summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMAll/CPUMAllRegs.cpp')
-rw-r--r--src/VBox/VMM/VMMAll/CPUMAllRegs.cpp3039
1 files changed, 3039 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
new file mode 100644
index 00000000..753aaa71
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
@@ -0,0 +1,3039 @@
+/* $Id: CPUMAllRegs.cpp $ */
+/** @file
+ * CPUM - CPU Monitor(/Manager) - Getters and Setters.
+ */
+
+/*
+ * Copyright (C) 2006-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_CPUM
+#include <VBox/vmm/cpum.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/apic.h>
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/nem.h>
+#include <VBox/vmm/hm.h>
+#include "CPUMInternal.h"
+#include <VBox/vmm/vmcc.h>
+#include <VBox/err.h>
+#include <VBox/dis.h>
+#include <VBox/log.h>
+#include <VBox/vmm/hm.h>
+#include <VBox/vmm/tm.h>
+#include <iprt/assert.h>
+#include <iprt/asm.h>
+#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
+# include <iprt/asm-amd64-x86.h>
+#endif
+#ifdef IN_RING3
+# include <iprt/thread.h>
+#endif
+
+/** Disable stack frame pointer generation here. */
+#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
+# pragma optimize("y", off)
+#endif
+
+AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/**
+ * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
+ *
+ * @returns Pointer to the Virtual CPU.
+ * @param a_pGuestCtx Pointer to the guest context.
+ */
+#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
+
+/**
+ * Lazily loads the hidden parts of a selector register when using raw-mode.
+ */
+#define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg))
+
+/** @def CPUM_INT_ASSERT_NOT_EXTRN
+ * Macro for asserting that @a a_fNotExtrn are present.
+ *
+ * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
+ */
+#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
+ AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
+ ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
+
+
+VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
+{
+ pVCpu->cpum.s.Hyper.cr3 = cr3;
+}
+
+VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.cr3;
+}
+
+
+/** @def MAYBE_LOAD_DRx
+ * Macro for updating DRx values in raw-mode and ring-0 contexts.
+ */
+#ifdef IN_RING0
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0)
+#else
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
+#endif
+
+VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
+{
+ pVCpu->cpum.s.Hyper.dr[0] = uDr0;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
+{
+ pVCpu->cpum.s.Hyper.dr[1] = uDr1;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
+{
+ pVCpu->cpum.s.Hyper.dr[2] = uDr2;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
+{
+ pVCpu->cpum.s.Hyper.dr[3] = uDr3;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
+{
+ pVCpu->cpum.s.Hyper.dr[6] = uDr6;
+}
+
+
+VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
+{
+ pVCpu->cpum.s.Hyper.dr[7] = uDr7;
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[0];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[1];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[2];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[3];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[6];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[7];
+}
+
+
+/**
+ * Checks that the special cookie stored in unused reserved RFLAGS bits
+ *
+ * @retval true if cookie is ok.
+ * @retval false if cookie is not ok.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(bool) CPUMAssertGuestRFlagsCookie(PVM pVM, PVMCPU pVCpu)
+{
+ AssertLogRelMsgReturn( ( pVCpu->cpum.s.Guest.rflags.uBoth
+ & ~(uint64_t)(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64))
+ == pVM->cpum.s.fReservedRFlagsCookie
+ && (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK
+ && (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RAZ_MASK & CPUMX86EFLAGS_HW_MASK_64) == 0,
+ ("rflags=%#RX64 vs fReservedRFlagsCookie=%#RX64\n",
+ pVCpu->cpum.s.Guest.rflags.uBoth, pVM->cpum.s.fReservedRFlagsCookie),
+ false);
+ return true;
+}
+
+
+/**
+ * Queries the pointer to the internal CPUMCTX structure.
+ *
+ * @returns The CPUMCTX pointer.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
+{
+ return &pVCpu->cpum.s.Guest;
+}
+
+
+/**
+ * Queries the pointer to the internal CPUMCTXMSRS structure.
+ *
+ * This is for NEM only.
+ *
+ * @returns The CPUMCTX pointer.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
+{
+ return &pVCpu->cpum.s.GuestMsrs;
+}
+
+
+VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
+{
+ pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
+ pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
+{
+ pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
+ pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
+{
+ pVCpu->cpum.s.Guest.tr.Sel = tr;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
+{
+ pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
+ /* The caller will set more hidden bits if it has them. */
+ pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
+ pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+/**
+ * Set the guest CR0.
+ *
+ * When called in GC, the hyper CR0 may be updated if that is
+ * required. The caller only has to take special action if AM,
+ * WP, PG or PE changes.
+ *
+ * @returns VINF_SUCCESS (consider it void).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cr0 The new CR0 value.
+ */
+VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0)
+{
+ /*
+ * Check for changes causing TLB flushes (for REM).
+ * The caller is responsible for calling PGM when appropriate.
+ */
+ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
+ != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
+
+ /*
+ * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
+ */
+ if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
+ PGMCr0WpEnabled(pVCpu);
+
+ /* The ET flag is settable on a 386 and hardwired on 486+. */
+ if ( !(cr0 & X86_CR0_ET)
+ && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
+ cr0 |= X86_CR0_ET;
+
+ pVCpu->cpum.s.Guest.cr0 = cr0;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
+{
+ pVCpu->cpum.s.Guest.cr2 = cr2;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
+{
+ pVCpu->cpum.s.Guest.cr3 = cr3;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
+{
+ /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
+
+ if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
+ != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
+
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
+ pVCpu->cpum.s.Guest.cr4 = cr4;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
+{
+ pVCpu->cpum.s.Guest.eflags.u = eflags;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
+{
+ pVCpu->cpum.s.Guest.eip = eip;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
+{
+ pVCpu->cpum.s.Guest.eax = eax;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
+{
+ pVCpu->cpum.s.Guest.ebx = ebx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
+{
+ pVCpu->cpum.s.Guest.ecx = ecx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
+{
+ pVCpu->cpum.s.Guest.edx = edx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
+{
+ pVCpu->cpum.s.Guest.esp = esp;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
+{
+ pVCpu->cpum.s.Guest.ebp = ebp;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
+{
+ pVCpu->cpum.s.Guest.esi = esi;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
+{
+ pVCpu->cpum.s.Guest.edi = edi;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
+{
+ pVCpu->cpum.s.Guest.ss.Sel = ss;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
+{
+ pVCpu->cpum.s.Guest.cs.Sel = cs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
+{
+ pVCpu->cpum.s.Guest.ds.Sel = ds;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
+{
+ pVCpu->cpum.s.Guest.es.Sel = es;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
+{
+ pVCpu->cpum.s.Guest.fs.Sel = fs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
+{
+ pVCpu->cpum.s.Guest.gs.Sel = gs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
+{
+ pVCpu->cpum.s.Guest.msrEFER = val;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
+}
+
+
+VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
+ if (pcbLimit)
+ *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
+ return pVCpu->cpum.s.Guest.idtr.pIdt;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
+ if (pHidden)
+ *pHidden = pVCpu->cpum.s.Guest.tr;
+ return pVCpu->cpum.s.Guest.tr.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
+ return pVCpu->cpum.s.Guest.cs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
+ return pVCpu->cpum.s.Guest.ds.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
+ return pVCpu->cpum.s.Guest.es.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
+ return pVCpu->cpum.s.Guest.fs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
+ return pVCpu->cpum.s.Guest.gs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
+ return pVCpu->cpum.s.Guest.ss.Sel;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( !CPUMIsGuestInLongMode(pVCpu)
+ || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
+ return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
+ return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
+ if ( !CPUMIsGuestInLongMode(pVCpu)
+ || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
+ return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
