diff options
Diffstat (limited to 'src/VBox/VMM/VMMAll/PGMAllBth.h')
-rw-r--r-- | src/VBox/VMM/VMMAll/PGMAllBth.h | 5268 |
1 files changed, 5268 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/PGMAllBth.h b/src/VBox/VMM/VMMAll/PGMAllBth.h new file mode 100644 index 00000000..50b7a30e --- /dev/null +++ b/src/VBox/VMM/VMMAll/PGMAllBth.h @@ -0,0 +1,5268 @@ +/* $Id: PGMAllBth.h $ */ +/** @file + * VBox - Page Manager, Shadow+Guest Paging Template - All context code. + * + * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to + * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT). + * bird: WTF does this mean these days? Looking at PGMAll.cpp it's + * + * @remarks This file is one big \#ifdef-orgy! + * + */ + +/* + * Copyright (C) 2006-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + +#ifdef _MSC_VER +/** @todo we're generating unnecessary code in nested/ept shadow mode and for + * real/prot-guest+RC mode. */ +# pragma warning(disable: 4505) +#endif + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +RT_C_DECLS_BEGIN +PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3); +#ifndef IN_RING3 +PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken); +PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault, + bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken); +# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT +static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, + unsigned iPte, PCPGMPTWALKGST pGstWalkAll); +static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages, + uint32_t uErr, PPGMPTWALKGST pGstWalkAll); +static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll); +# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ +#endif +PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage); +static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr); +static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage); +static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage); +#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst); +#else +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst); +#endif +PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr); +PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage); +PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal); +#ifdef VBOX_STRICT +PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0); +#endif +PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3); +PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu); + +#ifdef IN_RING3 +PGM_BTH_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta); +#endif +RT_C_DECLS_END + + + + +/* + * Filter out some illegal combinations of guest and shadow paging, so we can + * remove redundant checks inside functions. + */ +#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE +# error "Invalid combination; PAE guest implies PAE shadow" +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \ + || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) +# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging." +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \ + && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) +# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging." +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \ + || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT) +# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa" +#endif + + +/** + * Enters the shadow+guest mode. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysCR3 The physical address from the CR3 register. + */ +PGM_BTH_DECL(int, Enter)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3) +{ + /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches; + * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables. + */ +#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ + && ( PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT)) + + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + + Assert(!pVM->pgm.s.fNestedPaging); + + PGM_LOCK_VOID(pVM); + /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes), + * but any calls to GC need a proper shadow page setup as well. + */ + /* Free the previous root mapping if still active. */ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + if (pOldShwPageCR3) + { + Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); + + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + + pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); + pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR; + pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR; + } + + /* construct a fake address. */ + GCPhysCR3 = RT_BIT_64(63); + PPGMPOOLPAGE pNewShwPageCR3; + int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), + NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/, + &pNewShwPageCR3); + AssertRCReturn(rc, rc); + + pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3); + pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3); + + /* Mark the page as locked; disallow flushing. */ + pgmPoolLockPage(pPool, pNewShwPageCR3); + + /* Set the current hypervisor CR3. */ + CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); + + PGM_UNLOCK(pVM); + return rc; +#else + NOREF(pVCpu); NOREF(GCPhysCR3); + return VINF_SUCCESS; +#endif +} + + +#ifndef IN_RING3 + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +/** + * Deal with a guest page fault. + * + * @returns Strict VBox status code. + * @retval VINF_EM_RAW_GUEST_TRAP + * @retval VINF_EM_RAW_EMULATE_INSTR + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pWalk The guest page table walk result. + * @param uErr The error code. + */ +PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, RTGCUINT uErr) +{ + /* + * Calc the error code for the guest trap. + */ + uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu) + ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID) + : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US); + if ( pWalk->fRsvdError + || pWalk->fBadPhysAddr) + { + uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P; + Assert(!pWalk->fNotPresent); + } + else if (!pWalk->fNotPresent) + uNewErr |= X86_TRAP_PF_P; + TRPMSetErrorCode(pVCpu, uNewErr); + + LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pWalk->GCPtr, uErr, pWalk->uLevel)); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; }); + return VINF_EM_RAW_GUEST_TRAP; +} +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + +#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE +/** + * Deal with a guest page fault. + * + * The caller has taken the PGM lock. + * + * @returns Strict VBox status code. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uErr The error code. + * @param pCtx Pointer to the register context for the CPU. + * @param pvFault The fault address. + * @param pPage The guest page at @a pvFault. + * @param pWalk The guest page table walk result. + * @param pGstWalk The guest paging-mode specific walk information. + * @param pfLockTaken PGM lock taken here or not (out). This is true + * when we're called. + */ +static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, + RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) + , PPGMPTWALK pWalk + , PGSTPTWALK pGstWalk +# endif + ) +{ +# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; +# endif + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + VBOXSTRICTRC rcStrict; + + if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage)) + { + /* + * Physical page access handler. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + const RTGCPHYS GCPhysFault = pWalk->GCPhys; +# else + const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault); +# endif + PPGMPHYSHANDLER pCur; + rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysFault, &pCur); + if (RT_SUCCESS(rcStrict)) + { + PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur); + +# ifdef PGM_SYNC_N_PAGES + /* + * If the region is write protected and we got a page not present fault, then sync + * the pages. If the fault was caused by a read, then restart the instruction. + * In case of write access continue to the GC write handler. + * + * ASSUMES that there is only one handler per page or that they have similar write properties. + */ + if ( !(uErr & X86_TRAP_PF_P) + && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || !(uErr & X86_TRAP_PF_RW) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } +# endif +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS + /* + * If the access was not thru a #PF(RSVD|...) resync the page. + */ + if ( !(uErr & X86_TRAP_PF_RSVD) + && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + && (pWalk->fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) + == PGM_PTATTRS_W_MASK /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */ +# endif + ) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } +# endif + + AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE + || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)), + ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n", + pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind)); + if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite); + else + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll); + if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt); + } + + if (pCurType->pfnPfHandler) + { + STAM_PROFILE_START(&pCur->Stat, h); + + if (pCurType->fKeepPgmLock) + { + rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault, + !pCurType->fRing0DevInsIdx ? pCur->uUser + : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser)); + + STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ + } + else + { + uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser + : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser); + PGM_UNLOCK(pVM); + *pfLockTaken = false; + + rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, pvFault, GCPhysFault, uUser); + + STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ + } + } + else + rcStrict = VINF_EM_RAW_EMULATE_INSTR; + + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; }); + return rcStrict; + } + AssertMsgReturn(rcStrict == VERR_NOT_FOUND, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict); + } + + /* + * There is a handled area of the page, but this fault doesn't belong to it. + * We must emulate the instruction. + * + * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler + * we first check if this was a page-not-present fault for a page with only + * write access handlers. Restart the instruction if it wasn't a write access. + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersUnhandled); + + if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) + && !(uErr & X86_TRAP_PF_P)) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE + || !(uErr & X86_TRAP_PF_RW)) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } + + /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06 + * It's writing to an unhandled part of the LDT page several million times. + */ + rcStrict = PGMInterpretInstruction(pVCpu, pvFault); + LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage)); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndUnhandled; }); + return rcStrict; +} /* if any kind of handler */ +# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/ + + +/** + * \#PF Handler for raw-mode guest execution. + * + * @returns VBox status code (appropriate for trap handling and GC return). + * + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The trap error code. + * @param pCtx Pointer to the register context for the CPU. + * @param pvFault The fault address. + * @param pfLockTaken PGM lock taken here or not (out) + */ +PGM_BTH_DECL(int, Trap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPTR pvFault, bool *pfLockTaken) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + *pfLockTaken = false; + +# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc; + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Walk the guest page translation tables and check if it's a guest fault. + */ + PGMPTWALK Walk; + GSTPTWALK GstWalk; + rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &Walk, &GstWalk); + if (RT_FAILURE_NP(rc)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr)); + + /* assert some GstWalk sanity. */ +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */ +# endif +# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE + /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */ +# endif + /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */ + /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */ + Assert(Walk.fSucceeded); + Assert(Walk.fEffective & PGM_PTATTRS_R_MASK); + + if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)) + { + if ( ( (uErr & X86_TRAP_PF_RW) + && !(Walk.fEffective & PGM_PTATTRS_W_MASK) + && ( (uErr & X86_TRAP_PF_US) + || CPUMIsGuestR0WriteProtEnabled(pVCpu)) ) + || ((uErr & X86_TRAP_PF_US) && !(Walk.fEffective & PGM_PTATTRS_US_MASK)) + || ((uErr & X86_TRAP_PF_ID) && (Walk.fEffective & PGM_PTATTRS_NX_MASK)) + ) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &Walk, uErr)); + } + + /* Take the big lock now before we update flags. */ + *pfLockTaken = true; + PGM_LOCK_VOID(pVM); + + /* + * Set the accessed and dirty flags. + */ + /** @todo Should probably use cmpxchg logic here as we're potentially racing + * other CPUs in SMP configs. (the lock isn't enough, since we take it + * after walking and the page tables could be stale already) */ +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + if (!(GstWalk.Pml4e.u & X86_PML4E_A)) + { + GstWalk.Pml4e.u |= X86_PML4E_A; + GST_ATOMIC_OR(&GstWalk.pPml4e->u, X86_PML4E_A); + } + if (!(GstWalk.Pdpe.u & X86_PDPE_A)) + { + GstWalk.Pdpe.u |= X86_PDPE_A; + GST_ATOMIC_OR(&GstWalk.pPdpe->u, X86_PDPE_A); + } +# endif + if (Walk.fBigPage) + { + Assert(GstWalk.Pde.u & X86_PDE_PS); + if (uErr & X86_TRAP_PF_RW) + { + if ((GstWalk.Pde.u & (X86_PDE4M_A | X86_PDE4M_D)) != (X86_PDE4M_A | X86_PDE4M_D)) + { + GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D; + GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A | X86_PDE4M_D); + } + } + else + { + if (!(GstWalk.Pde.u & X86_PDE4M_A)) + { + GstWalk.Pde.u |= X86_PDE4M_A; + GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE4M_A); + } + } + } + else + { + Assert(!(GstWalk.Pde.u & X86_PDE_PS)); + if (!(GstWalk.Pde.u & X86_PDE_A)) + { + GstWalk.Pde.u |= X86_PDE_A; + GST_ATOMIC_OR(&GstWalk.pPde->u, X86_PDE_A); + } + + if (uErr & X86_TRAP_PF_RW) + { +# ifdef VBOX_WITH_STATISTICS + if (GstWalk.Pte.u & X86_PTE_D) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageAlreadyDirty)); + else + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtiedPage)); +# endif + if ((GstWalk.Pte.u & (X86_PTE_A | X86_PTE_D)) != (X86_PTE_A | X86_PTE_D)) + { + GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D; + GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A | X86_PTE_D); + } + } + else + { + if (!