ if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ {
+ pExtent->enmType = VMDKETYPE_FLAT;
+ }
+ else
+ {
+ uint64_t cSectorsPerGDE, cSectorsPerGD;
+ pExtent->enmType = VMDKETYPE_HOSTED_SPARSE;
+ pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K));
+ pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K);
+ pExtent->cGTEntries = 512;
+ cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
+ pExtent->cSectorsPerGDE = cSectorsPerGDE;
+ pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
+ cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t));
+ }
+
+ /* Allocate and set file name for extent. */
+ char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename);
+ AssertPtr(pszBasenameSubstr);
+
+ char *pszBasenameSuff = RTPathSuffix(pszBasenameSubstr);
+ char *pszBasenameBase = RTStrDup(pszBasenameSubstr);
+ RTPathStripSuffix(pszBasenameBase);
+ char *pszTmp;
+ size_t cbTmp;
+
+ if (pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase,
+ pExtent->uExtent + 1, pszBasenameSuff);
+ else
+ RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, pExtent->uExtent + 1,
+ pszBasenameSuff);
+
+ RTStrFree(pszBasenameBase);
+ if (!pszTmp)
+ return VERR_NO_STR_MEMORY;
+ cbTmp = strlen(pszTmp) + 1;
+ char *pszBasename = (char *)RTMemTmpAlloc(cbTmp);
+ if (!pszBasename)
+ {
+ RTStrFree(pszTmp);
+ return VERR_NO_MEMORY;
+ }
+
+ memcpy(pszBasename, pszTmp, cbTmp);
+ RTStrFree(pszTmp);
+
+ pExtent->pszBasename = pszBasename;
+
+ char *pszBasedirectory = RTStrDup(pImage->pszFilename);
+ if (!pszBasedirectory)
+ return VERR_NO_STR_MEMORY;
+ RTPathStripFilename(pszBasedirectory);
+ char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename);
+ RTStrFree(pszBasedirectory);
+ if (!pszFullname)
+ return VERR_NO_STR_MEMORY;
+ pExtent->pszFullname = pszFullname;
+
+ /* Create file for extent. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname);
+
+ if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ {
+ /* For flat images: Pre allocate file space. */
+ rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbSize,
+ 0 /* fFlags */, NULL, 0, 0);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
+ }
+ else
+ {
+ /* For sparse images: Allocate new grain directories/tables. */
+ /* fPreAlloc should never be false because VMware can't use such images. */
+ rc = vmdkCreateGrainDirectory(pImage, pExtent,
+ RT_MAX( pExtent->uDescriptorSector
+ + pExtent->cDescriptorSectors,
+ 1),
+ true /* fPreAlloc */);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname);
+ }
+
+ /* Insert new extent into descriptor file. */
+ rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess,
+ pExtent->cNominalSectors, pExtent->enmType,
+ pExtent->pszBasename, pExtent->uSectorOffset);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename);
+
+ pImage->pExtents = pNewExtents;
+ pImage->cExtents++;
+
+ return rc;
+}
+
+/**
+ * Reads and processes the descriptor embedded in sparse images.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pFile The sparse file handle.
+ */
+static int vmdkDescriptorReadSparse(PVMDKIMAGE pImage, PVMDKFILE pFile)
+{
+ /* It's a hosted single-extent image. */
+ int rc = vmdkCreateExtents(pImage, 1);
+ if (RT_SUCCESS(rc))
+ {
+ /* The opened file is passed to the extent. No separate descriptor
+ * file, so no need to keep anything open for the image. */
+ PVMDKEXTENT pExtent = &pImage->pExtents[0];
+ pExtent->pFile = pFile;
+ pImage->pFile = NULL;
+ pExtent->pszFullname = RTPathAbsDup(pImage->pszFilename);
+ if (RT_LIKELY(pExtent->pszFullname))
+ {
+ /* As we're dealing with a monolithic image here, there must
+ * be a descriptor embedded in the image file. */
+ rc = vmdkReadBinaryMetaExtent(pImage, pExtent, true /* fMagicAlreadyRead */);
+ if ( RT_SUCCESS(rc)
+ && pExtent->uDescriptorSector
+ && pExtent->cDescriptorSectors)
+ {
+ /* HACK: extend the descriptor if it is unusually small and it fits in
+ * the unused space after the image header. Allows opening VMDK files
+ * with extremely small descriptor in read/write mode.
+ *
+ * The previous version introduced a possible regression for VMDK stream
+ * optimized images from VMware which tend to have only a single sector sized
+ * descriptor. Increasing the descriptor size resulted in adding the various uuid
+ * entries required to make it work with VBox but for stream optimized images
+ * the updated binary header wasn't written to the disk creating a mismatch
+ * between advertised and real descriptor size.
+ *
+ * The descriptor size will be increased even if opened readonly now if there
+ * enough room but the new value will not be written back to the image.
+ */
+ if ( pExtent->cDescriptorSectors < 3
+ && (int64_t)pExtent->uSectorGD - pExtent->uDescriptorSector >= 4
+ && (!pExtent->uSectorRGD || (int64_t)pExtent->uSectorRGD - pExtent->uDescriptorSector >= 4))
+ {
+ uint64_t cDescriptorSectorsOld = pExtent->cDescriptorSectors;
+
+ pExtent->cDescriptorSectors = 4;
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ /*
+ * Update the on disk number now to make sure we don't introduce inconsistencies
+ * in case of stream optimized images from VMware where the descriptor is just
+ * one sector big (the binary header is not written to disk for complete
+ * stream optimized images in vmdkFlushImage()).
+ */
+ uint64_t u64DescSizeNew = RT_H2LE_U64(pExtent->cDescriptorSectors);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pFile->pStorage,
+ RT_UOFFSETOF(SparseExtentHeader, descriptorSize),
+ &u64DescSizeNew, sizeof(u64DescSizeNew));
+ if (RT_FAILURE(rc))
+ {
+ LogFlowFunc(("Increasing the descriptor size failed with %Rrc\n", rc));
+ /* Restore the old size and carry on. */
+ pExtent->cDescriptorSectors = cDescriptorSectorsOld;
+ }
+ }
+ }
+ /* Read the descriptor from the extent. */
+ pExtent->pDescData = (char *)RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors));
+ if (RT_LIKELY(pExtent->pDescData))
+ {
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uDescriptorSector),
+ pExtent->pDescData,
+ VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors));
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkParseDescriptor(pImage, pExtent->pDescData,
+ VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors));
+ if ( RT_SUCCESS(rc)
+ && ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO)))
+ {
+ rc = vmdkReadMetaExtent(pImage, pExtent);
+ if (RT_SUCCESS(rc))
+ {
+ /* Mark the extent as unclean if opened in read-write mode. */
+ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ pExtent->fUncleanShutdown = true;
+ pExtent->fMetaDirty = true;
+ }
+ }
+ }
+ else if (RT_SUCCESS(rc))
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pExtent->pszFullname);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+ else if (RT_SUCCESS(rc))
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image without descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+
+ return rc;
+}
+
+/**
+ * Reads the descriptor from a pure text file.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pFile The descriptor file handle.
+ */
+static int vmdkDescriptorReadAscii(PVMDKIMAGE pImage, PVMDKFILE pFile)
+{
+ /* Allocate at least 10K, and make sure that there is 5K free space
+ * in case new entries need to be added to the descriptor. Never
+ * allocate more than 128K, because that's no valid descriptor file
+ * and will result in the correct "truncated read" error handling. */
+ uint64_t cbFileSize;
+ int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pFile->pStorage, &cbFileSize);
+ if ( RT_SUCCESS(rc)
+ && cbFileSize >= 50)
+ {
+ uint64_t cbSize = cbFileSize;
+ if (cbSize % VMDK_SECTOR2BYTE(10))
+ cbSize += VMDK_SECTOR2BYTE(20) - cbSize % VMDK_SECTOR2BYTE(10);
+ else
+ cbSize += VMDK_SECTOR2BYTE(10);
+ cbSize = RT_MIN(cbSize, _128K);
+ pImage->cbDescAlloc = RT_MAX(VMDK_SECTOR2BYTE(20), cbSize);
+ pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc);
+ if (RT_LIKELY(pImage->pDescData))
+ {
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pFile->pStorage, 0, pImage->pDescData,
+ RT_MIN(pImage->cbDescAlloc, cbFileSize));
+ if (RT_SUCCESS(rc))
+ {
+#if 0 /** @todo Revisit */
+ cbRead += sizeof(u32Magic);
+ if (cbRead == pImage->cbDescAlloc)
+ {
+ /* Likely the read is truncated. Better fail a bit too early
+ * (normally the descriptor is much smaller than our buffer). */
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot read descriptor in '%s'"), pImage->pszFilename);
+ goto out;
+ }
+#endif
+ rc = vmdkParseDescriptor(pImage, pImage->pDescData,
+ pImage->cbDescAlloc);
+ if (RT_SUCCESS(rc))
+ {
+ for (unsigned i = 0; i < pImage->cExtents && RT_SUCCESS(rc); i++)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[i];
+ if (pExtent->pszBasename)
+ {
+ /* Hack to figure out whether the specified name in the
+ * extent descriptor is absolute. Doesn't always work, but
+ * should be good enough for now. */
+ char *pszFullname;
+ /** @todo implement proper path absolute check. */
+ if (pExtent->pszBasename[0] == RTPATH_SLASH)
+ {
+ pszFullname = RTStrDup(pExtent->pszBasename);
+ if (!pszFullname)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ }
+ else
+ {
+ char *pszDirname = RTStrDup(pImage->pszFilename);
+ if (!pszDirname)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ RTPathStripFilename(pszDirname);
+ pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename);
+ RTStrFree(pszDirname);
+ if (!pszFullname)
+ {
+ rc = VERR_NO_STR_MEMORY;
+ break;
+ }
+ }
+ pExtent->pszFullname = pszFullname;
+ }
+ else
+ pExtent->pszFullname = NULL;
+
+ unsigned uOpenFlags = pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0);
+ switch (pExtent->enmType)
+ {
+ case VMDKETYPE_HOSTED_SPARSE:
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */));
+ if (RT_FAILURE(rc))
+ {
+ /* Do NOT signal an appropriate error here, as the VD
+ * layer has the choice of retrying the open if it
+ * failed. */
+ break;
+ }
+ rc = vmdkReadBinaryMetaExtent(pImage, pExtent,
+ false /* fMagicAlreadyRead */);
+ if (RT_FAILURE(rc))
+ break;
+ rc = vmdkReadMetaExtent(pImage, pExtent);
+ if (RT_FAILURE(rc))
+ break;
+
+ /* Mark extent as unclean if opened in read-write mode. */
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ pExtent->fUncleanShutdown = true;
+ pExtent->fMetaDirty = true;
+ }
+ break;
+ case VMDKETYPE_VMFS:
+ case VMDKETYPE_FLAT:
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */));
+ if (RT_FAILURE(rc))
+ {
+ /* Do NOT signal an appropriate error here, as the VD
+ * layer has the choice of retrying the open if it
+ * failed. */
+ break;
+ }
+ break;
+ case VMDKETYPE_ZERO:
+ /* Nothing to do. */
+ break;
+ default:
+ AssertMsgFailed(("unknown vmdk extent type %d\n", pExtent->enmType));
+ }
+ }
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+ else if (RT_SUCCESS(rc))
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor in '%s' is too short"), pImage->pszFilename);
+
+ return rc;
+}
+
+/**
+ * Read and process the descriptor based on the image type.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pFile VMDK file handle.
+ */
+static int vmdkDescriptorRead(PVMDKIMAGE pImage, PVMDKFILE pFile)
+{
+ uint32_t u32Magic;
+
+ /* Read magic (if present). */
+ int rc = vdIfIoIntFileReadSync(pImage->pIfIo, pFile->pStorage, 0,
+ &u32Magic, sizeof(u32Magic));
+ if (RT_SUCCESS(rc))
+ {
+ /* Handle the file according to its magic number. */
+ if (RT_LE2H_U32(u32Magic) == VMDK_SPARSE_MAGICNUMBER)
+ rc = vmdkDescriptorReadSparse(pImage, pFile);
+ else
+ rc = vmdkDescriptorReadAscii(pImage, pFile);
+ }
+ else
+ {
+ vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading the magic number in '%s'"), pImage->pszFilename);
+ rc = VERR_VD_VMDK_INVALID_HEADER;
+ }
+
+ return rc;
+}
+
+/**
+ * Internal: Open an image, constructing all necessary data structures.
+ */
+static int vmdkOpenImage(PVMDKIMAGE pImage, unsigned uOpenFlags)
+{
+ pImage->uOpenFlags = uOpenFlags;
+ pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
+ pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
+ AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER);
+
+ /*
+ * Open the image.
+ * We don't have to check for asynchronous access because
+ * we only support raw access and the opened file is a description
+ * file were no data is stored.
+ */
+ PVMDKFILE pFile;
+ int rc = vmdkFileOpen(pImage, &pFile, NULL, pImage->pszFilename,
+ VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */));
+ if (RT_SUCCESS(rc))
+ {
+ pImage->pFile = pFile;
+
+ rc = vmdkDescriptorRead(pImage, pFile);
+ if (RT_SUCCESS(rc))
+ {
+ /* Determine PCHS geometry if not set. */
+ if (pImage->PCHSGeometry.cCylinders == 0)
+ {
+ uint64_t cCylinders = VMDK_BYTE2SECTOR(pImage->cbSize)
+ / pImage->PCHSGeometry.cHeads
+ / pImage->PCHSGeometry.cSectors;
+ pImage->PCHSGeometry.cCylinders = (unsigned)RT_MIN(cCylinders, 16383);
+ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ rc = vmdkDescSetPCHSGeometry(pImage, &pImage->PCHSGeometry);
+ AssertRC(rc);
+ }
+ }
+
+ /* Update the image metadata now in case has changed. */
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ /* Figure out a few per-image constants from the extents. */
+ pImage->cbSize = 0;
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[i];
+ if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE)
+ {
+ /* Here used to be a check whether the nominal size of an extent
+ * is a multiple of the grain size. The spec says that this is
+ * always the case, but unfortunately some files out there in the
+ * wild violate the spec (e.g. ReactOS 0.3.1). */
+ }
+ else if ( pExtent->enmType == VMDKETYPE_FLAT
+ || pExtent->enmType == VMDKETYPE_ZERO)
+ pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED;
+
+ pImage->cbSize += VMDK_SECTOR2BYTE(pExtent->cNominalSectors);
+ }
+
+ if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
+ rc = vmdkAllocateGrainTableCache(pImage);
+ }
+ }
+ }
+ /* else: Do NOT signal an appropriate error here, as the VD layer has the
+ * choice of retrying the open if it failed. */
+
+ if (RT_SUCCESS(rc))
+ {
+ PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0];
+ pImage->RegionList.fFlags = 0;
+ pImage->RegionList.cRegions = 1;
+
+ pRegion->offRegion = 0; /* Disk start. */
+ pRegion->cbBlock = 512;
+ pRegion->enmDataForm = VDREGIONDATAFORM_RAW;
+ pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE;
+ pRegion->cbData = 512;
+ pRegion->cbMetadata = 0;
+ pRegion->cRegionBlocksOrBytes = pImage->cbSize;
+ }
+ else
+ vmdkFreeImage(pImage, false, false /*fFlush*/); /* Don't try to flush anything if opening failed. */
+ return rc;
+}
+
+/**
+ * Frees a raw descriptor.
+ * @internal
+ */
+static int vmdkRawDescFree(PVDISKRAW pRawDesc)
+{
+ if (!pRawDesc)
+ return VINF_SUCCESS;
+
+ RTStrFree(pRawDesc->pszRawDisk);
+ pRawDesc->pszRawDisk = NULL;
+
+ /* Partitions: */
+ for (unsigned i = 0; i < pRawDesc->cPartDescs; i++)
+ {
+ RTStrFree(pRawDesc->pPartDescs[i].pszRawDevice);
+ pRawDesc->pPartDescs[i].pszRawDevice = NULL;
+
+ RTMemFree(pRawDesc->pPartDescs[i].pvPartitionData);
+ pRawDesc->pPartDescs[i].pvPartitionData = NULL;
+ }
+
+ RTMemFree(pRawDesc->pPartDescs);
+ pRawDesc->pPartDescs = NULL;
+
+ RTMemFree(pRawDesc);
+ return VINF_SUCCESS;
+}
+
+/**
+ * Helper that grows the raw partition descriptor table by @a cToAdd entries,
+ * returning the pointer to the first new entry.
+ * @internal
+ */
+static int vmdkRawDescAppendPartDesc(PVMDKIMAGE pImage, PVDISKRAW pRawDesc, uint32_t cToAdd, PVDISKRAWPARTDESC *ppRet)
+{
+ uint32_t const cOld = pRawDesc->cPartDescs;
+ uint32_t const cNew = cOld + cToAdd;
+ PVDISKRAWPARTDESC paNew = (PVDISKRAWPARTDESC)RTMemReallocZ(pRawDesc->pPartDescs,
+ cOld * sizeof(pRawDesc->pPartDescs[0]),
+ cNew * sizeof(pRawDesc->pPartDescs[0]));
+ if (paNew)
+ {
+ pRawDesc->cPartDescs = cNew;
+ pRawDesc->pPartDescs = paNew;
+
+ *ppRet = &paNew[cOld];
+ return VINF_SUCCESS;
+ }
+ *ppRet = NULL;
+ return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Out of memory growing the partition descriptors (%u -> %u)."),
+ pImage->pszFilename, cOld, cNew);
+}
+
+/**
+ * @callback_method_impl{FNRTSORTCMP}
+ */
+static DECLCALLBACK(int) vmdkRawDescPartComp(void const *pvElement1, void const *pvElement2, void *pvUser)
+{
+ RT_NOREF(pvUser);
+ int64_t const iDelta = ((PVDISKRAWPARTDESC)pvElement1)->offStartInVDisk - ((PVDISKRAWPARTDESC)pvElement2)->offStartInVDisk;
+ return iDelta < 0 ? -1 : iDelta > 0 ? 1 : 0;
+}
+
+/**
+ * Post processes the partition descriptors.
+ *
+ * Sorts them and check that they don't overlap.
+ */
+static int vmdkRawDescPostProcessPartitions(PVMDKIMAGE pImage, PVDISKRAW pRawDesc, uint64_t cbSize)
+{
+ /*
+ * Sort data areas in ascending order of start.
+ */
+ RTSortShell(pRawDesc->pPartDescs, pRawDesc->cPartDescs, sizeof(pRawDesc->pPartDescs[0]), vmdkRawDescPartComp, NULL);
+
+ /*
+ * Check that we don't have overlapping descriptors. If we do, that's an
+ * indication that the drive is corrupt or that the RTDvm code is buggy.
+ */
+ VDISKRAWPARTDESC const *paPartDescs = pRawDesc->pPartDescs;
+ for (uint32_t i = 0; i < pRawDesc->cPartDescs; i++)
+ {
+ uint64_t offLast = paPartDescs[i].offStartInVDisk + paPartDescs[i].cbData;
+ if (offLast <= paPartDescs[i].offStartInVDisk)
+ return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Bogus partition descriptor #%u (%#RX64 LB %#RX64%s): Wrap around or zero"),
+ pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData,
+ paPartDescs[i].pvPartitionData ? " (data)" : "");
+ offLast -= 1;
+
+ if (i + 1 < pRawDesc->cPartDescs && offLast >= paPartDescs[i + 1].offStartInVDisk)
+ return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition descriptor #%u (%#RX64 LB %#RX64%s) overlaps with the next (%#RX64 LB %#RX64%s)"),
+ pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData,
+ paPartDescs[i].pvPartitionData ? " (data)" : "", paPartDescs[i + 1].offStartInVDisk,
+ paPartDescs[i + 1].cbData, paPartDescs[i + 1].pvPartitionData ? " (data)" : "");
+ if (offLast >= cbSize)
+ return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition descriptor #%u (%#RX64 LB %#RX64%s) goes beyond the end of the drive (%#RX64)"),
+ pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData,
+ paPartDescs[i].pvPartitionData ? " (data)" : "", cbSize);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+#ifdef RT_OS_LINUX
+/**
+ * Searches the dir specified in @a pszBlockDevDir for subdirectories with a
+ * 'dev' file matching @a uDevToLocate.
+ *
+ * This is used both
+ *
+ * @returns IPRT status code, errors have been reported properly.
+ * @param pImage For error reporting.
+ * @param pszBlockDevDir Input: Path to the directory search under.
+ * Output: Path to the directory containing information
+ * for @a uDevToLocate.
+ * @param cbBlockDevDir The size of the buffer @a pszBlockDevDir points to.
+ * @param uDevToLocate The device number of the block device info dir to
+ * locate.
+ * @param pszDevToLocate For error reporting.
+ */
+static int vmdkFindSysBlockDevPath(PVMDKIMAGE pImage, char *pszBlockDevDir, size_t cbBlockDevDir,
+ dev_t uDevToLocate, const char *pszDevToLocate)
+{
+ size_t const cchDir = RTPathEnsureTrailingSeparator(pszBlockDevDir, cbBlockDevDir);
+ AssertReturn(cchDir > 0, VERR_BUFFER_OVERFLOW);
+
+ RTDIR hDir = NIL_RTDIR;
+ int rc = RTDirOpen(&hDir, pszBlockDevDir);
+ if (RT_SUCCESS(rc))
+ {
+ for (;;)
+ {
+ RTDIRENTRY Entry;
+ rc = RTDirRead(hDir, &Entry, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ /* We're interested in directories and symlinks. */
+ if ( Entry.enmType == RTDIRENTRYTYPE_DIRECTORY
+ || Entry.enmType == RTDIRENTRYTYPE_SYMLINK
+ || Entry.enmType == RTDIRENTRYTYPE_UNKNOWN)
+ {
+ rc = RTStrCopy(&pszBlockDevDir[cchDir], cbBlockDevDir - cchDir, Entry.szName);
+ AssertContinue(RT_SUCCESS(rc)); /* should not happen! */
+
+ dev_t uThisDevNo = ~uDevToLocate;
+ rc = RTLinuxSysFsReadDevNumFile(&uThisDevNo, "%s/dev", pszBlockDevDir);
+ if (RT_SUCCESS(rc) && uThisDevNo == uDevToLocate)
+ break;
+ }
+ }
+ else
+ {
+ pszBlockDevDir[cchDir] = '\0';
+ if (rc == VERR_NO_MORE_FILES)
+ rc = vdIfError(pImage->pIfError, VERR_NOT_FOUND, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to locate device corresponding to '%s' under '%s'"),
+ pImage->pszFilename, pszDevToLocate, pszBlockDevDir);
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. RTDirRead failed enumerating '%s': %Rrc"),
+ pImage->pszFilename, pszBlockDevDir, rc);
+ break;
+ }
+ }
+ RTDirClose(hDir);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to open dir '%s' for listing: %Rrc"),
+ pImage->pszFilename, pszBlockDevDir, rc);
+ return rc;
+}
+#endif /* RT_OS_LINUX */
+
+#ifdef RT_OS_FREEBSD
+
+
+/**
+ * Reads the config data from the provider and returns offset and size
+ *
+ * @return IPRT status code
+ * @param pProvider GEOM provider representing partition
+ * @param pcbOffset Placeholder for the offset of the partition
+ * @param pcbSize Placeholder for the size of the partition
+ */
+static int vmdkReadPartitionsParamsFromProvider(gprovider *pProvider, uint64_t *pcbOffset, uint64_t *pcbSize)
+{
+ gconfig *pConfEntry;
+ int rc = VERR_NOT_FOUND;
+
+ /*
+ * Required parameters are located in the list containing key/value pairs.
+ * Both key and value are in text form. Manuals tells nothing about the fact
+ * that the both parameters should be present in the list. Thus, there are
+ * cases when only one parameter is presented. To handle such cases we treat
+ * absent params as zero allowing the caller decide the case is either correct
+ * or an error.
+ */
+ uint64_t cbOffset = 0;
+ uint64_t cbSize = 0;
+ LIST_FOREACH(pConfEntry, &pProvider->lg_config, lg_config)
+ {
+ if (RTStrCmp(pConfEntry->lg_name, "offset") == 0)
+ {
+ cbOffset = RTStrToUInt64(pConfEntry->lg_val);
+ rc = VINF_SUCCESS;
+ }
+ else if (RTStrCmp(pConfEntry->lg_name, "length") == 0)
+ {
+ cbSize = RTStrToUInt64(pConfEntry->lg_val);
+ rc = VINF_SUCCESS;
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ *pcbOffset = cbOffset;
+ *pcbSize = cbSize;
+ }
+ return rc;
+}
+
+
+/**
+ * Searches the partition specified by name and calculates its size and absolute offset.
+ *
+ * @return IPRT status code.
+ * @param pParentClass Class containing pParentGeom
+ * @param pszParentGeomName Name of the parent geom where we are looking for provider
+ * @param pszProviderName Name of the provider we are looking for
+ * @param pcbAbsoluteOffset Placeholder for the absolute offset of the partition, i.e. offset from the beginning of the disk
+ * @param psbSize Placeholder for the size of the partition.
+ */
+static int vmdkFindPartitionParamsByName(gclass *pParentClass, const char *pszParentGeomName, const char *pszProviderName,
+ uint64_t *pcbAbsoluteOffset, uint64_t *pcbSize)
+{
+ AssertReturn(pParentClass, VERR_INVALID_PARAMETER);
+ AssertReturn(pszParentGeomName, VERR_INVALID_PARAMETER);
+ AssertReturn(pszProviderName, VERR_INVALID_PARAMETER);
+ AssertReturn(pcbAbsoluteOffset, VERR_INVALID_PARAMETER);
+ AssertReturn(pcbSize, VERR_INVALID_PARAMETER);
+
+ ggeom *pParentGeom;
+ int rc = VERR_NOT_FOUND;
+ LIST_FOREACH(pParentGeom, &pParentClass->lg_geom, lg_geom)
+ {
+ if (RTStrCmp(pParentGeom->lg_name, pszParentGeomName) == 0)
+ {
+ rc = VINF_SUCCESS;
+ break;
+ }
+ }
+ if (RT_FAILURE(rc))
+ return rc;
+
+ gprovider *pProvider;
+ /*
+ * First, go over providers without handling EBR or BSDLabel
+ * partitions for case when looking provider is child
+ * of the givng geom, to reduce searching time
+ */
+ LIST_FOREACH(pProvider, &pParentGeom->lg_provider, lg_provider)
+ {
+ if (RTStrCmp(pProvider->lg_name, pszProviderName) == 0)
+ return vmdkReadPartitionsParamsFromProvider(pProvider, pcbAbsoluteOffset, pcbSize);
+ }
+
+ /*
+ * No provider found. Go over the parent geom again
+ * and make recursions if geom represents EBR or BSDLabel.