+ return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
+ return pVCpu->cpum.s.Guest.ldtr.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
+ *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
+ *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
+ return pVCpu->cpum.s.Guest.ldtr.Sel;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return pVCpu->cpum.s.Guest.cr0;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
+ return pVCpu->cpum.s.Guest.cr2;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
+ return pVCpu->cpum.s.Guest.cr3;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ return pVCpu->cpum.s.Guest.cr4;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu)
+{
+ uint64_t u64;
+ int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
+ if (RT_FAILURE(rc))
+ u64 = 0;
+ return u64;
+}
+
+
+VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
+ *pGDTR = pVCpu->cpum.s.Guest.gdtr;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
+ return pVCpu->cpum.s.Guest.eip;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
+ return pVCpu->cpum.s.Guest.rip;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
+ return pVCpu->cpum.s.Guest.eax;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
+ return pVCpu->cpum.s.Guest.ebx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
+ return pVCpu->cpum.s.Guest.ecx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
+ return pVCpu->cpum.s.Guest.edx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
+ return pVCpu->cpum.s.Guest.esi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
+ return pVCpu->cpum.s.Guest.edi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
+ return pVCpu->cpum.s.Guest.esp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
+ return pVCpu->cpum.s.Guest.ebp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+ return pVCpu->cpum.s.Guest.eflags.u;
+}
+
+
+VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue)
+{
+ switch (iReg)
+ {
+ case DISCREG_CR0:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ *pValue = pVCpu->cpum.s.Guest.cr0;
+ break;
+
+ case DISCREG_CR2:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
+ *pValue = pVCpu->cpum.s.Guest.cr2;
+ break;
+
+ case DISCREG_CR3:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
+ *pValue = pVCpu->cpum.s.Guest.cr3;
+ break;
+
+ case DISCREG_CR4:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ *pValue = pVCpu->cpum.s.Guest.cr4;
+ break;
+
+ case DISCREG_CR8:
+ {
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
+ uint8_t u8Tpr;
+ int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
+ if (RT_FAILURE(rc))
+ {
+ AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
+ *pValue = 0;
+ return rc;
+ }
+ *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
+ break;
+ }
+
+ default:
+ return VERR_INVALID_PARAMETER;
+ }
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[0];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[1];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[2];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[3];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
+ return pVCpu->cpum.s.Guest.dr[6];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
+ return pVCpu->cpum.s.Guest.dr[7];
+}
+
+
+VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
+ AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
+ /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
+ if (iReg == 4 || iReg == 5)
+ iReg += 2;
+ *pValue = pVCpu->cpum.s.Guest.dr[iReg];
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return pVCpu->cpum.s.Guest.msrEFER;
+}
+
+
+/**
+ * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
+ *
+ * @returns Pointer to the leaf if found, NULL if not.
+ *
+ * @param pVM The cross context VM structure.
+ * @param uLeaf The leaf to get.
+ */
+PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
+{
+ unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
+ if (iEnd)
+ {
+ unsigned iStart = 0;
+ PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
+ for (;;)
+ {
+ unsigned i = iStart + (iEnd - iStart) / 2U;
+ if (uLeaf < paLeaves[i].uLeaf)
+ {
+ if (i <= iStart)
+ return NULL;
+ iEnd = i;
+ }
+ else if (uLeaf > paLeaves[i].uLeaf)
+ {
+ i += 1;
+ if (i >= iEnd)
+ return NULL;
+ iStart = i;
+ }
+ else
+ {
+ if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
+ return &paLeaves[i];
+
+ /* This shouldn't normally happen. But in case the it does due
+ to user configuration overrids or something, just return the
+ first sub-leaf. */
+ AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
+ uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
+ while ( paLeaves[i].uSubLeaf != 0
+ && i > 0
+ && uLeaf == paLeaves[i - 1].uLeaf)
+ i--;
+ return &paLeaves[i];
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+/**
+ * Looks up a CPUID leaf in the CPUID leaf array.
+ *
+ * @returns Pointer to the leaf if found, NULL if not.
+ *
+ * @param pVM The cross context VM structure.
+ * @param uLeaf The leaf to get.
+ * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
+ * isn't.
+ * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
+ */
+PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
+{
+ unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
+ if (iEnd)
+ {
+ unsigned iStart = 0;
+ PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
+ for (;;)
+ {
+ unsigned i = iStart + (iEnd - iStart) / 2U;
+ if (uLeaf < paLeaves[i].uLeaf)
+ {
+ if (i <= iStart)
+ return NULL;
+ iEnd = i;
+ }
+ else if (uLeaf > paLeaves[i].uLeaf)
+ {
+ i += 1;
+ if (i >= iEnd)
+ return NULL;
+ iStart = i;
+ }
+ else
+ {
+ uSubLeaf &= paLeaves[i].fSubLeafMask;
+ if (uSubLeaf == paLeaves[i].uSubLeaf)
+ *pfExactSubLeafHit = true;
+ else
+ {
+ /* Find the right subleaf. We return the last one before
+ uSubLeaf if we don't find an exact match. */
+ if (uSubLeaf < paLeaves[i].uSubLeaf)
+ while ( i > 0
+ && uLeaf == paLeaves[i - 1].uLeaf
+ && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
+ i--;
+ else
+ while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
+ && uLeaf == paLeaves[i + 1].uLeaf
+ && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
+ i++;
+ *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
+ }
+ return &paLeaves[i];
+ }
+ }
+ }
+
+ *pfExactSubLeafHit = false;
+ return NULL;
+}
+
+
+/**
+ * Gets a CPUID leaf.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uLeaf The CPUID leaf to get.
+ * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
+ * @param f64BitMode A tristate indicate if the caller is in 64-bit mode or
+ * not: 1=true, 0=false, 1=whatever. This affect how the
+ * X86_CPUID_EXT_FEATURE_EDX_SYSCALL flag is returned on
+ * Intel CPUs, where it's only returned in 64-bit mode.
+ * @param pEax Where to store the EAX value.
+ * @param pEbx Where to store the EBX value.
+ * @param pEcx Where to store the ECX value.
+ * @param pEdx Where to store the EDX value.
+ */
+VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, int f64BitMode,
+ uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
+{
+ bool fExactSubLeafHit;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
+ if (pLeaf)
+ {
+ AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
+ if (fExactSubLeafHit)
+ {
+ *pEax = pLeaf->uEax;
+ *pEbx = pLeaf->uEbx;
+ *pEcx = pLeaf->uEcx;
+ *pEdx = pLeaf->uEdx;
+
+ /*
+ * Deal with CPU specific information.
+ */
+ if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
+ | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
+ | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
+ {
+ if (uLeaf == 1)
+ {
+ /* EBX: Bits 31-24: Initial APIC ID. */
+ Assert(pVCpu->idCpu <= 255);
+ AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
+ *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
+
+ /* EDX: Bit 9: AND with APICBASE.EN. */
+ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
+ *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
+
+ /* ECX: Bit 27: CR4.OSXSAVE mirror. */
+ *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
+ | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
+ }
+ else if (uLeaf == 0xb)
+ {
+ /* EDX: Initial extended APIC ID. */
+ AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
+ *pEdx = pVCpu->idCpu;
+ Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
+ }
+ else if (uLeaf == UINT32_C(0x8000001e))
+ {
+ /* EAX: Initial extended APIC ID. */
+ AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
+ *pEax = pVCpu->idCpu;
+ Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
+ }
+ else if (uLeaf == UINT32_C(0x80000001))
+ {
+ /* EDX: Bit 9: AND with APICBASE.EN. */
+ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
+ *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
+ Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
+ }
+ else
+ AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
+ }
+
+ /* Intel CPUs supresses the SYSCALL bit when not executing in 64-bit mode: */
+ if ( uLeaf == UINT32_C(0x80000001)
+ && f64BitMode == false
+ && (*pEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
+ && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
+ || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA /*?*/
+ || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_SHANGHAI /*?*/ ) )
+ *pEdx &= ~X86_CPUID_EXT_FEATURE_EDX_SYSCALL;
+
+ }
+ /*
+ * Out of range sub-leaves aren't quite as easy and pretty as we emulate
+ * them here, but we do the best we can here...