(GstWalk.Pte.u & X86_PTE_A)) + { + GstWalk.Pte.u |= X86_PTE_A; + GST_ATOMIC_OR(&GstWalk.pPte->u, X86_PTE_A); + } + } + Assert(GstWalk.Pte.u == GstWalk.pPte->u); + } +#if 0 + /* Disabling this since it's not reliable for SMP, see @bugref{10092#c22}. */ + AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, + ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u)); +#endif + +# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */ + + /* Take the big lock now. */ + *pfLockTaken = true; + PGM_LOCK_VOID(pVM); +# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS + /* + * If it is a reserved bit fault we know that it is an MMIO (access + * handler) related fault and can skip some 200 lines of code. + */ + if (uErr & X86_TRAP_PF_RSVD) + { + Assert(uErr & X86_TRAP_PF_P); + PPGMPAGE pPage; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = pgmPhysGetPageEx(pVM, Walk.GCPhys, &pPage); + if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, + pfLockTaken, &Walk, &GstWalk)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); +# else + rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage); + if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); +# endif + AssertRC(rc); + PGM_INVL_PG(pVCpu, pvFault); + return rc; /* Restart with the corrected entry. */ + } +# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ + + /* + * Fetch the guest PDE, PDPE and PML4E. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = pvFault >> SHW_PD_SHIFT; + PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */ + PX86PDPAE pPDDst; +# if PGM_GST_TYPE == PGM_TYPE_PAE + rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst); +# else + rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */ +# endif + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; +# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */ + rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A, + X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst); +# else + rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst); +# endif + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst); + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); +# endif + Assert(pPDDst); + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Dirty page handling. + * + * If we successfully correct the write protection fault due to dirty bit + * tracking, then return immediately. + */ + if (uErr & X86_TRAP_PF_RW) /* write fault? */ + { + STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a); + rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault); + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyBitTracking), a); + if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) + { + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 + = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT + ? &pVCpu->pgm.s.Stats.StatRZTrap0eTime2DirtyAndAccessed + : &pVCpu->pgm.s.Stats.StatRZTrap0eTime2GuestTrap; }); + Log8(("Trap0eHandler: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; + } +#ifdef DEBUG_bird + AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests. + AssertMsg(Walk.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto. +#endif + } + +# if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]); +# endif +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* + * A common case is the not-present error caused by lazy page table syncing. + * + * It is IMPORTANT that we weed out any access to non-present shadow PDEs + * here so we can safely assume that the shadow PT is present when calling + * SyncPage later. + * + * On failure, we ASSUME that SyncPT is out of memory or detected some kind + * of mapping conflict and defer to SyncCR3 in R3. + * (Again, we do NOT support access handlers for non-present guest pages.) + * + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + Assert(GstWalk.Pde.u & X86_PDE_P); +# endif + if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */ + && !SHW_PDE_IS_P(pPDDst->a[iPDDst])) + { + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; }); +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u)); + rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault); +# else + LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault)); + rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault); +# endif + if (RT_SUCCESS(rc)) + return rc; + Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ + return VINF_PGM_SYNC_CR3; + } + + /* + * Check if this fault address is flagged for special treatment, + * which means we'll have to figure out the physical address and + * check flags associated with it. + * + * ASSUME that we can limit any special access handling to pages + * in page tables which the guest believes to be present. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + RTGCPHYS GCPhys = Walk.GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; +# else + RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); + if (RT_FAILURE(rc)) + { + /* + * When the guest accesses invalid physical memory (e.g. probing + * of RAM or accessing a remapped MMIO range), then we'll fall + * back to the recompiler to emulate the instruction. + */ + LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc)); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersInvalid); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2InvalidPhys; }); + return VINF_EM_RAW_EMULATE_INSTR; + } + + /* + * Any handlers for this page? + */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken, + &Walk, &GstWalk)); +# else + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, pvFault, pPage, pfLockTaken)); +# endif + + /* + * We are here only if page is present in Guest page tables and + * trap is not handled by our handlers. + * + * Check it for page out-of-sync situation. + */ + if (!(uErr & X86_TRAP_PF_P)) + { + /* + * Page is not present in our page tables. Try to sync it! + */ + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); + + if (PGM_PAGE_IS_BALLOONED(pPage)) + { + /* Emulate reads from ballooned pages as they are not present in + our shadow page tables. (Required for e.g. Solaris guests; soft + ecc, random nr generator.) */ + rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault)); + LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage)); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncBallloon)); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Ballooned; }); + return rc; + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if (RT_SUCCESS(rc)) + { + /* The page was successfully synced, return to the guest. */ + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; }); + return VINF_SUCCESS; + } + } + else /* uErr & X86_TRAP_PF_P: */ + { + /* + * Write protected pages are made writable when the guest makes the + * first write to it. This happens for pages that are shared, write + * monitored or not yet allocated. + * + * We may also end up here when CR0.WP=0 in the guest. + * + * Also, a side effect of not flushing global PDEs are out of sync + * pages due to physical monitored regions, that are no longer valid. + * Assume for now it only applies to the read/write flag. + */ + if (uErr & X86_TRAP_PF_RW) + { + /* + * Check if it is a read-only page. + */ + if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr)); + Assert(!PGM_PAGE_IS_ZERO(pPage)); + AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; }); + + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); + return rc; + } + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + return VINF_EM_NO_MEMORY; + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Check to see if we need to emulate the instruction if CR0.WP=0. + */ + if ( !(Walk.fEffective & PGM_PTATTRS_W_MASK) + && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG + && CPUMGetGuestCPL(pVCpu) < 3) + { + Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P)); + + /* + * The Netware WP0+RO+US hack. + * + * Netware sometimes(/always?) runs with WP0. It has been observed doing + * excessive write accesses to pages which are mapped with US=1 and RW=0 + * while WP=0. This causes a lot of exits and extremely slow execution. + * To avoid trapping and emulating every write here, we change the shadow + * page table entry to map it as US=0 and RW=1 until user mode tries to + * access it again (see further below). We count these shadow page table + * changes so we can avoid having to clear the page pool every time the WP + * bit changes to 1 (see PGMCr0WpEnabled()). + */ +# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1 + if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK + && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW)) + && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */) + { + Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, Walk.fBigPage)); + rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, Walk.fBigPage, PGM_MK_PG_IS_WRITE_FAULT); + if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3) + { + PGM_INVL_PG(pVCpu, pvFault); + pVCpu->pgm.s.cNetwareWp0Hacks++; + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsHack; }); + return rc; + } + AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc)); + Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc)); + } +# endif + + /* Interpret the access. */ + rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVCpu, pvFault)); + Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), Walk.fBigPage, !!(Walk.fEffective & PGM_PTATTRS_US_MASK))); + if (RT_SUCCESS(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulInRZ); + else + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eWPEmulToR3); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2WPEmulation; }); + return rc; + } +# endif + /// @todo count the above case; else + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUserWrite)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); + + /* + * Sync the page. + * + * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the + * page is not present, which is not true in this case. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); +# else + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); +# endif + if (RT_SUCCESS(rc)) + { + /* + * Page was successfully synced, return to guest but invalidate + * the TLB first as the page is very likely to be in it. + */ +# if PGM_SHW_TYPE == PGM_TYPE_EPT + HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault); +# else + PGM_INVL_PG(pVCpu, pvFault); +# endif +# ifdef VBOX_STRICT + PGMPTWALK GstPageWalk; + GstPageWalk.GCPhys = RTGCPHYS_MAX; + if (!pVM->pgm.s.fNestedPaging) + { + rc = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk); + AssertMsg(RT_SUCCESS(rc) && ((GstPageWalk.fEffective & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, GstPageWalk.fEffective)); + LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GstPageWalk.GCPhys, GstPageWalk.fEffective)); + } +# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */ + uint64_t fPageShw = 0; + rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); + AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, + ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GstPageWalk.GCPhys, fPageGst, pvFault)); +# endif +# endif /* VBOX_STRICT */ + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; }); + return VINF_SUCCESS; + } + } +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Check for Netware WP0+RO+US hack from above and undo it when user + * mode accesses the page again. + */ + else if ( (Walk.fEffective & (PGM_PTATTRS_W_MASK | PGM_PTATTRS_US_MASK)) == PGM_PTATTRS_US_MASK + && (Walk.fBigPage || (GstWalk.Pde.u & X86_PDE_RW)) + && pVCpu->pgm.s.cNetwareWp0Hacks > 0 + && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG + && CPUMGetGuestCPL(pVCpu) == 3 + && pVM->cCpus == 1 + ) + { + Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); + if (RT_SUCCESS(rc)) + { + PGM_INVL_PG(pVCpu, pvFault); + pVCpu->pgm.s.cNetwareWp0Hacks--; + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2Wp0RoUsUnhack; }); + return VINF_SUCCESS; + } + } +# endif /* PGM_WITH_PAGING */ + + /** @todo else: why are we here? */ + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT) + /* + * Check for VMM page flags vs. Guest page flags consistency. + * Currently only for debug purposes. + */ + if (RT_SUCCESS(rc)) + { + /* Get guest page flags. */ + PGMPTWALK GstPageWalk; + int rc2 = PGMGstGetPage(pVCpu, pvFault, &GstPageWalk); + if (RT_SUCCESS(rc2)) + { + uint64_t fPageShw = 0; + rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); + +#if 0 + /* + * Compare page flags. + * Note: we have AVL, A, D bits desynced. + */ + AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) + == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) + || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 + && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) + == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) + && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW + && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US), + ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n", + pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc)); +01:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) +01:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0 + +01:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) +01:01:15.625516 00:08:43.268051 Location : +e:\vbox\svn\trunk\srcPage flags mismatch! +pvFault=fffff801b0d7b000 + uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P +GCPhys=0000000019b52000 +fPageShw=0 +fPageGst=77b0000000000121 +rc=0 +#endif + + } + else + AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc)); + } + else + AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc)); +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */ + } + + + /* + * If we get here it is because something failed above, i.e. most like guru + * meditiation time. + */ + LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n", + __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pCtx->cs.Sel, pCtx->rip)); + return rc; + +# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */ + NOREF(uErr); NOREF(pCtx); NOREF(pvFault); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} + + +# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) +/** + * Deals with a nested-guest \#PF fault for a guest-physical page with a handler. + * + * @returns Strict VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The error code. + * @param pCtx Pointer to the register context for the CPU. + * @param GCPhysNestedFault The nested-guest physical address of the fault. + * @param pPage The guest page at @a GCPhysNestedFault. + * @param GCPhysFault The guest-physical address of the fault. + * @param pGstWalkAll The guest page walk result. + * @param pfLockTaken Where to store whether the PGM is still held when + * this function completes. + * + * @note The caller has taken the PGM lock. + */ +static VBOXSTRICTRC PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, + RTGCPHYS GCPhysNestedFault, PPGMPAGE pPage, + RTGCPHYS GCPhysFault, PPGMPTWALKGST pGstWalkAll, + bool *pfLockTaken) +{ +# if PGM_GST_TYPE == PGM_TYPE_PROT \ + && PGM_SHW_TYPE == PGM_TYPE_EPT + + /** @todo Assert uErr isn't X86_TRAP_PF_RSVD and remove release checks. */ + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysFault); + AssertMsgReturn(PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage), ("%RGp %RGp uErr=%u\n", GCPhysNestedFault, GCPhysFault, uErr), + VERR_PGM_HANDLER_IPE_1); + + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; + RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; + + /* + * Physical page access handler. + */ + PPGMPHYSHANDLER pCur; + VBOXSTRICTRC rcStrict = pgmHandlerPhysicalLookup(pVM, GCPhysPage, &pCur); + AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict); + + PCPGMPHYSHANDLERTYPEINT const pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur); + Assert(pCurType); + + /* + * If the region is write protected and we got a page not present fault, then sync + * the pages. If the fault was caused by a read, then restart the instruction. + * In case of write access continue to the GC write handler. + */ + if ( !