+ * In this case given parent geom contains only EBR or BSDLabel
+ * partition itself and their own partitions are in the separate
+ * geoms. Also, partition offsets are relative to geom, so
+ * we have to add offset from child provider with parent geoms
+ * provider
+ */
+
+ LIST_FOREACH(pProvider, &pParentGeom->lg_provider, lg_provider)
+ {
+ uint64_t cbOffset = 0;
+ uint64_t cbSize = 0;
+ rc = vmdkReadPartitionsParamsFromProvider(pProvider, &cbOffset, &cbSize);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ uint64_t cbProviderOffset = 0;
+ uint64_t cbProviderSize = 0;
+ rc = vmdkFindPartitionParamsByName(pParentClass, pProvider->lg_name, pszProviderName, &cbProviderOffset, &cbProviderSize);
+ if (RT_SUCCESS(rc))
+ {
+ *pcbAbsoluteOffset = cbOffset + cbProviderOffset;
+ *pcbSize = cbProviderSize;
+ return rc;
+ }
+ }
+
+ return VERR_NOT_FOUND;
+}
+#endif
+
+
+/**
+ * Attempts to verify the raw partition path.
+ *
+ * We don't want to trust RTDvm and the partition device node morphing blindly.
+ */
+static int vmdkRawDescVerifyPartitionPath(PVMDKIMAGE pImage, PVDISKRAWPARTDESC pPartDesc, uint32_t idxPartition,
+ const char *pszRawDrive, RTFILE hRawDrive, uint32_t cbSector, RTDVMVOLUME hVol)
+{
+ RT_NOREF(pImage, pPartDesc, idxPartition, pszRawDrive, hRawDrive, cbSector, hVol);
+
+ /*
+ * Try open the raw partition device.
+ */
+ RTFILE hRawPart = NIL_RTFILE;
+ int rc = RTFileOpen(&hRawPart, pPartDesc->pszRawDevice, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to open partition #%u on '%s' via '%s' (%Rrc)"),
+ pImage->pszFilename, idxPartition, pszRawDrive, pPartDesc->pszRawDevice, rc);
+
+ /*
+ * Compare the partition UUID if we can get it.
+ */
+#ifdef RT_OS_WINDOWS
+ DWORD cbReturned;
+
+ /* 1. Get the device numbers for both handles, they should have the same disk. */
+ STORAGE_DEVICE_NUMBER DevNum1;
+ RT_ZERO(DevNum1);
+ if (!DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_STORAGE_GET_DEVICE_NUMBER,
+ NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum1, sizeof(DevNum1), &cbReturned, NULL /*pOverlapped*/))
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"),
+ pImage->pszFilename, pszRawDrive, GetLastError());
+
+ STORAGE_DEVICE_NUMBER DevNum2;
+ RT_ZERO(DevNum2);
+ if (!DeviceIoControl((HANDLE)RTFileToNative(hRawPart), IOCTL_STORAGE_GET_DEVICE_NUMBER,
+ NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum2, sizeof(DevNum2), &cbReturned, NULL /*pOverlapped*/))
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"),
+ pImage->pszFilename, pPartDesc->pszRawDevice, GetLastError());
+ if ( RT_SUCCESS(rc)
+ && ( DevNum1.DeviceNumber != DevNum2.DeviceNumber
+ || DevNum1.DeviceType != DevNum2.DeviceType))
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (%#x != %#x || %#x != %#x)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ DevNum1.DeviceNumber, DevNum2.DeviceNumber, DevNum1.DeviceType, DevNum2.DeviceType);
+ if (RT_SUCCESS(rc))
+ {
+ /* Get the partitions from the raw drive and match up with the volume info
+ from RTDvm. The partition number is found in DevNum2. */
+ DWORD cbNeeded = 0;
+ if ( DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_DISK_GET_DRIVE_LAYOUT_EX,
+ NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, NULL, 0, &cbNeeded, NULL /*pOverlapped*/)
+ || cbNeeded < RT_UOFFSETOF_DYN(DRIVE_LAYOUT_INFORMATION_EX, PartitionEntry[1]))
+ cbNeeded = RT_UOFFSETOF_DYN(DRIVE_LAYOUT_INFORMATION_EX, PartitionEntry[64]);
+ cbNeeded += sizeof(PARTITION_INFORMATION_EX) * 2; /* just in case */
+ DRIVE_LAYOUT_INFORMATION_EX *pLayout = (DRIVE_LAYOUT_INFORMATION_EX *)RTMemTmpAllocZ(cbNeeded);
+ if (pLayout)
+ {
+ cbReturned = 0;
+ if (DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_DISK_GET_DRIVE_LAYOUT_EX,
+ NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, pLayout, cbNeeded, &cbReturned, NULL /*pOverlapped*/))
+ {
+ /* Find the entry with the given partition number (it's not an index, array contains empty MBR entries ++). */
+ unsigned iEntry = 0;
+ while ( iEntry < pLayout->PartitionCount
+ && pLayout->PartitionEntry[iEntry].PartitionNumber != DevNum2.PartitionNumber)
+ iEntry++;
+ if (iEntry < pLayout->PartitionCount)
+ {
+ /* Compare the basics */
+ PARTITION_INFORMATION_EX const * const pLayoutEntry = &pLayout->PartitionEntry[iEntry];
+ if (pLayoutEntry->StartingOffset.QuadPart != (int64_t)pPartDesc->offStartInVDisk)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': StartingOffset %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ pLayoutEntry->StartingOffset.QuadPart, pPartDesc->offStartInVDisk);
+ else if (pLayoutEntry->PartitionLength.QuadPart != (int64_t)pPartDesc->cbData)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': PartitionLength %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ pLayoutEntry->PartitionLength.QuadPart, pPartDesc->cbData);
+ /** @todo We could compare the MBR type, GPT type and ID. */
+ RT_NOREF(hVol);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': PartitionCount (%#x vs %#x)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ DevNum2.PartitionNumber, pLayout->PartitionCount);
+# ifndef LOG_ENABLED
+ if (RT_FAILURE(rc))
+# endif
+ {
+ LogRel(("VMDK: Windows reports %u partitions for '%s':\n", pLayout->PartitionCount, pszRawDrive));
+ PARTITION_INFORMATION_EX const *pEntry = &pLayout->PartitionEntry[0];
+ for (DWORD i = 0; i < pLayout->PartitionCount; i++, pEntry++)
+ {
+ LogRel(("VMDK: #%u/%u: %016RU64 LB %016RU64 style=%d rewrite=%d",
+ i, pEntry->PartitionNumber, pEntry->StartingOffset.QuadPart, pEntry->PartitionLength.QuadPart,
+ pEntry->PartitionStyle, pEntry->RewritePartition));
+ if (pEntry->PartitionStyle == PARTITION_STYLE_MBR)
+ LogRel((" type=%#x boot=%d rec=%d hidden=%u\n", pEntry->Mbr.PartitionType, pEntry->Mbr.BootIndicator,
+ pEntry->Mbr.RecognizedPartition, pEntry->Mbr.HiddenSectors));
+ else if (pEntry->PartitionStyle == PARTITION_STYLE_GPT)
+ LogRel((" type=%RTuuid id=%RTuuid aatrib=%RX64 name=%.36ls\n", &pEntry->Gpt.PartitionType,
+ &pEntry->Gpt.PartitionId, pEntry->Gpt.Attributes, &pEntry->Gpt.Name[0]));
+ else
+ LogRel(("\n"));
+ }
+ LogRel(("VMDK: Looked for partition #%u (%u, '%s') at %RU64 LB %RU64\n", DevNum2.PartitionNumber,
+ idxPartition, pPartDesc->pszRawDevice, pPartDesc->offStartInVDisk, pPartDesc->cbData));
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. IOCTL_DISK_GET_DRIVE_LAYOUT_EX failed on '%s': %u (cb %u, cbRet %u)"),
+ pImage->pszFilename, pPartDesc->pszRawDevice, GetLastError(), cbNeeded, cbReturned);
+ RTMemTmpFree(pLayout);
+ }
+ else
+ rc = VERR_NO_TMP_MEMORY;
+ }
+
+#elif defined(RT_OS_LINUX)
+ RT_NOREF(hVol);
+
+ /* Stat the two devices first to get their device numbers. (We probably
+ could make some assumptions here about the major & minor number assignments
+ for legacy nodes, but it doesn't hold up for nvme, so we'll skip that.) */
+ struct stat StDrive, StPart;
+ if (fstat((int)RTFileToNative(hRawDrive), &StDrive) != 0)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. fstat failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno);
+ else if (fstat((int)RTFileToNative(hRawPart), &StPart) != 0)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. fstat failed on '%s': %d"), pImage->pszFilename, pPartDesc->pszRawDevice, errno);
+ else
+ {
+ /* Scan the directories immediately under /sys/block/ for one with a
+ 'dev' file matching the drive's device number: */
+ char szSysPath[RTPATH_MAX];
+ rc = RTLinuxConstructPath(szSysPath, sizeof(szSysPath), "block/");
+ AssertRCReturn(rc, rc); /* this shall not fail */
+ if (RTDirExists(szSysPath))
+ {
+ rc = vmdkFindSysBlockDevPath(pImage, szSysPath, sizeof(szSysPath), StDrive.st_rdev, pszRawDrive);
+
+ /* Now, scan the directories under that again for a partition device
+ matching the hRawPart device's number: */
+ if (RT_SUCCESS(rc))
+ rc = vmdkFindSysBlockDevPath(pImage, szSysPath, sizeof(szSysPath), StPart.st_rdev, pPartDesc->pszRawDevice);
+
+ /* Having found the /sys/block/device/partition/ path, we can finally
+ read the partition attributes and compare with hVol. */
+ if (RT_SUCCESS(rc))
+ {
+ /* partition number: */
+ int64_t iLnxPartition = 0;
+ rc = RTLinuxSysFsReadIntFile(10, &iLnxPartition, "%s/partition", szSysPath);
+ if (RT_SUCCESS(rc) && iLnxPartition != idxPartition)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Partition number %RI64, expected %RU32"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, iLnxPartition, idxPartition);
+ /* else: ignore failure? */
+
+ /* start offset: */
+ uint32_t const cbLnxSector = 512; /* It's hardcoded in the Linux kernel */
+ if (RT_SUCCESS(rc))
+ {
+ int64_t offLnxStart = -1;
+ rc = RTLinuxSysFsReadIntFile(10, &offLnxStart, "%s/start", szSysPath);
+ offLnxStart *= cbLnxSector;
+ if (RT_SUCCESS(rc) && offLnxStart != (int64_t)pPartDesc->offStartInVDisk)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RI64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, offLnxStart, pPartDesc->offStartInVDisk);
+ /* else: ignore failure? */
+ }
+
+ /* the size: */
+ if (RT_SUCCESS(rc))
+ {
+ int64_t cbLnxData = -1;
+ rc = RTLinuxSysFsReadIntFile(10, &cbLnxData, "%s/size", szSysPath);
+ cbLnxData *= cbLnxSector;
+ if (RT_SUCCESS(rc) && cbLnxData != (int64_t)pPartDesc->cbData)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RI64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbLnxData, pPartDesc->cbData);
+ /* else: ignore failure? */
+ }
+ }
+ }
+ /* else: We've got nothing to work on, so only do content comparison. */
+ }
+
+#elif defined(RT_OS_FREEBSD)
+ char szDriveDevName[256];
+ char* pszDevName = fdevname_r(RTFileToNative(hRawDrive), szDriveDevName, 256);
+ if (pszDevName == NULL)
+ rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. '%s' is not a drive path"), pImage->pszFilename, pszRawDrive);
+ char szPartDevName[256];
+ if (RT_SUCCESS(rc))
+ {
+ pszDevName = fdevname_r(RTFileToNative(hRawPart), szPartDevName, 256);
+ if (pszDevName == NULL)
+ rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. '%s' is not a partition path"), pImage->pszFilename, pPartDesc->pszRawDevice);
+ }
+ if (RT_SUCCESS(rc))
+ {
+ gmesh geomMesh;
+ int err = geom_gettree(&geomMesh);
+ if (err == 0)
+ {
+ /* Find root class containg partitions info */
+ gclass* pPartClass;
+ LIST_FOREACH(pPartClass, &geomMesh.lg_class, lg_class)
+ {
+ if (RTStrCmp(pPartClass->lg_name, "PART") == 0)
+ break;
+ }
+ if (pPartClass == NULL || RTStrCmp(pPartClass->lg_name, "PART") != 0)
+ rc = vdIfError(pImage->pIfError, VERR_GENERAL_FAILURE, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. 'PART' class not found in the GEOM tree"), pImage->pszFilename);
+
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Find provider representing partition device */
+ uint64_t cbOffset;
+ uint64_t cbSize;
+ rc = vmdkFindPartitionParamsByName(pPartClass, szDriveDevName, szPartDevName, &cbOffset, &cbSize);
+ if (RT_SUCCESS(rc))
+ {
+ if (cbOffset != pPartDesc->offStartInVDisk)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk);
+ if (cbSize != pPartDesc->cbData)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Error getting geom provider for the partition '%s' of the drive '%s' in the GEOM tree: %Rrc"),
+ pImage->pszFilename, pPartDesc->pszRawDevice, pszRawDrive, rc);
+ }
+
+ geom_deletetree(&geomMesh);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(err), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. geom_gettree failed: %d"), pImage->pszFilename, err);
+ }
+
+#elif defined(RT_OS_SOLARIS)
+ RT_NOREF(hVol);
+
+ dk_cinfo dkiDriveInfo;
+ dk_cinfo dkiPartInfo;
+ if (ioctl(RTFileToNative(hRawDrive), DKIOCINFO, (caddr_t)&dkiDriveInfo) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. DKIOCINFO failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno);
+ else if (ioctl(RTFileToNative(hRawPart), DKIOCINFO, (caddr_t)&dkiPartInfo) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. DKIOCINFO failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno);
+ else if ( dkiDriveInfo.dki_ctype != dkiPartInfo.dki_ctype
+ || dkiDriveInfo.dki_cnum != dkiPartInfo.dki_cnum
+ || dkiDriveInfo.dki_addr != dkiPartInfo.dki_addr
+ || dkiDriveInfo.dki_unit != dkiPartInfo.dki_unit
+ || dkiDriveInfo.dki_slave != dkiPartInfo.dki_slave)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (%#x != %#x || %#x != %#x || %#x != %#x || %#x != %#x || %#x != %#x)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ dkiDriveInfo.dki_ctype, dkiPartInfo.dki_ctype, dkiDriveInfo.dki_cnum, dkiPartInfo.dki_cnum,
+ dkiDriveInfo.dki_addr, dkiPartInfo.dki_addr, dkiDriveInfo.dki_unit, dkiPartInfo.dki_unit,
+ dkiDriveInfo.dki_slave, dkiPartInfo.dki_slave);
+ else
+ {
+ uint64_t cbOffset = 0;
+ uint64_t cbSize = 0;
+ dk_gpt *pEfi = NULL;
+ int idxEfiPart = efi_alloc_and_read(RTFileToNative(hRawPart), &pEfi);
+ if (idxEfiPart >= 0)
+ {
+ if ((uint32_t)dkiPartInfo.dki_partition + 1 == idxPartition)
+ {
+ cbOffset = pEfi->efi_parts[idxEfiPart].p_start * pEfi->efi_lbasize;
+ cbSize = pEfi->efi_parts[idxEfiPart].p_size * pEfi->efi_lbasize;
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s' (%#x != %#x)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ idxPartition, (uint32_t)dkiPartInfo.dki_partition + 1);
+ efi_free(pEfi);
+ }
+ else
+ {
+ /*
+ * Manual says the efi_alloc_and_read returns VT_EINVAL if no EFI partition table found.
+ * Actually, the function returns any error, e.g. VT_ERROR. Thus, we are not sure, is it
+ * real error or just no EFI table found. Therefore, let's try to obtain partition info
+ * using another way. If there is an error, it returns errno which will be handled below.
+ */
+
+ uint32_t numPartition = (uint32_t)dkiPartInfo.dki_partition;
+ if (numPartition > NDKMAP)
+ numPartition -= NDKMAP;
+ if (numPartition != idxPartition)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s' (%#x != %#x)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ idxPartition, numPartition);
+ else
+ {
+ dk_minfo_ext mediaInfo;
+ if (ioctl(RTFileToNative(hRawPart), DKIOCGMEDIAINFOEXT, (caddr_t)&mediaInfo) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s'. Can not obtain partition info: %d"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else
+ {
+ extpart_info extPartInfo;
+ if (ioctl(RTFileToNative(hRawPart), DKIOCEXTPARTINFO, (caddr_t)&extPartInfo) != -1)
+ {
+ cbOffset = (uint64_t)extPartInfo.p_start * mediaInfo.dki_lbsize;
+ cbSize = (uint64_t)extPartInfo.p_length * mediaInfo.dki_lbsize;
+ }
+ else
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s'. Can not obtain partition info: %d"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ }
+ }
+ }
+ if (RT_SUCCESS(rc) && cbOffset != pPartDesc->offStartInVDisk)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RI64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk);
+
+ if (RT_SUCCESS(rc) && cbSize != pPartDesc->cbData)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RI64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData);
+ }
+
+#elif defined(RT_OS_DARWIN)
+ /* Stat the drive get its device number. */
+ struct stat StDrive;
+ if (fstat((int)RTFileToNative(hRawDrive), &StDrive) != 0)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. fstat failed on '%s' (errno=%d)"), pImage->pszFilename, pszRawDrive, errno);
+ else
+ {
+ if (ioctl(RTFileToNative(hRawPart), DKIOCLOCKPHYSICALEXTENTS, NULL) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to lock the partition (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else
+ {
+ uint32_t cbBlockSize = 0;
+ uint64_t cbOffset = 0;
+ uint64_t cbSize = 0;
+ if (ioctl(RTFileToNative(hRawPart), DKIOCGETBLOCKSIZE, (caddr_t)&cbBlockSize) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the sector size of the partition (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else if (ioctl(RTFileToNative(hRawPart), DKIOCGETBASE, (caddr_t)&cbOffset) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the start offset of the partition (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else if (ioctl(RTFileToNative(hRawPart), DKIOCGETBLOCKCOUNT, (caddr_t)&cbSize) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the size of the partition (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else
+ {
+ cbSize *= (uint64_t)cbBlockSize;
+ dk_physical_extent_t dkPartExtent = {0};
+ dkPartExtent.offset = 0;
+ dkPartExtent.length = cbSize;
+ if (ioctl(RTFileToNative(hRawPart), DKIOCGETPHYSICALEXTENT, (caddr_t)&dkPartExtent) == -1)
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain partition info (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ else
+ {
+ if (dkPartExtent.dev != StDrive.st_rdev)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Drive does not contain the partition"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive);
+ else if (cbOffset != pPartDesc->offStartInVDisk)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk);
+ else if (cbSize != pPartDesc->cbData)
+ rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RU64, expected %RU64"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData);
+ }
+ }
+
+ if (ioctl(RTFileToNative(hRawPart), DKIOCUNLOCKPHYSICALEXTENTS, NULL) == -1)
+ {
+ int rc2 = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to unlock the partition (errno=%d)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno);
+ if (RT_SUCCESS(rc))
+ rc = rc2;
+ }
+ }
+ }
+
+#else
+ RT_NOREF(hVol); /* PORTME */
+ rc = VERR_NOT_SUPPORTED;
+#endif
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Compare the first 32 sectors of the partition.
+ *
+ * This might not be conclusive, but for partitions formatted with the more
+ * common file systems it should be as they have a superblock copy at or near
+ * the start of the partition (fat, fat32, ntfs, and ext4 does at least).
+ */
+ size_t const cbToCompare = (size_t)RT_MIN(pPartDesc->cbData / cbSector, 32) * cbSector;
+ uint8_t *pbSector1 = (uint8_t *)RTMemTmpAlloc(cbToCompare * 2);
+ if (pbSector1 != NULL)
+ {
+ uint8_t *pbSector2 = pbSector1 + cbToCompare;
+
+ /* Do the comparing, we repeat if it fails and the data might be volatile. */
+ uint64_t uPrevCrc1 = 0;
+ uint64_t uPrevCrc2 = 0;
+ uint32_t cStable = 0;
+ for (unsigned iTry = 0; iTry < 256; iTry++)
+ {
+ rc = RTFileReadAt(hRawDrive, pPartDesc->offStartInVDisk, pbSector1, cbToCompare, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTFileReadAt(hRawPart, pPartDesc->offStartInDevice, pbSector2, cbToCompare, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ if (memcmp(pbSector1, pbSector2, cbToCompare) != 0)
+ {
+ rc = VERR_MISMATCH;
+
+ /* Do data stability checks before repeating: */
+ uint64_t const uCrc1 = RTCrc64(pbSector1, cbToCompare);
+ uint64_t const uCrc2 = RTCrc64(pbSector2, cbToCompare);
+ if ( uPrevCrc1 != uCrc1
+ || uPrevCrc2 != uCrc2)
+ cStable = 0;
+ else if (++cStable > 4)
+ break;
+ uPrevCrc1 = uCrc1;
+ uPrevCrc2 = uCrc2;
+ continue;
+ }
+ rc = VINF_SUCCESS;
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Error reading %zu bytes from '%s' at offset %RU64 (%Rrc)"),
+ pImage->pszFilename, cbToCompare, pPartDesc->pszRawDevice, pPartDesc->offStartInDevice, rc);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Error reading %zu bytes from '%s' at offset %RU64 (%Rrc)"),
+ pImage->pszFilename, cbToCompare, pszRawDrive, pPartDesc->offStartInVDisk, rc);
+ break;
+ }
+ if (rc == VERR_MISMATCH)
+ {
+ /* Find the first mismatching bytes: */
+ size_t offMissmatch = 0;
+ while (offMissmatch < cbToCompare && pbSector1[offMissmatch] == pbSector2[offMissmatch])
+ offMissmatch++;
+ int cbSample = (int)RT_MIN(cbToCompare - offMissmatch, 16);
+
+ if (cStable > 0)
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (cStable=%d @%#zx: %.*Rhxs vs %.*Rhxs)"),
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cStable,
+ offMissmatch, cbSample, &pbSector1[offMissmatch], cbSample, &pbSector2[offMissmatch]);
+ else
+ {
+ LogRel(("VMDK: Image path: '%s'. Partition #%u path ('%s') verification undecided on '%s' because of unstable data! (@%#zx: %.*Rhxs vs %.*Rhxs)\n",
+ pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive,
+ offMissmatch, cbSample, &pbSector1[offMissmatch], cbSample, &pbSector2[offMissmatch]));
+ rc = -rc;
+ }
+ }
+
+ RTMemTmpFree(pbSector1);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_NO_TMP_MEMORY, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes for a temporary read buffer\n"),
+ pImage->pszFilename, cbToCompare * 2);
+ }
+ RTFileClose(hRawPart);
+ return rc;
+}
+
+#ifdef RT_OS_WINDOWS
+/**
+ * Construct the device name for the given partition number.
+ */
+static int vmdkRawDescWinMakePartitionName(PVMDKIMAGE pImage, const char *pszRawDrive, RTFILE hRawDrive, uint32_t idxPartition,
+ char **ppszRawPartition)
+{
+ int rc = VINF_SUCCESS;
+ DWORD cbReturned = 0;
+ STORAGE_DEVICE_NUMBER DevNum;
+ RT_ZERO(DevNum);
+ if (DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_STORAGE_GET_DEVICE_NUMBER,
+ NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum, sizeof(DevNum), &cbReturned, NULL /*pOverlapped*/))
+ RTStrAPrintf(ppszRawPartition, "\\\\.\\Harddisk%uPartition%u", DevNum.DeviceNumber, idxPartition);
+ else
+ rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"),
+ pImage->pszFilename, pszRawDrive, GetLastError());
+ return rc;
+}
+#endif /* RT_OS_WINDOWS */
+
+/**
+ * Worker for vmdkMakeRawDescriptor that adds partition descriptors when the
+ * 'Partitions' configuration value is present.
+ *
+ * @returns VBox status code, error message has been set on failure.
+ *
+ * @note Caller is assumed to clean up @a pRawDesc and release
+ * @a *phVolToRelease.
+ * @internal
+ */
+static int vmdkRawDescDoPartitions(PVMDKIMAGE pImage, RTDVM hVolMgr, PVDISKRAW pRawDesc,
+ RTFILE hRawDrive, const char *pszRawDrive, uint32_t cbSector,
+ uint32_t fPartitions, uint32_t fPartitionsReadOnly, bool fRelative,
+ PRTDVMVOLUME phVolToRelease)
+{
+ *phVolToRelease = NIL_RTDVMVOLUME;
+
+ /* Check sanity/understanding. */
+ Assert(fPartitions);
+ Assert((fPartitions & fPartitionsReadOnly) == fPartitionsReadOnly); /* RO should be a sub-set */
+
+ /*
+ * Allocate on descriptor for each volume up front.
+ */
+ uint32_t const cVolumes = RTDvmMapGetValidVolumes(hVolMgr);
+
+ PVDISKRAWPARTDESC paPartDescs = NULL;
+ int rc = vmdkRawDescAppendPartDesc(pImage, pRawDesc, cVolumes, &paPartDescs);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Enumerate the partitions (volumes) on the disk and create descriptors for each of them.