+ */
+ else
+ {
+ *pEax = *pEbx = *pEcx = *pEdx = 0;
+ if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
+ {
+ *pEcx = uSubLeaf & 0xff;
+ *pEdx = pVCpu->idCpu;
+ }
+ }
+ }
+ else
+ {
+ /*
+ * Different CPUs have different ways of dealing with unknown CPUID leaves.
+ */
+ switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
+ {
+ default:
+ AssertFailed();
+ RT_FALL_THRU();
+ case CPUMUNKNOWNCPUID_DEFAULTS:
+ case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
+ case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
+ *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
+ *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
+ *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
+ *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
+ break;
+ case CPUMUNKNOWNCPUID_PASSTHRU:
+ *pEax = uLeaf;
+ *pEbx = 0;
+ *pEcx = uSubLeaf;
+ *pEdx = 0;
+ break;
+ }
+ }
+ Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
+}
+
+
+/**
+ * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
+ * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
+ *
+ * @returns Previous value.
+ * @param pVCpu The cross context virtual CPU structure to make the
+ * change on. Usually the calling EMT.
+ * @param fVisible Whether to make it visible (true) or hide it (false).
+ *
+ * @remarks This is "VMMDECL" so that it still links with
+ * the old APIC code which is in VBoxDD2 and not in
+ * the VMM module.
+ */
+VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
+{
+ bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
+ pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
+ return fOld;
+}
+
+
+/**
+ * Gets the host CPU vendor.
+ *
+ * @returns CPU vendor.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
+{
+ return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
+}
+
+
+/**
+ * Gets the host CPU microarchitecture.
+ *
+ * @returns CPU microarchitecture.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM)
+{
+ return pVM->cpum.s.HostFeatures.enmMicroarch;
+}
+
+
+/**
+ * Gets the guest CPU vendor.
+ *
+ * @returns CPU vendor.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
+{
+ return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
+}
+
+
+/**
+ * Gets the guest CPU microarchitecture.
+ *
+ * @returns CPU microarchitecture.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM)
+{
+ return pVM->cpum.s.GuestFeatures.enmMicroarch;
+}
+
+
+/**
+ * Gets the maximum number of physical and linear address bits supported by the
+ * guest.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pcPhysAddrWidth Where to store the physical address width.
+ * @param pcLinearAddrWidth Where to store the linear address width.
+ */
+VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth)
+{
+ AssertPtr(pVM);
+ AssertReturnVoid(pcPhysAddrWidth);
+ AssertReturnVoid(pcLinearAddrWidth);
+ *pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
+ *pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth;
+}
+
+
+VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0)
+{
+ pVCpu->cpum.s.Guest.dr[0] = uDr0;
+ return CPUMRecalcHyperDRx(pVCpu, 0);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1)
+{
+ pVCpu->cpum.s.Guest.dr[1] = uDr1;
+ return CPUMRecalcHyperDRx(pVCpu, 1);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2)
+{
+ pVCpu->cpum.s.Guest.dr[2] = uDr2;
+ return CPUMRecalcHyperDRx(pVCpu, 2);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3)
+{
+ pVCpu->cpum.s.Guest.dr[3] = uDr3;
+ return CPUMRecalcHyperDRx(pVCpu, 3);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
+{
+ pVCpu->cpum.s.Guest.dr[6] = uDr6;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
+ return VINF_SUCCESS; /* No need to recalc. */
+}
+
+
+VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7)
+{
+ pVCpu->cpum.s.Guest.dr[7] = uDr7;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
+ return CPUMRecalcHyperDRx(pVCpu, 7);
+}
+
+
+VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value)
+{
+ AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
+ /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
+ if (iReg == 4 || iReg == 5)
+ iReg += 2;
+ pVCpu->cpum.s.Guest.dr[iReg] = Value;
+ return CPUMRecalcHyperDRx(pVCpu, iReg);
+}
+
+
+/**
+ * Recalculates the hypervisor DRx register values based on current guest
+ * registers and DBGF breakpoints, updating changed registers depending on the
+ * context.
+ *
+ * This is called whenever a guest DRx register is modified (any context) and
+ * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
+ *
+ * In raw-mode context this function will reload any (hyper) DRx registers which
+ * comes out with a different value. It may also have to save the host debug
+ * registers if that haven't been done already. In this context though, we'll
+ * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
+ * are only important when breakpoints are actually enabled.
+ *
+ * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
+ * reloaded by the HM code if it changes. Further more, we will only use the
+ * combined register set when the VBox debugger is actually using hardware BPs,
+ * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
+ * concern us here).
+ *
+ * In ring-3 we won't be loading anything, so well calculate hypervisor values
+ * all the time.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iGstReg The guest debug register number that was modified.
+ * UINT8_MAX if not guest register.
+ */
+VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+#ifndef IN_RING0
+ RT_NOREF_PV(iGstReg);
+#endif
+
+ /*
+ * Compare the DR7s first.
+ *
+ * We only care about the enabled flags. GD is virtualized when we
+ * dispatch the #DB, we never enable it. The DBGF DR7 value is will
+ * always have the LE and GE bits set, so no need to check and disable
+ * stuff if they're cleared like we have to for the guest DR7.
+ */
+ RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
+ /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
+ if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
+ uGstDr7 = 0;
+ else if (!(uGstDr7 & X86_DR7_LE))
+ uGstDr7 &= ~X86_DR7_LE_ALL;
+ else if (!(uGstDr7 & X86_DR7_GE))
+ uGstDr7 &= ~X86_DR7_GE_ALL;
+
+ const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
+ if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
+ {
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+
+ /*
+ * Ok, something is enabled. Recalc each of the breakpoints, taking
+ * the VM debugger ones of the guest ones. In raw-mode context we will
+ * not allow breakpoints with values inside the hypervisor area.
+ */
+ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
+
+ /* bp 0 */
+ RTGCUINTREG uNewDr0;
+ if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
+ uNewDr0 = DBGFBpGetDR0(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
+ {
+ uNewDr0 = CPUMGetGuestDR0(pVCpu);
+ uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
+ }
+ else
+ uNewDr0 = 0;
+
+ /* bp 1 */
+ RTGCUINTREG uNewDr1;
+ if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
+ uNewDr1 = DBGFBpGetDR1(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
+ {
+ uNewDr1 = CPUMGetGuestDR1(pVCpu);
+ uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
+ }
+ else
+ uNewDr1 = 0;
+
+ /* bp 2 */
+ RTGCUINTREG uNewDr2;
+ if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
+ uNewDr2 = DBGFBpGetDR2(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
+ {
+ uNewDr2 = CPUMGetGuestDR2(pVCpu);
+ uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
+ }
+ else
+ uNewDr2 = 0;
+
+ /* bp 3 */
+ RTGCUINTREG uNewDr3;
+ if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
+ uNewDr3 = DBGFBpGetDR3(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
+ {
+ uNewDr3 = CPUMGetGuestDR3(pVCpu);
+ uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
+ }
+ else
+ uNewDr3 = 0;
+
+ /*
+ * Apply the updates.
+ */
+ pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
+ if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
+ CPUMSetHyperDR3(pVCpu, uNewDr3);
+ if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
+ CPUMSetHyperDR2(pVCpu, uNewDr2);
+ if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
+ CPUMSetHyperDR1(pVCpu, uNewDr1);
+ if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
+ CPUMSetHyperDR0(pVCpu, uNewDr0);
+ if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
+ CPUMSetHyperDR7(pVCpu, uNewDr7);
+ }
+#ifdef IN_RING0
+ else if (CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ /*
+ * Reload the register that was modified. Normally this won't happen
+ * as we won't intercept DRx writes when not having the hyper debug
+ * state loaded, but in case we do for some reason we'll simply deal
+ * with it.
+ */
+ switch (iGstReg)
+ {
+ case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
+ case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
+ case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
+ case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
+ default:
+ AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
+ }
+ }
+#endif
+ else
+ {
+ /*
+ * No active debug state any more. In raw-mode this means we have to
+ * make sure DR7 has everything disabled now, if we armed it already.
+ * In ring-0 we might end up here when just single stepping.