(uErr & X86_TRAP_PF_P) + && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + { + Log7Func(("Syncing Monitored: GCPhysNestedPage=%RGp GCPhysPage=%RGp uErr=%#x\n", GCPhysNestedPage, GCPhysPage, uErr)); + rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll); + Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE); + if ( RT_FAILURE(rcStrict) + || !(uErr & X86_TRAP_PF_RW)) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } + else if ( !(uErr & X86_TRAP_PF_RSVD) + && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE) + { + /* + * If the access was NOT through an EPT misconfig (i.e. RSVD), sync the page. + * This can happen for the VMX APIC-access page. + */ + Log7Func(("Syncing MMIO: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); + rcStrict = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /*cPages*/, uErr, pGstWalkAll); + Assert(rcStrict != VINF_PGM_SYNCPAGE_MODIFIED_PDE); + if (RT_FAILURE(rcStrict)) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } + + AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE + || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)), + ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n", + GCPhysNestedFault, GCPhysFault, pPage, uErr, pCurType->enmKind)); + if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysWrite); + else + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAll); + if (uErr & X86_TRAP_PF_RSVD) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.StatRZTrap0eHandlersPhysAllOpt); + } + + if (pCurType->pfnPfHandler) + { + STAM_PROFILE_START(&pCur->Stat, h); + uint64_t const uUser = !pCurType->fRing0DevInsIdx ? pCur->uUser + : (uintptr_t)PDMDeviceRing0IdxToInstance(pVM, pCur->uUser); + + if (pCurType->fKeepPgmLock) + { + rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser); + STAM_PROFILE_STOP(&pCur->Stat, h); + } + else + { + PGM_UNLOCK(pVM); + *pfLockTaken = false; + rcStrict = pCurType->pfnPfHandler(pVM, pVCpu, uErr, pCtx, GCPhysNestedFault, GCPhysFault, uUser); + STAM_PROFILE_STOP(&pCur->Stat, h); /* no locking needed, entry is unlikely reused before we get here. */ + } + } + else + { + AssertMsgFailed(("What's going on here!? Fault falls outside handler range!?\n")); + rcStrict = VINF_EM_RAW_EMULATE_INSTR; + } + + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2HndPhys; }); + return rcStrict; + +# else + RT_NOREF8(pVCpu, uErr, pCtx, GCPhysNestedFault, pPage, GCPhysFault, pGstWalkAll, pfLockTaken); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} +# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ + + +/** + * Nested \#PF handler for nested-guest hardware-assisted execution using nested + * paging. + * + * @returns VBox status code (appropriate for trap handling and GC return). + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The fault error (X86_TRAP_PF_*). + * @param pCtx Pointer to the register context for the CPU. + * @param GCPhysNestedFault The nested-guest physical address of the fault. + * @param fIsLinearAddrValid Whether translation of a nested-guest linear address + * caused this fault. If @c false, GCPtrNestedFault + * must be 0. + * @param GCPtrNestedFault The nested-guest linear address of this fault. + * @param pWalk The guest page table walk result. + * @param pfLockTaken Where to store whether the PGM lock is still held + * when this function completes. + */ +PGM_BTH_DECL(int, NestedTrap0eHandler)(PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx, RTGCPHYS GCPhysNestedFault, + bool fIsLinearAddrValid, RTGCPTR GCPtrNestedFault, PPGMPTWALK pWalk, bool *pfLockTaken) +{ + *pfLockTaken = false; +# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) \ + && PGM_GST_TYPE == PGM_TYPE_PROT \ + && PGM_SHW_TYPE == PGM_TYPE_EPT + + Assert(CPUMIsGuestVmxEptPagingEnabled(pVCpu)); + Assert(PGM_A20_IS_ENABLED(pVCpu)); + + /* We don't support mode-based execute control for EPT yet. */ + Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt); + Assert(!(uErr & X86_TRAP_PF_US)); + + /* Take the big lock now. */ + *pfLockTaken = true; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PGM_LOCK_VOID(pVM); + + /* + * Walk the guest EPT tables and check if it's an EPT violation or misconfiguration. + */ + if (fIsLinearAddrValid) + Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x GCPtrNestedFault=%RGv\n", + pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr, GCPtrNestedFault)); + else + Log7Func(("cs:rip=%04x:%#08RX64 GCPhysNestedFault=%RGp uErr=%#x\n", + pCtx->cs.Sel, pCtx->rip, GCPhysNestedFault, uErr)); + PGMPTWALKGST GstWalkAll; + int rc = pgmGstSlatWalk(pVCpu, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk, &GstWalkAll); + if (RT_FAILURE(rc)) + return rc; + + Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT); + Assert(pWalk->fSucceeded); + Assert(pWalk->fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK)); + Assert(pWalk->fIsSlat); + +# ifdef DEBUG_ramshankar + /* Paranoia. */ + Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_R_MASK)); + Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_W_MASK)); + Assert(RT_BOOL(pWalk->fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(pWalk->fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK)); +# endif + + /* + * Check page-access permissions. + */ + if ( ((uErr & X86_TRAP_PF_RW) && !(pWalk->fEffective & PGM_PTATTRS_W_MASK)) + || ((uErr & X86_TRAP_PF_ID) && (pWalk->fEffective & PGM_PTATTRS_NX_MASK))) + { + Log7Func(("Permission failed! GCPtrNested=%RGv GCPhysNested=%RGp uErr=%#x fEffective=%#RX64\n", GCPtrNestedFault, + GCPhysNestedFault, uErr, pWalk->fEffective)); + pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION; + return VERR_ACCESS_DENIED; + } + + PGM_A20_ASSERT_MASKED(pVCpu, pWalk->GCPhys); + RTGCPHYS const GCPhysPage = pWalk->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; + RTGCPHYS const GCPhysNestedPage = GCPhysNestedFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; + + /* + * If we were called via an EPT misconfig, it should've already resulted in a nested-guest VM-exit. + */ + AssertMsgReturn(!(uErr & X86_TRAP_PF_RSVD), + ("Unexpected EPT misconfig VM-exit. GCPhysPage=%RGp GCPhysNestedPage=%RGp\n", GCPhysPage, GCPhysNestedPage), + VERR_PGM_MAPPING_IPE); + + /* + * Fetch and sync the nested-guest EPT page directory pointer. + */ + PEPTPD pEptPd; + rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll); + AssertRCReturn(rc, rc); + Assert(pEptPd); + + /* + * A common case is the not-present error caused by lazy page table syncing. + * + * It is IMPORTANT that we weed out any access to non-present shadow PDEs + * here so we can safely assume that the shadow PT is present when calling + * NestedSyncPage later. + * + * NOTE: It's possible we will be syncing the VMX APIC-access page here. + * In that case, we would sync the page but will NOT go ahead with emulating + * the APIC-access VM-exit through IEM. However, once the page is mapped in + * the shadow tables, subsequent APIC-access VM-exits for the nested-guest + * will be triggered by hardware. Maybe calling the IEM #PF handler can be + * considered as an optimization later. + */ + unsigned const iPde = (GCPhysNestedPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + if ( !(uErr & X86_TRAP_PF_P) + && !(pEptPd->a[iPde].u & EPT_PRESENT_MASK)) + { + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2SyncPT; }); + Log7Func(("NestedSyncPT: Lazy. GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); + rc = PGM_BTH_NAME(NestedSyncPT)(pVCpu, GCPhysNestedPage, GCPhysPage, &GstWalkAll); + if (RT_SUCCESS(rc)) + return rc; + AssertMsgFailedReturn(("NestedSyncPT: %RGv failed! rc=%Rrc\n", GCPhysNestedPage, rc), VERR_PGM_MAPPING_IPE); + } + + /* + * Check if this fault address is flagged for special treatment. + * This handles faults on an MMIO or write-monitored page. + * + * If this happens to be the VMX APIC-access page, we don't treat is as MMIO + * but rather sync it further below (as a regular guest page) which lets + * hardware-assisted execution trigger the APIC-access VM-exits of the + * nested-guest directly. + */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); + AssertRCReturn(rc, rc); + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + { + Log7Func(("MMIO: Calling NestedTrap0eHandlerDoAccessHandlers for GCPhys %RGp\n", GCPhysPage)); + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(NestedTrap0eHandlerDoAccessHandlers)(pVCpu, uErr, pCtx, GCPhysNestedFault, + pPage, pWalk->GCPhys, &GstWalkAll, + pfLockTaken)); + } + + /* + * We are here only if page is present in nested-guest page tables but the + * trap is not handled by our handlers. Check for page out-of-sync situation. + */ + if (!(uErr & X86_TRAP_PF_P)) + { + Assert(!PGM_PAGE_IS_BALLOONED(pPage)); + Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); + + Log7Func(("SyncPage: Not-Present: GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedFault, GCPhysPage)); + rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, PGM_SYNC_NR_PAGES, uErr, &GstWalkAll); + if (RT_SUCCESS(rc)) + { + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSync; }); + return VINF_SUCCESS; + } + } + else if (uErr & X86_TRAP_PF_RW) + { + /* + * Write protected pages are made writable when the guest makes the + * first write to it. This happens for pages that are shared, write + * monitored or not yet allocated. + * + * We may also end up here when CR0.WP=0 in the guest. + * + * Also, a side effect of not flushing global PDEs are out of sync + * pages due to physical monitored regions, that are no longer valid. + * Assume for now it only applies to the read/write flag. + */ + if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* This is a read-only page. */ + AssertMsgFailed(("Failed\n")); + + Assert(!PGM_PAGE_IS_ZERO(pPage)); + AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhysPage)); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2MakeWritable; }); + + Log7Func(("Calling pgmPhysPageMakeWritable for GCPhysPage=%RGp\n", GCPhysPage)); + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); + return rc; + } + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + return VINF_EM_NO_MEMORY; + } + + Assert(!(uErr & X86_TRAP_PF_US)); /* Mode-based execute not supported yet. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); + + /* + * Sync the write-protected page. + * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the + * page is not present, which is not true in this case. + */ + Log7Func(("SyncPage: RW: cs:rip=%04x:%#RX64 GCPhysNestedPage=%RGp uErr=%#RX32 GCPhysPage=%RGp WalkGCPhys=%RGp\n", + pCtx->cs.Sel, pCtx->rip, GCPhysNestedPage, (uint32_t)uErr, GCPhysPage, pWalk->GCPhys)); + rc = PGM_BTH_NAME(NestedSyncPage)(pVCpu, GCPhysNestedPage, GCPhysPage, 1 /* cPages */, uErr, &GstWalkAll); + if (RT_SUCCESS(rc)) + { + HMInvalidatePhysPage(pVM, GCPhysPage); + STAM_STATS({ pVCpu->pgmr0.s.pStatTrap0eAttributionR0 = &pVCpu->pgm.s.Stats.StatRZTrap0eTime2OutOfSyncHndObs; }); + return VINF_SUCCESS; + } + } + + /* + * If we get here it is because something failed above => guru meditation time? + */ + LogRelMaxFunc(32, ("rc=%Rrc GCPhysNestedFault=%#RGp (%#RGp) uErr=%#RX32 cs:rip=%04x:%08RX64\n", + rc, GCPhysNestedFault, GCPhysPage, (uint32_t)uErr, pCtx->cs.Sel, pCtx->rip)); + return VERR_PGM_MAPPING_IPE; + +# else /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT || PGM_GST_TYPE != PGM_TYPE_PROT || PGM_SHW_TYPE != PGM_TYPE_EPT */ + RT_NOREF7(pVCpu, uErr, pCtx, GCPhysNestedFault, fIsLinearAddrValid, GCPtrNestedFault, pWalk); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} + +#endif /* !IN_RING3 */ + + +/** + * Emulation of the invlpg instruction. + * + * + * @returns VBox status code. + * + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage Page to invalidate. + * + * @remark ASSUMES that the guest is updating before invalidating. This order + * isn't required by the CPU, so this is speculative and could cause + * trouble. + * @remark No TLB shootdown is done on any other VCPU as we assume that + * invlpg emulation is the *only* reason for calling this function. + * (The guest has to shoot down TLB entries on other CPUs itself) + * Currently true, but keep in mind! + * + * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses. + * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now)) + */ +PGM_BTH_DECL(int, InvalidatePage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage) +{ +#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + PGM_LOCK_ASSERT_OWNER(pVM); + + LogFlow(("InvalidatePage %RGv\n", GCPtrPage)); + + /* + * Get the shadow PD entry and skip out if this PD isn't present. + * (Guessing that it is frequent for a shadow PDE to not be present, do this first.) + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT; + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); +# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ + if (!pShwPde) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + return VINF_SUCCESS; + } +# else + Assert(pShwPde); +# endif + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT; + PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); + + /* If the shadow PDPE isn't present, then skip the invalidate. */ +# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ + if (!pPdptDst || !(pPdptDst->a[iPdpt].u & X86_PDPE_P)) +# else + if (!