+ */
+ uint32_t fPartitionsLeft = fPartitions;
+ RTDVMVOLUME hVol = NIL_RTDVMVOLUME; /* the current volume, needed for getting the next. */
+ for (uint32_t i = 0; i < cVolumes; i++)
+ {
+ /*
+ * Get the next/first volume and release the current.
+ */
+ RTDVMVOLUME hVolNext = NIL_RTDVMVOLUME;
+ if (i == 0)
+ rc = RTDvmMapQueryFirstVolume(hVolMgr, &hVolNext);
+ else
+ rc = RTDvmMapQueryNextVolume(hVolMgr, hVol, &hVolNext);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Volume enumeration failed at volume #%u on '%s' (%Rrc)"),
+ pImage->pszFilename, i, pszRawDrive, rc);
+ uint32_t cRefs = RTDvmVolumeRelease(hVol);
+ Assert(cRefs != UINT32_MAX); RT_NOREF(cRefs);
+ *phVolToRelease = hVol = hVolNext;
+
+ /*
+ * Depending on the fPartitions selector and associated read-only mask,
+ * the guest either gets read-write or read-only access (bits set)
+ * or no access (selector bit clear, access directed to the VMDK).
+ */
+ paPartDescs[i].cbData = RTDvmVolumeGetSize(hVol);
+
+ uint64_t offVolumeEndIgnored = 0;
+ rc = RTDvmVolumeQueryRange(hVol, &paPartDescs[i].offStartInVDisk, &offVolumeEndIgnored);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to get location of volume #%u on '%s' (%Rrc)"),
+ pImage->pszFilename, i, pszRawDrive, rc);
+ Assert(paPartDescs[i].cbData == offVolumeEndIgnored + 1 - paPartDescs[i].offStartInVDisk);
+
+ /* Note! The index must match IHostDrivePartition::number. */
+ uint32_t idxPartition = RTDvmVolumeGetIndex(hVol, RTDVMVOLIDX_HOST);
+ if ( idxPartition < 32
+ && (fPartitions & RT_BIT_32(idxPartition)))
+ {
+ fPartitionsLeft &= ~RT_BIT_32(idxPartition);
+ if (fPartitionsReadOnly & RT_BIT_32(idxPartition))
+ paPartDescs[i].uFlags |= VDISKRAW_READONLY;
+
+ if (!fRelative)
+ {
+ /*
+ * Accessing the drive thru the main device node (pRawDesc->pszRawDisk).
+ */
+ paPartDescs[i].offStartInDevice = paPartDescs[i].offStartInVDisk;
+ paPartDescs[i].pszRawDevice = RTStrDup(pszRawDrive);
+ AssertPtrReturn(paPartDescs[i].pszRawDevice, VERR_NO_STR_MEMORY);
+ }
+ else
+ {
+ /*
+ * Relative means access the partition data via the device node for that
+ * partition, allowing the sysadmin/OS to allow a user access to individual
+ * partitions without necessarily being able to compromise the host OS.
+ * Obviously, the creation of the VMDK requires read access to the main
+ * device node for the drive, but that's a one-time thing and can be done
+ * by the sysadmin. Here data starts at offset zero in the device node.
+ */
+ paPartDescs[i].offStartInDevice = 0;
+
+#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD)
+ /* /dev/rdisk1 -> /dev/rdisk1s2 (s=slice) */
+ RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%ss%u", pszRawDrive, idxPartition);
+#elif defined(RT_OS_LINUX)
+ /* Two naming schemes here: /dev/nvme0n1 -> /dev/nvme0n1p1; /dev/sda -> /dev/sda1 */
+ RTStrAPrintf(&paPartDescs[i].pszRawDevice,
+ RT_C_IS_DIGIT(pszRawDrive[strlen(pszRawDrive) - 1]) ? "%sp%u" : "%s%u", pszRawDrive, idxPartition);
+#elif defined(RT_OS_WINDOWS)
+ rc = vmdkRawDescWinMakePartitionName(pImage, pszRawDrive, hRawDrive, idxPartition, &paPartDescs[i].pszRawDevice);
+ AssertRCReturn(rc, rc);
+#elif defined(RT_OS_SOLARIS)
+ if (pRawDesc->enmPartitioningType == VDISKPARTTYPE_MBR)
+ {
+ /*
+ * MBR partitions have device nodes in form /dev/(r)dsk/cXtYdZpK
+ * where X is the controller,
+ * Y is target (SCSI device number),
+ * Z is disk number,
+ * K is partition number,
+ * where p0 is the whole disk
+ * p1-pN are the partitions of the disk
+ */
+ const char *pszRawDrivePath = pszRawDrive;
+ char szDrivePath[RTPATH_MAX];
+ size_t cbRawDrive = strlen(pszRawDrive);
+ if ( cbRawDrive > 1 && strcmp(&pszRawDrive[cbRawDrive - 2], "p0") == 0)
+ {
+ memcpy(szDrivePath, pszRawDrive, cbRawDrive - 2);
+ szDrivePath[cbRawDrive - 2] = '\0';
+ pszRawDrivePath = szDrivePath;
+ }
+ RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%sp%u", pszRawDrivePath, idxPartition);
+ }
+ else /* GPT */
+ {
+ /*
+ * GPT partitions have device nodes in form /dev/(r)dsk/cXtYdZsK
+ * where X is the controller,
+ * Y is target (SCSI device number),
+ * Z is disk number,
+ * K is partition number, zero based. Can be only from 0 to 6.
+ * Thus, only partitions numbered 0 through 6 have device nodes.
+ */
+ if (idxPartition > 7)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. the partition #%u on '%s' has no device node and can not be specified with 'Relative' property"),
+ pImage->pszFilename, idxPartition, pszRawDrive);
+ RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%ss%u", pszRawDrive, idxPartition - 1);
+ }
+#else
+ AssertFailedReturn(VERR_INTERNAL_ERROR_4); /* The option parsing code should have prevented this - PORTME */
+#endif
+ AssertPtrReturn(paPartDescs[i].pszRawDevice, VERR_NO_STR_MEMORY);
+
+ rc = vmdkRawDescVerifyPartitionPath(pImage, &paPartDescs[i], idxPartition, pszRawDrive, hRawDrive, cbSector, hVol);
+ AssertRCReturn(rc, rc);
+ }
+ }
+ else
+ {
+ /* Not accessible to the guest. */
+ paPartDescs[i].offStartInDevice = 0;
+ paPartDescs[i].pszRawDevice = NULL;
+ }
+ } /* for each volume */
+
+ RTDvmVolumeRelease(hVol);
+ *phVolToRelease = NIL_RTDVMVOLUME;
+
+ /*
+ * Check that we found all the partitions the user selected.
+ */
+ if (fPartitionsLeft)
+ {
+ char szLeft[3 * sizeof(fPartitions) * 8];
+ size_t cchLeft = 0;
+ for (unsigned i = 0; i < sizeof(fPartitions) * 8; i++)
+ if (fPartitionsLeft & RT_BIT_32(i))
+ cchLeft += RTStrPrintf(&szLeft[cchLeft], sizeof(szLeft) - cchLeft, cchLeft ? "%u" : ",%u", i);
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Not all the specified partitions for drive '%s' was found: %s"),
+ pImage->pszFilename, pszRawDrive, szLeft);
+ }
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Worker for vmdkMakeRawDescriptor that adds partition descriptors with copies
+ * of the partition tables and associated padding areas when the 'Partitions'
+ * configuration value is present.
+ *
+ * The guest is not allowed access to the partition tables, however it needs
+ * them to be able to access the drive. So, create descriptors for each of the
+ * tables and attach the current disk content. vmdkCreateRawImage() will later
+ * write the content to the VMDK. Any changes the guest later makes to the
+ * partition tables will then go to the VMDK copy, rather than the host drive.
+ *
+ * @returns VBox status code, error message has been set on failure.
+ *
+ * @note Caller is assumed to clean up @a pRawDesc
+ * @internal
+ */
+static int vmdkRawDescDoCopyPartitionTables(PVMDKIMAGE pImage, RTDVM hVolMgr, PVDISKRAW pRawDesc,
+ const char *pszRawDrive, RTFILE hRawDrive, void *pvBootSector, size_t cbBootSector)
+{
+ /*
+ * Query the locations.
+ */
+ /* Determin how many locations there are: */
+ size_t cLocations = 0;
+ int rc = RTDvmMapQueryTableLocations(hVolMgr, RTDVMMAPQTABLOC_F_INCLUDE_LEGACY, NULL, 0, &cLocations);
+ if (rc != VERR_BUFFER_OVERFLOW)
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. RTDvmMapQueryTableLocations failed on '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+ AssertReturn(cLocations > 0 && cLocations < _16M, VERR_INTERNAL_ERROR_5);
+
+ /* We can allocate the partition descriptors here to save an intentation level. */
+ PVDISKRAWPARTDESC paPartDescs = NULL;
+ rc = vmdkRawDescAppendPartDesc(pImage, pRawDesc, (uint32_t)cLocations, &paPartDescs);
+ AssertRCReturn(rc, rc);
+
+ /* Allocate the result table and repeat the location table query: */
+ PRTDVMTABLELOCATION paLocations = (PRTDVMTABLELOCATION)RTMemAllocZ(sizeof(paLocations[0]) * cLocations);
+ if (!paLocations)
+ return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes"),
+ pImage->pszFilename, sizeof(paLocations[0]) * cLocations);
+ rc = RTDvmMapQueryTableLocations(hVolMgr, RTDVMMAPQTABLOC_F_INCLUDE_LEGACY, paLocations, cLocations, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Translate them into descriptors.
+ *
+ * We restrict the amount of partition alignment padding to 4MiB as more
+ * will just be a waste of space. The use case for including the padding
+ * are older boot loaders and boot manager (including one by a team member)
+ * that put data and code in the 62 sectors between the MBR and the first
+ * partition (total of 63). Later CHS was abandond and partition started
+ * being aligned on power of two sector boundraries (typically 64KiB or
+ * 1MiB depending on the media size).
+ */
+ for (size_t i = 0; i < cLocations && RT_SUCCESS(rc); i++)
+ {
+ Assert(paLocations[i].cb > 0);
+ if (paLocations[i].cb <= _64M)
+ {
+ /* Create the partition descriptor entry: */
+ //paPartDescs[i].pszRawDevice = NULL;
+ //paPartDescs[i].offStartInDevice = 0;
+ //paPartDescs[i].uFlags = 0;
+ paPartDescs[i].offStartInVDisk = paLocations[i].off;
+ paPartDescs[i].cbData = paLocations[i].cb;
+ if (paPartDescs[i].cbData < _4M)
+ paPartDescs[i].cbData = RT_MIN(paPartDescs[i].cbData + paLocations[i].cbPadding, _4M);
+ paPartDescs[i].pvPartitionData = RTMemAllocZ((size_t)paPartDescs[i].cbData);
+ if (paPartDescs[i].pvPartitionData)
+ {
+ /* Read the content from the drive: */
+ rc = RTFileReadAt(hRawDrive, paPartDescs[i].offStartInVDisk, paPartDescs[i].pvPartitionData,
+ (size_t)paPartDescs[i].cbData, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ /* Do we have custom boot sector code? */
+ if (pvBootSector && cbBootSector && paPartDescs[i].offStartInVDisk == 0)
+ {
+ /* Note! Old code used to quietly drop the bootsector if it was considered too big.
+ Instead we fail as we weren't able to do what the user requested us to do.
+ Better if the user knows than starts questioning why the guest isn't
+ booting as expected. */
+ if (cbBootSector <= paPartDescs[i].cbData)
+ memcpy(paPartDescs[i].pvPartitionData, pvBootSector, cbBootSector);
+ else
+ rc = vdIfError(pImage->pIfError, VERR_TOO_MUCH_DATA, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. The custom boot sector is too big: %zu bytes, %RU64 bytes available"),
+ pImage->pszFilename, cbBootSector, paPartDescs[i].cbData);
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to read partition at off %RU64 length %zu from '%s' (%Rrc)"),
+ pImage->pszFilename, paPartDescs[i].offStartInVDisk,
+ (size_t)paPartDescs[i].cbData, pszRawDrive, rc);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes for copying the partition table at off %RU64"),
+ pImage->pszFilename, (size_t)paPartDescs[i].cbData, paPartDescs[i].offStartInVDisk);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_TOO_MUCH_DATA, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Partition table #%u at offset %RU64 in '%s' is to big: %RU64 bytes"),
+ pImage->pszFilename, i, paLocations[i].off, pszRawDrive, paLocations[i].cb);
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. RTDvmMapQueryTableLocations failed on '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+ RTMemFree(paLocations);
+ return rc;
+}
+
+/**
+ * Opens the volume manager for the raw drive when in selected-partition mode.
+ *
+ * @param pImage The VMDK image (for errors).
+ * @param hRawDrive The raw drive handle.
+ * @param pszRawDrive The raw drive device path (for errors).
+ * @param cbSector The sector size.
+ * @param phVolMgr Where to return the handle to the volume manager on
+ * success.
+ * @returns VBox status code, errors have been reported.
+ * @internal
+ */
+static int vmdkRawDescOpenVolMgr(PVMDKIMAGE pImage, RTFILE hRawDrive, const char *pszRawDrive, uint32_t cbSector, PRTDVM phVolMgr)
+{
+ *phVolMgr = NIL_RTDVM;
+
+ RTVFSFILE hVfsFile = NIL_RTVFSFILE;
+ int rc = RTVfsFileFromRTFile(hRawDrive, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE, true /*fLeaveOpen*/, &hVfsFile);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. RTVfsFileFromRTFile failed for '%s' handle (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+
+ RTDVM hVolMgr = NIL_RTDVM;
+ rc = RTDvmCreate(&hVolMgr, hVfsFile, cbSector, 0 /*fFlags*/);
+
+ RTVfsFileRelease(hVfsFile);
+
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to create volume manager instance for '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+
+ rc = RTDvmMapOpen(hVolMgr);
+ if (RT_SUCCESS(rc))
+ {
+ *phVolMgr = hVolMgr;
+ return VINF_SUCCESS;
+ }
+ RTDvmRelease(hVolMgr);
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: Image path: '%s'. RTDvmMapOpen failed for '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+}
+
+/**
+ * Opens the raw drive device and get the sizes for it.
+ *
+ * @param pImage The image (for error reporting).
+ * @param pszRawDrive The device/whatever to open.
+ * @param phRawDrive Where to return the file handle.
+ * @param pcbRawDrive Where to return the size.
+ * @param pcbSector Where to return the sector size.
+ * @returns IPRT status code, errors have been reported.
+ * @internal
+ */
+static int vmkdRawDescOpenDevice(PVMDKIMAGE pImage, const char *pszRawDrive,
+ PRTFILE phRawDrive, uint64_t *pcbRawDrive, uint32_t *pcbSector)
+{
+ /*
+ * Open the device for the raw drive.
+ */
+ RTFILE hRawDrive = NIL_RTFILE;
+ int rc = RTFileOpen(&hRawDrive, pszRawDrive, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to open the raw drive '%s' for reading (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+
+ /*
+ * Get the sector size.
+ */
+ uint32_t cbSector = 0;
+ rc = RTFileQuerySectorSize(hRawDrive, &cbSector);
+ if (RT_SUCCESS(rc))
+ {
+ /* sanity checks */
+ if ( cbSector >= 512
+ && cbSector <= _64K
+ && RT_IS_POWER_OF_TWO(cbSector))
+ {
+ /*
+ * Get the size.
+ */
+ uint64_t cbRawDrive = 0;
+ rc = RTFileQuerySize(hRawDrive, &cbRawDrive);
+ if (RT_SUCCESS(rc))
+ {
+ /* Check whether cbSize is actually sensible. */
+ if (cbRawDrive > cbSector && (cbRawDrive % cbSector) == 0)
+ {
+ *phRawDrive = hRawDrive;
+ *pcbRawDrive = cbRawDrive;
+ *pcbSector = cbSector;
+ return VINF_SUCCESS;
+ }
+ rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Got a bogus size for the raw drive '%s': %RU64 (sector size %u)"),
+ pImage->pszFilename, pszRawDrive, cbRawDrive, cbSector);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to query size of the drive '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_OUT_OF_RANGE, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Unsupported sector size for '%s': %u (%#x)"),
+ pImage->pszFilename, pszRawDrive, cbSector, cbSector);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to get the sector size for '%s' (%Rrc)"),
+ pImage->pszFilename, pszRawDrive, rc);
+ RTFileClose(hRawDrive);
+ return rc;
+}
+
+/**
+ * Reads the raw disk configuration, leaving initalization and cleanup to the
+ * caller (regardless of return status).
+ *
+ * @returns VBox status code, errors properly reported.
+ * @internal
+ */
+static int vmdkRawDescParseConfig(PVMDKIMAGE pImage, char **ppszRawDrive,
+ uint32_t *pfPartitions, uint32_t *pfPartitionsReadOnly,
+ void **ppvBootSector, size_t *pcbBootSector, bool *pfRelative,
+ char **ppszFreeMe)
+{
+ PVDINTERFACECONFIG pImgCfg = VDIfConfigGet(pImage->pVDIfsImage);
+ if (!pImgCfg)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Getting config interface failed"), pImage->pszFilename);
+
+ /*
+ * RawDrive = path
+ */
+ int rc = VDCFGQueryStringAlloc(pImgCfg, "RawDrive", ppszRawDrive);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Getting 'RawDrive' configuration failed (%Rrc)"), pImage->pszFilename, rc);
+ AssertPtrReturn(*ppszRawDrive, VERR_INTERNAL_ERROR_3);
+
+ /*
+ * Partitions=n[r][,...]
+ */
+ uint32_t const cMaxPartitionBits = sizeof(*pfPartitions) * 8 /* ASSUMES 8 bits per char */;
+ *pfPartitions = *pfPartitionsReadOnly = 0;
+
+ rc = VDCFGQueryStringAlloc(pImgCfg, "Partitions", ppszFreeMe);
+ if (RT_SUCCESS(rc))
+ {
+ char *psz = *ppszFreeMe;
+ while (*psz != '\0')
+ {
+ char *pszNext;
+ uint32_t u32;
+ rc = RTStrToUInt32Ex(psz, &pszNext, 0, &u32);
+ if (rc == VWRN_NUMBER_TOO_BIG || rc == VWRN_NEGATIVE_UNSIGNED)
+ rc = -rc;
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Parsing 'Partitions' config value failed. Incorrect value (%Rrc): %s"),
+ pImage->pszFilename, rc, psz);
+ if (u32 >= cMaxPartitionBits)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. 'Partitions' config sub-value out of range: %RU32, max %RU32"),
+ pImage->pszFilename, u32, cMaxPartitionBits);
+ *pfPartitions |= RT_BIT_32(u32);
+ psz = pszNext;
+ if (*psz == 'r')
+ {
+ *pfPartitionsReadOnly |= RT_BIT_32(u32);
+ psz++;
+ }
+ if (*psz == ',')
+ psz++;
+ else if (*psz != '\0')
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Malformed 'Partitions' config value, expected separator: %s"),
+ pImage->pszFilename, psz);
+ }
+
+ RTStrFree(*ppszFreeMe);
+ *ppszFreeMe = NULL;
+ }
+ else if (rc != VERR_CFGM_VALUE_NOT_FOUND)
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Getting 'Partitions' configuration failed (%Rrc)"), pImage->pszFilename, rc);
+
+ /*
+ * BootSector=base64
+ */
+ rc = VDCFGQueryStringAlloc(pImgCfg, "BootSector", ppszFreeMe);
+ if (RT_SUCCESS(rc))
+ {
+ ssize_t cbBootSector = RTBase64DecodedSize(*ppszFreeMe, NULL);
+ if (cbBootSector < 0)
+ return vdIfError(pImage->pIfError, VERR_INVALID_BASE64_ENCODING, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. BASE64 decoding failed on the custom bootsector for '%s'"),
+ pImage->pszFilename, *ppszRawDrive);
+ if (cbBootSector == 0)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is zero bytes big"),
+ pImage->pszFilename, *ppszRawDrive);
+ if (cbBootSector > _4M) /* this is just a preliminary max */
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is way too big: %zu bytes, max 4MB"),
+ pImage->pszFilename, *ppszRawDrive, cbBootSector);
+
+ /* Refuse the boot sector if whole-drive. This used to be done quietly,
+ however, bird disagrees and thinks the user should be told that what
+ he/she/it tries to do isn't possible. There should be less head
+ scratching this way when the guest doesn't do the expected thing. */
+ if (!*pfPartitions)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is not supported for whole-drive configurations, only when selecting partitions"),
+ pImage->pszFilename, *ppszRawDrive);
+
+ *pcbBootSector = (size_t)cbBootSector;
+ *ppvBootSector = RTMemAlloc((size_t)cbBootSector);
+ if (!*ppvBootSector)
+ return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to allocate %zd bytes for the custom bootsector for '%s'"),
+ pImage->pszFilename, cbBootSector, *ppszRawDrive);
+
+ rc = RTBase64Decode(*ppszFreeMe, *ppvBootSector, cbBootSector, NULL /*pcbActual*/, NULL /*ppszEnd*/);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Base64 decoding of the custom boot sector for '%s' failed (%Rrc)"),
+ pImage->pszFilename, *ppszRawDrive, rc);
+
+ RTStrFree(*ppszFreeMe);
+ *ppszFreeMe = NULL;
+ }
+ else if (rc != VERR_CFGM_VALUE_NOT_FOUND)
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Getting 'BootSector' configuration failed (%Rrc)"), pImage->pszFilename, rc);
+
+ /*
+ * Relative=0/1
+ */
+ *pfRelative = false;
+ rc = VDCFGQueryBool(pImgCfg, "Relative", pfRelative);
+ if (RT_SUCCESS(rc))
+ {
+ if (!*pfPartitions && *pfRelative != false)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. The 'Relative' option is not supported for whole-drive configurations, only when selecting partitions"),
+ pImage->pszFilename);
+#if !defined(RT_OS_DARWIN) && !defined(RT_OS_LINUX) && !defined(RT_OS_FREEBSD) && !defined(RT_OS_WINDOWS) && !defined(RT_OS_SOLARIS) /* PORTME */
+ if (*pfRelative == true)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. The 'Relative' option is not supported on this host OS"),
+ pImage->pszFilename);
+#endif
+ }
+ else if (rc != VERR_CFGM_VALUE_NOT_FOUND)
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Getting 'Relative' configuration failed (%Rrc)"), pImage->pszFilename, rc);
+ else
+#ifdef RT_OS_DARWIN /* different default on macOS, see ticketref:1461 (comment 20). */
+ *pfRelative = true;
+#else
+ *pfRelative = false;
+#endif
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Creates a raw drive (nee disk) descriptor.
+ *
+ * This was originally done in VBoxInternalManage.cpp, but was copied (not move)
+ * here much later. That's one of the reasons why we produce a descriptor just
+ * like it does, rather than mixing directly into the vmdkCreateRawImage code.
+ *
+ * @returns VBox status code.
+ * @param pImage The image.
+ * @param ppRaw Where to return the raw drive descriptor. Caller must
+ * free it using vmdkRawDescFree regardless of the status
+ * code.
+ * @internal
+ */
+static int vmdkMakeRawDescriptor(PVMDKIMAGE pImage, PVDISKRAW *ppRaw)
+{
+ /* Make sure it's NULL. */
+ *ppRaw = NULL;
+
+ /*
+ * Read the configuration.
+ */
+ char *pszRawDrive = NULL;
+ uint32_t fPartitions = 0; /* zero if whole-drive */
+ uint32_t fPartitionsReadOnly = 0; /* (subset of fPartitions) */
+ void *pvBootSector = NULL;
+ size_t cbBootSector = 0;
+ bool fRelative = false;
+ char *pszFreeMe = NULL; /* lazy bird cleanup. */
+ int rc = vmdkRawDescParseConfig(pImage, &pszRawDrive, &fPartitions, &fPartitionsReadOnly,
+ &pvBootSector, &cbBootSector, &fRelative, &pszFreeMe);
+ RTStrFree(pszFreeMe);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Open the device, getting the sector size and drive size.
+ */
+ uint64_t cbSize = 0;
+ uint32_t cbSector = 0;
+ RTFILE hRawDrive = NIL_RTFILE;
+ rc = vmkdRawDescOpenDevice(pImage, pszRawDrive, &hRawDrive, &cbSize, &cbSector);
+ if (RT_SUCCESS(rc))
+ {
+ pImage->cbSize = cbSize;
+ /*
+ * Create the raw-drive descriptor
+ */
+ PVDISKRAW pRawDesc = (PVDISKRAW)RTMemAllocZ(sizeof(*pRawDesc));
+ if (pRawDesc)
+ {
+ pRawDesc->szSignature[0] = 'R';
+ pRawDesc->szSignature[1] = 'A';
+ pRawDesc->szSignature[2] = 'W';
+ //pRawDesc->szSignature[3] = '\0';
+ if (!fPartitions)
+ {
+ /*
+ * It's simple for when doing the whole drive.
+ */
+ pRawDesc->uFlags = VDISKRAW_DISK;
+ rc = RTStrDupEx(&pRawDesc->pszRawDisk, pszRawDrive);
+ }
+ else
+ {
+ /*
+ * In selected partitions mode we've got a lot more work ahead of us.