+ */
+#ifdef IN_RING0
+ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
+ {
+ if (pVCpu->cpum.s.Hyper.dr[0])
+ ASMSetDR0(0);
+ if (pVCpu->cpum.s.Hyper.dr[1])
+ ASMSetDR1(0);
+ if (pVCpu->cpum.s.Hyper.dr[2])
+ ASMSetDR2(0);
+ if (pVCpu->cpum.s.Hyper.dr[3])
+ ASMSetDR3(0);
+ pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
+ }
+#endif
+ pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
+
+ /* Clear all the registers. */
+ pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
+ pVCpu->cpum.s.Hyper.dr[3] = 0;
+ pVCpu->cpum.s.Hyper.dr[2] = 0;
+ pVCpu->cpum.s.Hyper.dr[1] = 0;
+ pVCpu->cpum.s.Hyper.dr[0] = 0;
+
+ }
+ Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
+ pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
+ pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
+ pVCpu->cpum.s.Hyper.dr[7]));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Set the guest XCR0 register.
+ *
+ * Will load additional state if the FPU state is already loaded (in ring-0 &
+ * raw-mode context).
+ *
+ * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
+ * value.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uNewValue The new value.
+ * @thread EMT(pVCpu)
+ */
+VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
+ if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
+ /* The X87 bit cannot be cleared. */
+ && (uNewValue & XSAVE_C_X87)
+ /* AVX requires SSE. */
+ && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
+ /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
+ && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
+ || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
+ == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
+ )
+ {
+ pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
+
+ /* If more state components are enabled, we need to take care to load
+ them if the FPU/SSE state is already loaded. May otherwise leak
+ host state to the guest. */
+ uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
+ if (fNewComponents)
+ {
+#ifdef IN_RING0
+ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
+ {
+ if (pVCpu->cpum.s.Guest.fXStateMask != 0)
+ /* Adding more components. */
+ ASMXRstor(&pVCpu->cpum.s.Guest.XState, fNewComponents);
+ else
+ {
+ /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
+ pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
+ if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
+ ASMXRstor(&pVCpu->cpum.s.Guest.XState, uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
+ }
+ }
+#endif
+ pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
+ }
+ return VINF_SUCCESS;
+ }
+ return VERR_CPUM_RAISE_GP_0;
+}
+
+
+/**
+ * Tests if the guest has No-Execute Page Protection Enabled (NXE).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
+}
+
+
+/**
+ * Tests if the guest has the Page Size Extension enabled (PSE).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
+ return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
+}
+
+
+/**
+ * Tests if the guest has the paging enabled (PG).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
+}
+
+
+/**
+ * Tests if the guest has the paging enabled (PG).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
+}
+
+
+/**
+ * Tests if the guest is running in real mode or not.
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
+}
+
+
+/**
+ * Tests if the guest is running in real or virtual 8086 mode.
+ *
+ * @returns @c true if it is, @c false if not.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
+ return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
+ || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
+}
+
+
+/**
+ * Tests if the guest is running in protected or not.
+ *
+ * @returns true if in protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
+}
+
+
+/**
+ * Tests if the guest is running in paged protected or not.
+ *
+ * @returns true if in paged protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
+}
+
+
+/**
+ * Tests if the guest is running in long mode or not.
+ *
+ * @returns true if in long mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
+}
+
+
+/**
+ * Tests if the guest is running in PAE mode or not.
+ *
+ * @returns true if in PAE mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
+ /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
+ than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
+ return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
+ && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
+ && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
+}
+
+
+/**
+ * Tests if the guest is running in 64 bits mode or not.
+ *
+ * @returns true if in 64 bits protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ if (!CPUMIsGuestInLongMode(pVCpu))
+ return false;
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
+}
+
+
+/**
+ * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
+ * registers.
+ *
+ * @returns true if in 64 bits protected mode, otherwise false.
+ * @param pCtx Pointer to the current guest CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
+{
+ return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
+}
+
+
+/**
+ * Sets the specified changed flags (CPUM_CHANGED_*).
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param fChangedAdd The changed flags to add.
+ */
+VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
+{
+ pVCpu->cpum.s.fChanged |= fChangedAdd;
+}
+
+
+/**
+ * Checks if the CPU supports the XSAVE and XRSTOR instruction.
+ *
+ * @returns true if supported.
+ * @returns false if not supported.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
+{
+ return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
+}
+
+
+/**
+ * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
+ * @returns true if used.
+ * @returns false if not used.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
+{
+ return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
+}
+
+
+/**
+ * Checks if the host OS uses the SYSCALL / SYSRET instructions.
+ * @returns true if used.
+ * @returns false if not used.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
+{
+ return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
+}
+
+
+/**
+ * Checks if we activated the FPU/XMM state of the guest OS.
+ *
+ * Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to
+ * the next time we'll be executing guest code, so it may return true for
+ * 64-on-32 when we still haven't actually loaded the FPU status, just scheduled
+ * it to be loaded the next time we go thru the world switcher
+ * (CPUM_SYNC_FPU_STATE).
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
+{
+ bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
+ AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
+ return fRet;
+}
+
+
+/**
+ * Checks if we've really loaded the FPU/XMM state of the guest OS.
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
+{
+ bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
+ AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
+ return fRet;
+}
+
+
+/**
+ * Checks if we saved the FPU/XMM state of the host OS.
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
+}
+
+
+/**
+ * Checks if the guest debug state is active.
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
+}
+
+
+/**
+ * Checks if the hyper debug state is active.
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
+}
+
+
+/**
+ * Mark the guest's debug state as inactive.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @todo This API doesn't make sense any more.
+ */
+VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
+{
+ Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
+ NOREF(pVCpu);
+}
+
+
+/**
+ * Get the current privilege level of the guest.
+ *
+ * @returns CPL
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
+{
+ /*
+ * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
+ *
+ * Note! We used to check CS.DPL here, assuming it was always equal to
+ * CPL even if a conforming segment was loaded. But this turned out to
+ * only apply to older AMD-V. With VT-x we had an ACP2 regression
+ * during install after a far call to ring 2 with VT-x. Then on newer
+ * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
+ * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
+ *
+ * So, forget CS.DPL, always use SS.DPL.
+ *
+ * Note! The SS RPL is always equal to the CPL, while the CS RPL
+ * isn't necessarily equal if the segment is conforming.
+ * See section 4.11.1 in the AMD manual.
+ *
+ * Update: Where the heck does it say CS.RPL can differ from CPL other than
+ * right after real->prot mode switch and when in V8086 mode? That
+ * section says the RPL specified in a direct transfere (call, jmp,
+ * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
+ * it would be impossible for an exception handle or the iret
+ * instruction to figure out whether SS:ESP are part of the frame
+ * or not. VBox or qemu bug must've lead to this misconception.
+ *
+ * Update2: On an AMD bulldozer system here, I've no trouble loading a null
+ * selector into SS with an RPL other than the CPL when CPL != 3 and
+ * we're in 64-bit mode. The intel dev box doesn't allow this, on
+ * RPL = CPL. Weird.
+ */
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
+ uint32_t uCpl;
+ if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
+ {
+ if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
+ uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
+ else
+ uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
+ }
+ else
+ uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
+ }
+ else
+ uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
+ return uCpl;
+}
+
+
+/**
+ * Gets the current guest CPU mode.
+ *
+ * If paging mode is what you need, check out PGMGetGuestMode().
+ *
+ * @returns The CPU mode.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
+ CPUMMODE enmMode;
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ enmMode = CPUMMODE_REAL;
+ else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ enmMode = CPUMMODE_PROTECTED;
+ else
+ enmMode = CPUMMODE_LONG;
+
+ return enmMode;
+}
+
+
+/**
+ * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
+ *
+ * @returns 16, 32 or 64.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
+
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ return 16;
+
+ if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
+ return 16;
+ }
+
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
+ && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ return 64;
+
+ if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
+ return 32;
+
+ return 16;
+}
+
+
+VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
+
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ return DISCPUMODE_16BIT;
+
+ if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
+ return DISCPUMODE_16BIT;
+ }
+
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
+ && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ return DISCPUMODE_64BIT;
+
+ if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
+ return DISCPUMODE_32BIT;
+
+ return DISCPUMODE_16BIT;
+}
+
+
+/**
+ * Gets the guest MXCSR_MASK value.