(pPdptDst->a[iPdpt].u & X86_PDPE_P)) +# endif + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + AssertReturn(pShwPde, VERR_PGM_POOL_GET_PAGE_FAILED); + + PX86PDPAE pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + +# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ + /* PML4 */ + /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/ + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst; + PX86PDPT pPdptDst; + PX86PML4E pPml4eDst; + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + Assert(pPDDst); + Assert(pPdptDst->a[iPdpt].u & X86_PDPE_P); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK); + Assert(pShwPde); + +# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ + + const SHWPDE PdeDst = *pPdeDst; + if (!(PdeDst.u & X86_PDE_P)) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + + /* + * Get the guest PD entry and calc big page. + */ +# if PGM_GST_TYPE == PGM_TYPE_32BIT + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */ + unsigned iPDSrc = 0; +# if PGM_GST_TYPE == PGM_TYPE_PAE + X86PDPE PdpeSrcIgn; + PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn); +# else /* AMD64 */ + PX86PML4E pPml4eSrcIgn; + X86PDPE PdpeSrcIgn; + PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc); +# endif + GSTPDE PdeSrc; + + if (pPDSrc) + PdeSrc = pPDSrc->a[iPDSrc]; + else + PdeSrc.u = 0; +# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */ + const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE); + const bool fIsBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu); + if (fWasBigPage != fIsBigPage) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + +# ifdef IN_RING3 + /* + * If a CR3 Sync is pending we may ignore the invalidate page operation + * depending on the kind of sync and if it's a global page or not. + * This doesn't make sense in GC/R0 so we'll skip it entirely there. + */ +# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3) + || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) + && fIsBigPage + && (PdeSrc.u & X86_PDE4M_G) + ) + ) +# else + if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) ) +# endif + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePageSkipped)); + return VINF_SUCCESS; + } +# endif /* IN_RING3 */ + + /* + * Deal with the Guest PDE. + */ + rc = VINF_SUCCESS; + if (PdeSrc.u & X86_PDE_P) + { + Assert( (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US) + && ((PdeSrc.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW) || pVCpu->pgm.s.cNetwareWp0Hacks > 0)); + if (!fIsBigPage) + { + /* + * 4KB - page. + */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); + +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); +# endif + if (pShwPage->GCPhys == GCPhys) + { + /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */ + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + + PGSTPT pPTSrc; + rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { + const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; + GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", + GCPtrPage, PteSrc.u & X86_PTE_P, + (PteSrc.u & PdeSrc.u & X86_PTE_RW), + (PteSrc.u & PdeSrc.u & X86_PTE_US), + (uint64_t)PteSrc.u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4KBPages)); + PGM_INVL_PG(pVCpu, GCPtrPage); + } + else + { + /* + * The page table address changed. + */ + LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst)); + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + SHW_PDE_ATOMIC_SET(*pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync)); + PGM_INVL_VCPU_TLBS(pVCpu); + } + } + else + { + /* + * 2/4MB - page. + */ + /* Before freeing the page, check if anything really changed. */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + if ( pShwPage->GCPhys == GCPhys + && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG) + { + /* ASSUMES a the given bits are identical for 4M and normal PDEs */ + /** @todo This test is wrong as it cannot check the G bit! + * FIXME */ + if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) + == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) + && ( (PdeSrc.u & X86_PDE4M_D) /** @todo rainy day: What about read-only 4M pages? not very common, but still... */ + || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))) + { + LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u)); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip)); + return VINF_SUCCESS; + } + } + + /* + * Ok, the page table is present and it's been changed in the guest. + * If we're in host context, we'll just mark it as not present taking the lazy approach. + * We could do this for some flushes in GC too, but we need an algorithm for + * deciding which 4MB pages containing code likely to be executed very soon. + */ + LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + SHW_PDE_ATOMIC_SET(*pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePage4MBPages)); + PGM_INVL_BIG_PG(pVCpu, GCPtrPage); + } + } + else + { + /* + * Page directory is not present, mark shadow PDE not present. + */ + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + SHW_PDE_ATOMIC_SET(*pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,InvalidatePagePDNPs)); + PGM_INVL_PG(pVCpu, GCPtrPage); + } + return rc; + +#else /* guest real and protected mode, nested + ept, none. */ + /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */ + NOREF(pVCpu); NOREF(GCPtrPage); + return VINF_SUCCESS; +#endif +} + +#if PGM_SHW_TYPE != PGM_TYPE_NONE + +/** + * Update the tracking of shadowed pages. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pShwPage The shadow page. + * @param HCPhys The physical page we is being dereferenced. + * @param iPte Shadow PTE index + * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set) + */ +DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, + RTGCPHYS GCPhysPage) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + +# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ + && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) + + /* Use the hint we retrieved from the cached guest PT. */ + if (pShwPage->fDirty) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + Assert(pShwPage->cPresent); + Assert(pPool->cPresent); + pShwPage->cPresent--; + pPool->cPresent--; + + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage); + AssertRelease(pPhysPage); + pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte); + return; + } +# else + NOREF(GCPhysPage); +# endif + + STAM_PROFILE_START(&pVM->pgm.s.Stats.StatTrackDeref, a); + LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx)); + + /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done: + * 1. have a medium sized HCPhys -> GCPhys TLB (hash?) + * 2. write protect all shadowed pages. I.e. implement caching. + */ + /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */ + + /* + * Find the guest address. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); + pRam; + pRam = pRam->CTX_SUFF(pNext)) + { + unsigned iPage = pRam->cb >> GUEST_PAGE_SHIFT; + while (iPage-- > 0) + { + if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + Assert(pShwPage->cPresent); + Assert(pPool->cPresent); + pShwPage->cPresent--; + pPool->cPresent--; + + pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte); + STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatTrackDeref, a); + return; + } + } + } + + for (;;) + AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys)); +} + + +/** + * Update the tracking of shadowed pages. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pShwPage The shadow page. + * @param u16 The top 16-bit of the pPage->HCPhys. + * @param pPage Pointer to the guest page. this will be modified. + * @param iPTDst The index into the shadow table. + */ +DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPUCC pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, + PPGMPAGE pPage, const unsigned iPTDst) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + + /* + * Just deal with the simple first time here. + */ + if (!u16) + { + STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackVirgin); + u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx); + /* Save the page table index. */ + PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst); + } + else + u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst); + + /* write back */ + Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst)); + PGM_PAGE_SET_TRACKING(pVM, pPage, u16); + + /* update statistics. */ + pVM->pgm.s.CTX_SUFF(pPool)->cPresent++; + pShwPage->cPresent++; + if (pShwPage->iFirstPresent > iPTDst) + pShwPage->iFirstPresent = iPTDst; +} + + +/** + * Modifies a shadow PTE to account for access handlers. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @param pPage The page in question. + * @param GCPhysPage The guest-physical address of the page. + * @param fPteSrc The shadowed flags of the source PTE. Must include the + * A (accessed) bit so it can be emulated correctly. + * @param pPteDst The shadow PTE (output). This is temporary storage and + * does not need to be set atomically. + */ +DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVMCC pVM, PVMCPUCC pVCpu, PCPGMPAGE pPage, RTGCPHYS GCPhysPage, uint64_t fPteSrc, + PSHWPTE pPteDst) +{ + RT_NOREF_PV(pVM); RT_NOREF_PV(fPteSrc); RT_NOREF_PV(pVCpu); RT_NOREF_PV(GCPhysPage); + + /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. + * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */ + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + { + LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage)); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage) | EPT_E_READ | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; +# else + if (fPteSrc & X86_PTE_A) + { + SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage)); + SHW_PTE_SET_RO(*pPteDst); + } + else + SHW_PTE_SET(*pPteDst, 0); +# endif + } +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) + && ( BTH_IS_NP_ACTIVE(pVM) + || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */ +# if PGM_SHW_TYPE == PGM_TYPE_AMD64 + && pVM->pgm.s.fLessThan52PhysicalAddressBits +# endif + ) + { + LogFlow(("SyncHandlerPte: MMIO page -> invalid \n")); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */ + pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg + /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */ + | EPT_E_WRITE + /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */ + | EPT_E_MEMTYPE_INVALID_3; +# else + /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */ + SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P); +# endif + } +# endif +# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ + else + { + LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage)); + SHW_PTE_SET(*pPteDst, 0); + } + /** @todo count these kinds of entries. */ +} + + +/** + * Creates a 4K shadow page for a guest page. + * + * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the + * physical address. The PdeSrc argument only the flags are used. No page + * structured will be mapped in this function. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pPteDst Destination page table entry. + * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry). + * Can safely assume that only the flags are being used. + * @param PteSrc Source page table entry (i.e. Guest OS page table entry). + * @param pShwPage Pointer to the shadow page. + * @param iPTDst The index into the shadow table. + * + * @remark Not used for 2/4MB pages! + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, + PPGMPOOLPAGE pShwPage, unsigned iPTDst) +# else +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, + PPGMPOOLPAGE pShwPage, unsigned iPTDst) +# endif +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS; + +# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ + && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) + + if (pShwPage->fDirty) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGSTPT pGstPT; + + /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */ + pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0]; + GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]); + pGstPT->a[iPTDst].u = PteSrc.u; + } +# else + Assert(!pShwPage->fDirty); +# endif + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + if ( (PteSrc.u & X86_PTE_P) + && GST_IS_PTE_VALID(pVCpu, PteSrc)) +# endif + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc); +# endif + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); + + /* + * Find the ram range. + */ + PPGMPAGE pPage; + int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); + if (RT_SUCCESS(rc)) + { + /* Ignore ballooned pages. + Don't return errors or use a fatal assert here as part of a + shadow sync range might included ballooned pages. */ + if (PGM_PAGE_IS_BALLOONED(pPage)) + { + Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */ + return; + } + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + || ( (PteSrc.u & X86_PTE_RW) +# else + || ( 1 +# endif + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + ) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage); + AssertRC(rc); + } +# endif + + /* + * Make page table entry. + */ + SHWPTE PteDst; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc); +# else + uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D; +# endif + if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * If the page or page directory entry is not marked accessed, + * we mark the page not present. + */ + if (!(PteSrc.u & X86_PTE_A) || !(PdeSrc.u & X86_PDE_A)) + { + LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n")); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,AccessedPage)); + SHW_PTE_SET(PteDst, 0); + } + /* + * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit + * when the page is modified. + */ + else if (!(PteSrc.u & X86_PTE_D) && (PdeSrc.u & PteSrc.u & X86_PTE_RW)) + { + AssertCompile(X86_PTE_RW == X86_PDE_RW); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPage)); + SHW_PTE_SET(PteDst, + fGstShwPteFlags + | PGM_PAGE_GET_HCPHYS(pPage) + | PGM_PTFLAGS_TRACK_DIRTY); + SHW_PTE_SET_RO(PteDst); + } + else +# endif + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageSkipped)); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) + | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_MEMTYPE_WB | EPT_E_IGNORE_PAT; +# else + SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage)); +# endif + } + + /* + * Make sure only allocated pages are mapped writable. + */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */ + Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst)); + } + } + else + PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhysPage, fGstShwPteFlags, &PteDst); + + /* + * Keep user track up to date. + */ + if (SHW_PTE_IS_P(PteDst)) + { + if (!SHW_PTE_IS_P(*pPteDst)) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + } + } + else if (SHW_PTE_IS_P(*pPteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + } + + /* + * Update statistics and commit the entry. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + if (!