+ */
+ pRawDesc->uFlags = VDISKRAW_NORMAL;
+ //pRawDesc->pszRawDisk = NULL;
+ //pRawDesc->cPartDescs = 0;
+ //pRawDesc->pPartDescs = NULL;
+
+ /* We need to parse the partition map to complete the descriptor: */
+ RTDVM hVolMgr = NIL_RTDVM;
+ rc = vmdkRawDescOpenVolMgr(pImage, hRawDrive, pszRawDrive, cbSector, &hVolMgr);
+ if (RT_SUCCESS(rc))
+ {
+ RTDVMFORMATTYPE enmFormatType = RTDvmMapGetFormatType(hVolMgr);
+ if ( enmFormatType == RTDVMFORMATTYPE_MBR
+ || enmFormatType == RTDVMFORMATTYPE_GPT)
+ {
+ pRawDesc->enmPartitioningType = enmFormatType == RTDVMFORMATTYPE_MBR
+ ? VDISKPARTTYPE_MBR : VDISKPARTTYPE_GPT;
+
+ /* Add copies of the partition tables: */
+ rc = vmdkRawDescDoCopyPartitionTables(pImage, hVolMgr, pRawDesc, pszRawDrive, hRawDrive,
+ pvBootSector, cbBootSector);
+ if (RT_SUCCESS(rc))
+ {
+ /* Add descriptors for the partitions/volumes, indicating which
+ should be accessible and how to access them: */
+ RTDVMVOLUME hVolRelease = NIL_RTDVMVOLUME;
+ rc = vmdkRawDescDoPartitions(pImage, hVolMgr, pRawDesc, hRawDrive, pszRawDrive, cbSector,
+ fPartitions, fPartitionsReadOnly, fRelative, &hVolRelease);
+ RTDvmVolumeRelease(hVolRelease);
+
+ /* Finally, sort the partition and check consistency (overlaps, etc): */
+ if (RT_SUCCESS(rc))
+ rc = vmdkRawDescPostProcessPartitions(pImage, pRawDesc, cbSize);
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Unsupported partitioning for the disk '%s': %s"),
+ pImage->pszFilename, pszRawDrive, RTDvmMapGetFormatType(hVolMgr));
+ RTDvmRelease(hVolMgr);
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * We succeeded.
+ */
+ *ppRaw = pRawDesc;
+ Log(("vmdkMakeRawDescriptor: fFlags=%#x enmPartitioningType=%d cPartDescs=%u pszRawDisk=%s\n",
+ pRawDesc->uFlags, pRawDesc->enmPartitioningType, pRawDesc->cPartDescs, pRawDesc->pszRawDisk));
+ if (pRawDesc->cPartDescs)
+ {
+ Log(("# VMDK offset Length Device offset PartDataPtr Device\n"));
+ for (uint32_t i = 0; i < pRawDesc->cPartDescs; i++)
+ Log(("%2u %14RU64 %14RU64 %14RU64 %#18p %s\n", i, pRawDesc->pPartDescs[i].offStartInVDisk,
+ pRawDesc->pPartDescs[i].cbData, pRawDesc->pPartDescs[i].offStartInDevice,
+ pRawDesc->pPartDescs[i].pvPartitionData, pRawDesc->pPartDescs[i].pszRawDevice));
+ }
+ }
+ else
+ vmdkRawDescFree(pRawDesc);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS,
+ N_("VMDK: Image path: '%s'. Failed to allocate %u bytes for the raw drive descriptor"),
+ pImage->pszFilename, sizeof(*pRawDesc));
+ RTFileClose(hRawDrive);
+ }
+ }
+ RTStrFree(pszRawDrive);
+ RTMemFree(pvBootSector);
+ return rc;
+}
+
+/**
+ * Internal: create VMDK images for raw disk/partition access.
+ */
+static int vmdkCreateRawImage(PVMDKIMAGE pImage, const PVDISKRAW pRaw,
+ uint64_t cbSize)
+{
+ int rc = VINF_SUCCESS;
+ PVMDKEXTENT pExtent;
+
+ if (pRaw->uFlags & VDISKRAW_DISK)
+ {
+ /* Full raw disk access. This requires setting up a descriptor
+ * file and open the (flat) raw disk. */
+ rc = vmdkCreateExtents(pImage, 1);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
+ pExtent = &pImage->pExtents[0];
+ /* Create raw disk descriptor file. */
+ rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename);
+
+ /* Set up basename for extent description. Cannot use StrDup. */
+ size_t cbBasename = strlen(pRaw->pszRawDisk) + 1;
+ char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
+ if (!pszBasename)
+ return VERR_NO_MEMORY;
+ memcpy(pszBasename, pRaw->pszRawDisk, cbBasename);
+ pExtent->pszBasename = pszBasename;
+ /* For raw disks the full name is identical to the base name. */
+ pExtent->pszFullname = RTStrDup(pszBasename);
+ if (!pExtent->pszFullname)
+ return VERR_NO_MEMORY;
+ pExtent->enmType = VMDKETYPE_FLAT;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize);
+ pExtent->uSectorOffset = 0;
+ pExtent->enmAccess = (pRaw->uFlags & VDISKRAW_READONLY) ? VMDKACCESS_READONLY : VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+
+ /* Open flat image, the raw disk. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0),
+ false /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not open raw disk file '%s'"), pExtent->pszFullname);
+ }
+ else
+ {
+ /* Raw partition access. This requires setting up a descriptor
+ * file, write the partition information to a flat extent and
+ * open all the (flat) raw disk partitions. */
+
+ /* First pass over the partition data areas to determine how many
+ * extents we need. One data area can require up to 2 extents, as
+ * it might be necessary to skip over unpartitioned space. */
+ unsigned cExtents = 0;
+ uint64_t uStart = 0;
+ for (unsigned i = 0; i < pRaw->cPartDescs; i++)
+ {
+ PVDISKRAWPARTDESC pPart = &pRaw->pPartDescs[i];
+ if (uStart > pPart->offStartInVDisk)
+ return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("VMDK: incorrect partition data area ordering set up by the caller in '%s'"), pImage->pszFilename);
+
+ if (uStart < pPart->offStartInVDisk)
+ cExtents++;
+ uStart = pPart->offStartInVDisk + pPart->cbData;
+ cExtents++;
+ }
+ /* Another extent for filling up the rest of the image. */
+ if (uStart != cbSize)
+ cExtents++;
+
+ rc = vmdkCreateExtents(pImage, cExtents);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
+
+ /* Create raw partition descriptor file. */
+ rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename);
+
+ /* Create base filename for the partition table extent. */
+ /** @todo remove fixed buffer without creating memory leaks. */
+ char pszPartition[1024];
+ const char *pszBase = RTPathFilename(pImage->pszFilename);
+ const char *pszSuff = RTPathSuffix(pszBase);
+ if (pszSuff == NULL)
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: invalid filename '%s'"), pImage->pszFilename);
+ char *pszBaseBase = RTStrDup(pszBase);
+ if (!pszBaseBase)
+ return VERR_NO_MEMORY;
+ RTPathStripSuffix(pszBaseBase);
+ RTStrPrintf(pszPartition, sizeof(pszPartition), "%s-pt%s",
+ pszBaseBase, pszSuff);
+ RTStrFree(pszBaseBase);
+
+ /* Second pass over the partitions, now define all extents. */
+ uint64_t uPartOffset = 0;
+ cExtents = 0;
+ uStart = 0;
+ for (unsigned i = 0; i < pRaw->cPartDescs; i++)
+ {
+ PVDISKRAWPARTDESC pPart = &pRaw->pPartDescs[i];
+ pExtent = &pImage->pExtents[cExtents++];
+
+ if (uStart < pPart->offStartInVDisk)
+ {
+ pExtent->pszBasename = NULL;
+ pExtent->pszFullname = NULL;
+ pExtent->enmType = VMDKETYPE_ZERO;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->offStartInVDisk - uStart);
+ pExtent->uSectorOffset = 0;
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+ /* go to next extent */
+ pExtent = &pImage->pExtents[cExtents++];
+ }
+ uStart = pPart->offStartInVDisk + pPart->cbData;
+
+ if (pPart->pvPartitionData)
+ {
+ /* Set up basename for extent description. Can't use StrDup. */
+ size_t cbBasename = strlen(pszPartition) + 1;
+ char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
+ if (!pszBasename)
+ return VERR_NO_MEMORY;
+ memcpy(pszBasename, pszPartition, cbBasename);
+ pExtent->pszBasename = pszBasename;
+
+ /* Set up full name for partition extent. */
+ char *pszDirname = RTStrDup(pImage->pszFilename);
+ if (!pszDirname)
+ return VERR_NO_STR_MEMORY;
+ RTPathStripFilename(pszDirname);
+ char *pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename);
+ RTStrFree(pszDirname);
+ if (!pszFullname)
+ return VERR_NO_STR_MEMORY;
+ pExtent->pszFullname = pszFullname;
+ pExtent->enmType = VMDKETYPE_FLAT;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
+ pExtent->uSectorOffset = uPartOffset;
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+
+ /* Create partition table flat image. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0),
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new partition data file '%s'"), pExtent->pszFullname);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uPartOffset),
+ pPart->pvPartitionData,
+ pPart->cbData);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not write partition data to '%s'"), pExtent->pszFullname);
+ uPartOffset += VMDK_BYTE2SECTOR(pPart->cbData);
+ }
+ else
+ {
+ if (pPart->pszRawDevice)
+ {
+ /* Set up basename for extent descr. Can't use StrDup. */
+ size_t cbBasename = strlen(pPart->pszRawDevice) + 1;
+ char *pszBasename = (char *)RTMemTmpAlloc(cbBasename);
+ if (!pszBasename)
+ return VERR_NO_MEMORY;
+ memcpy(pszBasename, pPart->pszRawDevice, cbBasename);
+ pExtent->pszBasename = pszBasename;
+ /* For raw disks full name is identical to base name. */
+ pExtent->pszFullname = RTStrDup(pszBasename);
+ if (!pExtent->pszFullname)
+ return VERR_NO_MEMORY;
+ pExtent->enmType = VMDKETYPE_FLAT;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
+ pExtent->uSectorOffset = VMDK_BYTE2SECTOR(pPart->offStartInDevice);
+ pExtent->enmAccess = (pPart->uFlags & VDISKRAW_READONLY) ? VMDKACCESS_READONLY : VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+
+ /* Open flat image, the raw partition. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0),
+ false /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not open raw partition file '%s'"), pExtent->pszFullname);
+ }
+ else
+ {
+ pExtent->pszBasename = NULL;
+ pExtent->pszFullname = NULL;
+ pExtent->enmType = VMDKETYPE_ZERO;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData);
+ pExtent->uSectorOffset = 0;
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+ }
+ }
+ }
+ /* Another extent for filling up the rest of the image. */
+ if (uStart != cbSize)
+ {
+ pExtent = &pImage->pExtents[cExtents++];
+ pExtent->pszBasename = NULL;
+ pExtent->pszFullname = NULL;
+ pExtent->enmType = VMDKETYPE_ZERO;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize - uStart);
+ pExtent->uSectorOffset = 0;
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->fMetaDirty = false;
+ }
+ }
+
+ rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
+ (pRaw->uFlags & VDISKRAW_DISK) ?
+ "fullDevice" : "partitionedDevice");
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
+ return rc;
+}
+
+/**
+ * Internal: create a regular (i.e. file-backed) VMDK image.
+ */
+static int vmdkCreateRegularImage(PVMDKIMAGE pImage, uint64_t cbSize,
+ unsigned uImageFlags, PVDINTERFACEPROGRESS pIfProgress,
+ unsigned uPercentStart, unsigned uPercentSpan)
+{
+ int rc = VINF_SUCCESS;
+ unsigned cExtents = 1;
+ uint64_t cbOffset = 0;
+ uint64_t cbRemaining = cbSize;
+
+ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
+ {
+ cExtents = cbSize / VMDK_2G_SPLIT_SIZE;
+ /* Do proper extent computation: need one smaller extent if the total
+ * size isn't evenly divisible by the split size. */
+ if (cbSize % VMDK_2G_SPLIT_SIZE)
+ cExtents++;
+ }
+ rc = vmdkCreateExtents(pImage, cExtents);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
+
+ /* Basename strings needed for constructing the extent names. */
+ char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename);
+ AssertPtr(pszBasenameSubstr);
+ size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1;
+
+ /* Create separate descriptor file if necessary. */
+ if (cExtents != 1 || (uImageFlags & VD_IMAGE_FLAGS_FIXED))
+ {
+ rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new sparse descriptor file '%s'"), pImage->pszFilename);
+ }
+ else
+ pImage->pFile = NULL;
+
+ /* Set up all extents. */
+ for (unsigned i = 0; i < cExtents; i++)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[i];
+ uint64_t cbExtent = cbRemaining;
+
+ /* Set up fullname/basename for extent description. Cannot use StrDup
+ * for basename, as it is not guaranteed that the memory can be freed
+ * with RTMemTmpFree, which must be used as in other code paths
+ * StrDup is not usable. */
+ if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED))
+ {
+ char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr);
+ if (!pszBasename)
+ return VERR_NO_MEMORY;
+ memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr);
+ pExtent->pszBasename = pszBasename;
+ }
+ else
+ {
+ char *pszBasenameSuff = RTPathSuffix(pszBasenameSubstr);
+ char *pszBasenameBase = RTStrDup(pszBasenameSubstr);
+ RTPathStripSuffix(pszBasenameBase);
+ char *pszTmp;
+ size_t cbTmp;
+ if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ {
+ if (cExtents == 1)
+ RTStrAPrintf(&pszTmp, "%s-flat%s", pszBasenameBase,
+ pszBasenameSuff);
+ else
+ RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase,
+ i+1, pszBasenameSuff);
+ }
+ else
+ RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, i+1,
+ pszBasenameSuff);
+ RTStrFree(pszBasenameBase);
+ if (!pszTmp)
+ return VERR_NO_STR_MEMORY;
+ cbTmp = strlen(pszTmp) + 1;
+ char *pszBasename = (char *)RTMemTmpAlloc(cbTmp);
+ if (!pszBasename)
+ {
+ RTStrFree(pszTmp);
+ return VERR_NO_MEMORY;
+ }
+ memcpy(pszBasename, pszTmp, cbTmp);
+ RTStrFree(pszTmp);
+ pExtent->pszBasename = pszBasename;
+ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
+ cbExtent = RT_MIN(cbRemaining, VMDK_2G_SPLIT_SIZE);
+ }
+ char *pszBasedirectory = RTStrDup(pImage->pszFilename);
+ if (!pszBasedirectory)
+ return VERR_NO_STR_MEMORY;
+ RTPathStripFilename(pszBasedirectory);
+ char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename);
+ RTStrFree(pszBasedirectory);
+ if (!pszFullname)
+ return VERR_NO_STR_MEMORY;
+ pExtent->pszFullname = pszFullname;
+
+ /* Create file for extent. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */));
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname);
+ if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ {
+ rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbExtent,
+ 0 /* fFlags */, pIfProgress,
+ uPercentStart + cbOffset * uPercentSpan / cbSize,
+ cbExtent * uPercentSpan / cbSize);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
+ }
+
+ /* Place descriptor file information (where integrated). */
+ if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED))
+ {
+ pExtent->uDescriptorSector = 1;
+ pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc);
+ /* The descriptor is part of the (only) extent. */
+ pExtent->pDescData = pImage->pDescData;
+ pImage->pDescData = NULL;
+ }
+
+ if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED))
+ {
+ uint64_t cSectorsPerGDE, cSectorsPerGD;
+ pExtent->enmType = VMDKETYPE_HOSTED_SPARSE;
+ pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbExtent, _64K));
+ pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K);
+ pExtent->cGTEntries = 512;
+ cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
+ pExtent->cSectorsPerGDE = cSectorsPerGDE;
+ pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
+ cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t));
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* The spec says version is 1 for all VMDKs, but the vast
+ * majority of streamOptimized VMDKs actually contain
+ * version 3 - so go with the majority. Both are accepted. */
+ pExtent->uVersion = 3;
+ pExtent->uCompression = VMDK_COMPRESSION_DEFLATE;
+ }
+ }
+ else
+ {
+ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
+ pExtent->enmType = VMDKETYPE_VMFS;
+ else
+ pExtent->enmType = VMDKETYPE_FLAT;
+ }
+
+ pExtent->enmAccess = VMDKACCESS_READWRITE;
+ pExtent->fUncleanShutdown = true;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbExtent);
+ pExtent->uSectorOffset = 0;
+ pExtent->fMetaDirty = true;
+
+ if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED))
+ {
+ /* fPreAlloc should never be false because VMware can't use such images. */
+ rc = vmdkCreateGrainDirectory(pImage, pExtent,
+ RT_MAX( pExtent->uDescriptorSector
+ + pExtent->cDescriptorSectors,
+ 1),
+ true /* fPreAlloc */);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname);
+ }
+
+ cbOffset += cbExtent;
+
+ if (RT_SUCCESS(rc))
+ vdIfProgress(pIfProgress, uPercentStart + cbOffset * uPercentSpan / cbSize);
+
+ cbRemaining -= cbExtent;
+ }
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
+ {
+ /* VirtualBox doesn't care, but VMWare ESX freaks out if the wrong
+ * controller type is set in an image. */
+ rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, "ddb.adapterType", "lsilogic");
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set controller type to lsilogic in '%s'"), pImage->pszFilename);
+ }
+
+ const char *pszDescType = NULL;
+ if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
+ {
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX)
+ pszDescType = "vmfs";
+ else
+ pszDescType = (cExtents == 1)
+ ? "monolithicFlat" : "twoGbMaxExtentFlat";
+ }
+ else
+ {
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ pszDescType = "streamOptimized";
+ else
+ {
+ pszDescType = (cExtents == 1)
+ ? "monolithicSparse" : "twoGbMaxExtentSparse";
+ }
+ }
+ rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
+ pszDescType);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
+ return rc;
+}
+
+/**
+ * Internal: Create a real stream optimized VMDK using only linear writes.
+ */
+static int vmdkCreateStreamImage(PVMDKIMAGE pImage, uint64_t cbSize)
+{
+ int rc = vmdkCreateExtents(pImage, 1);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename);
+
+ /* Basename strings needed for constructing the extent names. */
+ const char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename);
+ AssertPtr(pszBasenameSubstr);
+ size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1;
+
+ /* No separate descriptor file. */
+ pImage->pFile = NULL;
+
+ /* Set up all extents. */
+ PVMDKEXTENT pExtent = &pImage->pExtents[0];
+
+ /* Set up fullname/basename for extent description. Cannot use StrDup
+ * for basename, as it is not guaranteed that the memory can be freed
+ * with RTMemTmpFree, which must be used as in other code paths
+ * StrDup is not usable. */
+ char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr);
+ if (!pszBasename)
+ return VERR_NO_MEMORY;
+ memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr);
+ pExtent->pszBasename = pszBasename;
+
+ char *pszBasedirectory = RTStrDup(pImage->pszFilename);
+ RTPathStripFilename(pszBasedirectory);
+ char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename);
+ RTStrFree(pszBasedirectory);
+ if (!pszFullname)
+ return VERR_NO_STR_MEMORY;
+ pExtent->pszFullname = pszFullname;
+
+ /* Create file for extent. Make it write only, no reading allowed. */
+ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname,
+ VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags,
+ true /* fCreate */)
+ & ~RTFILE_O_READ);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname);
+
+ /* Place descriptor file information. */
+ pExtent->uDescriptorSector = 1;
+ pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc);
+ /* The descriptor is part of the (only) extent. */
+ pExtent->pDescData = pImage->pDescData;
+ pImage->pDescData = NULL;
+
+ uint64_t cSectorsPerGDE, cSectorsPerGD;
+ pExtent->enmType = VMDKETYPE_HOSTED_SPARSE;
+ pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K));
+ pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K);
+ pExtent->cGTEntries = 512;
+ cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain;
+ pExtent->cSectorsPerGDE = cSectorsPerGDE;
+ pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE;
+ cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t));
+
+ /* The spec says version is 1 for all VMDKs, but the vast
+ * majority of streamOptimized VMDKs actually contain
+ * version 3 - so go with the majority. Both are accepted. */
+ pExtent->uVersion = 3;
+ pExtent->uCompression = VMDK_COMPRESSION_DEFLATE;
+ pExtent->fFooter = true;
+
+ pExtent->enmAccess = VMDKACCESS_READONLY;
+ pExtent->fUncleanShutdown = false;
+ pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize);
+ pExtent->uSectorOffset = 0;
+ pExtent->fMetaDirty = true;
+
+ /* Create grain directory, without preallocating it straight away. It will
+ * be constructed on the fly when writing out the data and written when
+ * closing the image. The end effect is that the full grain directory is
+ * allocated, which is a requirement of the VMDK specs. */
+ rc = vmdkCreateGrainDirectory(pImage, pExtent, VMDK_GD_AT_END,
+ false /* fPreAlloc */);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname);
+
+ rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType",
+ "streamOptimized");
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename);
+
+ return rc;
+}
+
+/**
+ * Initializes the UUID fields in the DDB.
+ *
+ * @returns VBox status code.
+ * @param pImage The VMDK image instance.
+ */
+static int vmdkCreateImageDdbUuidsInit(PVMDKIMAGE pImage)
+{
+ int rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, &pImage->ParentUuid);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID,
+ &pImage->ModificationUuid);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID,
+ &pImage->ParentModificationUuid);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing parent modification UUID in new descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing modification UUID in new descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing parent image UUID in new descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing image UUID in new descriptor in '%s'"), pImage->pszFilename);
+
+ return rc;
+}
+
+/**
+ * Internal: The actual code for creating any VMDK variant currently in
+ * existence on hosted environments.
+ */
+static int vmdkCreateImage(PVMDKIMAGE pImage, uint64_t cbSize,
+ unsigned uImageFlags, const char *pszComment,
+ PCVDGEOMETRY pPCHSGeometry,
+ PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid,
+ PVDINTERFACEPROGRESS pIfProgress,
+ unsigned uPercentStart, unsigned uPercentSpan)
+{
+ pImage->uImageFlags = uImageFlags;
+
+ pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
+ pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
+ AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER);
+
+ int rc = vmdkCreateDescriptor(pImage, pImage->pDescData, pImage->cbDescAlloc,
+ &pImage->Descriptor);
+ if (RT_SUCCESS(rc))
+ {
+ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)
+ {
+ /* Raw disk image (includes raw partition). */
+ PVDISKRAW pRaw = NULL;
+ rc = vmdkMakeRawDescriptor(pImage, &pRaw);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create raw descriptor for '%s'"),
+ pImage->pszFilename);
+ if (!cbSize)
+ cbSize = pImage->cbSize;
+
+ rc = vmdkCreateRawImage(pImage, pRaw, cbSize);
+ vmdkRawDescFree(pRaw);
+ }
+ else if (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* Stream optimized sparse image (monolithic). */
+ rc = vmdkCreateStreamImage(pImage, cbSize);
+ }
+ else
+ {
+ /* Regular fixed or sparse image (monolithic or split). */
+ rc = vmdkCreateRegularImage(pImage, cbSize, uImageFlags,
+ pIfProgress, uPercentStart,
+ uPercentSpan * 95 / 100);
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ vdIfProgress(pIfProgress, uPercentStart + uPercentSpan * 98 / 100);
+
+ pImage->cbSize = cbSize;
+
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[i];
+
+ rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess,
+ pExtent->cNominalSectors, pExtent->enmType,
+ pExtent->pszBasename, pExtent->uSectorOffset);
+ if (RT_FAILURE(rc))
+ {
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename);
+ break;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ vmdkDescExtRemoveDummy(pImage, &pImage->Descriptor);
+
+ pImage->LCHSGeometry = *pLCHSGeometry;
+ pImage->PCHSGeometry = *pPCHSGeometry;
+
+ if (RT_SUCCESS(rc))
+ {
+ if ( pPCHSGeometry->cCylinders != 0
+ && pPCHSGeometry->cHeads != 0
+ && pPCHSGeometry->cSectors != 0)
+ rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry);
+ else if (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)
+ {
+ VDGEOMETRY RawDiskPCHSGeometry;
+ RawDiskPCHSGeometry.cCylinders = (uint32_t)RT_MIN(pImage->cbSize / 512 / 16 / 63, 16383);
+ RawDiskPCHSGeometry.cHeads = 16;
+ RawDiskPCHSGeometry.cSectors = 63;
+ rc = vmdkDescSetPCHSGeometry(pImage, &RawDiskPCHSGeometry);
+ }
+ }
+
+ if ( RT_SUCCESS(rc)
+ && pLCHSGeometry->cCylinders != 0
+ && pLCHSGeometry->cHeads != 0
+ && pLCHSGeometry->cSectors != 0)
+ rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry);
+
+ pImage->ImageUuid = *pUuid;
+ RTUuidClear(&pImage->ParentUuid);
+ RTUuidClear(&pImage->ModificationUuid);
+ RTUuidClear(&pImage->ParentModificationUuid);
+
+ if (RT_SUCCESS(rc))
+ rc = vmdkCreateImageDdbUuidsInit(pImage);
+
+ if (RT_SUCCESS(rc))
+ rc = vmdkAllocateGrainTableCache(pImage);
+
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkSetImageComment(pImage, pszComment);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot set image comment in '%s'"), pImage->pszFilename);
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ vdIfProgress(pIfProgress, uPercentStart + uPercentSpan * 99 / 100);
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* streamOptimized is a bit special, we cannot trigger the flush
+ * until all data has been written. So we write the necessary
+ * information explicitly. */
+ pImage->pExtents[0].cDescriptorSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64( pImage->Descriptor.aLines[pImage->Descriptor.cLines]
+ - pImage->Descriptor.aLines[0], 512));
+ rc = vmdkWriteMetaSparseExtent(pImage, &pImage->pExtents[0], 0, NULL);
+ if (RT_SUCCESS(rc))
+ {
+ rc = vmdkWriteDescriptor(pImage, NULL);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK header in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = vmdkFlushImage(pImage, NULL);
+ }
+ }
+ }
+ else
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new descriptor in '%s'"), pImage->pszFilename);
+
+
+ if (RT_SUCCESS(rc))
+ {
+ PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0];
+ pImage->RegionList.fFlags = 0;
+ pImage->RegionList.cRegions = 1;
+
+ pRegion->offRegion = 0; /* Disk start. */
+ pRegion->cbBlock = 512;
+ pRegion->enmDataForm = VDREGIONDATAFORM_RAW;
+ pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE;
+ pRegion->cbData = 512;
+ pRegion->cbMetadata = 0;
+ pRegion->cRegionBlocksOrBytes = pImage->cbSize;
+
+ vdIfProgress(pIfProgress, uPercentStart + uPercentSpan);
+ }
+ else
+ vmdkFreeImage(pImage, rc != VERR_ALREADY_EXISTS, false /*fFlush*/);
+ return rc;
+}
+
+/**
+ * Internal: Update image comment.