+ *
+ * This does not access the x87 state, but the value we determined at VM
+ * initialization.
+ *
+ * @returns MXCSR mask.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
+{
+ return pVM->cpum.s.GuestInfo.fMxCsrMask;
+}
+
+
+/**
+ * Returns whether the guest has physical interrupts enabled.
+ *
+ * @returns @c true if interrupts are enabled, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Warning! This function does -not- take into account the global-interrupt
+ * flag (GIF).
+ */
+VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
+{
+ switch (CPUMGetGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
+ {
+ case CPUMHWVIRT_NONE:
+ default:
+ return pVCpu->cpum.s.Guest.eflags.Bits.u1IF;
+ case CPUMHWVIRT_VMX:
+ return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest);
+ case CPUMHWVIRT_SVM:
+ return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
+ }
+}
+
+
+/**
+ * Returns whether the nested-guest has virtual interrupts enabled.
+ *
+ * @returns @c true if interrupts are enabled, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Warning! This function does -not- take into account the global-interrupt
+ * flag (GIF).
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ Assert(CPUMIsGuestInNestedHwvirtMode(pCtx));
+
+ if (CPUMIsGuestInVmxNonRootMode(pCtx))
+ return CPUMIsGuestVmxVirtIntrEnabled(pCtx);
+
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+ return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
+}
+
+
+/**
+ * Calculates the interruptiblity of the guest.
+ *
+ * @returns Interruptibility level.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
+{
+#if 1
+ /* Global-interrupt flag blocks pretty much everything we care about here. */
+ if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
+ {
+ /*
+ * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
+ * it directly here. If and how EFLAGS are used depends on the context (nested-guest
+ * or raw-mode). Hence we use the function below which handles the details.
+ */
+ if ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_ALL_MASK)
+ || ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI)
+ && pVCpu->cpum.s.Guest.uRipInhibitInt != pVCpu->cpum.s.Guest.rip))
+ {
+ /** @todo OPT: this next call should be inlined! */
+ if (CPUMIsGuestPhysIntrEnabled(pVCpu))
+ {
+ /** @todo OPT: type this out as it repeats tests. */
+ if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
+ || CPUMIsGuestVirtIntrEnabled(pVCpu))
+ return CPUMINTERRUPTIBILITY_UNRESTRAINED;
+
+ /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
+ return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
+ }
+ return CPUMINTERRUPTIBILITY_INT_DISABLED;
+ }
+
+ /*
+ * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
+ * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
+ * However, there is some uncertainity regarding the converse, i.e. whether
+ * NMI-blocking until IRET blocks delivery of physical interrupts.
+ *
+ * See Intel spec. 25.4.1 "Event Blocking".
+ */
+ /** @todo r=bird: The above comment mixes up VMX root-mode and non-root. Section
+ * 25.4.1 is only applicable to VMX non-root mode. In root mode /
+ * non-VMX mode, I have not see any evidence in the intel manuals that
+ * NMIs are not blocked when in an interrupt shadow. Section "6.7
+ * NONMASKABLE INTERRUPT (NMI)" in SDM 3A seems pretty clear to me.
+ */
+ if (!(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI))
+ return CPUMINTERRUPTIBILITY_INT_INHIBITED;
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+#else
+ if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
+ {
+ if (pVCpu->cpum.s.Guest.hwvirt.fGif)
+ {
+ if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
+ return CPUMINTERRUPTIBILITY_UNRESTRAINED;
+
+ /** @todo does blocking NMIs mean interrupts are also inhibited? */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ return CPUMINTERRUPTIBILITY_INT_INHIBITED;
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ }
+ AssertFailed();
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+ }
+ else
+ {
+ if (pVCpu->cpum.s.Guest.hwvirt.fGif)
+ {
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ return CPUMINTERRUPTIBILITY_INT_DISABLED;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+ }
+#endif
+}
+
+
+/**
+ * Checks whether the SVM nested-guest has physical interrupts enabled.
+ *
+ * @returns true if interrupts are enabled, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ *
+ * @remarks This does -not- take into account the global-interrupt flag.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+ /** @todo Optimization: Avoid this function call and use a pointer to the
+ * relevant eflags instead (setup during VMRUN instruction emulation). */
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+
+ X86EFLAGS fEFlags;
+ if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
+ fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
+ else
+ fEFlags.u = pCtx->eflags.u;
+
+ return fEFlags.Bits.u1IF;
+}
+
+
+/**
+ * Checks whether the SVM nested-guest is in a state to receive virtual (setup
+ * for injection by VMRUN instruction) interrupts.
+ *
+ * @returns VBox status code.
+ * @retval true if it's ready, false otherwise.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+ RT_NOREF(pVCpu);
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+
+ PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.Vmcb.ctrl;
+ PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
+ Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
+ if ( !pVmcbIntCtrl->n.u1IgnoreTPR
+ && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
+ return false;
+
+ return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
+}
+
+
+/**
+ * Gets the pending SVM nested-guest interruptvector.
+ *
+ * @returns The nested-guest interrupt to inject.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
+{
+ return pCtx->hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VIntrVector;
+}
+
+
+/**
+ * Restores the host-state from the host-state save area as part of a \#VMEXIT.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx)
+{
+ /*
+ * Reload the guest's "host state".
+ */
+ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
+ pCtx->es = pHostState->es;
+ pCtx->cs = pHostState->cs;
+ pCtx->ss = pHostState->ss;
+ pCtx->ds = pHostState->ds;
+ pCtx->gdtr = pHostState->gdtr;
+ pCtx->idtr = pHostState->idtr;
+ CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
+ CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
+ pCtx->cr3 = pHostState->uCr3;
+ CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
+ pCtx->rflags.u = pHostState->rflags.u;
+ pCtx->rflags.Bits.u1VM = 0;
+ pCtx->rip = pHostState->uRip;
+ pCtx->rsp = pHostState->uRsp;
+ pCtx->rax = pHostState->uRax;
+ pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
+ pCtx->dr[7] |= X86_DR7_RA1_MASK;
+ Assert(pCtx->ss.Attr.n.u2Dpl == 0);
+
+ /** @todo if RIP is not canonical or outside the CS segment limit, we need to
+ * raise \#GP(0) in the guest. */
+
+ /** @todo check the loaded host-state for consistency. Figure out what
+ * exactly this involves? */
+}
+
+
+/**
+ * Saves the host-state to the host-state save area as part of a VMRUN.
+ *
+ * @param pCtx The guest-CPU context.
+ * @param cbInstr The length of the VMRUN instruction in bytes.
+ */
+VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
+{
+ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
+ pHostState->es = pCtx->es;
+ pHostState->cs = pCtx->cs;
+ pHostState->ss = pCtx->ss;
+ pHostState->ds = pCtx->ds;
+ pHostState->gdtr = pCtx->gdtr;
+ pHostState->idtr = pCtx->idtr;
+ pHostState->uEferMsr = pCtx->msrEFER;
+ pHostState->uCr0 = pCtx->cr0;
+ pHostState->uCr3 = pCtx->cr3;
+ pHostState->uCr4 = pCtx->cr4;
+ pHostState->rflags.u = pCtx->rflags.u;
+ pHostState->uRip = pCtx->rip + cbInstr;
+ pHostState->uRsp = pCtx->rsp;
+ pHostState->uRax = pCtx->rax;
+}
+
+
+/**
+ * Applies the TSC offset of a nested-guest if any and returns the TSC value for the
+ * nested-guest.
+ *
+ * @returns The TSC offset after applying any nested-guest TSC offset.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uTscValue The guest TSC.
+ *
+ * @sa CPUMRemoveNestedGuestTscOffset.