(PteSrc.u & X86_PTE_G)) + pShwPage->fSeenNonGlobal = true; +# endif + SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); + return; + } + +/** @todo count these three different kinds. */ + Log2(("SyncPageWorker: invalid address in Pte\n")); + } +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + else if (!(PteSrc.u & X86_PTE_P)) + Log2(("SyncPageWorker: page not present in Pte\n")); + else + Log2(("SyncPageWorker: invalid Pte\n")); +# endif + + /* + * The page is not present or the PTE is bad. Replace the shadow PTE by + * an empty entry, making sure to keep the user tracking up to date. + */ + if (SHW_PTE_IS_P(*pPteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + } + SHW_PTE_ATOMIC_SET(*pPteDst, 0); +} + + +/** + * Syncs a guest OS page. + * + * There are no conflicts at this point, neither is there any need for + * page table allocations. + * + * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid. + * When called in AMD64 guest mode, the guest PML4E shall be valid. + * + * @returns VBox status code. + * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way. + * @param pVCpu The cross context virtual CPU structure. + * @param PdeSrc Page directory entry of the guest. + * @param GCPtrPage Guest context page address. + * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). + * @param uErr Fault error (X86_TRAP_PF_*). + */ +static int PGM_BTH_NAME(SyncPage)(PVMCPUCC pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr)); + RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage); + + PGM_LOCK_ASSERT_OWNER(pVM); + +# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) + + /* + * Assert preconditions. + */ + Assert(PdeSrc.u & X86_PDE_P); + Assert(cPages); +# if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]); +# endif + + /* + * Get the shadow PDE, find the shadow page table in the pool. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPAE pPDDst; + + /* Fetch the pgm pool shadow descriptor. */ + int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc2, rc2); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + + int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc2, rc2); + Assert(pPDDst && pPdptDst); + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; +# endif + SHWPDE PdeDst = *pPdeDst; + + /* + * - In the guest SMP case we could have blocked while another VCPU reused + * this page table. + * - With W7-64 we may also take this path when the A bit is cleared on + * higher level tables (PDPE/PML4E). The guest does not invalidate the + * relevant TLB entries. If we're write monitoring any page mapped by + * the modified entry, we may end up here with a "stale" TLB entry. + */ + if (!(PdeDst.u & X86_PDE_P)) + { + Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); + AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW), + ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); + if (uErr & X86_TRAP_PF_P) + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; /* force the instruction to be executed again. */ + } + + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + Assert(pShwPage); + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); +# endif + + /* + * Check that the page is present and that the shadow PDE isn't out of sync. + */ + const bool fBigPage = (PdeSrc.u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu); + const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc); + RTGCPHYS GCPhys; + if (!fBigPage) + { + GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); +# endif + } + else + { + GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + } + /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */ + if ( fPdeValid + && pShwPage->GCPhys == GCPhys + && (PdeSrc.u & X86_PDE_P) + && (PdeSrc.u & X86_PDE_US) == (PdeDst.u & X86_PDE_US) + && ((PdeSrc.u & X86_PDE_RW) == (PdeDst.u & X86_PDE_RW) || !(PdeDst.u & X86_PDE_RW)) +# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) + && ((PdeSrc.u & X86_PDE_PAE_NX) == (PdeDst.u & X86_PDE_PAE_NX) || !GST_IS_NX_ACTIVE(pVCpu)) +# endif + ) + { + /* + * Check that the PDE is marked accessed already. + * Since we set the accessed bit *before* getting here on a #PF, this + * check is only meant for dealing with non-#PF'ing paths. + */ + if (PdeSrc.u & X86_PDE_A) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + if (!fBigPage) + { + /* + * 4KB Page - Map the guest page table. + */ + PGSTPT pPTSrc; + int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { +# ifdef PGM_SYNC_N_PAGES + Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); + if ( cPages > 1 + && !(uErr & X86_TRAP_PF_P) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + /* + * This code path is currently only taken when the caller is PGMTrap0eHandler + * for non-present pages! + * + * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and + * deal with locality. + */ + unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst < PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; + + for (; iPTDst < iPTDstEnd; iPTDst++) + { + const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst]; + + if ( (pPteSrc->u & X86_PTE_P) + && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) + { + RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) + | ((offPTSrc + iPTDst) << GUEST_PAGE_SHIFT); + NOREF(GCPtrCurPage); + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n", + GCPtrCurPage, pPteSrc->u & X86_PTE_P, + !!(pPteSrc->u & PdeSrc.u & X86_PTE_RW), + !!(pPteSrc->u & PdeSrc.u & X86_PTE_US), + (uint64_t)pPteSrc->u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + } + } + else +# endif /* PGM_SYNC_N_PAGES */ + { + const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; + GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", + GCPtrPage, PteSrc.u & X86_PTE_P, + !!(PteSrc.u & PdeSrc.u & X86_PTE_RW), + !!(PteSrc.u & PdeSrc.u & X86_PTE_US), + (uint64_t)PteSrc.u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + } + else /* MMIO or invalid page: emulated in #PF handler. */ + { + LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc)); + Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK])); + } + } + else + { + /* + * 4/2MB page - lazy syncing shadow 4K pages. + * (There are many causes of getting here, it's no longer only CSAM.) + */ + /* Calculate the GC physical address of this 4KB shadow page. */ + GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK)); + /* Find ram range. */ + PPGMPAGE pPage; + int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); + if (RT_SUCCESS(rc)) + { + AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Try to make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) + || ( (PdeSrc.u & X86_PDE_RW) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + ) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + AssertRC(rc); + } +# endif + + /* + * Make shadow PTE entry. + */ + SHWPTE PteDst; + if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage)); + else + PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst); + + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + if ( SHW_PTE_IS_P(PteDst) + && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + + /* Make sure only allocated pages are mapped writable. */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ + Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage)); + } + + SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst); + + /* + * If the page is not flagged as dirty and is writable, then make it read-only + * at PD level, so we can set the dirty bit when the page is modified. + * + * ASSUMES that page access handlers are implemented on page table entry level. + * Thus we will first catch the dirty access and set PDE.D and restart. If + * there is an access handler, we'll trap again and let it work on the problem. + */ + /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already. + * As for invlpg, it simply frees the whole shadow PT. + * ...It's possibly because the guest clears it and the guest doesn't really tell us... */ + if ((PdeSrc.u & (X86_PDE4M_D | X86_PDE_RW)) == X86_PDE_RW) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.u &= ~(SHWUINT)X86_PDE_RW; + } + else + { + PdeDst.u &= ~(SHWUINT)(PGM_PDFLAGS_TRACK_DIRTY | X86_PDE_RW); + PdeDst.u |= PdeSrc.u & X86_PDE_RW; + } + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n", + GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), + (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); + } + else + { + LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc)); + /** @todo must wipe the shadow page table entry in this + * case. */ + } + } + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + return VINF_SUCCESS; + } + + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDNAs)); + } + else if (fPdeValid) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPagePDOutOfSync)); + Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); + } + else + { +/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid)); + Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); + } + + /* + * Mark the PDE not present. Restart the instruction and let #PF call SyncPT. + * Yea, I'm lazy. + */ + pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst); + SHW_PDE_ATOMIC_SET(*pPdeDst, 0); + + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + PGM_INVL_VCPU_TLBS(pVCpu); + return VINF_PGM_SYNCPAGE_MODIFIED_PDE; + + +# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) + NOREF(PdeSrc); + +# ifdef PGM_SYNC_N_PAGES + /* + * Get the shadow PDE, find the shadow page table in the pool. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt); + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + X86PDEPAE PdeDst; + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + + int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst && pPdptDst); + PdeDst = pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + EPTPDE PdeDst; + + int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; +# endif + /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ + if (!SHW_PDE_IS_P(PdeDst)) + { + AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u)); + Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage)); + return VINF_SUCCESS; /* force the instruction to be executed again. */ + } + + /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ + if (SHW_PDE_IS_BIG(PdeDst)) + { + Assert(pVM->pgm.s.fNestedPaging); + Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage)); + return VINF_SUCCESS; + } + + /* Mask away the page offset. */ + GCPtrPage &= ~((RTGCPTR)0xfff); + + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + + Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); + if ( cPages > 1 + && !(uErr & X86_TRAP_PF_P) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + /* + * This code path is currently only taken when the caller is PGMTrap0eHandler + * for non-present pages! + * + * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and + * deal with locality. + */ + unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst < PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; + for (; iPTDst < iPTDstEnd; iPTDst++) + { + if (!SHW_PTE_IS_P(pPTDst->a[iPTDst])) + { + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << GUEST_PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", + GCPtrCurPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + else + Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", + (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << GUEST_PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) )); + } + } + else +# endif /* PGM_SYNC_N_PAGES */ + { + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << GUEST_PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + + Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n", + GCPtrPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + return VINF_SUCCESS; + +# else + NOREF(PdeSrc); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} + +#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */ + +#if !defined(IN_RING3) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT + +/** + * Sync a shadow page for a nested-guest page. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pPte The shadow page table entry. + * @param GCPhysPage The guest-physical address of the page. + * @param pShwPage The shadow page of the page table. + * @param iPte The index of the page table entry. + * @param pGstWalkAll The guest page table walk result. + * + * @note Not to be used for 2/4MB pages! + */ +static void PGM_BTH_NAME(NestedSyncPageWorker)(PVMCPUCC pVCpu, PSHWPTE pPte, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, + unsigned iPte, PCPGMPTWALKGST pGstWalkAll) +{ + /* + * Do not make assumptions about anything other than the final PTE entry in the + * guest page table walk result. For instance, while mapping 2M PDEs as 4K pages, + * the PDE might still be having its leaf bit set. + * + * In the future, we could consider introducing a generic SLAT macro like PSLATPTE + * and using that instead of passing the full SLAT translation result. + */ + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); + Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); + Assert(!pShwPage->fDirty); + Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT); + AssertMsg((pGstWalkAll->u.Ept.Pte.u & EPT_PTE_PG_MASK) == GCPhysPage, + ("PTE address mismatch. GCPhysPage=%RGp Pte=%RX64\n", GCPhysPage, pGstWalkAll->u.Ept.Pte.u & EPT_PTE_PG_MASK)); + + /* + * Find the ram range. + */ + PPGMPAGE pPage; + int rc = pgmPhysGetPageEx(pVCpu->CTX_SUFF(pVM), GCPhysPage, &pPage); + AssertRCReturnVoid(rc); + + Assert(!PGM_PAGE_IS_BALLOONED(pPage)); + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Make the page writable if necessary. */ + /** @todo This needs to be applied to the regular case below, not here. And, + * no we should *NOT* make the page writble, instead we need to write + * protect them if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) + || ( (pGstWalkAll->u.Ept.Pte.u & EPT_E_WRITE) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_BALLOONED + ) + ) + ) + { + AssertMsgFailed(("GCPhysPage=%RGp\n", GCPhysPage)); /** @todo Shouldn't happen but if it does deal with it later. */ + } +# endif + + /* + * Make page table entry. + */ + SHWPTE Pte; + uint64_t const fGstShwPteFlags = pGstWalkAll->u.Ept.Pte.u & pVCpu->pgm.s.fGstEptShadowedPteMask; + if (!