+ */
+static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment)
+{
+ char *pszCommentEncoded = NULL;
+ if (pszComment)
+ {
+ pszCommentEncoded = vmdkEncodeString(pszComment);
+ if (!pszCommentEncoded)
+ return VERR_NO_MEMORY;
+ }
+
+ int rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor,
+ "ddb.comment", pszCommentEncoded);
+ if (pszCommentEncoded)
+ RTStrFree(pszCommentEncoded);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image comment in descriptor in '%s'"), pImage->pszFilename);
+ return VINF_SUCCESS;
+}
+
+/**
+ * Internal. Clear the grain table buffer for real stream optimized writing.
+ */
+static void vmdkStreamClearGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent)
+{
+ uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE;
+ for (uint32_t i = 0; i < cCacheLines; i++)
+ memset(&pImage->pGTCache->aGTCache[i].aGTData[0], '\0',
+ VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t));
+}
+
+/**
+ * Internal. Flush the grain table buffer for real stream optimized writing.
+ */
+static int vmdkStreamFlushGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint32_t uGDEntry)
+{
+ int rc = VINF_SUCCESS;
+ uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE;
+
+ /* VMware does not write out completely empty grain tables in the case
+ * of streamOptimized images, which according to my interpretation of
+ * the VMDK 1.1 spec is bending the rules. Since they do it and we can
+ * handle it without problems do it the same way and save some bytes. */
+ bool fAllZero = true;
+ for (uint32_t i = 0; i < cCacheLines; i++)
+ {
+ /* Convert the grain table to little endian in place, as it will not
+ * be used at all after this function has been called. */
+ uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0];
+ for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++)
+ if (*pGTTmp)
+ {
+ fAllZero = false;
+ break;
+ }
+ if (!fAllZero)
+ break;
+ }
+ if (fAllZero)
+ return VINF_SUCCESS;
+
+ uint64_t uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ return VERR_INTERNAL_ERROR;
+ /* Align to sector, as the previous write could have been any size. */
+ uFileOffset = RT_ALIGN_64(uFileOffset, 512);
+
+ /* Grain table marker. */
+ uint8_t aMarker[512];
+ PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0];
+ memset(pMarker, '\0', sizeof(aMarker));
+ pMarker->uSector = RT_H2LE_U64(VMDK_BYTE2SECTOR((uint64_t)pExtent->cGTEntries * sizeof(uint32_t)));
+ pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GT);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset,
+ aMarker, sizeof(aMarker));
+ AssertRC(rc);
+ uFileOffset += 512;
+
+ if (!pExtent->pGD || pExtent->pGD[uGDEntry])
+ return VERR_INTERNAL_ERROR;
+
+ pExtent->pGD[uGDEntry] = VMDK_BYTE2SECTOR(uFileOffset);
+
+ for (uint32_t i = 0; i < cCacheLines; i++)
+ {
+ /* Convert the grain table to little endian in place, as it will not
+ * be used at all after this function has been called. */
+ uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0];
+ for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++)
+ *pGTTmp = RT_H2LE_U32(*pGTTmp);
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset,
+ &pImage->pGTCache->aGTCache[i].aGTData[0],
+ VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t));
+ uFileOffset += VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t);
+ if (RT_FAILURE(rc))
+ break;
+ }
+ Assert(!(uFileOffset % 512));
+ pExtent->uAppendPosition = RT_ALIGN_64(uFileOffset, 512);
+ return rc;
+}
+
+/**
+ * Internal. Free all allocated space for representing an image, and optionally
+ * delete the image from disk.
+ */
+static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete, bool fFlush)
+{
+ int rc = VINF_SUCCESS;
+
+ /* Freeing a never allocated image (e.g. because the open failed) is
+ * not signalled as an error. After all nothing bad happens. */
+ if (pImage)
+ {
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* Check if all extents are clean. */
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ Assert(!pImage->pExtents[i].fUncleanShutdown);
+ }
+ }
+ else
+ {
+ /* Mark all extents as clean. */
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ if ( pImage->pExtents[i].enmType == VMDKETYPE_HOSTED_SPARSE
+ && pImage->pExtents[i].fUncleanShutdown)
+ {
+ pImage->pExtents[i].fUncleanShutdown = false;
+ pImage->pExtents[i].fMetaDirty = true;
+ }
+
+ /* From now on it's not safe to append any more data. */
+ pImage->pExtents[i].uAppendPosition = 0;
+ }
+ }
+ }
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* No need to write any pending data if the file will be deleted
+ * or if the new file wasn't successfully created. */
+ if ( !fDelete && pImage->pExtents
+ && pImage->pExtents[0].cGTEntries
+ && pImage->pExtents[0].uAppendPosition)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[0];
+ uint32_t uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries;
+ rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry);
+ AssertRC(rc);
+ vmdkStreamClearGT(pImage, pExtent);
+ for (uint32_t i = uLastGDEntry + 1; i < pExtent->cGDEntries; i++)
+ {
+ rc = vmdkStreamFlushGT(pImage, pExtent, i);
+ AssertRC(rc);
+ }
+
+ uint64_t uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ return VERR_INTERNAL_ERROR;
+ uFileOffset = RT_ALIGN_64(uFileOffset, 512);
+
+ /* From now on it's not safe to append any more data. */
+ pExtent->uAppendPosition = 0;
+
+ /* Grain directory marker. */
+ uint8_t aMarker[512];
+ PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0];
+ memset(pMarker, '\0', sizeof(aMarker));
+ pMarker->uSector = VMDK_BYTE2SECTOR(RT_ALIGN_64(RT_H2LE_U64((uint64_t)pExtent->cGDEntries * sizeof(uint32_t)), 512));
+ pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GD);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset,
+ aMarker, sizeof(aMarker));
+ AssertRC(rc);
+ uFileOffset += 512;
+
+ /* Write grain directory in little endian style. The array will
+ * not be used after this, so convert in place. */
+ uint32_t *pGDTmp = pExtent->pGD;
+ for (uint32_t i = 0; i < pExtent->cGDEntries; i++, pGDTmp++)
+ *pGDTmp = RT_H2LE_U32(*pGDTmp);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uFileOffset, pExtent->pGD,
+ pExtent->cGDEntries * sizeof(uint32_t));
+ AssertRC(rc);
+
+ pExtent->uSectorGD = VMDK_BYTE2SECTOR(uFileOffset);
+ pExtent->uSectorRGD = VMDK_BYTE2SECTOR(uFileOffset);
+ uFileOffset = RT_ALIGN_64( uFileOffset
+ + pExtent->cGDEntries * sizeof(uint32_t),
+ 512);
+
+ /* Footer marker. */
+ memset(pMarker, '\0', sizeof(aMarker));
+ pMarker->uSector = VMDK_BYTE2SECTOR(512);
+ pMarker->uType = RT_H2LE_U32(VMDK_MARKER_FOOTER);
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uFileOffset, aMarker, sizeof(aMarker));
+ AssertRC(rc);
+
+ uFileOffset += 512;
+ rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset, NULL);
+ AssertRC(rc);
+
+ uFileOffset += 512;
+ /* End-of-stream marker. */
+ memset(pMarker, '\0', sizeof(aMarker));
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uFileOffset, aMarker, sizeof(aMarker));
+ AssertRC(rc);
+ }
+ }
+ else if (!fDelete && fFlush)
+ vmdkFlushImage(pImage, NULL);
+
+ if (pImage->pExtents != NULL)
+ {
+ for (unsigned i = 0 ; i < pImage->cExtents; i++)
+ {
+ int rc2 = vmdkFreeExtentData(pImage, &pImage->pExtents[i], fDelete);
+ if (RT_SUCCESS(rc))
+ rc = rc2; /* Propogate any error when closing the file. */
+ }
+ RTMemFree(pImage->pExtents);
+ pImage->pExtents = NULL;
+ }
+ pImage->cExtents = 0;
+ if (pImage->pFile != NULL)
+ {
+ int rc2 = vmdkFileClose(pImage, &pImage->pFile, fDelete);
+ if (RT_SUCCESS(rc))
+ rc = rc2; /* Propogate any error when closing the file. */
+ }
+ int rc2 = vmdkFileCheckAllClose(pImage);
+ if (RT_SUCCESS(rc))
+ rc = rc2; /* Propogate any error when closing the file. */
+
+ if (pImage->pGTCache)
+ {
+ RTMemFree(pImage->pGTCache);
+ pImage->pGTCache = NULL;
+ }
+ if (pImage->pDescData)
+ {
+ RTMemFree(pImage->pDescData);
+ pImage->pDescData = NULL;
+ }
+ }
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/**
+ * Internal. Flush image data (and metadata) to disk.
+ */
+static int vmdkFlushImage(PVMDKIMAGE pImage, PVDIOCTX pIoCtx)
+{
+ PVMDKEXTENT pExtent;
+ int rc = VINF_SUCCESS;
+
+ /* Update descriptor if changed. */
+ if (pImage->Descriptor.fDirty)
+ rc = vmdkWriteDescriptor(pImage, pIoCtx);
+
+ if (RT_SUCCESS(rc))
+ {
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ pExtent = &pImage->pExtents[i];
+ if (pExtent->pFile != NULL && pExtent->fMetaDirty)
+ {
+ switch (pExtent->enmType)
+ {
+ case VMDKETYPE_HOSTED_SPARSE:
+ if (!pExtent->fFooter)
+ rc = vmdkWriteMetaSparseExtent(pImage, pExtent, 0, pIoCtx);
+ else
+ {
+ uint64_t uFileOffset = pExtent->uAppendPosition;
+ /* Simply skip writing anything if the streamOptimized
+ * image hasn't been just created. */
+ if (!uFileOffset)
+ break;
+ uFileOffset = RT_ALIGN_64(uFileOffset, 512);
+ rc = vmdkWriteMetaSparseExtent(pImage, pExtent,
+ uFileOffset, pIoCtx);
+ }
+ break;
+ case VMDKETYPE_VMFS:
+ case VMDKETYPE_FLAT:
+ /* Nothing to do. */
+ break;
+ case VMDKETYPE_ZERO:
+ default:
+ AssertMsgFailed(("extent with type %d marked as dirty\n",
+ pExtent->enmType));
+ break;
+ }
+ }
+
+ if (RT_FAILURE(rc))
+ break;
+
+ switch (pExtent->enmType)
+ {
+ case VMDKETYPE_HOSTED_SPARSE:
+ case VMDKETYPE_VMFS:
+ case VMDKETYPE_FLAT:
+ /** @todo implement proper path absolute check. */
+ if ( pExtent->pFile != NULL
+ && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ && !(pExtent->pszBasename[0] == RTPATH_SLASH))
+ rc = vdIfIoIntFileFlush(pImage->pIfIo, pExtent->pFile->pStorage, pIoCtx,
+ NULL, NULL);
+ break;
+ case VMDKETYPE_ZERO:
+ /* No need to do anything for this extent. */
+ break;
+ default:
+ AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType));
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * Internal. Find extent corresponding to the sector number in the disk.
+ */
+static int vmdkFindExtent(PVMDKIMAGE pImage, uint64_t offSector,
+ PVMDKEXTENT *ppExtent, uint64_t *puSectorInExtent)
+{
+ PVMDKEXTENT pExtent = NULL;
+ int rc = VINF_SUCCESS;
+
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ if (offSector < pImage->pExtents[i].cNominalSectors)
+ {
+ pExtent = &pImage->pExtents[i];
+ *puSectorInExtent = offSector + pImage->pExtents[i].uSectorOffset;
+ break;
+ }
+ offSector -= pImage->pExtents[i].cNominalSectors;
+ }
+
+ if (pExtent)
+ *ppExtent = pExtent;
+ else
+ rc = VERR_IO_SECTOR_NOT_FOUND;
+
+ return rc;
+}
+
+/**
+ * Internal. Hash function for placing the grain table hash entries.
+ */
+static uint32_t vmdkGTCacheHash(PVMDKGTCACHE pCache, uint64_t uSector,
+ unsigned uExtent)
+{
+ /** @todo this hash function is quite simple, maybe use a better one which
+ * scrambles the bits better. */
+ return (uSector + uExtent) % pCache->cEntries;
+}
+
+/**
+ * Internal. Get sector number in the extent file from the relative sector
+ * number in the extent.
+ */
+static int vmdkGetSector(PVMDKIMAGE pImage, PVDIOCTX pIoCtx,
+ PVMDKEXTENT pExtent, uint64_t uSector,
+ uint64_t *puExtentSector)
+{
+ PVMDKGTCACHE pCache = pImage->pGTCache;
+ uint64_t uGDIndex, uGTSector, uGTBlock;
+ uint32_t uGTHash, uGTBlockIndex;
+ PVMDKGTCACHEENTRY pGTCacheEntry;
+ uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
+ int rc;
+
+ /* For newly created and readonly/sequentially opened streamOptimized
+ * images this must be a no-op, as the grain directory is not there. */
+ if ( ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
+ && pExtent->uAppendPosition)
+ || ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
+ && pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY
+ && pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
+ {
+ *puExtentSector = 0;
+ return VINF_SUCCESS;
+ }
+
+ uGDIndex = uSector / pExtent->cSectorsPerGDE;
+ if (uGDIndex >= pExtent->cGDEntries)
+ return VERR_OUT_OF_RANGE;
+ uGTSector = pExtent->pGD[uGDIndex];
+ if (!uGTSector)
+ {
+ /* There is no grain table referenced by this grain directory
+ * entry. So there is absolutely no data in this area. */
+ *puExtentSector = 0;
+ return VINF_SUCCESS;
+ }
+
+ uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
+ uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
+ pGTCacheEntry = &pCache->aGTCache[uGTHash];
+ if ( pGTCacheEntry->uExtent != pExtent->uExtent
+ || pGTCacheEntry->uGTBlock != uGTBlock)
+ {
+ /* Cache miss, fetch data from disk. */
+ PVDMETAXFER pMetaXfer;
+ rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
+ aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, &pMetaXfer, NULL, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ /* We can release the metadata transfer immediately. */
+ vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer);
+ pGTCacheEntry->uExtent = pExtent->uExtent;
+ pGTCacheEntry->uGTBlock = uGTBlock;
+ for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
+ pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
+ }
+ uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
+ uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex];
+ if (uGrainSector)
+ *puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain;
+ else
+ *puExtentSector = 0;
+ return VINF_SUCCESS;
+}
+
+/**
+ * Internal. Writes the grain and also if necessary the grain tables.
+ * Uses the grain table cache as a true grain table.
+ */
+static int vmdkStreamAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uSector, PVDIOCTX pIoCtx,
+ uint64_t cbWrite)
+{
+ uint32_t uGrain;
+ uint32_t uGDEntry, uLastGDEntry;
+ uint32_t cbGrain = 0;
+ uint32_t uCacheLine, uCacheEntry;
+ const void *pData;
+ int rc;
+
+ /* Very strict requirements: always write at least one full grain, with
+ * proper alignment. Everything else would require reading of already
+ * written data, which we don't support for obvious reasons. The only
+ * exception is the last grain, and only if the image size specifies
+ * that only some portion holds data. In any case the write must be
+ * within the image limits, no "overshoot" allowed. */
+ if ( cbWrite == 0
+ || ( cbWrite < VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)
+ && pExtent->cNominalSectors - uSector >= pExtent->cSectorsPerGrain)
+ || uSector % pExtent->cSectorsPerGrain
+ || uSector + VMDK_BYTE2SECTOR(cbWrite) > pExtent->cNominalSectors)
+ return VERR_INVALID_PARAMETER;
+
+ /* Clip write range to at most the rest of the grain. */
+ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSector % pExtent->cSectorsPerGrain));
+
+ /* Do not allow to go back. */
+ uGrain = uSector / pExtent->cSectorsPerGrain;
+ uCacheLine = uGrain % pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE;
+ uCacheEntry = uGrain % VMDK_GT_CACHELINE_SIZE;
+ uGDEntry = uGrain / pExtent->cGTEntries;
+ uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries;
+ if (uGrain < pExtent->uLastGrainAccess)
+ return VERR_VD_VMDK_INVALID_WRITE;
+
+ /* Zero byte write optimization. Since we don't tell VBoxHDD that we need
+ * to allocate something, we also need to detect the situation ourself. */
+ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_HONOR_ZEROES)
+ && vdIfIoIntIoCtxIsZero(pImage->pIfIo, pIoCtx, cbWrite, true /* fAdvance */))
+ return VINF_SUCCESS;
+
+ if (uGDEntry != uLastGDEntry)
+ {
+ rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry);
+ if (RT_FAILURE(rc))
+ return rc;
+ vmdkStreamClearGT(pImage, pExtent);
+ for (uint32_t i = uLastGDEntry + 1; i < uGDEntry; i++)
+ {
+ rc = vmdkStreamFlushGT(pImage, pExtent, i);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ }
+
+ uint64_t uFileOffset;
+ uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ return VERR_INTERNAL_ERROR;
+ /* Align to sector, as the previous write could have been any size. */
+ uFileOffset = RT_ALIGN_64(uFileOffset, 512);
+
+ /* Paranoia check: extent type, grain table buffer presence and
+ * grain table buffer space. Also grain table entry must be clear. */
+ if ( pExtent->enmType != VMDKETYPE_HOSTED_SPARSE
+ || !pImage->pGTCache
+ || pExtent->cGTEntries > VMDK_GT_CACHE_SIZE * VMDK_GT_CACHELINE_SIZE
+ || pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry])
+ return VERR_INTERNAL_ERROR;
+
+ /* Update grain table entry. */
+ pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry] = VMDK_BYTE2SECTOR(uFileOffset);
+
+ if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
+ {
+ vdIfIoIntIoCtxCopyFrom(pImage->pIfIo, pIoCtx, pExtent->pvGrain, cbWrite);
+ memset((char *)pExtent->pvGrain + cbWrite, '\0',
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite);
+ pData = pExtent->pvGrain;
+ }
+ else
+ {
+ RTSGSEG Segment;
+ unsigned cSegments = 1;
+ size_t cbSeg = 0;
+
+ cbSeg = vdIfIoIntIoCtxSegArrayCreate(pImage->pIfIo, pIoCtx, &Segment,
+ &cSegments, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ Assert(cbSeg == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ pData = Segment.pvSeg;
+ }
+ rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, pData,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
+ uSector, &cbGrain);
+ if (RT_FAILURE(rc))
+ {
+ pExtent->uGrainSectorAbs = 0;
+ AssertRC(rc);
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write compressed data block in '%s'"), pExtent->pszFullname);
+ }
+ pExtent->uLastGrainAccess = uGrain;
+ pExtent->uAppendPosition += cbGrain;
+
+ return rc;
+}
+
+/**
+ * Internal: Updates the grain table during grain allocation.
+ */
+static int vmdkAllocGrainGTUpdate(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx,
+ PVMDKGRAINALLOCASYNC pGrainAlloc)
+{
+ int rc = VINF_SUCCESS;
+ PVMDKGTCACHE pCache = pImage->pGTCache;
+ uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE];
+ uint32_t uGTHash, uGTBlockIndex;
+ uint64_t uGTSector, uRGTSector, uGTBlock;
+ uint64_t uSector = pGrainAlloc->uSector;
+ PVMDKGTCACHEENTRY pGTCacheEntry;
+
+ LogFlowFunc(("pImage=%#p pExtent=%#p pCache=%#p pIoCtx=%#p pGrainAlloc=%#p\n",
+ pImage, pExtent, pCache, pIoCtx, pGrainAlloc));
+
+ uGTSector = pGrainAlloc->uGTSector;
+ uRGTSector = pGrainAlloc->uRGTSector;
+ LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector));
+
+ /* Update the grain table (and the cache). */
+ uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE);
+ uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent);
+ pGTCacheEntry = &pCache->aGTCache[uGTHash];
+ if ( pGTCacheEntry->uExtent != pExtent->uExtent
+ || pGTCacheEntry->uGTBlock != uGTBlock)
+ {
+ /* Cache miss, fetch data from disk. */
+ LogFlow(("Cache miss, fetch data from disk\n"));
+ PVDMETAXFER pMetaXfer = NULL;
+ rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
+ aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
+ &pMetaXfer, vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ {
+ pGrainAlloc->cIoXfersPending++;
+ pGrainAlloc->fGTUpdateNeeded = true;
+ /* Leave early, we will be called again after the read completed. */
+ LogFlowFunc(("Metadata read in progress, leaving\n"));
+ return rc;
+ }
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname);
+ vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer);
+ pGTCacheEntry->uExtent = pExtent->uExtent;
+ pGTCacheEntry->uGTBlock = uGTBlock;
+ for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
+ pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]);
+ }
+ else
+ {
+ /* Cache hit. Convert grain table block back to disk format, otherwise
+ * the code below will write garbage for all but the updated entry. */
+ for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++)
+ aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]);
+ }
+ pGrainAlloc->fGTUpdateNeeded = false;
+ uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE;
+ aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset));
+ pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset);
+ /* Update grain table on disk. */
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
+ aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname);
+ if (pExtent->pRGD)
+ {
+ /* Update backup grain table on disk. */
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp),
+ aGTDataTmp, sizeof(aGTDataTmp), pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname);
+ }
+
+ LogFlowFunc(("leaving rc=%Rrc\n", rc));
+ return rc;
+}
+
+/**
+ * Internal - complete the grain allocation by updating disk grain table if required.
+ */
+static DECLCALLBACK(int) vmdkAllocGrainComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
+{
+ RT_NOREF1(rcReq);
+ int rc = VINF_SUCCESS;
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ PVMDKGRAINALLOCASYNC pGrainAlloc = (PVMDKGRAINALLOCASYNC)pvUser;
+
+ LogFlowFunc(("pBackendData=%#p pIoCtx=%#p pvUser=%#p rcReq=%Rrc\n",
+ pBackendData, pIoCtx, pvUser, rcReq));
+
+ pGrainAlloc->cIoXfersPending--;
+ if (!pGrainAlloc->cIoXfersPending && pGrainAlloc->fGTUpdateNeeded)
+ rc = vmdkAllocGrainGTUpdate(pImage, pGrainAlloc->pExtent, pIoCtx, pGrainAlloc);
+
+ if (!pGrainAlloc->cIoXfersPending)
+ {
+ /* Grain allocation completed. */
+ RTMemFree(pGrainAlloc);
+ }
+
+ LogFlowFunc(("Leaving rc=%Rrc\n", rc));
+ return rc;
+}
+
+/**
+ * Internal. Allocates a new grain table (if necessary).