+ */
+VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ if (CPUMIsGuestInVmxNonRootMode(pCtx))
+ {
+ if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
+ return uTscValue + pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
+ return uTscValue;
+ }
+
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ uint64_t offTsc;
+ if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
+ offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
+ return uTscValue + offTsc;
+ }
+ return uTscValue;
+}
+
+
+/**
+ * Removes the TSC offset of a nested-guest if any and returns the TSC value for the
+ * guest.
+ *
+ * @returns The TSC offset after removing any nested-guest TSC offset.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uTscValue The nested-guest TSC.
+ *
+ * @sa CPUMApplyNestedGuestTscOffset.
+ */
+VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ if (CPUMIsGuestInVmxNonRootMode(pCtx))
+ {
+ if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
+ return uTscValue - pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
+ return uTscValue;
+ }
+
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ uint64_t offTsc;
+ if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
+ offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
+ return uTscValue - offTsc;
+ }
+ return uTscValue;
+}
+
+
+/**
+ * Used to dynamically imports state residing in NEM or HM.
+ *
+ * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param fExtrnImport The fields to import.
+ * @thread EMT(pVCpu)
+ */
+VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport)
+{
+ VMCPU_ASSERT_EMT(pVCpu);
+ if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
+ {
+ switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
+ {
+ case CPUMCTX_EXTRN_KEEPER_NEM:
+ {
+ int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
+ Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
+ return rc;
+ }
+
+ case CPUMCTX_EXTRN_KEEPER_HM:
+ {
+#ifdef IN_RING0
+ int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
+ Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
+ return rc;
+#else
+ AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
+ return VINF_SUCCESS;
+#endif
+ }
+ default:
+ AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets valid CR4 bits for the guest.
+ *
+ * @returns Valid CR4 bits.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
+{
+ PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
+ uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
+ | X86_CR4_TSD | X86_CR4_DE
+ | X86_CR4_MCE | X86_CR4_PCE;
+ if (pGuestFeatures->fPae)
+ fMask |= X86_CR4_PAE;
+ if (pGuestFeatures->fPge)
+ fMask |= X86_CR4_PGE;
+ if (pGuestFeatures->fPse)
+ fMask |= X86_CR4_PSE;
+ if (pGuestFeatures->fFxSaveRstor)
+ fMask |= X86_CR4_OSFXSR;
+ if (pGuestFeatures->fVmx)
+ fMask |= X86_CR4_VMXE;
+ if (pGuestFeatures->fXSaveRstor)
+ fMask |= X86_CR4_OSXSAVE;
+ if (pGuestFeatures->fPcid)
+ fMask |= X86_CR4_PCIDE;
+ if (pGuestFeatures->fFsGsBase)
+ fMask |= X86_CR4_FSGSBASE;
+ if (pGuestFeatures->fSse)
+ fMask |= X86_CR4_OSXMMEEXCPT;
+ return fMask;
+}
+
+
+/**
+ * Sets the PAE PDPEs for the guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param paPaePdpes The PAE PDPEs to set.
+ */
+VMM_INT_DECL(void) CPUMSetGuestPaePdpes(PVMCPU pVCpu, PCX86PDPE paPaePdpes)
+{
+ Assert(paPaePdpes);
+ for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
+ pVCpu->cpum.s.Guest.aPaePdpes[i].u = paPaePdpes[i].u;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
+}
+
+
+/**
+ * Gets the PAE PDPTEs for the guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param paPaePdpes Where to store the PAE PDPEs.
+ */
+VMM_INT_DECL(void) CPUMGetGuestPaePdpes(PVMCPU pVCpu, PX86PDPE paPaePdpes)
+{
+ Assert(paPaePdpes);
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
+ for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
+ paPaePdpes[i].u = pVCpu->cpum.s.Guest.aPaePdpes[i].u;
+}
+
+
+/**
+ * Starts a VMX-preemption timer to expire as specified by the nested hypervisor.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param uTimer The VMCS preemption timer value.
+ * @param cShift The VMX-preemption timer shift (usually based on guest
+ * VMX MSR rate).
+ * @param pu64EntryTick Where to store the current tick when the timer is
+ * programmed.
+ * @thread EMT(pVCpu)
+ */
+VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick)
+{
+ Assert(uTimer);
+ Assert(cShift <= 31);
+ Assert(pu64EntryTick);
+ VMCPU_ASSERT_EMT(pVCpu);
+ uint64_t const cTicksToNext = uTimer << cShift;
+ return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick);
+}
+
+
+/**
+ * Stops the VMX-preemption timer from firing.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @thread EMT.
+ *
+ * @remarks This can be called during VM reset, so we cannot assume it will be on
+ * the EMT corresponding to @c pVCpu.
+ */
+VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu)
+{
+ /*
+ * CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted().
+ * However, we still get called during CPUMR3Init() and hence we need to check if we have
+ * a valid timer object before trying to stop it.
+ */
+ int rc;
+ TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer;
+ if (hTimer != NIL_TMTIMERHANDLE)
+ {
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ rc = TMTimerLock(pVM, hTimer, VERR_IGNORED);
+ if (rc == VINF_SUCCESS)
+ {
+ if (TMTimerIsActive(pVM, hTimer))
+ TMTimerStop(pVM, hTimer);
+ TMTimerUnlock(pVM, hTimer);
+ }
+ }
+ else
+ rc = VERR_NOT_FOUND;
+ return rc;
+}
+
+
+/**
+ * Gets the read and write permission bits for an MSR in an MSR bitmap.
+ *
+ * @returns VMXMSRPM_XXX - the MSR permission.
+ * @param pvMsrBitmap Pointer to the MSR bitmap.
+ * @param idMsr The MSR to get permissions for.
+ *
+ * @sa hmR0VmxSetMsrPermission.
+ */
+VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr)
+{
+ AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
+
+ uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
+
+ /*
+ * MSR Layout:
+ * Byte index MSR range Interpreted as
+ * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
+ * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
+ * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
+ * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
+ *
+ * A bit corresponding to an MSR within the above range causes a VM-exit
+ * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
+ * the MSR range, it always cause a VM-exit.
+ *
+ * See Intel spec. 24.6.9 "MSR-Bitmap Address".
+ */
+ uint32_t const offBitmapRead = 0;
+ uint32_t const offBitmapWrite = 0x800;
+ uint32_t offMsr;
+ uint32_t iBit;
+ if (idMsr <= UINT32_C(0x00001fff))
+ {
+ offMsr = 0;
+ iBit = idMsr;
+ }
+ else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
+ {
+ offMsr = 0x400;
+ iBit = idMsr - UINT32_C(0xc0000000);
+ }
+ else
+ {
+ LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr));
+ return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR;
+ }
+
+ /*
+ * Get the MSR read permissions.
+ */
+ uint32_t fRet;
+ uint32_t const offMsrRead = offBitmapRead + offMsr;
+ Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
+ if (ASMBitTest(pbMsrBitmap, (offMsrRead << 3) + iBit))
+ fRet = VMXMSRPM_EXIT_RD;
+ else
+ fRet = VMXMSRPM_ALLOW_RD;
+
+ /*
+ * Get the MSR write permissions.
+ */
+ uint32_t const offMsrWrite = offBitmapWrite + offMsr;
+ Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
+ if (ASMBitTest(pbMsrBitmap, (offMsrWrite << 3) + iBit))
+ fRet |= VMXMSRPM_EXIT_WR;
+ else
+ fRet |= VMXMSRPM_ALLOW_WR;
+
+ Assert(VMXMSRPM_IS_FLAG_VALID(fRet));
+ return fRet;
+}
+
+
+/**
+ * Checks the permission bits for the specified I/O port from the given I/O bitmap
+ * to see if causes a VM-exit.
+ *
+ * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise.
+ * @param pbIoBitmap Pointer to I/O bitmap.
+ * @param uPort The I/O port being accessed.
+ * @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes).
+ */
+static bool cpumGetVmxIoBitmapPermission(uint8_t const *pbIoBitmap, uint16_t uPort, uint8_t cbAccess)
+{
+ Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
+
+ /*
+ * If the I/O port access wraps around the 16-bit port I/O space, we must cause a
+ * VM-exit.