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + { + /** @todo access bit. */ + Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | fGstShwPteFlags; + Log7Func(("regular page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u)); + } + else if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + { + /** @todo access bit. */ + Pte.u = PGM_PAGE_GET_HCPHYS(pPage) | (fGstShwPteFlags & ~EPT_E_WRITE); + Log7Func(("monitored page (%R[pgmpage]) at %RGp -> %RX64\n", pPage, GCPhysPage, Pte.u)); + } + else + { + /** @todo Do MMIO optimizations here too? */ + Log7Func(("mmio/all page (%R[pgmpage]) at %RGp -> 0\n", pPage, GCPhysPage)); + Pte.u = 0; + } + + /* Make sure only allocated pages are mapped writable. */ + Assert(!SHW_PTE_IS_P_RW(Pte) || PGM_PAGE_IS_ALLOCATED(pPage)); + + /* + * Keep user track up to date. + */ + if (SHW_PTE_IS_P(Pte)) + { + if (!SHW_PTE_IS_P(*pPte)) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte); + else if (SHW_PTE_GET_HCPHYS(*pPte) != SHW_PTE_GET_HCPHYS(Pte)) + { + Log2(("SyncPageWorker: deref! *pPte=%RX64 Pte=%RX64\n", SHW_PTE_LOG64(*pPte), SHW_PTE_LOG64(Pte))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS); + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPte); + } + } + else if (SHW_PTE_IS_P(*pPte)) + { + Log2(("SyncPageWorker: deref! *pPte=%RX64\n", SHW_PTE_LOG64(*pPte))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPte), iPte, NIL_RTGCPHYS); + } + + /* + * Commit the entry. + */ + SHW_PTE_ATOMIC_SET2(*pPte, Pte); + return; +} + + +/** + * Syncs a nested-guest page. + * + * There are no conflicts at this point, neither is there any need for + * page table allocations. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysNestedPage The nested-guest physical address of the page being + * synced. + * @param GCPhysPage The guest-physical address of the page being synced. + * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). + * @param uErr The page fault error (X86_TRAP_PF_XXX). + * @param pGstWalkAll The guest page table walk result. + */ +static int PGM_BTH_NAME(NestedSyncPage)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, unsigned cPages, + uint32_t uErr, PPGMPTWALKGST pGstWalkAll) +{ + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); + Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK)); + Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK)); + + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + Log7Func(("GCPhysNestedPage=%RGv GCPhysPage=%RGp cPages=%u uErr=%#x\n", GCPhysNestedPage, GCPhysPage, cPages, uErr)); + RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); + + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * Get the shadow PDE, find the shadow page table in the pool. + */ + unsigned const iPde = ((GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK); + PEPTPD pPd; + int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL, &pPd, pGstWalkAll); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + { + Log(("Failed to fetch EPT PD for %RGp (%RGp) rc=%Rrc\n", GCPhysNestedPage, GCPhysPage, rc)); + return rc; + } + Assert(pPd); + EPTPDE Pde = pPd->a[iPde]; + + /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ + if (!SHW_PDE_IS_P(Pde)) + { + AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)Pde.u)); + Log7Func(("CPU%d: SyncPage: Pde at %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage)); + return VINF_SUCCESS; /* force the instruction to be executed again. */ + } + + /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ + if (SHW_PDE_IS_BIG(Pde)) + { + Log7Func(("CPU%d: SyncPage: %RGp changed behind our back!\n", pVCpu->idCpu, GCPhysNestedPage)); + return VINF_SUCCESS; + } + + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, Pde.u & EPT_PDE_PG_MASK); + PEPTPT pPt = (PEPTPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + + /* + * If we've shadowed a guest EPT PDE that maps a 2M page using a 4K table, + * then sync the 4K sub-page in the 2M range. + */ + if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF) + { + Assert(!SHW_PDE_IS_BIG(Pde)); + + Assert(pGstWalkAll->u.Ept.Pte.u == 0); + Assert((Pde.u & EPT_PRESENT_MASK) == (pGstWalkAll->u.Ept.Pde.u & EPT_PRESENT_MASK)); + Assert(pShwPage->GCPhys == (pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK)); + +#if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); AssertRC(rc); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE); + Assert(pShwPage->enmKind == PGMPOOLKIND_EPT_PT_FOR_EPT_2MB); +#endif + uint64_t const fGstPteFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask & ~EPT_E_LEAF; + pGstWalkAll->u.Ept.Pte.u = GCPhysPage | fGstPteFlags; + + unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll); + Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); + + /* Restore modifications did to the guest-walk result above in case callers might inspect them later. */ + pGstWalkAll->u.Ept.Pte.u = 0; + return VINF_SUCCESS; + } + + Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); +# ifdef PGM_SYNC_N_PAGES + if ( cPages > 1 + && !(uErr & X86_TRAP_PF_P) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + /* + * This code path is currently only taken for non-present pages! + * + * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and + * deal with locality. + */ + unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + unsigned const iPteEnd = RT_MIN(iPte + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPt->a)); + if (iPte < PGM_SYNC_NR_PAGES / 2) + iPte = 0; + else + iPte -= PGM_SYNC_NR_PAGES / 2; + for (; iPte < iPteEnd; iPte++) + { + if (!SHW_PTE_IS_P(pPt->a[iPte])) + { + PGMPTWALKGST GstWalkPt; + PGMPTWALK WalkPt; + GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); + GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT); + rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, + &GstWalkPt); + if (RT_SUCCESS(rc)) + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], WalkPt.GCPhys, pShwPage, iPte, &GstWalkPt); + else + { + /* + * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages. + * Ensure the shadow tables entry is not-present. + */ + /** @todo Potential room for optimization (explained in NestedSyncPT). */ + AssertMsg(!pPt->a[iPte].u, ("%RX64\n", pPt->a[iPte].u)); + } + Log7Func(("Many: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + else + { +# ifdef VBOX_STRICT + /* Paranoia - Verify address of the page is what it should be. */ + PGMPTWALKGST GstWalkPt; + PGMPTWALK WalkPt; + GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); + GCPhysNestedPage |= (iPte << GUEST_PAGE_SHIFT); + rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, &WalkPt, &GstWalkPt); + AssertRC(rc); + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, WalkPt.GCPhys, &pPage); + AssertRC(rc); + AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]), + ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp HCPhys=%RHp Shw=%RHp\n", + GCPhysNestedPage, WalkPt.GCPhys, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); +# endif + Log7Func(("Many3: %RGp iPte=%u ShwPte=%RX64\n", GCPhysNestedPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); + } + } + } + else +# endif /* PGM_SYNC_N_PAGES */ + { + unsigned const iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll); + Log7Func(("4K: GCPhysPage=%RGp iPte=%u ShwPte=%08llx\n", GCPhysPage, iPte, SHW_PTE_LOG64(pPt->a[iPte]))); + } + + return VINF_SUCCESS; +} + + +/** + * Sync a shadow page table for a nested-guest page table. + * + * The shadow page table is not present in the shadow PDE. + * + * Handles mapping conflicts. + * + * A precondition for this method is that the shadow PDE is not present. The + * caller must take the PGM lock before checking this and continue to hold it + * when calling this method. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysNestedPage The nested-guest physical page address of the page + * being synced. + * @param GCPhysPage The guest-physical address of the page being synced. + * @param pGstWalkAll The guest page table walk result. + */ +static int PGM_BTH_NAME(NestedSyncPT)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNestedPage, RTGCPHYS GCPhysPage, PPGMPTWALKGST pGstWalkAll) +{ + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); + Assert(!(GCPhysNestedPage & GUEST_PAGE_OFFSET_MASK)); + Assert(!(GCPhysPage & GUEST_PAGE_OFFSET_MASK)); + + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + Log7Func(("GCPhysNestedPage=%RGp GCPhysPage=%RGp\n", GCPhysNestedPage, GCPhysPage)); + + PGM_LOCK_ASSERT_OWNER(pVM); + STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + + PEPTPD pPd; + PEPTPDPT pPdpt; + unsigned const iPde = (GCPhysNestedPage >> EPT_PD_SHIFT) & EPT_PD_MASK; + int rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, &pPdpt, &pPd, pGstWalkAll); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + AssertRC(rc); + return rc; + } + Assert(pPd); + PSHWPDE pPde = &pPd->a[iPde]; + + unsigned const iPdpt = (GCPhysNestedPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdpt->a[iPdpt].u & EPT_PDPTE_PG_MASK); + Assert(pShwPde->enmKind == PGMPOOLKIND_EPT_PD_FOR_EPT_PD); + + SHWPDE Pde = *pPde; + Assert(!SHW_PDE_IS_P(Pde)); /* We're only supposed to call SyncPT on PDE!P and conflicts. */ + +# ifdef PGM_WITH_LARGE_PAGES + if (BTH_IS_NP_ACTIVE(pVM)) + { + /* + * Check if the guest is mapping a 2M page here. + */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhysPage & X86_PDE2M_PAE_PG_MASK, &pPage); + AssertRCReturn(rc, rc); + if (pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF) + { + /* A20 is always enabled in VMX root and non-root operation. */ + Assert(PGM_A20_IS_ENABLED(pVCpu)); + + RTHCPHYS HCPhys = NIL_RTHCPHYS; + if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) + { + STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); + AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) + { + /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ + rc = pgmPhysRecheckLargePage(pVM, GCPhysPage, pPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + } + else if (PGMIsUsingLargePages(pVM)) + { + rc = pgmPhysAllocLargePage(pVM, GCPhysPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + } + + /* + * If we have a 2M large page, we can map the guest's 2M large page right away. + */ + uint64_t const fShwBigPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedBigPdeMask; + if (HCPhys != NIL_RTHCPHYS) + { + Pde.u = HCPhys | fShwBigPdeFlags; + Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzBigPdeMask)); + Assert(Pde.u & EPT_E_LEAF); + SHW_PDE_ATOMIC_SET2(*pPde, Pde); + + /* Add a reference to the first page only. */ + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPde); + + Assert(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + Log7Func(("GstPde=%RGp ShwPde=%RX64 [2M]\n", pGstWalkAll->u.Ept.Pde.u, Pde.u)); + return VINF_SUCCESS; + } + + /* + * We didn't get a perfect 2M fit. Split the 2M page into 4K pages. + * The page ought not to be marked as a big (2M) page at this point. + */ + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE); + + /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ + PGMPOOLACCESS enmAccess; + { + Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_USER_EXECUTE)); /* Mode-based execute control for EPT not supported. */ + bool const fNoExecute = !(pGstWalkAll->u.Ept.Pde.u & EPT_E_EXECUTE); + if (pGstWalkAll->u.Ept.Pde.u & EPT_E_WRITE) + enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; + else + enmAccess = fNoExecute ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; + } + + /* + * Allocate & map a 4K shadow table to cover the 2M guest page. + */ + PPGMPOOLPAGE pShwPage; + RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE2M_PG_MASK; + rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_2MB, enmAccess, PGM_A20_IS_ENABLED(pVCpu), + pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage); + if ( rc == VINF_SUCCESS + || rc == VINF_PGM_CACHED_PAGE) + { /* likely */ } + else + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + } + + PSHWPT pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + Assert(pPt); + Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); + if (rc == VINF_SUCCESS) + { + /* The 4K PTEs shall inherit the flags of the 2M PDE page sans the leaf bit. */ + uint64_t const fShwPteFlags = fShwBigPdeFlags & ~EPT_E_LEAF; + + /* Sync each 4K pages in the 2M range. */ + for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++) + { + RTGCPHYS const GCPhysSubPage = GCPhysPt | (iPte << GUEST_PAGE_SHIFT); + pGstWalkAll->u.Ept.Pte.u = GCPhysSubPage | fShwPteFlags; + Assert(!(pGstWalkAll->u.Ept.Pte.u & pVCpu->pgm.s.fGstEptMbzPteMask)); + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysSubPage, pShwPage, iPte, pGstWalkAll); + Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [2M->4K]\n", pGstWalkAll->u.Ept.Pte, pPt->a[iPte].u, iPte)); + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + + /* Restore modifications did to the guest-walk result above in case callers might inspect them later. */ + pGstWalkAll->u.Ept.Pte.u = 0; + } + else + { + Assert(rc == VINF_PGM_CACHED_PAGE); +# if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) + /* Paranoia - Verify address of each of the subpages are what they should be. */ + RTGCPHYS GCPhysSubPage = GCPhysPt; + for (unsigned iPte = 0; iPte < RT_ELEMENTS(pPt->a); iPte++, GCPhysSubPage += GUEST_PAGE_SIZE) + { + PPGMPAGE pSubPage; + rc = pgmPhysGetPageEx(pVM, GCPhysSubPage, &pSubPage); + AssertRC(rc); + AssertMsg( PGM_PAGE_GET_HCPHYS(pSubPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) + || !SHW_PTE_IS_P(pPt->a[iPte]), + ("PGM 2M page and shadow PTE conflict. GCPhysSubPage=%RGp Page=%RHp Shw=%RHp\n", + GCPhysSubPage, PGM_PAGE_GET_HCPHYS(pSubPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); + } +# endif + rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ + } + + /* Save the new PDE. */ + uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask; + Pde.u = pShwPage->Core.Key | fShwPdeFlags; + Assert(!(Pde.u & EPT_E_LEAF)); + Assert(!(Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask)); + SHW_PDE_ATOMIC_SET2(*pPde, Pde); + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde)); + return rc; + } + } +# endif /* PGM_WITH_LARGE_PAGES */ + + /* + * Allocate & map the shadow page table. + */ + PSHWPT pPt; + PPGMPOOLPAGE pShwPage; + + RTGCPHYS const GCPhysPt = pGstWalkAll->u.Ept.Pde.u & EPT_PDE_PG_MASK; + rc = pgmPoolAlloc(pVM, GCPhysPt, PGMPOOLKIND_EPT_PT_FOR_EPT_PT, PGMPOOLACCESS_DONTCARE, + PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPde, false /*fLockPage*/, &pShwPage); + if ( rc == VINF_SUCCESS + || rc == VINF_PGM_CACHED_PAGE) + { /* likely */ } + else + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + } + + pPt = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + Assert(pPt); + Assert(PGMPOOL_PAGE_IS_NESTED(pShwPage)); + + if (rc == VINF_SUCCESS) + { + /* Sync the page we've already translated through SLAT. */ + const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPte], GCPhysPage, pShwPage, iPte, pGstWalkAll); + Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte)); + + /* Sync the rest of page table (expensive but might be cheaper than nested-guest VM-exits in hardware). */ + for (unsigned iPteCur = 0; iPteCur < RT_ELEMENTS(pPt->a); iPteCur++) + { + if (iPteCur != iPte) + { + PGMPTWALKGST GstWalkPt; + PGMPTWALK WalkPt; + GCPhysNestedPage &= ~(SHW_PT_MASK << SHW_PT_SHIFT); + GCPhysNestedPage |= (iPteCur << GUEST_PAGE_SHIFT); + int const rc2 = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNested*/, + &WalkPt, &GstWalkPt); + if (RT_SUCCESS(rc2)) + { + PGM_BTH_NAME(NestedSyncPageWorker)(pVCpu, &pPt->a[iPteCur], WalkPt.GCPhys, pShwPage, iPteCur, &GstWalkPt); + Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u\n", GstWalkPt.u.Ept.Pte.u, pPt->a[iPteCur].u, iPteCur)); + } + else + { + /* + * This could be MMIO pages reserved by the nested-hypevisor or genuinely not-present pages. + * Ensure the shadow tables entry is not-present. + */ + /** @todo We currently don't configure these to cause EPT misconfigs but rather trap + * them using EPT violations and walk the guest EPT tables to determine + * whether they are EPT misconfigs VM-exits for the nested-hypervisor. We + * could optimize this by using a specific combination of reserved bits + * which we could immediately identify as EPT misconfigs of the + * nested-hypervisor without having to walk its EPT tables. However, tracking + * non-present entries might be tricky... + */ + AssertMsg(!pPt->a[iPteCur].u, ("%RX64\n", pPt->a[iPteCur].u)); + } + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + } + } + else + { + Assert(rc == VINF_PGM_CACHED_PAGE); +# if defined(VBOX_STRICT) && defined(DEBUG_ramshankar) + /* Paranoia - Verify address of the page is what it should be. */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); + AssertRC(rc); + const unsigned iPte = (GCPhysNestedPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + AssertMsg(PGM_PAGE_GET_HCPHYS(pPage) == SHW_PTE_GET_HCPHYS(pPt->a[iPte]) || !SHW_PTE_IS_P(pPt->a[iPte]), + ("PGM page and shadow PTE address conflict. GCPhysNestedPage=%RGp GCPhysPage=%RGp Page=%RHp Shw=%RHp\n", + GCPhysNestedPage, GCPhysPage, PGM_PAGE_GET_HCPHYS(pPage), SHW_PTE_GET_HCPHYS(pPt->a[iPte]))); + Log7Func(("GstPte=%RGp ShwPte=%RX64 iPte=%u [cache]\n", pGstWalkAll->u.Ept.Pte.u, pPt->a[iPte].u, iPte)); +# endif + rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ + } + + /* Save the new PDE. */ + uint64_t const fShwPdeFlags = pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptShadowedPdeMask; + Assert(!(pGstWalkAll->u.Ept.Pde.u & EPT_E_LEAF)); + Assert(!(pGstWalkAll->u.Ept.Pde.u & pVCpu->pgm.s.fGstEptMbzPdeMask)); + Pde.u = pShwPage->Core.Key | fShwPdeFlags; + SHW_PDE_ATOMIC_SET2(*pPde, Pde); + Log7Func(("GstPde=%RGp ShwPde=%RX64 iPde=%u\n", pGstWalkAll->u.Ept.Pde.u, pPde->u, iPde)); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + return rc; +} + +#endif /* !IN_RING3 && VBOX_WITH_NESTED_HWVIRT_VMX_EPT && PGM_SHW_TYPE == PGM_TYPE_EPT*/ +#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE + +/** + * Handle dirty bit tracking faults. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr Page fault error code. + * @param pPdeSrc Guest page directory entry. + * @param pPdeDst Shadow page directory entry. + * @param GCPtrPage Guest context page address. + */ +static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPUCC pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, + RTGCPTR GCPtrPage) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + NOREF(uErr); + + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * Handle big page. + */ + if ((pPdeSrc->u & X86_PDE_PS) && GST_IS_PSE_ACTIVE(pVCpu)) + { + if ((pPdeDst->u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap)); + Assert(pPdeSrc->u & X86_PDE_RW); + + /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply + * fault again and take this path to only invalidate the entry (see below). */ + SHWPDE PdeDst = *pPdeDst; + PdeDst.u &= ~(SHWUINT)PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.u |= X86_PDE_RW | X86_PDE_A; + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + PGM_INVL_BIG_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + +# ifdef IN_RING0 + /* Check for stale TLB entry; only applies to the SMP guest case. */ + if ( pVM->cCpus > 1 + && (pPdeDst->u & (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) == (X86_PDE_P | X86_PDE_RW | X86_PDE_A)) + { + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); + if (pShwPage) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; + if (SHW_PTE_IS_P_RW(*pPteDst)) + { + /* Stale TLB entry. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + } + } +# endif /* IN_RING0 */ + return VINF_PGM_NO_DIRTY_BIT_TRACKING; + } + + /* + * Map the guest page table. + */ + PGSTPT pPTSrc; + int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc); + AssertRCReturn(rc, rc); + + if (SHW_PDE_IS_P(*pPdeDst)) + { + GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK]; + const GSTPTE PteSrc = *pPteSrc; + + /* + * Map shadow page table. + */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); + if (pShwPage) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; + if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */ + { + if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst)) + { + PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)); + SHWPTE PteDst = *pPteDst; + + LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage)); + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageTrap)); + + Assert(PteSrc.u & X86_PTE_RW); + + /* Note: No need to invalidate this entry on other VCPUs as a stale TLB + * entry will not harm; write access will simply fault again and + * take this path to only invalidate the entry. + */ + if (RT_LIKELY(pPage)) + { + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + { + //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage)); + Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)); + /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */ + SHW_PTE_SET_RO(PteDst); + } + else + { + if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED + && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc)); + AssertRC(rc); + } + if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) + SHW_PTE_SET_RW(PteDst); + else + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); + } + } + } + else + SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */ + + SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY); + SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + +# ifdef IN_RING0 + /* Check for stale TLB entry; only applies to the SMP guest case. */ + if ( pVM->cCpus > 1 + && SHW_PTE_IS_RW(*pPteDst) + && SHW_PTE_IS_A(*pPteDst)) + { + /* Stale TLB entry. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageStale)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } +# endif + } + } + else + AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK)); + } + + return VINF_PGM_NO_DIRTY_BIT_TRACKING; +} + +#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ + +/** + * Sync a shadow page table. + * + * The shadow page table is not present in the shadow PDE. + * + * Handles mapping conflicts. + * + * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on + * conflict), and Trap0eHandler. + * + * A precondition for this method is that the shadow PDE is not present. The + * caller must take the PGM lock before checking this and continue to hold it + * when calling this method. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iPDSrc Page directory index. + * @param pPDSrc Source page directory (i.e. Guest OS page directory). + * Assume this is a temporary mapping. + * @param GCPtrPage GC Pointer of the page that caused the fault + */ +static int PGM_BTH_NAME(SyncPT)(PVMCPUCC pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + +#if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]); +#endif + LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage); + + PGM_LOCK_ASSERT_OWNER(pVM); + +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc = VINF_SUCCESS; + + STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + + /* + * Some input validation first. + */ + AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage)); + + /* + * Get the relevant shadow PDE entry. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; + PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPAE pPDDst; + PSHWPDE pPdeDst; + + /* Fetch the pgm pool shadow descriptor. */ + rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc, rc); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; + +# endif + SHWPDE PdeDst = *pPdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); +# endif + + Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P.*/ + + /* + * Sync the page directory entry. + */ + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; + const bool fPageTable = !(PdeSrc.u & X86_PDE_PS) || !GST_IS_PSE_ACTIVE(pVCpu); + if ( (PdeSrc.u & X86_PDE_P) + && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) ) + { + /* + * Allocate & map the page table. + */ + PSHWPT pPTDst; + PPGMPOOLPAGE pShwPage; + RTGCPHYS GCPhys; + if (fPageTable) + { + GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); +# endif + rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), + pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + } + else + { + PGMPOOLACCESS enmAccess; +# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) + const bool fNoExecute = (PdeSrc.u & X86_PDE_PAE_NX) && GST_IS_NX_ACTIVE(pVCpu); +# else + const bool fNoExecute = false; +# endif + + GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ + if (PdeSrc.u & X86_PDE_US) + { + if (PdeSrc.u & X86_PDE_RW) + enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW; + else + enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R; + } + else + { + if (PdeSrc.u & X86_PDE_RW) + enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; + else + enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; + } + rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu), + pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + } + if (rc == VINF_SUCCESS) + pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + else if (rc == VINF_PGM_CACHED_PAGE) + { + /* + * The PT was cached, just hook it up. + */ + if (fPageTable) + PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); + else + { + PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); + /* (see explanation and assumptions further down.) */ + if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.u &= ~(SHWUINT)X86_PDE_RW; + } + } + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + return VINF_SUCCESS; + } + else + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + /** @todo Why do we bother preserving X86_PDE_AVL_MASK here? + * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be + * irrelevant at this point. */ + PdeDst.u &= X86_PDE_AVL_MASK; + PdeDst.u |= pShwPage->Core.Key; + + /* + * Page directory has been accessed (this is a fault situation, remember). + */ + /** @todo + * Well, when the caller is PrefetchPage or InvalidatePage is isn't a + * fault situation. What's more, the Trap0eHandler has already set the + * accessed bit. So, it's actually just VerifyAccessSyncPage which + * might need setting the accessed flag. + * + * The best idea is to leave this change to the caller and add an + * assertion that it's set already. */ + pPDSrc->a[iPDSrc].u |= X86_PDE_A; + if (fPageTable) + { + /* + * Page table - 4KB. + * + * Sync all or just a few entries depending on PGM_SYNC_N_PAGES. + */ + Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n", + GCPtrPage, PdeSrc.u & X86_PTE_P, !!(PdeSrc.u & X86_PTE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u)); + PGSTPT pPTSrc; + rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { + /* + * Start by syncing the page directory entry so CSAM's TLB trick works. + */ + PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK)) + | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + + /* + * Directory/page user or supervisor privilege: (same goes for read/write) + * + * Directory Page Combined + * U/S U/S U/S + * 0 0 0 + * 0 1 0 + * 1 0 0 + * 1 1 1 + * + * Simple AND operation. Table listed for completeness. + * + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4K)); +# ifdef PGM_SYNC_N_PAGES + unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + unsigned iPTDst = iPTBase; + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst <= PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; +# else /* !PGM_SYNC_N_PAGES */ + unsigned iPTDst = 0; + const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a); +# endif /* !PGM_SYNC_N_PAGES */ + RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1)) + | ((RTGCPTR)iPTDst << GUEST_PAGE_SHIFT); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += GUEST_PAGE_SIZE) + { + const unsigned iPTSrc = iPTDst + offPTSrc; + const GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + if (PteSrc.u & X86_PTE_P) + { + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n", + GCPtrCur, + PteSrc.u & X86_PTE_P, + !!(PteSrc.u & PdeSrc.u & X86_PTE_RW), + !!(PteSrc.u & PdeSrc.u & X86_PTE_US), + (uint64_t)PteSrc.u, + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0], + (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) )); + } + /* else: the page table was cleared by the pool */ + } /* for PTEs */ + } + } + else + { + /* + * Big page - 2/4MB. + * + * We'll walk the ram range list in parallel and optimize lookups. + * We will only sync one shadow page table at a time. + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT4M)); + + /** + * @todo It might be more efficient to sync only a part of the 4MB + * page (similar to what we do for 4KB PDs). + */ + + /* + * Start by syncing the page directory entry. + */ + PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY))) + | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); + + /* + * If the page is not flagged as dirty and is writable, then make it read-only + * at PD level, so we can set the dirty bit when the page is modified. + * + * ASSUMES that page access handlers are implemented on page table entry level. + * Thus we will first catch the dirty access and set PDE.D and restart. If + * there is an access handler, we'll trap again and let it work on the problem. + */ + /** @todo move the above stuff to a section in the PGM documentation. */ + Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)); + if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.u &= ~(SHWUINT)X86_PDE_RW; + } + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + + /* + * Fill the shadow page table. + */ + /* Get address and flags from the source PDE. */ + SHWPTE PteDstBase; + SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc)); + + /* Loop thru the entries in the shadow PT. */ + const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr); + Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n", + GCPtrPage, PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_RW), !!