+ */
+static int vmdkAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx,
+ uint64_t uSector, uint64_t cbWrite)
+{
+ PVMDKGTCACHE pCache = pImage->pGTCache; NOREF(pCache);
+ uint64_t uGDIndex, uGTSector, uRGTSector;
+ uint64_t uFileOffset;
+ PVMDKGRAINALLOCASYNC pGrainAlloc = NULL;
+ int rc;
+
+ LogFlowFunc(("pCache=%#p pExtent=%#p pIoCtx=%#p uSector=%llu cbWrite=%llu\n",
+ pCache, pExtent, pIoCtx, uSector, cbWrite));
+
+ pGrainAlloc = (PVMDKGRAINALLOCASYNC)RTMemAllocZ(sizeof(VMDKGRAINALLOCASYNC));
+ if (!pGrainAlloc)
+ return VERR_NO_MEMORY;
+
+ pGrainAlloc->pExtent = pExtent;
+ pGrainAlloc->uSector = uSector;
+
+ uGDIndex = uSector / pExtent->cSectorsPerGDE;
+ if (uGDIndex >= pExtent->cGDEntries)
+ {
+ RTMemFree(pGrainAlloc);
+ return VERR_OUT_OF_RANGE;
+ }
+ uGTSector = pExtent->pGD[uGDIndex];
+ if (pExtent->pRGD)
+ uRGTSector = pExtent->pRGD[uGDIndex];
+ else
+ uRGTSector = 0; /**< avoid compiler warning */
+ if (!uGTSector)
+ {
+ LogFlow(("Allocating new grain table\n"));
+
+ /* There is no grain table referenced by this grain directory
+ * entry. So there is absolutely no data in this area. Allocate
+ * a new grain table and put the reference to it in the GDs. */
+ uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ {
+ RTMemFree(pGrainAlloc);
+ return VERR_INTERNAL_ERROR;
+ }
+ Assert(!(uFileOffset % 512));
+
+ uFileOffset = RT_ALIGN_64(uFileOffset, 512);
+ uGTSector = VMDK_BYTE2SECTOR(uFileOffset);
+
+ /* Normally the grain table is preallocated for hosted sparse extents
+ * that support more than 32 bit sector numbers. So this shouldn't
+ * ever happen on a valid extent. */
+ if (uGTSector > UINT32_MAX)
+ {
+ RTMemFree(pGrainAlloc);
+ return VERR_VD_VMDK_INVALID_HEADER;
+ }
+
+ /* Write grain table by writing the required number of grain table
+ * cache chunks. Allocate memory dynamically here or we flood the
+ * metadata cache with very small entries. */
+ size_t cbGTDataTmp = pExtent->cGTEntries * sizeof(uint32_t);
+ uint32_t *paGTDataTmp = (uint32_t *)RTMemTmpAllocZ(cbGTDataTmp);
+
+ if (!paGTDataTmp)
+ {
+ RTMemFree(pGrainAlloc);
+ return VERR_NO_MEMORY;
+ }
+
+ memset(paGTDataTmp, '\0', cbGTDataTmp);
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector),
+ paGTDataTmp, cbGTDataTmp, pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ {
+ RTMemTmpFree(paGTDataTmp);
+ RTMemFree(pGrainAlloc);
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname);
+ }
+ pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition
+ + cbGTDataTmp, 512);
+
+ if (pExtent->pRGD)
+ {
+ AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER);
+ uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ return VERR_INTERNAL_ERROR;
+ Assert(!(uFileOffset % 512));
+ uRGTSector = VMDK_BYTE2SECTOR(uFileOffset);
+
+ /* Normally the redundant grain table is preallocated for hosted
+ * sparse extents that support more than 32 bit sector numbers. So
+ * this shouldn't ever happen on a valid extent. */
+ if (uRGTSector > UINT32_MAX)
+ {
+ RTMemTmpFree(paGTDataTmp);
+ return VERR_VD_VMDK_INVALID_HEADER;
+ }
+
+ /* Write grain table by writing the required number of grain table
+ * cache chunks. Allocate memory dynamically here or we flood the
+ * metadata cache with very small entries. */
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRGTSector),
+ paGTDataTmp, cbGTDataTmp, pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ {
+ RTMemTmpFree(paGTDataTmp);
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname);
+ }
+
+ pExtent->uAppendPosition = pExtent->uAppendPosition + cbGTDataTmp;
+ }
+
+ RTMemTmpFree(paGTDataTmp);
+
+ /* Update the grain directory on disk (doing it before writing the
+ * grain table will result in a garbled extent if the operation is
+ * aborted for some reason. Otherwise the worst that can happen is
+ * some unused sectors in the extent. */
+ uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector);
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE),
+ &uGTSectorLE, sizeof(uGTSectorLE), pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname);
+ if (pExtent->pRGD)
+ {
+ uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector);
+ rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uGTSectorLE),
+ &uRGTSectorLE, sizeof(uRGTSectorLE), pIoCtx,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname);
+ }
+
+ /* As the final step update the in-memory copy of the GDs. */
+ pExtent->pGD[uGDIndex] = uGTSector;
+ if (pExtent->pRGD)
+ pExtent->pRGD[uGDIndex] = uRGTSector;
+ }
+
+ LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector));
+ pGrainAlloc->uGTSector = uGTSector;
+ pGrainAlloc->uRGTSector = uRGTSector;
+
+ uFileOffset = pExtent->uAppendPosition;
+ if (!uFileOffset)
+ return VERR_INTERNAL_ERROR;
+ Assert(!(uFileOffset % 512));
+
+ pGrainAlloc->uGrainOffset = uFileOffset;
+
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ AssertMsgReturn(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx),
+ ("Accesses to stream optimized images must be synchronous\n"),
+ VERR_INVALID_STATE);
+
+ if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
+ return vdIfError(pImage->pIfError, VERR_INTERNAL_ERROR, RT_SRC_POS, N_("VMDK: not enough data for a compressed data block in '%s'"), pExtent->pszFullname);
+
+ /* Invalidate cache, just in case some code incorrectly allows mixing
+ * of reads and writes. Normally shouldn't be needed. */
+ pExtent->uGrainSectorAbs = 0;
+
+ /* Write compressed data block and the markers. */
+ uint32_t cbGrain = 0;
+ size_t cbSeg = 0;
+ RTSGSEG Segment;
+ unsigned cSegments = 1;
+
+ cbSeg = vdIfIoIntIoCtxSegArrayCreate(pImage->pIfIo, pIoCtx, &Segment,
+ &cSegments, cbWrite);
+ Assert(cbSeg == cbWrite);
+
+ rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset,
+ Segment.pvSeg, cbWrite, uSector, &cbGrain);
+ if (RT_FAILURE(rc))
+ {
+ AssertRC(rc);
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write allocated compressed data block in '%s'"), pExtent->pszFullname);
+ }
+ pExtent->uLastGrainAccess = uSector / pExtent->cSectorsPerGrain;
+ pExtent->uAppendPosition += cbGrain;
+ }
+ else
+ {
+ /* Write the data. Always a full grain, or we're in big trouble. */
+ rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage,
+ uFileOffset, pIoCtx, cbWrite,
+ vmdkAllocGrainComplete, pGrainAlloc);
+ if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
+ pGrainAlloc->cIoXfersPending++;
+ else if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname);
+
+ pExtent->uAppendPosition += cbWrite;
+ }
+
+ rc = vmdkAllocGrainGTUpdate(pImage, pExtent, pIoCtx, pGrainAlloc);
+
+ if (!pGrainAlloc->cIoXfersPending)
+ {
+ /* Grain allocation completed. */
+ RTMemFree(pGrainAlloc);
+ }
+
+ LogFlowFunc(("leaving rc=%Rrc\n", rc));
+
+ return rc;
+}
+
+/**
+ * Internal. Reads the contents by sequentially going over the compressed
+ * grains (hoping that they are in sequence).
+ */
+static int vmdkStreamReadSequential(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t uSector, PVDIOCTX pIoCtx,
+ uint64_t cbRead)
+{
+ int rc;
+
+ LogFlowFunc(("pImage=%#p pExtent=%#p uSector=%llu pIoCtx=%#p cbRead=%llu\n",
+ pImage, pExtent, uSector, pIoCtx, cbRead));
+
+ AssertMsgReturn(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx),
+ ("Async I/O not supported for sequential stream optimized images\n"),
+ VERR_INVALID_STATE);
+
+ /* Do not allow to go back. */
+ uint32_t uGrain = uSector / pExtent->cSectorsPerGrain;
+ if (uGrain < pExtent->uLastGrainAccess)
+ return VERR_VD_VMDK_INVALID_STATE;
+ pExtent->uLastGrainAccess = uGrain;
+
+ /* After a previous error do not attempt to recover, as it would need
+ * seeking (in the general case backwards which is forbidden). */
+ if (!pExtent->uGrainSectorAbs)
+ return VERR_VD_VMDK_INVALID_STATE;
+
+ /* Check if we need to read something from the image or if what we have
+ * in the buffer is good to fulfill the request. */
+ if (!pExtent->cbGrainStreamRead || uGrain > pExtent->uGrain)
+ {
+ uint32_t uGrainSectorAbs = pExtent->uGrainSectorAbs
+ + VMDK_BYTE2SECTOR(pExtent->cbGrainStreamRead);
+
+ /* Get the marker from the next data block - and skip everything which
+ * is not a compressed grain. If it's a compressed grain which is for
+ * the requested sector (or after), read it. */
+ VMDKMARKER Marker;
+ do
+ {
+ RT_ZERO(Marker);
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGrainSectorAbs),
+ &Marker, RT_UOFFSETOF(VMDKMARKER, uType));
+ if (RT_FAILURE(rc))
+ return rc;
+ Marker.uSector = RT_LE2H_U64(Marker.uSector);
+ Marker.cbSize = RT_LE2H_U32(Marker.cbSize);
+
+ if (Marker.cbSize == 0)
+ {
+ /* A marker for something else than a compressed grain. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGrainSectorAbs)
+ + RT_UOFFSETOF(VMDKMARKER, uType),
+ &Marker.uType, sizeof(Marker.uType));
+ if (RT_FAILURE(rc))
+ return rc;
+ Marker.uType = RT_LE2H_U32(Marker.uType);
+ switch (Marker.uType)
+ {
+ case VMDK_MARKER_EOS:
+ uGrainSectorAbs++;
+ /* Read (or mostly skip) to the end of file. Uses the
+ * Marker (LBA sector) as it is unused anyway. This
+ * makes sure that really everything is read in the
+ * success case. If this read fails it means the image
+ * is truncated, but this is harmless so ignore. */
+ vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGrainSectorAbs)
+ + 511,
+ &Marker.uSector, 1);
+ break;
+ case VMDK_MARKER_GT:
+ uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t));
+ break;
+ case VMDK_MARKER_GD:
+ uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(RT_ALIGN(pExtent->cGDEntries * sizeof(uint32_t), 512));
+ break;
+ case VMDK_MARKER_FOOTER:
+ uGrainSectorAbs += 2;
+ break;
+ case VMDK_MARKER_UNSPECIFIED:
+ /* Skip over the contents of the unspecified marker
+ * type 4 which exists in some vSphere created files. */
+ /** @todo figure out what the payload means. */
+ uGrainSectorAbs += 1;
+ break;
+ default:
+ AssertMsgFailed(("VMDK: corrupted marker, type=%#x\n", Marker.uType));
+ pExtent->uGrainSectorAbs = 0;
+ return VERR_VD_VMDK_INVALID_STATE;
+ }
+ pExtent->cbGrainStreamRead = 0;
+ }
+ else
+ {
+ /* A compressed grain marker. If it is at/after what we're
+ * interested in read and decompress data. */
+ if (uSector > Marker.uSector + pExtent->cSectorsPerGrain)
+ {
+ uGrainSectorAbs += VMDK_BYTE2SECTOR(RT_ALIGN(Marker.cbSize + RT_UOFFSETOF(VMDKMARKER, uType), 512));
+ continue;
+ }
+ uint64_t uLBA = 0;
+ uint32_t cbGrainStreamRead = 0;
+ rc = vmdkFileInflateSync(pImage, pExtent,
+ VMDK_SECTOR2BYTE(uGrainSectorAbs),
+ pExtent->pvGrain,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
+ &Marker, &uLBA, &cbGrainStreamRead);
+ if (RT_FAILURE(rc))
+ {
+ pExtent->uGrainSectorAbs = 0;
+ return rc;
+ }
+ if ( pExtent->uGrain
+ && uLBA / pExtent->cSectorsPerGrain <= pExtent->uGrain)
+ {
+ pExtent->uGrainSectorAbs = 0;
+ return VERR_VD_VMDK_INVALID_STATE;
+ }
+ pExtent->uGrain = uLBA / pExtent->cSectorsPerGrain;
+ pExtent->cbGrainStreamRead = cbGrainStreamRead;
+ break;
+ }
+ } while (Marker.uType != VMDK_MARKER_EOS);
+
+ pExtent->uGrainSectorAbs = uGrainSectorAbs;
+
+ if (!pExtent->cbGrainStreamRead && Marker.uType == VMDK_MARKER_EOS)
+ {
+ pExtent->uGrain = UINT32_MAX;
+ /* Must set a non-zero value for pExtent->cbGrainStreamRead or
+ * the next read would try to get more data, and we're at EOF. */
+ pExtent->cbGrainStreamRead = 1;
+ }
+ }
+
+ if (pExtent->uGrain > uSector / pExtent->cSectorsPerGrain)
+ {
+ /* The next data block we have is not for this area, so just return
+ * that there is no data. */
+ LogFlowFunc(("returns VERR_VD_BLOCK_FREE\n"));
+ return VERR_VD_BLOCK_FREE;
+ }
+
+ uint32_t uSectorInGrain = uSector % pExtent->cSectorsPerGrain;
+ vdIfIoIntIoCtxCopyTo(pImage->pIfIo, pIoCtx,
+ (uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain),
+ cbRead);
+ LogFlowFunc(("returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+}
+
+/**
+ * Replaces a fragment of a string with the specified string.
+ *
+ * @returns Pointer to the allocated UTF-8 string.
+ * @param pszWhere UTF-8 string to search in.
+ * @param pszWhat UTF-8 string to search for.
+ * @param pszByWhat UTF-8 string to replace the found string with.
+ *
+ * @note r=bird: This is only used by vmdkRenameWorker(). The first use is
+ * for updating the base name in the descriptor, the second is for
+ * generating new filenames for extents. This code borked when
+ * RTPathAbs started correcting the driver letter case on windows,
+ * when strstr failed because the pExtent->pszFullname was not
+ * subjected to RTPathAbs but while pExtent->pszFullname was. I fixed
+ * this by apply RTPathAbs to the places it wasn't applied.
+ *
+ * However, this highlights some undocumented ASSUMPTIONS as well as
+ * terrible short commings of the approach.
+ *
+ * Given the right filename, it may also screw up the descriptor. Take
+ * the descriptor text 'RW 2048 SPARSE "Test0.vmdk"' for instance,
+ * we'll be asked to replace "Test0" with something, no problem. No,
+ * imagine 'RW 2048 SPARSE "SPARSE.vmdk"', 'RW 2048 SPARSE "RW.vmdk"'
+ * or 'RW 2048 SPARSE "2048.vmdk"', and the strstr approach falls on
+ * its bum. The descriptor string must be parsed and reconstructed,
+ * the lazy strstr approach doesn't cut it.
+ *
+ * I'm also curious as to what would be the correct escaping of '"' in
+ * the file name and how that is supposed to be handled, because it
+ * needs to be or such names must be rejected in several places (maybe
+ * they are, I didn't check).
+ *
+ * When this function is used to replace the start of a path, I think
+ * the assumption from the prep/setup code is that we kind of knows
+ * what we're working on (I could be wrong). However, using strstr
+ * instead of strncmp/RTStrNICmp makes no sense and isn't future proof.
+ * Especially on unix systems, weird stuff could happen if someone
+ * unwittingly tinkers with the prep/setup code. What should really be
+ * done here is using a new RTPathStartEx function that (via flags)
+ * allows matching partial final component and returns the length of
+ * what it matched up (in case it skipped slashes and '.' components).
+ *
+ */
+static char *vmdkStrReplace(const char *pszWhere, const char *pszWhat,
+ const char *pszByWhat)
+{
+ AssertPtr(pszWhere);
+ AssertPtr(pszWhat);
+ AssertPtr(pszByWhat);
+ const char *pszFoundStr = strstr(pszWhere, pszWhat);
+ if (!pszFoundStr)
+ {
+ LogFlowFunc(("Failed to find '%s' in '%s'!\n", pszWhat, pszWhere));
+ return NULL;
+ }
+ size_t cbFinal = strlen(pszWhere) + 1 + strlen(pszByWhat) - strlen(pszWhat);
+ char *pszNewStr = RTStrAlloc(cbFinal);
+ if (pszNewStr)
+ {
+ char *pszTmp = pszNewStr;
+ memcpy(pszTmp, pszWhere, pszFoundStr - pszWhere);
+ pszTmp += pszFoundStr - pszWhere;
+ memcpy(pszTmp, pszByWhat, strlen(pszByWhat));
+ pszTmp += strlen(pszByWhat);
+ strcpy(pszTmp, pszFoundStr + strlen(pszWhat));
+ }
+ return pszNewStr;
+}
+
+
+/** @copydoc VDIMAGEBACKEND::pfnProbe */
+static DECLCALLBACK(int) vmdkProbe(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
+ PVDINTERFACE pVDIfsImage, VDTYPE enmDesiredType, VDTYPE *penmType)
+{
+ RT_NOREF(enmDesiredType);
+ LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p penmType=%#p\n",
+ pszFilename, pVDIfsDisk, pVDIfsImage, penmType));
+ AssertPtrReturn(pszFilename, VERR_INVALID_POINTER);
+ AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER);
+
+ int rc = VINF_SUCCESS;
+ PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1]));
+ if (RT_LIKELY(pImage))
+ {
+ pImage->pszFilename = pszFilename;
+ pImage->pFile = NULL;
+ pImage->pExtents = NULL;
+ pImage->pFiles = NULL;
+ pImage->pGTCache = NULL;
+ pImage->pDescData = NULL;
+ pImage->pVDIfsDisk = pVDIfsDisk;
+ pImage->pVDIfsImage = pVDIfsImage;
+ /** @todo speed up this test open (VD_OPEN_FLAGS_INFO) by skipping as
+ * much as possible in vmdkOpenImage. */
+ rc = vmdkOpenImage(pImage, VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_READONLY);
+ vmdkFreeImage(pImage, false, false /*fFlush*/);
+ RTMemFree(pImage);
+
+ if (RT_SUCCESS(rc))
+ *penmType = VDTYPE_HDD;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnOpen */
+static DECLCALLBACK(int) vmdkOpen(const char *pszFilename, unsigned uOpenFlags,
+ PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
+ VDTYPE enmType, void **ppBackendData)
+{
+ RT_NOREF1(enmType); /**< @todo r=klaus make use of the type info. */
+
+ LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p enmType=%u ppBackendData=%#p\n",
+ pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, enmType, ppBackendData));
+ int rc;
+
+ /* Check open flags. All valid flags are supported. */
+ AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszFilename, VERR_INVALID_POINTER);
+ AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER);
+
+
+ PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1]));
+ if (RT_LIKELY(pImage))
+ {
+ pImage->pszFilename = pszFilename;
+ pImage->pFile = NULL;
+ pImage->pExtents = NULL;
+ pImage->pFiles = NULL;
+ pImage->pGTCache = NULL;
+ pImage->pDescData = NULL;
+ pImage->pVDIfsDisk = pVDIfsDisk;
+ pImage->pVDIfsImage = pVDIfsImage;
+
+ rc = vmdkOpenImage(pImage, uOpenFlags);
+ if (RT_SUCCESS(rc))
+ *ppBackendData = pImage;
+ else
+ RTMemFree(pImage);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnCreate */
+static DECLCALLBACK(int) vmdkCreate(const char *pszFilename, uint64_t cbSize,
+ unsigned uImageFlags, const char *pszComment,
+ PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
+ PCRTUUID pUuid, unsigned uOpenFlags,
+ unsigned uPercentStart, unsigned uPercentSpan,
+ PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
+ PVDINTERFACE pVDIfsOperation, VDTYPE enmType,
+ void **ppBackendData)
+{
+ LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p enmType=%u ppBackendData=%#p\n",
+ pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, enmType, ppBackendData));
+ int rc;
+
+ /* Check the VD container type and image flags. */
+ if ( enmType != VDTYPE_HDD
+ || (uImageFlags & ~VD_VMDK_IMAGE_FLAGS_MASK) != 0)
+ return VERR_VD_INVALID_TYPE;
+
+ /* Check size. Maximum 256TB-64K for sparse images, otherwise unlimited. */
+ if ( !(uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)
+ && ( !cbSize
+ || (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 256 - _64K)))
+ return VERR_VD_INVALID_SIZE;
+
+ /* Check image flags for invalid combinations. */
+ if ( (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ && (uImageFlags & ~(VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED | VD_IMAGE_FLAGS_DIFF)))
+ return VERR_INVALID_PARAMETER;
+
+ /* Check open flags. All valid flags are supported. */
+ AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pszFilename, VERR_INVALID_POINTER);
+ AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER);
+ AssertPtrReturn(pPCHSGeometry, VERR_INVALID_POINTER);
+ AssertPtrReturn(pLCHSGeometry, VERR_INVALID_POINTER);
+ AssertReturn(!( uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX
+ && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)),
+ VERR_INVALID_PARAMETER);
+
+ PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1]));
+ if (RT_LIKELY(pImage))
+ {
+ PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation);
+
+ pImage->pszFilename = pszFilename;
+ pImage->pFile = NULL;
+ pImage->pExtents = NULL;
+ pImage->pFiles = NULL;
+ pImage->pGTCache = NULL;
+ pImage->pDescData = NULL;
+ pImage->pVDIfsDisk = pVDIfsDisk;
+ pImage->pVDIfsImage = pVDIfsImage;
+ /* Descriptors for split images can be pretty large, especially if the
+ * filename is long. So prepare for the worst, and allocate quite some
+ * memory for the descriptor in this case. */
+ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)
+ pImage->cbDescAlloc = VMDK_SECTOR2BYTE(200);
+ else
+ pImage->cbDescAlloc = VMDK_SECTOR2BYTE(20);
+ pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc);
+ if (RT_LIKELY(pImage->pDescData))
+ {
+ rc = vmdkCreateImage(pImage, cbSize, uImageFlags, pszComment,
+ pPCHSGeometry, pLCHSGeometry, pUuid,
+ pIfProgress, uPercentStart, uPercentSpan);
+ if (RT_SUCCESS(rc))
+ {
+ /* So far the image is opened in read/write mode. Make sure the
+ * image is opened in read-only mode if the caller requested that. */
+ if (uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ {
+ vmdkFreeImage(pImage, false, true /*fFlush*/);
+ rc = vmdkOpenImage(pImage, uOpenFlags);
+ }
+
+ if (RT_SUCCESS(rc))
+ *ppBackendData = pImage;
+ }
+
+ if (RT_FAILURE(rc))
+ RTMemFree(pImage->pDescData);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ if (RT_FAILURE(rc))
+ RTMemFree(pImage);
+ }
+ else
+ rc = VERR_NO_MEMORY;
+
+ LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
+ return rc;
+}
+
+/**
+ * Prepares the state for renaming a VMDK image, setting up the state and allocating
+ * memory.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pRenameState The state to initialize.
+ * @param pszFilename The new filename.
+ */
+static int vmdkRenameStatePrepare(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState, const char *pszFilename)
+{
+ AssertReturn(RTPathFilename(pszFilename) != NULL, VERR_INVALID_PARAMETER);
+
+ int rc = VINF_SUCCESS;
+
+ memset(&pRenameState->DescriptorCopy, 0, sizeof(pRenameState->DescriptorCopy));
+
+ /*
+ * Allocate an array to store both old and new names of renamed files
+ * in case we have to roll back the changes. Arrays are initialized
+ * with zeros. We actually save stuff when and if we change it.
+ */
+ pRenameState->cExtents = pImage->cExtents;
+ pRenameState->apszOldName = (char **)RTMemTmpAllocZ((pRenameState->cExtents + 1) * sizeof(char *));
+ pRenameState->apszNewName = (char **)RTMemTmpAllocZ((pRenameState->cExtents + 1) * sizeof(char *));
+ pRenameState->apszNewLines = (char **)RTMemTmpAllocZ(pRenameState->cExtents * sizeof(char *));
+ if ( pRenameState->apszOldName
+ && pRenameState->apszNewName
+ && pRenameState->apszNewLines)
+ {
+ /* Save the descriptor size and position. */
+ if (pImage->pDescData)
+ {
+ /* Separate descriptor file. */
+ pRenameState->fEmbeddedDesc = false;
+ }
+ else
+ {
+ /* Embedded descriptor file. */
+ pRenameState->ExtentCopy = pImage->pExtents[0];
+ pRenameState->fEmbeddedDesc = true;
+ }
+
+ /* Save the descriptor content. */
+ pRenameState->DescriptorCopy.cLines = pImage->Descriptor.cLines;
+ for (unsigned i = 0; i < pRenameState->DescriptorCopy.cLines; i++)
+ {
+ pRenameState->DescriptorCopy.aLines[i] = RTStrDup(pImage->Descriptor.aLines[i]);
+ if (!pRenameState->DescriptorCopy.aLines[i])
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Prepare both old and new base names used for string replacement. */
+ pRenameState->pszNewBaseName = RTStrDup(RTPathFilename(pszFilename));
+ AssertReturn(pRenameState->pszNewBaseName, VERR_NO_STR_MEMORY);
+ RTPathStripSuffix(pRenameState->pszNewBaseName);
+
+ pRenameState->pszOldBaseName = RTStrDup(RTPathFilename(pImage->pszFilename));
+ AssertReturn(pRenameState->pszOldBaseName, VERR_NO_STR_MEMORY);
+ RTPathStripSuffix(pRenameState->pszOldBaseName);
+
+ /* Prepare both old and new full names used for string replacement.
+ Note! Must abspath the stuff here, so the strstr weirdness later in
+ the renaming process get a match against abspath'ed extent paths.
+ See RTPathAbsDup call in vmdkDescriptorReadSparse(). */
+ pRenameState->pszNewFullName = RTPathAbsDup(pszFilename);
+ AssertReturn(pRenameState->pszNewFullName, VERR_NO_STR_MEMORY);
+ RTPathStripSuffix(pRenameState->pszNewFullName);
+
+ pRenameState->pszOldFullName = RTPathAbsDup(pImage->pszFilename);
+ AssertReturn(pRenameState->pszOldFullName, VERR_NO_STR_MEMORY);
+ RTPathStripSuffix(pRenameState->pszOldFullName);
+
+ /* Save the old name for easy access to the old descriptor file. */
+ pRenameState->pszOldDescName = RTStrDup(pImage->pszFilename);
+ AssertReturn(pRenameState->pszOldDescName, VERR_NO_STR_MEMORY);
+
+ /* Save old image name. */
+ pRenameState->pszOldImageName = pImage->pszFilename;
+ }
+ }
+ else
+ rc = VERR_NO_TMP_MEMORY;
+
+ return rc;
+}
+
+/**
+ * Destroys the given rename state, freeing all allocated memory.
+ *
+ * @param pRenameState The rename state to destroy.
+ */
+static void vmdkRenameStateDestroy(PVMDKRENAMESTATE pRenameState)
+{
+ for (unsigned i = 0; i < pRenameState->DescriptorCopy.cLines; i++)
+ if (pRenameState->DescriptorCopy.aLines[i])
+ RTStrFree(pRenameState->DescriptorCopy.aLines[i]);
+ if (pRenameState->apszOldName)
+ {
+ for (unsigned i = 0; i <= pRenameState->cExtents; i++)
+ if (pRenameState->apszOldName[i])
+ RTStrFree(pRenameState->apszOldName[i]);
+ RTMemTmpFree(pRenameState->apszOldName);
+ }
+ if (pRenameState->apszNewName)
+ {
+ for (unsigned i = 0; i <= pRenameState->cExtents; i++)
+ if (pRenameState->apszNewName[i])
+ RTStrFree(pRenameState->apszNewName[i]);
+ RTMemTmpFree(pRenameState->apszNewName);
+ }
+ if (pRenameState->apszNewLines)
+ {
+ for (unsigned i = 0; i < pRenameState->cExtents; i++)
+ if (pRenameState->apszNewLines[i])
+ RTStrFree(pRenameState->apszNewLines[i]);
+ RTMemTmpFree(pRenameState->apszNewLines);
+ }
+ if (pRenameState->pszOldDescName)
+ RTStrFree(pRenameState->pszOldDescName);
+ if (pRenameState->pszOldBaseName)
+ RTStrFree(pRenameState->pszOldBaseName);
+ if (pRenameState->pszNewBaseName)
+ RTStrFree(pRenameState->pszNewBaseName);
+ if (pRenameState->pszOldFullName)
+ RTStrFree(pRenameState->pszOldFullName);
+ if (pRenameState->pszNewFullName)
+ RTStrFree(pRenameState->pszNewFullName);
+}
+
+/**
+ * Rolls back the rename operation to the original state.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pRenameState The rename state.