+ *
+ * Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not
+ * constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes
+ * from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any
+ * access to -both- ports 0xffff and port 0 is a wrap around.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ uint32_t const uPortLast = uPort + cbAccess;
+ if (uPortLast > 0x10000)
+ return true;
+
+ /*
+ * If any bit corresponding to the I/O access is set, we must cause a VM-exit.
+ */
+ uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */
+ uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */
+ Assert(idxPermBit < 8);
+ static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */
+ uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */
+
+ /* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */
+ RTUINT16U uPerm;
+ uPerm.s.Lo = pbIoBitmap[offPerm];
+ if (idxPermBit + cbAccess > 8)
+ uPerm.s.Hi = pbIoBitmap[offPerm + 1];
+ else
+ uPerm.s.Hi = 0;
+
+ /* If any bit for the access is 1, we must cause a VM-exit. */
+ if (uPerm.u & fMask)
+ return true;
+
+ return false;
+}
+
+
+/**
+ * Returns whether the given VMCS field is valid and supported for the guest.
+ *
+ * @param pVM The cross context VM structure.
+ * @param u64VmcsField The VMCS field.
+ *
+ * @remarks This takes into account the CPU features exposed to the guest.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField)
+{
+ uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField);
+ uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField);
+ if (!uFieldEncHi)
+ { /* likely */ }
+ else
+ return false;
+
+ PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures;
+ switch (uFieldEncLo)
+ {
+ /*
+ * 16-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
+ case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
+ case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
+
+ /* Guest-state fields. */
+ case VMX_VMCS16_GUEST_ES_SEL:
+ case VMX_VMCS16_GUEST_CS_SEL:
+ case VMX_VMCS16_GUEST_SS_SEL:
+ case VMX_VMCS16_GUEST_DS_SEL:
+ case VMX_VMCS16_GUEST_FS_SEL:
+ case VMX_VMCS16_GUEST_GS_SEL:
+ case VMX_VMCS16_GUEST_LDTR_SEL:
+ case VMX_VMCS16_GUEST_TR_SEL: return true;
+ case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
+ case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
+
+ /* Host-state fields. */
+ case VMX_VMCS16_HOST_ES_SEL:
+ case VMX_VMCS16_HOST_CS_SEL:
+ case VMX_VMCS16_HOST_SS_SEL:
+ case VMX_VMCS16_HOST_DS_SEL:
+ case VMX_VMCS16_HOST_FS_SEL:
+ case VMX_VMCS16_HOST_GS_SEL:
+ case VMX_VMCS16_HOST_TR_SEL: return true;
+
+ /*
+ * 64-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
+ case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
+ case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
+ case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
+ case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
+ case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
+ case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
+ case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
+ case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
+ case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
+ case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
+ case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
+ case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
+ case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
+ case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
+ case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
+ case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
+ case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
+ case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
+ case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
+ case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
+ case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
+ case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
+ case VMX_VMCS64_CTRL_EPTP_FULL:
+ case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
+ case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
+ case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
+ case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
+ case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
+ {
+ PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0];
+ uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc;
+ return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
+ }
+ case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
+ case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
+ case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL:
+ case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
+ case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
+ case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
+ case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
+ case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
+ case VMX_VMCS64_CTRL_PROC_EXEC3_FULL:
+ case VMX_VMCS64_CTRL_PROC_EXEC3_HIGH: return pFeat->fVmxTertiaryExecCtls;
+
+ /* Read-only data fields. */
+ case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
+ case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
+
+ /* Guest-state fields. */
+ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
+ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
+ case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
+ case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
+ case VMX_VMCS64_GUEST_PAT_FULL:
+ case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
+ case VMX_VMCS64_GUEST_EFER_FULL:
+ case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
+ case VMX_VMCS64_GUEST_PDPTE0_FULL:
+ case VMX_VMCS64_GUEST_PDPTE0_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE1_FULL:
+ case VMX_VMCS64_GUEST_PDPTE1_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE2_FULL:
+ case VMX_VMCS64_GUEST_PDPTE2_HIGH:
+ case VMX_VMCS64_GUEST_PDPTE3_FULL:
+ case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
+
+ /* Host-state fields. */
+ case VMX_VMCS64_HOST_PAT_FULL:
+ case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
+ case VMX_VMCS64_HOST_EFER_FULL:
+ case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
+
+ /*
+ * 32-bit fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS32_CTRL_PIN_EXEC:
+ case VMX_VMCS32_CTRL_PROC_EXEC:
+ case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
+ case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
+ case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
+ case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
+ case VMX_VMCS32_CTRL_EXIT:
+ case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
+ case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
+ case VMX_VMCS32_CTRL_ENTRY:
+ case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
+ case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
+ case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
+ case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
+ case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
+ case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
+ case VMX_VMCS32_CTRL_PLE_GAP:
+ case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
+
+ /* Read-only data fields. */
+ case VMX_VMCS32_RO_VM_INSTR_ERROR:
+ case VMX_VMCS32_RO_EXIT_REASON:
+ case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
+ case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
+ case VMX_VMCS32_RO_IDT_VECTORING_INFO:
+ case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
+ case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
+ case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
+
+ /* Guest-state fields. */
+ case VMX_VMCS32_GUEST_ES_LIMIT:
+ case VMX_VMCS32_GUEST_CS_LIMIT:
+ case VMX_VMCS32_GUEST_SS_LIMIT:
+ case VMX_VMCS32_GUEST_DS_LIMIT:
+ case VMX_VMCS32_GUEST_FS_LIMIT:
+ case VMX_VMCS32_GUEST_GS_LIMIT:
+ case VMX_VMCS32_GUEST_LDTR_LIMIT:
+ case VMX_VMCS32_GUEST_TR_LIMIT:
+ case VMX_VMCS32_GUEST_GDTR_LIMIT:
+ case VMX_VMCS32_GUEST_IDTR_LIMIT:
+ case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
+ case VMX_VMCS32_GUEST_INT_STATE:
+ case VMX_VMCS32_GUEST_ACTIVITY_STATE:
+ case VMX_VMCS32_GUEST_SMBASE:
+ case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
+ case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
+
+ /* Host-state fields. */
+ case VMX_VMCS32_HOST_SYSENTER_CS: return true;
+
+ /*
+ * Natural-width fields.
+ */
+ /* Control fields. */
+ case VMX_VMCS_CTRL_CR0_MASK:
+ case VMX_VMCS_CTRL_CR4_MASK:
+ case VMX_VMCS_CTRL_CR0_READ_SHADOW:
+ case VMX_VMCS_CTRL_CR4_READ_SHADOW:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
+ case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
+
+ /* Read-only data fields. */
+ case VMX_VMCS_RO_EXIT_QUALIFICATION:
+ case VMX_VMCS_RO_IO_RCX:
+ case VMX_VMCS_RO_IO_RSI:
+ case VMX_VMCS_RO_IO_RDI:
+ case VMX_VMCS_RO_IO_RIP:
+ case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
+
+ /* Guest-state fields. */
+ case VMX_VMCS_GUEST_CR0:
+ case VMX_VMCS_GUEST_CR3:
+ case VMX_VMCS_GUEST_CR4:
+ case VMX_VMCS_GUEST_ES_BASE:
+ case VMX_VMCS_GUEST_CS_BASE:
+ case VMX_VMCS_GUEST_SS_BASE:
+ case VMX_VMCS_GUEST_DS_BASE:
+ case VMX_VMCS_GUEST_FS_BASE:
+ case VMX_VMCS_GUEST_GS_BASE:
+ case VMX_VMCS_GUEST_LDTR_BASE:
+ case VMX_VMCS_GUEST_TR_BASE:
+ case VMX_VMCS_GUEST_GDTR_BASE:
+ case VMX_VMCS_GUEST_IDTR_BASE:
+ case VMX_VMCS_GUEST_DR7:
+ case VMX_VMCS_GUEST_RSP:
+ case VMX_VMCS_GUEST_RIP:
+ case VMX_VMCS_GUEST_RFLAGS:
+ case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
+ case VMX_VMCS_GUEST_SYSENTER_ESP:
+ case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
+
+ /* Host-state fields. */
+ case VMX_VMCS_HOST_CR0:
+ case VMX_VMCS_HOST_CR3:
+ case VMX_VMCS_HOST_CR4:
+ case VMX_VMCS_HOST_FS_BASE:
+ case VMX_VMCS_HOST_GS_BASE:
+ case VMX_VMCS_HOST_TR_BASE:
+ case VMX_VMCS_HOST_GDTR_BASE:
+ case VMX_VMCS_HOST_IDTR_BASE:
+ case VMX_VMCS_HOST_SYSENTER_ESP:
+ case VMX_VMCS_HOST_SYSENTER_EIP:
+ case VMX_VMCS_HOST_RSP:
+ case VMX_VMCS_HOST_RIP: return true;
+ }
+
+ return false;
+}
+
+
+/**
+ * Checks whether the given I/O access should cause a nested-guest VM-exit.