+ */
+static int vmdkRenameRollback(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState)
+{
+ int rc = VINF_SUCCESS;
+
+ if (!pRenameState->fImageFreed)
+ {
+ /*
+ * Some extents may have been closed, close the rest. We will
+ * re-open the whole thing later.
+ */
+ vmdkFreeImage(pImage, false, true /*fFlush*/);
+ }
+
+ /* Rename files back. */
+ for (unsigned i = 0; i <= pRenameState->cExtents; i++)
+ {
+ if (pRenameState->apszOldName[i])
+ {
+ rc = vdIfIoIntFileMove(pImage->pIfIo, pRenameState->apszNewName[i], pRenameState->apszOldName[i], 0);
+ AssertRC(rc);
+ }
+ }
+ /* Restore the old descriptor. */
+ PVMDKFILE pFile;
+ rc = vmdkFileOpen(pImage, &pFile, NULL, pRenameState->pszOldDescName,
+ VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_NORMAL,
+ false /* fCreate */));
+ AssertRC(rc);
+ if (pRenameState->fEmbeddedDesc)
+ {
+ pRenameState->ExtentCopy.pFile = pFile;
+ pImage->pExtents = &pRenameState->ExtentCopy;
+ }
+ else
+ {
+ /* Shouldn't be null for separate descriptor.
+ * There will be no access to the actual content.
+ */
+ pImage->pDescData = pRenameState->pszOldDescName;
+ pImage->pFile = pFile;
+ }
+ pImage->Descriptor = pRenameState->DescriptorCopy;
+ vmdkWriteDescriptor(pImage, NULL);
+ vmdkFileClose(pImage, &pFile, false);
+ /* Get rid of the stuff we implanted. */
+ pImage->pExtents = NULL;
+ pImage->pFile = NULL;
+ pImage->pDescData = NULL;
+ /* Re-open the image back. */
+ pImage->pszFilename = pRenameState->pszOldImageName;
+ rc = vmdkOpenImage(pImage, pImage->uOpenFlags);
+
+ return rc;
+}
+
+/**
+ * Rename worker doing the real work.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pRenameState The rename state.
+ * @param pszFilename The new filename.
+ */
+static int vmdkRenameWorker(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState, const char *pszFilename)
+{
+ int rc = VINF_SUCCESS;
+ unsigned i, line;
+
+ /* Update the descriptor with modified extent names. */
+ for (i = 0, line = pImage->Descriptor.uFirstExtent;
+ i < pRenameState->cExtents;
+ i++, line = pImage->Descriptor.aNextLines[line])
+ {
+ /* Update the descriptor. */
+ pRenameState->apszNewLines[i] = vmdkStrReplace(pImage->Descriptor.aLines[line],
+ pRenameState->pszOldBaseName,
+ pRenameState->pszNewBaseName);
+ if (!pRenameState->apszNewLines[i])
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ pImage->Descriptor.aLines[line] = pRenameState->apszNewLines[i];
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Make sure the descriptor gets written back. */
+ pImage->Descriptor.fDirty = true;
+ /* Flush the descriptor now, in case it is embedded. */
+ vmdkFlushImage(pImage, NULL);
+
+ /* Close and rename/move extents. */
+ for (i = 0; i < pRenameState->cExtents; i++)
+ {
+ PVMDKEXTENT pExtent = &pImage->pExtents[i];
+ /* Compose new name for the extent. */
+ pRenameState->apszNewName[i] = vmdkStrReplace(pExtent->pszFullname,
+ pRenameState->pszOldFullName,
+ pRenameState->pszNewFullName);
+ if (!pRenameState->apszNewName[i])
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ /* Close the extent file. */
+ rc = vmdkFileClose(pImage, &pExtent->pFile, false);
+ if (RT_FAILURE(rc))
+ break;;
+
+ /* Rename the extent file. */
+ rc = vdIfIoIntFileMove(pImage->pIfIo, pExtent->pszFullname, pRenameState->apszNewName[i], 0);
+ if (RT_FAILURE(rc))
+ break;
+ /* Remember the old name. */
+ pRenameState->apszOldName[i] = RTStrDup(pExtent->pszFullname);
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Release all old stuff. */
+ rc = vmdkFreeImage(pImage, false, true /*fFlush*/);
+ if (RT_SUCCESS(rc))
+ {
+ pRenameState->fImageFreed = true;
+
+ /* Last elements of new/old name arrays are intended for
+ * storing descriptor's names.
+ */
+ pRenameState->apszNewName[pRenameState->cExtents] = RTStrDup(pszFilename);
+ /* Rename the descriptor file if it's separate. */
+ if (!pRenameState->fEmbeddedDesc)
+ {
+ rc = vdIfIoIntFileMove(pImage->pIfIo, pImage->pszFilename, pRenameState->apszNewName[pRenameState->cExtents], 0);
+ if (RT_SUCCESS(rc))
+ {
+ /* Save old name only if we may need to change it back. */
+ pRenameState->apszOldName[pRenameState->cExtents] = RTStrDup(pszFilename);
+ }
+ }
+
+ /* Update pImage with the new information. */
+ pImage->pszFilename = pszFilename;
+
+ /* Open the new image. */
+ rc = vmdkOpenImage(pImage, pImage->uOpenFlags);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnRename */
+static DECLCALLBACK(int) vmdkRename(void *pBackendData, const char *pszFilename)
+{
+ LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename));
+
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ VMDKRENAMESTATE RenameState;
+
+ memset(&RenameState, 0, sizeof(RenameState));
+
+ /* Check arguments. */
+ AssertPtrReturn(pImage, VERR_INVALID_POINTER);
+ AssertPtrReturn(pszFilename, VERR_INVALID_POINTER);
+ AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER);
+ AssertReturn(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK), VERR_INVALID_PARAMETER);
+
+ int rc = vmdkRenameStatePrepare(pImage, &RenameState, pszFilename);
+ if (RT_SUCCESS(rc))
+ {
+ /* --- Up to this point we have not done any damage yet. --- */
+
+ rc = vmdkRenameWorker(pImage, &RenameState, pszFilename);
+ /* Roll back all changes in case of failure. */
+ if (RT_FAILURE(rc))
+ {
+ int rrc = vmdkRenameRollback(pImage, &RenameState);
+ AssertRC(rrc);
+ }
+ }
+
+ vmdkRenameStateDestroy(&RenameState);
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnClose */
+static DECLCALLBACK(int) vmdkClose(void *pBackendData, bool fDelete)
+{
+ LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ int rc = vmdkFreeImage(pImage, fDelete, true /*fFlush*/);
+ RTMemFree(pImage);
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnRead */
+static DECLCALLBACK(int) vmdkRead(void *pBackendData, uint64_t uOffset, size_t cbToRead,
+ PVDIOCTX pIoCtx, size_t *pcbActuallyRead)
+{
+ LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n",
+ pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtr(pImage);
+ Assert(uOffset % 512 == 0);
+ Assert(cbToRead % 512 == 0);
+ AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER);
+ AssertReturn(cbToRead, VERR_INVALID_PARAMETER);
+ AssertReturn(uOffset + cbToRead <= pImage->cbSize, VERR_INVALID_PARAMETER);
+
+ /* Find the extent and check access permissions as defined in the extent descriptor. */
+ PVMDKEXTENT pExtent;
+ uint64_t uSectorExtentRel;
+ int rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
+ &pExtent, &uSectorExtentRel);
+ if ( RT_SUCCESS(rc)
+ && pExtent->enmAccess != VMDKACCESS_NOACCESS)
+ {
+ /* Clip read range to remain in this extent. */
+ cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
+
+ /* Handle the read according to the current extent type. */
+ switch (pExtent->enmType)
+ {
+ case VMDKETYPE_HOSTED_SPARSE:
+ {
+ uint64_t uSectorExtentAbs;
+
+ rc = vmdkGetSector(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs);
+ if (RT_FAILURE(rc))
+ break;
+ /* Clip read range to at most the rest of the grain. */
+ cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain));
+ Assert(!(cbToRead % 512));
+ if (uSectorExtentAbs == 0)
+ {
+ if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
+ || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))
+ rc = VERR_VD_BLOCK_FREE;
+ else
+ rc = vmdkStreamReadSequential(pImage, pExtent,
+ uSectorExtentRel,
+ pIoCtx, cbToRead);
+ }
+ else
+ {
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ AssertMsg(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx),
+ ("Async I/O is not supported for stream optimized VMDK's\n"));
+
+ uint32_t uSectorInGrain = uSectorExtentRel % pExtent->cSectorsPerGrain;
+ uSectorExtentAbs -= uSectorInGrain;
+ if (pExtent->uGrainSectorAbs != uSectorExtentAbs)
+ {
+ uint64_t uLBA = 0; /* gcc maybe uninitialized */
+ rc = vmdkFileInflateSync(pImage, pExtent,
+ VMDK_SECTOR2BYTE(uSectorExtentAbs),
+ pExtent->pvGrain,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain),
+ NULL, &uLBA, NULL);
+ if (RT_FAILURE(rc))
+ {
+ pExtent->uGrainSectorAbs = 0;
+ break;
+ }
+ pExtent->uGrainSectorAbs = uSectorExtentAbs;
+ pExtent->uGrain = uSectorExtentRel / pExtent->cSectorsPerGrain;
+ Assert(uLBA == uSectorExtentRel);
+ }
+ vdIfIoIntIoCtxCopyTo(pImage->pIfIo, pIoCtx,
+ (uint8_t *)pExtent->pvGrain
+ + VMDK_SECTOR2BYTE(uSectorInGrain),
+ cbToRead);
+ }
+ else
+ rc = vdIfIoIntFileReadUser(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uSectorExtentAbs),
+ pIoCtx, cbToRead);
+ }
+ break;
+ }
+ case VMDKETYPE_VMFS:
+ case VMDKETYPE_FLAT:
+ rc = vdIfIoIntFileReadUser(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uSectorExtentRel),
+ pIoCtx, cbToRead);
+ break;
+ case VMDKETYPE_ZERO:
+ {
+ size_t cbSet;
+
+ cbSet = vdIfIoIntIoCtxSet(pImage->pIfIo, pIoCtx, 0, cbToRead);
+ Assert(cbSet == cbToRead);
+ break;
+ }
+ }
+ if (pcbActuallyRead)
+ *pcbActuallyRead = cbToRead;
+ }
+ else if (RT_SUCCESS(rc))
+ rc = VERR_VD_VMDK_INVALID_STATE;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnWrite */
+static DECLCALLBACK(int) vmdkWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite,
+ PVDIOCTX pIoCtx, size_t *pcbWriteProcess, size_t *pcbPreRead,
+ size_t *pcbPostRead, unsigned fWrite)
+{
+ LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n",
+ pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc;
+
+ AssertPtr(pImage);
+ Assert(uOffset % 512 == 0);
+ Assert(cbToWrite % 512 == 0);
+ AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER);
+ AssertReturn(cbToWrite, VERR_INVALID_PARAMETER);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ PVMDKEXTENT pExtent;
+ uint64_t uSectorExtentRel;
+ uint64_t uSectorExtentAbs;
+
+ /* No size check here, will do that later when the extent is located.
+ * There are sparse images out there which according to the spec are
+ * invalid, because the total size is not a multiple of the grain size.
+ * Also for sparse images which are stitched together in odd ways (not at
+ * grain boundaries, and with the nominal size not being a multiple of the
+ * grain size), this would prevent writing to the last grain. */
+
+ rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset),
+ &pExtent, &uSectorExtentRel);
+ if (RT_SUCCESS(rc))
+ {
+ if ( pExtent->enmAccess != VMDKACCESS_READWRITE
+ && ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ && !pImage->pExtents[0].uAppendPosition
+ && pExtent->enmAccess != VMDKACCESS_READONLY))
+ rc = VERR_VD_VMDK_INVALID_STATE;
+ else
+ {
+ /* Handle the write according to the current extent type. */
+ switch (pExtent->enmType)
+ {
+ case VMDKETYPE_HOSTED_SPARSE:
+ rc = vmdkGetSector(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs);
+ if (RT_SUCCESS(rc))
+ {
+ if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED
+ && uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain)
+ rc = VERR_VD_VMDK_INVALID_WRITE;
+ else
+ {
+ /* Clip write range to at most the rest of the grain. */
+ cbToWrite = RT_MIN(cbToWrite,
+ VMDK_SECTOR2BYTE( pExtent->cSectorsPerGrain
+ - uSectorExtentRel % pExtent->cSectorsPerGrain));
+ if (uSectorExtentAbs == 0)
+ {
+ if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ if (cbToWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain))
+ {
+ /* Full block write to a previously unallocated block.
+ * Check if the caller wants to avoid the automatic alloc. */
+ if (!(fWrite & VD_WRITE_NO_ALLOC))
+ {
+ /* Allocate GT and find out where to store the grain. */
+ rc = vmdkAllocGrain(pImage, pExtent, pIoCtx,
+ uSectorExtentRel, cbToWrite);
+ }
+ else
+ rc = VERR_VD_BLOCK_FREE;
+ *pcbPreRead = 0;
+ *pcbPostRead = 0;
+ }
+ else
+ {
+ /* Clip write range to remain in this extent. */
+ cbToWrite = RT_MIN(cbToWrite,
+ VMDK_SECTOR2BYTE( pExtent->uSectorOffset
+ + pExtent->cNominalSectors - uSectorExtentRel));
+ *pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain);
+ *pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbToWrite - *pcbPreRead;
+ rc = VERR_VD_BLOCK_FREE;
+ }
+ }
+ else
+ rc = vmdkStreamAllocGrain(pImage, pExtent, uSectorExtentRel,
+ pIoCtx, cbToWrite);
+ }
+ else
+ {
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ /* A partial write to a streamOptimized image is simply
+ * invalid. It requires rewriting already compressed data
+ * which is somewhere between expensive and impossible. */
+ rc = VERR_VD_VMDK_INVALID_STATE;
+ pExtent->uGrainSectorAbs = 0;
+ AssertRC(rc);
+ }
+ else
+ {
+ Assert(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED));
+ rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uSectorExtentAbs),
+ pIoCtx, cbToWrite, NULL, NULL);
+ }
+ }
+ }
+ }
+ break;
+ case VMDKETYPE_VMFS:
+ case VMDKETYPE_FLAT:
+ /* Clip write range to remain in this extent. */
+ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
+ rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uSectorExtentRel),
+ pIoCtx, cbToWrite, NULL, NULL);
+ break;
+ case VMDKETYPE_ZERO:
+ /* Clip write range to remain in this extent. */
+ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel));
+ break;
+ }
+ }
+
+ if (pcbWriteProcess)
+ *pcbWriteProcess = cbToWrite;
+ }
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnFlush */
+static DECLCALLBACK(int) vmdkFlush(void *pBackendData, PVDIOCTX pIoCtx)
+{
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ return vmdkFlushImage(pImage, pIoCtx);
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetVersion */
+static DECLCALLBACK(unsigned) vmdkGetVersion(void *pBackendData)
+{
+ LogFlowFunc(("pBackendData=%#p\n", pBackendData));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, 0);
+
+ return VMDK_IMAGE_VERSION;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetFileSize */
+static DECLCALLBACK(uint64_t) vmdkGetFileSize(void *pBackendData)
+{
+ LogFlowFunc(("pBackendData=%#p\n", pBackendData));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ uint64_t cb = 0;
+
+ AssertPtrReturn(pImage, 0);
+
+ if (pImage->pFile != NULL)
+ {
+ uint64_t cbFile;
+ int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pFile->pStorage, &cbFile);
+ if (RT_SUCCESS(rc))
+ cb += cbFile;
+ }
+ for (unsigned i = 0; i < pImage->cExtents; i++)
+ {
+ if (pImage->pExtents[i].pFile != NULL)
+ {
+ uint64_t cbFile;
+ int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pExtents[i].pFile->pStorage, &cbFile);
+ if (RT_SUCCESS(rc))
+ cb += cbFile;
+ }
+ }
+
+ LogFlowFunc(("returns %lld\n", cb));
+ return cb;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetPCHSGeometry */
+static DECLCALLBACK(int) vmdkGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry)
+{
+ LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (pImage->PCHSGeometry.cCylinders)
+ *pPCHSGeometry = pImage->PCHSGeometry;
+ else
+ rc = VERR_VD_GEOMETRY_NOT_SET;
+
+ LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetPCHSGeometry */
+static DECLCALLBACK(int) vmdkSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry)
+{
+ LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n",
+ pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry);
+ if (RT_SUCCESS(rc))
+ pImage->PCHSGeometry = *pPCHSGeometry;
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetLCHSGeometry */
+static DECLCALLBACK(int) vmdkGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry)
+{
+ LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (pImage->LCHSGeometry.cCylinders)
+ *pLCHSGeometry = pImage->LCHSGeometry;
+ else
+ rc = VERR_VD_GEOMETRY_NOT_SET;
+
+ LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetLCHSGeometry */
+static DECLCALLBACK(int) vmdkSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry)
+{
+ LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n",
+ pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry);
+ if (RT_SUCCESS(rc))
+ pImage->LCHSGeometry = *pLCHSGeometry;
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnQueryRegions */
+static DECLCALLBACK(int) vmdkQueryRegions(void *pBackendData, PCVDREGIONLIST *ppRegionList)
+{
+ LogFlowFunc(("pBackendData=%#p ppRegionList=%#p\n", pBackendData, ppRegionList));
+ PVMDKIMAGE pThis = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pThis, VERR_VD_NOT_OPENED);
+
+ *ppRegionList = &pThis->RegionList;
+ LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS));
+ return VINF_SUCCESS;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnRegionListRelease */
+static DECLCALLBACK(void) vmdkRegionListRelease(void *pBackendData, PCVDREGIONLIST pRegionList)
+{
+ RT_NOREF1(pRegionList);
+ LogFlowFunc(("pBackendData=%#p pRegionList=%#p\n", pBackendData, pRegionList));
+ PVMDKIMAGE pThis = (PVMDKIMAGE)pBackendData;
+ AssertPtr(pThis); RT_NOREF(pThis);
+
+ /* Nothing to do here. */
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetImageFlags */
+static DECLCALLBACK(unsigned) vmdkGetImageFlags(void *pBackendData)
+{
+ LogFlowFunc(("pBackendData=%#p\n", pBackendData));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, 0);
+
+ LogFlowFunc(("returns %#x\n", pImage->uImageFlags));
+ return pImage->uImageFlags;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetOpenFlags */
+static DECLCALLBACK(unsigned) vmdkGetOpenFlags(void *pBackendData)
+{
+ LogFlowFunc(("pBackendData=%#p\n", pBackendData));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, 0);
+
+ LogFlowFunc(("returns %#x\n", pImage->uOpenFlags));
+ return pImage->uOpenFlags;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetOpenFlags */
+static DECLCALLBACK(int) vmdkSetOpenFlags(void *pBackendData, unsigned uOpenFlags)
+{
+ LogFlowFunc(("pBackendData=%#p uOpenFlags=%#x\n", pBackendData, uOpenFlags));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc;
+
+ /* Image must be opened and the new flags must be valid. */
+ if (!pImage || (uOpenFlags & ~( VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO
+ | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE
+ | VD_OPEN_FLAGS_SEQUENTIAL | VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS)))
+ rc = VERR_INVALID_PARAMETER;
+ else
+ {
+ /* StreamOptimized images need special treatment: reopen is prohibited. */
+ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)
+ {
+ if (pImage->uOpenFlags == uOpenFlags)
+ rc = VINF_SUCCESS;
+ else
+ rc = VERR_INVALID_PARAMETER;
+ }
+ else
+ {
+ /* Implement this operation via reopening the image. */
+ vmdkFreeImage(pImage, false, true /*fFlush*/);
+ rc = vmdkOpenImage(pImage, uOpenFlags);
+ }
+ }
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetComment */
+static DECLCALLBACK(int) vmdkGetComment(void *pBackendData, char *pszComment, size_t cbComment)
+{
+ LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ char *pszCommentEncoded = NULL;
+ int rc = vmdkDescDDBGetStr(pImage, &pImage->Descriptor,
+ "ddb.comment", &pszCommentEncoded);
+ if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND)
+ {
+ pszCommentEncoded = NULL;
+ rc = VINF_SUCCESS;
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ if (pszComment && pszCommentEncoded)
+ rc = vmdkDecodeString(pszCommentEncoded, pszComment, cbComment);
+ else if (pszComment)
+ *pszComment = '\0';
+
+ if (pszCommentEncoded)
+ RTMemTmpFree(pszCommentEncoded);
+ }
+
+ LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetComment */
+static DECLCALLBACK(int) vmdkSetComment(void *pBackendData, const char *pszComment)
+{
+ LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ rc = vmdkSetImageComment(pImage, pszComment);
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetUuid */
+static DECLCALLBACK(int) vmdkGetUuid(void *pBackendData, PRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ *pUuid = pImage->ImageUuid;
+
+ LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
+ return VINF_SUCCESS;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetUuid */
+static DECLCALLBACK(int) vmdkSetUuid(void *pBackendData, PCRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ pImage->ImageUuid = *pUuid;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_IMAGE_UUID, pUuid);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetModificationUuid */
+static DECLCALLBACK(int) vmdkGetModificationUuid(void *pBackendData, PRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ *pUuid = pImage->ModificationUuid;
+
+ LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
+ return VINF_SUCCESS;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetModificationUuid */
+static DECLCALLBACK(int) vmdkSetModificationUuid(void *pBackendData, PCRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ /* Only touch the modification uuid if it changed. */
+ if (RTUuidCompare(&pImage->ModificationUuid, pUuid))
+ {
+ pImage->ModificationUuid = *pUuid;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_MODIFICATION_UUID, pUuid);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetParentUuid */
+static DECLCALLBACK(int) vmdkGetParentUuid(void *pBackendData, PRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ *pUuid = pImage->ParentUuid;
+
+ LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
+ return VINF_SUCCESS;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetParentUuid */
+static DECLCALLBACK(int) vmdkSetParentUuid(void *pBackendData, PCRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ pImage->ParentUuid = *pUuid;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_PARENT_UUID, pUuid);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS,
+ N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnGetParentModificationUuid */
+static DECLCALLBACK(int) vmdkGetParentModificationUuid(void *pBackendData, PRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ *pUuid = pImage->ParentModificationUuid;
+
+ LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
+ return VINF_SUCCESS;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnSetParentModificationUuid */
+static DECLCALLBACK(int) vmdkSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid)
+{
+ LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ int rc = VINF_SUCCESS;
+
+ AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
+
+ if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
+ {
+ if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED))
+ {
+ pImage->ParentModificationUuid = *pUuid;
+ rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor,
+ VMDK_DDB_PARENT_MODIFICATION_UUID, pUuid);
+ if (RT_FAILURE(rc))
+ rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename);
+ }
+ else
+ rc = VERR_NOT_SUPPORTED;
+ }
+ else
+ rc = VERR_VD_IMAGE_READ_ONLY;
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnDump */
+static DECLCALLBACK(void) vmdkDump(void *pBackendData)
+{
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+
+ AssertPtrReturnVoid(pImage);
+ vdIfErrorMessage(pImage->pIfError, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n",
+ pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors,
+ pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors,
+ VMDK_BYTE2SECTOR(pImage->cbSize));
+ vdIfErrorMessage(pImage->pIfError, "Header: uuidCreation={%RTuuid}\n", &pImage->ImageUuid);
+ vdIfErrorMessage(pImage->pIfError, "Header: uuidModification={%RTuuid}\n", &pImage->ModificationUuid);
+ vdIfErrorMessage(pImage->pIfError, "Header: uuidParent={%RTuuid}\n", &pImage->ParentUuid);
+ vdIfErrorMessage(pImage->pIfError, "Header: uuidParentModification={%RTuuid}\n", &pImage->ParentModificationUuid);
+}
+
+
+/**
+ * Returns the size, in bytes, of the sparse extent overhead for
+ * the number of desired total sectors and based on the current
+ * sectors of the extent.
+ *
+ * @returns uint64_t size of new overhead in bytes.
+ * @param pExtent VMDK extent instance.
+ * @param cSectorsNew Number of desired total sectors.
+ */
+static uint64_t vmdkGetNewOverhead(PVMDKEXTENT pExtent, uint64_t cSectorsNew)
+{
+ uint64_t cNewDirEntries = cSectorsNew / pExtent->cSectorsPerGDE;
+ if (cSectorsNew % pExtent->cSectorsPerGDE)
+ cNewDirEntries++;
+
+ size_t cbNewGD = cNewDirEntries * sizeof(uint32_t);
+ uint64_t cbNewDirSize = RT_ALIGN_64(cbNewGD, 512);
+ uint64_t cbNewAllTablesSize = RT_ALIGN_64(cNewDirEntries * pExtent->cGTEntries * sizeof(uint32_t), 512);
+ uint64_t cbNewOverhead = RT_ALIGN_Z(RT_MAX(pExtent->uDescriptorSector
+ + pExtent->cDescriptorSectors, 1)
+ + cbNewDirSize + cbNewAllTablesSize, 512);
+ cbNewOverhead += cbNewDirSize + cbNewAllTablesSize;
+ cbNewOverhead = RT_ALIGN_64(cbNewOverhead,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+
+ return cbNewOverhead;
+}
+
+/**
+ * Internal: Replaces the size (in sectors) of an extent in the descriptor file.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pExtent VMDK extent instance.
+ * @param uLine Line number of descriptor to change.
+ * @param cSectorsOld Existing number of sectors.
+ * @param cSectorsNew New number of sectors.