+ *
+ * @returns @c true if it causes a VM-exit, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param u16Port The I/O port being accessed.
+ * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT))
+ return true;
+
+ if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS))
+ return cpumGetVmxIoBitmapPermission(pCtx->hwvirt.vmx.abIoBitmap, u16Port, cbAccess);
+
+ return false;
+}
+
+
+/**
+ * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit.
+ *
+ * @returns @c true if it causes a VM-exit, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uNewCr3 The CR3 value being written.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3)
+{
+ /*
+ * If the CR3-load exiting control is set and the new CR3 value does not
+ * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
+ *
+ * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
+ */
+ PCCPUMCTX const pCtx = &pVCpu->cpum.s.Guest;
+ if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT))
+ {
+ uint32_t const uCr3TargetCount = pCtx->hwvirt.vmx.Vmcs.u32Cr3TargetCount;
+ Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
+
+ /* If the CR3-target count is 0, cause a VM-exit. */
+ if (uCr3TargetCount == 0)
+ return true;
+
+ /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */
+ AssertCompile(VMX_V_CR3_TARGET_COUNT == 4);
+ if ( uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target0.u
+ && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target1.u
+ && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target2.u
+ && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target3.u)
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a
+ * VM-exit or not.
+ *
+ * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
+ * VMX_EXIT_VMREAD).
+ * @param u64VmcsField The VMCS field.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField)
+{
+ Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest));
+ Assert( uExitReason == VMX_EXIT_VMREAD
+ || uExitReason == VMX_EXIT_VMWRITE);
+
+ /*
+ * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted.
+ */
+ if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING))
+ return true;
+
+ /*
+ * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE
+ * is intercepted. This excludes any reserved bits in the valid parts of the field
+ * encoding (i.e. bit 12).
+ */
+ if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK)
+ return true;
+
+ /*
+ * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not.
+ */
+ uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField);
+ uint8_t const * const pbBitmap = uExitReason == VMX_EXIT_VMREAD
+ ? &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmreadBitmap[0]
+ : &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmwriteBitmap[0];
+ Assert(pbBitmap);
+ Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
+ return ASMBitTest(pbBitmap, (u32VmcsField << 3) + (u32VmcsField & 7));
+}
+
+
+
+/**
+ * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
+ *
+ * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
+ * @param u16Port The IO port being accessed.
+ * @param enmIoType The type of IO access.
+ * @param cbReg The IO operand size in bytes.
+ * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
+ * @param iEffSeg The effective segment number.
+ * @param fRep Whether this is a repeating IO instruction (REP prefix).
+ * @param fStrIo Whether this is a string IO instruction.
+ * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
+ * Optional, can be NULL.
+ */
+VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
+ uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
+ PSVMIOIOEXITINFO pIoExitInfo)
+{
+ Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
+ Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
+
+ /*
+ * The IOPM layout:
+ * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
+ * two 4K pages.
+ *
+ * For IO instructions that access more than a single byte, the permission bits
+ * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
+ *
+ * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
+ * we need 3 extra bits beyond the second 4K page.
+ */
+ static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
+
+ uint16_t const offIopm = u16Port >> 3;
+ uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
+ uint8_t const cShift = u16Port - (offIopm << 3);
+ uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
+
+ uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
+ Assert(pbIopm);
+ pbIopm += offIopm;
+ uint16_t const u16Iopm = *(uint16_t *)pbIopm;
+ if (u16Iopm & fIopmMask)
+ {
+ if (pIoExitInfo)
+ {
+ static const uint32_t s_auIoOpSize[] =
+ { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
+
+ static const uint32_t s_auIoAddrSize[] =
+ { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
+
+ pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
+ pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
+ pIoExitInfo->n.u1Str = fStrIo;
+ pIoExitInfo->n.u1Rep = fRep;
+ pIoExitInfo->n.u3Seg = iEffSeg & 7;
+ pIoExitInfo->n.u1Type = enmIoType;
+ pIoExitInfo->n.u16Port = u16Port;
+ }
+ return true;
+ }
+
+ /** @todo remove later (for debugging as VirtualBox always traps all IO
+ * intercepts). */
+ AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
+ return false;
+}
+
+
+/**
+ * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
+ *
+ * @returns VBox status code.
+ * @param idMsr The MSR being requested.
+ * @param pbOffMsrpm Where to store the byte offset in the MSR permission
+ * bitmap for @a idMsr.
+ * @param puMsrpmBit Where to store the bit offset starting at the byte
+ * returned in @a pbOffMsrpm.
+ */
+VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
+{
+ Assert(pbOffMsrpm);
+ Assert(puMsrpmBit);
+
+ /*
+ * MSRPM Layout:
+ * Byte offset MSR range
+ * 0x000 - 0x7ff 0x00000000 - 0x00001fff
+ * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
+ * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
+ * 0x1800 - 0x1fff Reserved
+ *
+ * Each MSR is represented by 2 permission bits (read and write).
+ */
+ if (idMsr <= 0x00001fff)
+ {
+ /* Pentium-compatible MSRs. */
+ uint32_t const bitoffMsr = idMsr << 1;
+ *pbOffMsrpm = bitoffMsr >> 3;
+ *puMsrpmBit = bitoffMsr & 7;
+ return VINF_SUCCESS;
+ }
+
+ if ( idMsr >= 0xc0000000
+ && idMsr <= 0xc0001fff)
+ {
+ /* AMD Sixth Generation x86 Processor MSRs. */
+ uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
+ *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
+ *puMsrpmBit = bitoffMsr & 7;
+ return VINF_SUCCESS;
+ }
+
+ if ( idMsr >= 0xc0010000
+ && idMsr <= 0xc0011fff)
+ {
+ /* AMD Seventh and Eighth Generation Processor MSRs. */
+ uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
+ *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
+ *puMsrpmBit = bitoffMsr & 7;
+ return VINF_SUCCESS;
+ }
+
+ *pbOffMsrpm = 0;
+ *puMsrpmBit = 0;
+ return VERR_OUT_OF_RANGE;
+}
+
+
+/**
+ * Checks whether the guest is in VMX non-root mode and using EPT paging.
+ *
+ * @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxEptPagingEnabled(PCVMCPUCC pVCpu)
+{
+ return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest);
+}
+
+
+/**
+ * Checks whether the guest is in VMX non-root mode and using EPT paging and the
+ * nested-guest is in PAE mode.
+ *
+ * @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxEptPaePagingEnabled(PCVMCPUCC pVCpu)
+{
+ return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest)
+ && CPUMIsGuestInPAEModeEx(&pVCpu->cpum.s.Guest);
+}
+
+
+/**
+ * Returns the guest-physical address of the APIC-access page when executing a
+ * nested-guest.
+ *
+ * @returns The APIC-access page guest-physical address.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(uint64_t) CPUMGetGuestVmxApicAccessPageAddr(PCVMCPUCC pVCpu)
+{
+ return CPUMGetGuestVmxApicAccessPageAddrEx(&pVCpu->cpum.s.Guest);
+}
+