+ */
+static int vmdkReplaceExtentSize(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, unsigned uLine, uint64_t cSectorsOld,
+ uint64_t cSectorsNew)
+{
+ char szOldExtentSectors[UINT64_MAX_BUFF_SIZE];
+ char szNewExtentSectors[UINT64_MAX_BUFF_SIZE];
+
+ ssize_t cbWritten = RTStrPrintf2(szOldExtentSectors, sizeof(szOldExtentSectors), "%llu", cSectorsOld);
+ if (cbWritten <= 0 || cbWritten > (ssize_t)sizeof(szOldExtentSectors))
+ return VERR_BUFFER_OVERFLOW;
+
+ cbWritten = RTStrPrintf2(szNewExtentSectors, sizeof(szNewExtentSectors), "%llu", cSectorsNew);
+ if (cbWritten <= 0 || cbWritten > (ssize_t)sizeof(szNewExtentSectors))
+ return VERR_BUFFER_OVERFLOW;
+
+ char *pszNewExtentLine = vmdkStrReplace(pImage->Descriptor.aLines[uLine],
+ szOldExtentSectors,
+ szNewExtentSectors);
+
+ if (RT_UNLIKELY(!pszNewExtentLine))
+ return VERR_INVALID_PARAMETER;
+
+ vmdkDescExtRemoveByLine(pImage, &pImage->Descriptor, uLine);
+ vmdkDescExtInsert(pImage, &pImage->Descriptor,
+ pExtent->enmAccess, cSectorsNew,
+ pExtent->enmType, pExtent->pszBasename, pExtent->uSectorOffset);
+
+ RTStrFree(pszNewExtentLine);
+ pszNewExtentLine = NULL;
+
+ pImage->Descriptor.fDirty = true;
+
+ return VINF_SUCCESS;
+}
+
+/**
+ * Moves sectors down to make room for new overhead.
+ * Used for sparse extent resize.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pExtent VMDK extent instance.
+ * @param cSectorsNew Number of sectors after resize.
+ */
+static int vmdkRelocateSectorsForSparseResize(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t cSectorsNew)
+{
+ int rc = VINF_SUCCESS;
+
+ uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew);
+
+ uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead);
+ uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors;
+
+ uint64_t cbFile = 0;
+ rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbFile);
+
+ uint64_t uNewAppendPosition;
+
+ /* Calculate how many sectors need to be relocated. */
+ unsigned cSectorsReloc = cOverheadSectorDiff;
+ if (cbNewOverhead % VMDK_SECTOR_SIZE)
+ cSectorsReloc++;
+
+ if (cSectorsReloc < pExtent->cSectors)
+ uNewAppendPosition = RT_ALIGN_Z(cbFile + VMDK_SECTOR2BYTE(cOverheadSectorDiff), 512);
+ else
+ uNewAppendPosition = cbFile;
+
+ /*
+ * Get the blocks we need to relocate first, they are appended to the end
+ * of the image.
+ */
+ void *pvBuf = NULL, *pvZero = NULL;
+ do
+ {
+ /* Allocate data buffer. */
+ pvBuf = RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (!pvBuf)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ /* Allocate buffer for overwriting with zeroes. */
+ pvZero = RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (!pvZero)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ uint32_t *aGTDataTmp = (uint32_t *)RTMemAllocZ(sizeof(uint32_t) * pExtent->cGTEntries);
+ if(!aGTDataTmp)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+
+ RTMemFree(pvZero);
+ pvZero = NULL;
+
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ uint32_t *aRGTDataTmp = (uint32_t *)RTMemAllocZ(sizeof(uint32_t) * pExtent->cGTEntries);
+ if(!aRGTDataTmp)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+
+ RTMemFree(pvZero);
+ pvZero = NULL;
+
+ RTMemFree(aGTDataTmp);
+ aGTDataTmp = NULL;
+
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ /* Search for overlap sector in the grain table. */
+ for (uint32_t idxGD = 0; idxGD < pExtent->cGDEntries; idxGD++)
+ {
+ uint64_t uGTSector = pExtent->pGD[idxGD];
+ uint64_t uRGTSector = pExtent->pRGD[idxGD];
+
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector),
+ aGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries);
+
+ if (RT_FAILURE(rc))
+ break;
+
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRGTSector),
+ aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries);
+
+ if (RT_FAILURE(rc))
+ break;
+
+ for (uint32_t idxGT = 0; idxGT < pExtent->cGTEntries; idxGT++)
+ {
+ uint64_t aGTEntryLE = RT_LE2H_U64(aGTDataTmp[idxGT]);
+ uint64_t aRGTEntryLE = RT_LE2H_U64(aRGTDataTmp[idxGT]);
+
+ /**
+ * Check if grain table is valid. If not dump out with an error.
+ * Shoudln't ever get here (given other checks) but good sanity check.
+ */
+ if (aGTEntryLE != aRGTEntryLE)
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistent references within grain table in '%s'"), pExtent->pszFullname);
+ break;
+ }
+
+ if (aGTEntryLE < cNewOverheadSectors
+ && aGTEntryLE != 0)
+ {
+ /* Read data and append grain to the end of the image. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(aGTEntryLE), pvBuf,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (RT_FAILURE(rc))
+ break;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uNewAppendPosition, pvBuf,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (RT_FAILURE(rc))
+ break;
+
+ /* Zero out the old block area. */
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(aGTEntryLE), pvZero,
+ VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain));
+ if (RT_FAILURE(rc))
+ break;
+
+ /* Write updated grain tables to file */
+ aGTDataTmp[idxGT] = VMDK_BYTE2SECTOR(uNewAppendPosition);
+ aRGTDataTmp[idxGT] = VMDK_BYTE2SECTOR(uNewAppendPosition);
+
+ if (memcmp(aGTDataTmp, aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries))
+ {
+ rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS,
+ N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname);
+ break;
+ }
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uGTSector),
+ aGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries);
+
+ if (RT_FAILURE(rc))
+ break;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRGTSector),
+ aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries);
+
+ break;
+ }
+ }
+ }
+
+ RTMemFree(aGTDataTmp);
+ aGTDataTmp = NULL;
+
+ RTMemFree(aRGTDataTmp);
+ aRGTDataTmp = NULL;
+
+ if (RT_FAILURE(rc))
+ break;
+
+ uNewAppendPosition += VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain);
+ } while (0);
+
+ if (pvBuf)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+ }
+
+ if (pvZero)
+ {
+ RTMemFree(pvZero);
+ pvZero = NULL;
+ }
+
+ // Update append position for extent
+ pExtent->uAppendPosition = uNewAppendPosition;
+
+ return rc;
+}
+
+/**
+ * Resizes meta/overhead for sparse extent resize.
+ *
+ * @returns VBox status code.
+ * @param pImage VMDK image instance.
+ * @param pExtent VMDK extent instance.
+ * @param cSectorsNew Number of sectors after resize.
+ */
+static int vmdkResizeSparseMeta(PVMDKIMAGE pImage, PVMDKEXTENT pExtent,
+ uint64_t cSectorsNew)
+{
+ int rc = VINF_SUCCESS;
+ uint32_t cOldGDEntries = pExtent->cGDEntries;
+
+ uint64_t cNewDirEntries = cSectorsNew / pExtent->cSectorsPerGDE;
+ if (cSectorsNew % pExtent->cSectorsPerGDE)
+ cNewDirEntries++;
+
+ size_t cbNewGD = cNewDirEntries * sizeof(uint32_t);
+
+ uint64_t cbNewDirSize = RT_ALIGN_64(cbNewGD, 512);
+ uint64_t cbCurrDirSize = RT_ALIGN_64(pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE, 512);
+ uint64_t cDirSectorDiff = VMDK_BYTE2SECTOR(cbNewDirSize - cbCurrDirSize);
+
+ uint64_t cbNewAllTablesSize = RT_ALIGN_64(cNewDirEntries * pExtent->cGTEntries * sizeof(uint32_t), 512);
+ uint64_t cbCurrAllTablesSize = RT_ALIGN_64(pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE, 512);
+ uint64_t cTableSectorDiff = VMDK_BYTE2SECTOR(cbNewAllTablesSize - cbCurrAllTablesSize);
+
+ uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew);
+ uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead);
+ uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors;
+
+ /*
+ * Get the blocks we need to relocate first, they are appended to the end
+ * of the image.
+ */
+ void *pvBuf = NULL, *pvZero = NULL;
+
+ do
+ {
+ /* Allocate data buffer. */
+ pvBuf = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE);
+ if (!pvBuf)
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ /* Allocate buffer for overwriting with zeroes. */
+ pvZero = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE);
+ if (!pvZero)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+
+ uint32_t uGTStart = VMDK_SECTOR2BYTE(pExtent->uSectorGD) + (cOldGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+
+ // points to last element in the grain table
+ uint32_t uGTTail = uGTStart + (pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE) - VMDK_GRAIN_TABLE_SIZE;
+ uint32_t cbGTOff = RT_ALIGN_Z(VMDK_SECTOR2BYTE(cDirSectorDiff + cTableSectorDiff + cDirSectorDiff), 512);
+
+ for (int i = pExtent->cGDEntries - 1; i >= 0; i--)
+ {
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uGTTail, pvBuf,
+ VMDK_GRAIN_TABLE_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ RT_ALIGN_Z(uGTTail + cbGTOff, 512), pvBuf,
+ VMDK_GRAIN_TABLE_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ // This overshoots when i == 0, but we don't need it anymore.
+ uGTTail -= VMDK_GRAIN_TABLE_SIZE;
+ }
+
+
+ /* Find the end of the grain directory and start bumping everything down. Update locations of GT entries. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorGD), pvBuf,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ int * tmpBuf = (int *)pvBuf;
+
+ for (uint32_t i = 0; i < pExtent->cGDEntries; i++)
+ {
+ tmpBuf[i] = tmpBuf[i] + VMDK_BYTE2SECTOR(cbGTOff);
+ pExtent->pGD[i] = pExtent->pGD[i] + VMDK_BYTE2SECTOR(cbGTOff);
+ }
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ RT_ALIGN_Z(VMDK_SECTOR2BYTE(pExtent->uSectorGD + cTableSectorDiff + cDirSectorDiff), 512), pvBuf,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ pExtent->uSectorGD = pExtent->uSectorGD + cDirSectorDiff + cTableSectorDiff;
+
+ /* Repeat both steps with the redundant grain table/directory. */
+
+ uint32_t uRGTStart = VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + (cOldGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+
+ // points to last element in the grain table
+ uint32_t uRGTTail = uRGTStart + (pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE) - VMDK_GRAIN_TABLE_SIZE;
+ uint32_t cbRGTOff = RT_ALIGN_Z(VMDK_SECTOR2BYTE(cDirSectorDiff), 512);
+
+ for (int i = pExtent->cGDEntries - 1; i >= 0; i--)
+ {
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ uRGTTail, pvBuf,
+ VMDK_GRAIN_TABLE_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ RT_ALIGN_Z(uRGTTail + cbRGTOff, 512), pvBuf,
+ VMDK_GRAIN_TABLE_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ // This overshoots when i == 0, but we don't need it anymore.
+ uRGTTail -= VMDK_GRAIN_TABLE_SIZE;
+ }
+
+ /* Update locations of GT entries. */
+ rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pvBuf,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ tmpBuf = (int *)pvBuf;
+
+ for (uint32_t i = 0; i < pExtent->cGDEntries; i++)
+ {
+ tmpBuf[i] = tmpBuf[i] + cDirSectorDiff;
+ pExtent->pRGD[i] = pExtent->pRGD[i] + cDirSectorDiff;
+ }
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pvBuf,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ break;
+
+ pExtent->uSectorRGD = pExtent->uSectorRGD;
+ pExtent->cOverheadSectors += cOverheadSectorDiff;
+
+ } while (0);
+
+ if (pvBuf)
+ {
+ RTMemFree(pvBuf);
+ pvBuf = NULL;
+ }
+
+ if (pvZero)
+ {
+ RTMemFree(pvZero);
+ pvZero = NULL;
+ }
+
+ pExtent->cGDEntries = cNewDirEntries;
+
+ /* Allocate buffer for overwriting with zeroes. */
+ pvZero = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE);
+ if (!pvZero)
+ return VERR_NO_MEMORY;
+
+ // Allocate additional grain dir
+ pExtent->pGD = (uint32_t *) RTMemReallocZ(pExtent->pGD, pExtent->cGDEntries * sizeof(uint32_t), cbNewGD);
+ if (RT_LIKELY(pExtent->pGD))
+ {
+ if (pExtent->uSectorRGD)
+ {
+ pExtent->pRGD = (uint32_t *)RTMemReallocZ(pExtent->pRGD, pExtent->cGDEntries * sizeof(uint32_t), cbNewGD);
+ if (RT_UNLIKELY(!pExtent->pRGD))
+ rc = VERR_NO_MEMORY;
+ }
+ }
+ else
+ return VERR_NO_MEMORY;
+
+
+ uint32_t uTmpDirVal = pExtent->pGD[cOldGDEntries - 1] + VMDK_GRAIN_DIR_ENTRY_SIZE;
+ for (uint32_t i = cOldGDEntries; i < pExtent->cGDEntries; i++)
+ {
+ pExtent->pGD[i] = uTmpDirVal;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uTmpDirVal), pvZero,
+ VMDK_GRAIN_TABLE_SIZE);
+
+ if (RT_FAILURE(rc))
+ return rc;
+
+ uTmpDirVal += VMDK_GRAIN_DIR_ENTRY_SIZE;
+ }
+
+ uint32_t uRTmpDirVal = pExtent->pRGD[cOldGDEntries - 1] + VMDK_GRAIN_DIR_ENTRY_SIZE;
+ for (uint32_t i = cOldGDEntries; i < pExtent->cGDEntries; i++)
+ {
+ pExtent->pRGD[i] = uRTmpDirVal;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(uRTmpDirVal), pvZero,
+ VMDK_GRAIN_TABLE_SIZE);
+
+ if (RT_FAILURE(rc))
+ return rc;
+
+ uRTmpDirVal += VMDK_GRAIN_DIR_ENTRY_SIZE;
+ }
+
+ RTMemFree(pvZero);
+ pvZero = NULL;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorGD), pExtent->pGD,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pExtent->pRGD,
+ pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + pExtent->uExtent,
+ pExtent->cNominalSectors, cSectorsNew);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ return rc;
+}
+
+/** @copydoc VDIMAGEBACKEND::pfnResize */
+static DECLCALLBACK(int) vmdkResize(void *pBackendData, uint64_t cbSize,
+ PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
+ unsigned uPercentStart, unsigned uPercentSpan,
+ PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
+ PVDINTERFACE pVDIfsOperation)
+{
+ RT_NOREF5(uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation);
+
+ // Establish variables and objects needed
+ int rc = VINF_SUCCESS;
+ PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData;
+ unsigned uImageFlags = pImage->uImageFlags;
+ PVMDKEXTENT pExtent = &pImage->pExtents[0];
+ pExtent->fMetaDirty = true;
+
+ uint64_t cSectorsNew = cbSize / VMDK_SECTOR_SIZE; /** < New number of sectors in the image after the resize */
+ if (cbSize % VMDK_SECTOR_SIZE)
+ cSectorsNew++;
+
+ uint64_t cSectorsOld = pImage->cbSize / VMDK_SECTOR_SIZE; /** < Number of sectors before the resize. Only for FLAT images. */
+ if (pImage->cbSize % VMDK_SECTOR_SIZE)
+ cSectorsOld++;
+ unsigned cExtents = pImage->cExtents;
+
+ /* Check size is within min/max bounds. */
+ if ( !(uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)
+ && ( !cbSize
+ || (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 256 - _64K)) )
+ return VERR_VD_INVALID_SIZE;
+
+ /*
+ * Making the image smaller is not supported at the moment.
+ */
+ /** @todo implement making the image smaller, it is the responsibility of
+ * the user to know what they're doing. */
+ if (cbSize < pImage->cbSize)
+ rc = VERR_VD_SHRINK_NOT_SUPPORTED;
+ else if (cbSize > pImage->cbSize)
+ {
+ /**
+ * monolithicFlat. FIXED flag and not split up into 2 GB parts.
+ */
+ if ((uImageFlags & VD_IMAGE_FLAGS_FIXED) && !(uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G))
+ {
+ /** Required space in bytes for the extent after the resize. */
+ uint64_t cbSectorSpaceNew = cSectorsNew * VMDK_SECTOR_SIZE;
+ pExtent = &pImage->pExtents[0];
+
+ rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbSectorSpaceNew,
+ 0 /* fFlags */, NULL,
+ uPercentStart, uPercentSpan);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
+
+ rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent, cSectorsOld, cSectorsNew);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ /**
+ * twoGbMaxExtentFlat. FIXED flag and SPLIT into 2 GB parts.
+ */
+ if ((uImageFlags & VD_IMAGE_FLAGS_FIXED) && (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G))
+ {
+ /* Check to see how much space remains in last extent */
+ bool fSpaceAvailible = false;
+ uint64_t cLastExtentRemSectors = cSectorsOld % VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ if (cLastExtentRemSectors)
+ fSpaceAvailible = true;
+
+ uint64_t cSectorsNeeded = cSectorsNew - cSectorsOld;
+
+ /** Space remaining in current last extent file that we don't need to create another one. */
+ if (fSpaceAvailible && cSectorsNeeded + cLastExtentRemSectors <= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE))
+ {
+ pExtent = &pImage->pExtents[cExtents - 1];
+ rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage,
+ VMDK_SECTOR2BYTE(cSectorsNeeded + cLastExtentRemSectors),
+ 0 /* fFlags */, NULL, uPercentStart, uPercentSpan);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
+
+ rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + cExtents - 1,
+ pExtent->cNominalSectors, cSectorsNeeded + cLastExtentRemSectors);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ //** Need more extent files to handle all the requested space. */
+ else
+ {
+ if (fSpaceAvailible)
+ {
+ pExtent = &pImage->pExtents[cExtents - 1];
+ rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, VMDK_2G_SPLIT_SIZE,
+ 0 /* fFlags */, NULL,
+ uPercentStart, uPercentSpan);
+ if (RT_FAILURE(rc))
+ return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname);
+
+ cSectorsNeeded = cSectorsNeeded - VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE) + cLastExtentRemSectors;
+
+ rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + cExtents - 1,
+ pExtent->cNominalSectors, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE));
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ unsigned cNewExtents = VMDK_SECTOR2BYTE(cSectorsNeeded) / VMDK_2G_SPLIT_SIZE;
+ if (cNewExtents % VMDK_2G_SPLIT_SIZE || cNewExtents < VMDK_2G_SPLIT_SIZE)
+ cNewExtents++;
+
+ for (unsigned i = cExtents;
+ i < cExtents + cNewExtents && cSectorsNeeded >= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ i++)
+ {
+ rc = vmdkAddFileBackedExtent(pImage, VMDK_2G_SPLIT_SIZE);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ pExtent = &pImage->pExtents[i];
+
+ pExtent->cSectors = VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ cSectorsNeeded -= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ }
+
+ if (cSectorsNeeded)
+ {
+ rc = vmdkAddFileBackedExtent(pImage, VMDK_SECTOR2BYTE(cSectorsNeeded));
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ }
+ }
+
+ /**
+ * monolithicSparse.
+ */
+ if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE && !(uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G))
+ {
+ // 1. Calculate sectors needed for new overhead.
+
+ uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew);
+ uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead);
+ uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors;
+
+ // 2. Relocate sectors to make room for new GD/GT, update entries in GD/GT
+ if (cOverheadSectorDiff > 0)
+ {
+ if (pExtent->cSectors > 0)
+ {
+ /* Do the relocation. */
+ LogFlow(("Relocating VMDK sectors\n"));
+ rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, cSectorsNew);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ rc = vmdkResizeSparseMeta(pImage, pExtent, cSectorsNew);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ }
+
+ /**
+ * twoGbSparseExtent
+ */
+ if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE && (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G))
+ {
+ /* Check to see how much space remains in last extent */
+ bool fSpaceAvailible = false;
+ uint64_t cLastExtentRemSectors = cSectorsOld % VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ if (cLastExtentRemSectors)
+ fSpaceAvailible = true;
+
+ uint64_t cSectorsNeeded = cSectorsNew - cSectorsOld;
+
+ if (fSpaceAvailible && cSectorsNeeded + cLastExtentRemSectors <= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE))
+ {
+ pExtent = &pImage->pExtents[cExtents - 1];
+ rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, cSectorsNeeded + cLastExtentRemSectors);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkResizeSparseMeta(pImage, pExtent, cSectorsNeeded + cLastExtentRemSectors);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ else
+ {
+ if (fSpaceAvailible)
+ {
+ pExtent = &pImage->pExtents[cExtents - 1];
+ rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ rc = vmdkResizeSparseMeta(pImage, pExtent, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ cSectorsNeeded = cSectorsNeeded - VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE) + cLastExtentRemSectors;
+ }
+
+ unsigned cNewExtents = VMDK_SECTOR2BYTE(cSectorsNeeded) / VMDK_2G_SPLIT_SIZE;
+ if (cNewExtents % VMDK_2G_SPLIT_SIZE || cNewExtents < VMDK_2G_SPLIT_SIZE)
+ cNewExtents++;
+
+ for (unsigned i = cExtents;
+ i < cExtents + cNewExtents && cSectorsNeeded >= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ i++)
+ {
+ rc = vmdkAddFileBackedExtent(pImage, VMDK_2G_SPLIT_SIZE);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ pExtent = &pImage->pExtents[i];
+
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ pExtent->cSectors = VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ cSectorsNeeded -= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE);
+ }
+
+ if (cSectorsNeeded)
+ {
+ rc = vmdkAddFileBackedExtent(pImage, VMDK_SECTOR2BYTE(cSectorsNeeded));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ pExtent = &pImage->pExtents[pImage->cExtents];
+
+ rc = vmdkFlushImage(pImage, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+ }
+ }
+
+ /* Successful resize. Update metadata */
+ if (RT_SUCCESS(rc))
+ {
+ /* Update size and new block count. */
+ pImage->cbSize = cbSize;
+ pExtent->cNominalSectors = cSectorsNew;
+ pExtent->cSectors = cSectorsNew;
+
+ /* Update geometry. */
+ pImage->PCHSGeometry = *pPCHSGeometry;
+ pImage->LCHSGeometry = *pLCHSGeometry;
+ }
+
+ /* Update header information in base image file. */
+ pImage->Descriptor.fDirty = true;
+ rc = vmdkWriteDescriptor(pImage, NULL);
+
+ if (RT_SUCCESS(rc))
+ rc = vmdkFlushImage(pImage, NULL);
+ }
+ /* Same size doesn't change the image at all. */
+
+ LogFlowFunc(("returns %Rrc\n", rc));
+ return rc;
+}
+
+const VDIMAGEBACKEND g_VmdkBackend =
+{
+ /* u32Version */
+ VD_IMGBACKEND_VERSION,
+ /* pszBackendName */
+ "VMDK",
+ /* uBackendCaps */
+ VD_CAP_UUID | VD_CAP_CREATE_FIXED | VD_CAP_CREATE_DYNAMIC
+ | VD_CAP_CREATE_SPLIT_2G | VD_CAP_DIFF | VD_CAP_FILE | VD_CAP_ASYNC
+ | VD_CAP_VFS | VD_CAP_PREFERRED,
+ /* paFileExtensions */
+ s_aVmdkFileExtensions,
+ /* paConfigInfo */
+ s_aVmdkConfigInfo,
+ /* pfnProbe */
+ vmdkProbe,
+ /* pfnOpen */
+ vmdkOpen,
+ /* pfnCreate */
+ vmdkCreate,
+ /* pfnRename */
+ vmdkRename,
+ /* pfnClose */
+ vmdkClose,
+ /* pfnRead */
+ vmdkRead,
+ /* pfnWrite */
+ vmdkWrite,
+ /* pfnFlush */
+ vmdkFlush,
+ /* pfnDiscard */
+ NULL,
+ /* pfnGetVersion */
+ vmdkGetVersion,
+ /* pfnGetFileSize */
+ vmdkGetFileSize,
+ /* pfnGetPCHSGeometry */
+ vmdkGetPCHSGeometry,
+ /* pfnSetPCHSGeometry */
+ vmdkSetPCHSGeometry,
+ /* pfnGetLCHSGeometry */
+ vmdkGetLCHSGeometry,
+ /* pfnSetLCHSGeometry */
+ vmdkSetLCHSGeometry,
+ /* pfnQueryRegions */
+ vmdkQueryRegions,
+ /* pfnRegionListRelease */
+ vmdkRegionListRelease,
+ /* pfnGetImageFlags */
+ vmdkGetImageFlags,
+ /* pfnGetOpenFlags */
+ vmdkGetOpenFlags,
+ /* pfnSetOpenFlags */
+ vmdkSetOpenFlags,
+ /* pfnGetComment */
+ vmdkGetComment,
+ /* pfnSetComment */
+ vmdkSetComment,
+ /* pfnGetUuid */
+ vmdkGetUuid,
+ /* pfnSetUuid */
+ vmdkSetUuid,
+ /* pfnGetModificationUuid */
+ vmdkGetModificationUuid,
+ /* pfnSetModificationUuid */
+ vmdkSetModificationUuid,
+ /* pfnGetParentUuid */
+ vmdkGetParentUuid,
+ /* pfnSetParentUuid */
+ vmdkSetParentUuid,
+ /* pfnGetParentModificationUuid */
+ vmdkGetParentModificationUuid,
+ /* pfnSetParentModificationUuid */
+ vmdkSetParentModificationUuid,
+ /* pfnDump */
+ vmdkDump,
+ /* pfnGetTimestamp */
+ NULL,
+ /* pfnGetParentTimestamp */
+ NULL,
+ /* pfnSetParentTimestamp */
+ NULL,
+ /* pfnGetParentFilename */
+ NULL,
+ /* pfnSetParentFilename */
+ NULL,
+ /* pfnComposeLocation */
+ genericFileComposeLocation,
+ /* pfnComposeName */
+ genericFileComposeName,
+ /* pfnCompact */
+ NULL,
+ /* pfnResize */
+ vmdkResize,
+ /* pfnRepair */
+ NULL,
+ /* pfnTraverseMetadata */
+ NULL,
+ /* u32VersionEnd */
+ VD_IMGBACKEND_VERSION
+};