(PdeSrc.u & X86_PDE_US), (uint64_t)PdeSrc.u, GCPtr, + GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); + PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); + unsigned iPTDst = 0; + while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + if (pRam && GCPhys >= pRam->GCPhys) + { +# ifndef PGM_WITH_A20 + unsigned iHCPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT; +# endif + do + { + /* Make shadow PTE. */ +# ifdef PGM_WITH_A20 + PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; +# else + PPGMPAGE pPage = &pRam->aPages[iHCPage]; +# endif + SHWPTE PteDst; + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Try to make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) + || ( SHW_PTE_IS_RW(PteDstBase) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + && !PGM_PAGE_IS_BALLOONED(pPage)) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + AssertRCReturn(rc, rc); + if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + break; + } +# endif + + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPage)) + PGM_BTH_NAME(SyncHandlerPte)(pVM, pVCpu, pPage, GCPhys, SHW_PTE_GET_U(PteDstBase), &PteDst); + else if (PGM_PAGE_IS_BALLOONED(pPage)) + SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */ + else + SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase)); + + /* Only map writable pages writable. */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ + Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)))); + } + + if (SHW_PTE_IS_P(PteDst)) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + + /* commit it (not atomic, new table) */ + pPTDst->a[iPTDst] = PteDst; + Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n", + (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst), + SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : "")); + + /* advance */ + GCPhys += GUEST_PAGE_SIZE; + PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys); +# ifndef PGM_WITH_A20 + iHCPage++; +# endif + iPTDst++; + } while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && GCPhys <= pRam->GCPhysLast); + + /* Advance ram range list. */ + while (pRam && GCPhys > pRam->GCPhysLast) + pRam = pRam->CTX_SUFF(pNext); + } + else if (pRam) + { + Log(("Invalid pages at %RGp\n", GCPhys)); + do + { + SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ + GCPhys += GUEST_PAGE_SIZE; + iPTDst++; + } while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && GCPhys < pRam->GCPhys); + PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys); + } + else + { + Log(("Invalid pages at %RGp (2)\n", GCPhys)); + for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) + SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ + } + } /* while more PTEs */ + } /* 4KB / 4MB */ + } + else + AssertRelease(!SHW_PDE_IS_P(PdeDst)); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + if (RT_FAILURE(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed)); + return rc; + +#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + NOREF(iPDSrc); NOREF(pPDSrc); + + STAM_PROFILE_START(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + + /* + * Validate input a little bit. + */ + int rc = VINF_SUCCESS; +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */ + PX86PDPAE pPDDst; + PSHWPDE pPdeDst; + + /* Fetch the pgm pool shadow descriptor. */ + rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc, rc); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */ + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + PEPTPDPT pPdptDst; + + rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; + + /* Fetch the pgm pool shadow descriptor. */ + /** @todo r=bird: didn't pgmShwGetEPTPDPtr just do this lookup already? */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK); + Assert(pShwPde); +# endif + SHWPDE PdeDst = *pPdeDst; + + Assert(!SHW_PDE_IS_P(PdeDst)); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ + +# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE + if (BTH_IS_NP_ACTIVE(pVM)) + { + Assert(!VM_IS_NEM_ENABLED(pVM)); + + /* Check if we allocated a big page before for this 2 MB range. */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage); + if (RT_SUCCESS(rc)) + { + RTHCPHYS HCPhys = NIL_RTHCPHYS; + if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) + { + if (PGM_A20_IS_ENABLED(pVCpu)) + { + STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); + AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + else + { + PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED); + pVM->pgm.s.cLargePagesDisabled++; + } + } + else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED + && PGM_A20_IS_ENABLED(pVCpu)) + { + /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ + rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + } + else if ( PGMIsUsingLargePages(pVM) + && PGM_A20_IS_ENABLED(pVCpu)) + { + rc = pgmPhysAllocLargePage(pVM, GCPtrPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + else + LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc)); + } + + if (HCPhys != NIL_RTHCPHYS) + { +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PdeDst.u = HCPhys | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_LEAF | EPT_E_IGNORE_PAT | EPT_E_MEMTYPE_WB + | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo do we need this? */; +# else + PdeDst.u = HCPhys | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PS + | (PdeDst.u & X86_PDE_AVL_MASK) /** @todo PGM_PD_FLAGS? */; +# endif + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + + Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u)); + /* Add a reference to the first page only. */ + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + return VINF_SUCCESS; + } + } + } +# endif /* defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE */ + + /* + * Allocate & map the page table. + */ + PSHWPT pPTDst; + PPGMPOOLPAGE pShwPage; + RTGCPHYS GCPhys; + + /* Virtual address = physical address */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK); + rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, + PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + if ( rc == VINF_SUCCESS + || rc == VINF_PGM_CACHED_PAGE) + pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + else + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + } + + if (rc == VINF_SUCCESS) + { + /* New page table; fully set it up. */ + Assert(pPTDst); + + /* Mask away the page offset. */ + GCPtrPage &= ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK; + + for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) + { + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << GUEST_PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", + GCPtrCurPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + } + else + rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ + + /* Save the new PDE. */ +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PdeDst.u = pShwPage->Core.Key | EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE + | (PdeDst.u & X86_PDE_AVL_MASK /** @todo do we really need this? */); +# else + PdeDst.u = pShwPage->Core.Key | X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A + | (PdeDst.u & X86_PDE_AVL_MASK /** @todo use a PGM_PD_FLAGS define */); +# endif + SHW_PDE_ATOMIC_SET2(*pPdeDst, PdeDst); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPT), a); + if (RT_FAILURE(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,SyncPTFailed)); + return rc; + +#else + NOREF(iPDSrc); NOREF(pPDSrc); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +#endif +} + + + +/** + * Prefetch a page/set of pages. + * + * Typically used to sync commonly used pages before entering raw mode + * after a CR3 reload. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage Page to invalidate. + */ +PGM_BTH_DECL(int, PrefetchPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage) +{ +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + /* + * Check that all Guest levels thru the PDE are present, getting the + * PD and PDE in the processes. + */ + int rc = VINF_SUCCESS; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +# if PGM_GST_TYPE == PGM_TYPE_32BIT + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); +# elif PGM_GST_TYPE == PGM_TYPE_PAE + unsigned iPDSrc; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); + if (!pPDSrc) + return VINF_SUCCESS; /* not present */ +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPDSrc; + PX86PML4E pPml4eSrc; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); + if (!pPDSrc) + return VINF_SUCCESS; /* not present */ +# endif + const GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else + PGSTPD pPDSrc = NULL; + const unsigned iPDSrc = 0; + GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */ +# endif + + if ((PdeSrc.u & (X86_PDE_P | X86_PDE_A)) == (X86_PDE_P | X86_PDE_A)) + { + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PGM_LOCK_VOID(pVM); + +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + X86PDEPAE PdeDst; +# if PGM_GST_TYPE != PGM_TYPE_PAE + X86PDPE PdpeSrc; + + /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ + PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ +# endif + rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + PGM_UNLOCK(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + X86PDEPAE PdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_PROT + /* AMD-V nested paging */ + X86PML4E Pml4eSrc; + X86PDPE PdpeSrc; + PX86PML4E pPml4eSrc = &Pml4eSrc; + + /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ + Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; + PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; +# endif + + rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + PGM_UNLOCK(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; +# endif + if (!(PdeDst.u & X86_PDE_P)) + { + /** @todo r=bird: This guy will set the A bit on the PDE, + * probably harmless. */ + rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); + } + else + { + /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because + * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it + * makes no sense to prefetch more than one page. + */ + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); + if (RT_SUCCESS(rc)) + rc = VINF_SUCCESS; + } + PGM_UNLOCK(pVM); + } + return rc; + +#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + NOREF(pVCpu); NOREF(GCPtrPage); + return VINF_SUCCESS; /* ignore */ +#else + AssertCompile(0); +#endif +} + + + + +/** + * Syncs a page during a PGMVerifyAccess() call. + * + * @returns VBox status code (informational included). + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage The address of the page to sync. + * @param fPage The effective guest page flags. + * @param uErr The trap error code. + * @remarks This will normally never be called on invalid guest page + * translation entries. + */ +PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr)); + RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr); + + Assert(!pVM->pgm.s.fNestedPaging); +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + + /* + * Get guest PD and index. + */ + /** @todo Performance: We've done all this a jiffy ago in the + * PGMGstGetPage call. */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +# if PGM_GST_TYPE == PGM_TYPE_32BIT + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); + +# elif PGM_GST_TYPE == PGM_TYPE_PAE + unsigned iPDSrc = 0; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); + if (RT_UNLIKELY(!pPDSrc)) + { + Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); + return VINF_EM_RAW_GUEST_TRAP; + } + +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPDSrc = 0; /* shut up gcc */ + PX86PML4E pPml4eSrc = NULL; /* ditto */ + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); + if (RT_UNLIKELY(!pPDSrc)) + { + Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); + return VINF_EM_RAW_GUEST_TRAP; + } +# endif + +# else /* !PGM_WITH_PAGING */ + PGSTPD pPDSrc = NULL; + const unsigned iPDSrc = 0; +# endif /* !PGM_WITH_PAGING */ + int rc = VINF_SUCCESS; + + PGM_LOCK_VOID(pVM); + + /* + * First check if the shadow pd is present. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + PX86PDEPAE pPdeDst; + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; +# if PGM_GST_TYPE != PGM_TYPE_PAE + /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ + X86PDPE PdpeSrc; + PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ +# endif + rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + PGM_UNLOCK(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + PX86PDEPAE pPdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_PROT + /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ + X86PML4E Pml4eSrc; + X86PDPE PdpeSrc; + PX86PML4E pPml4eSrc = &Pml4eSrc; + Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; + PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; +# endif + + rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + PGM_UNLOCK(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + pPdeDst = &pPDDst->a[iPDDst]; +# endif + + if (!(pPdeDst->u & X86_PDE_P)) + { + rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); + if (rc != VINF_SUCCESS) + { + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + PGM_UNLOCK(pVM); + AssertRC(rc); + return rc; + } + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* Check for dirty bit fault */ + rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage); + if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) + Log(("PGMVerifyAccess: success (dirty)\n")); + else +# endif + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else + GSTPDE const PdeSrc = { X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A }; /* faked so we don't have to #ifdef everything */ +# endif + + Assert(rc != VINF_EM_RAW_GUEST_TRAP); + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncUser)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.Stats.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); + + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); + if (RT_SUCCESS(rc)) + { + /* Page was successfully synced */ + Log2(("PGMVerifyAccess: success (sync)\n")); + rc = VINF_SUCCESS; + } + else + { + Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc)); + rc = VINF_EM_RAW_GUEST_TRAP; + } + } + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + PGM_UNLOCK(pVM); + return rc; + +#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ + + AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ +} + + +/** + * Syncs the paging hierarchy starting at CR3. + * + * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other + * informational status codes. + * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map + * the VMM into guest context. + * @param pVCpu The cross context virtual CPU structure. + * @param cr0 Guest context CR0 register. + * @param cr3 Guest context CR3 register. Not subjected to the A20 + * mask. + * @param cr4 Guest context CR4 register. + * @param fGlobal Including global page directories or not + */ +PGM_BTH_DECL(int, SyncCR3)(PVMCPUCC pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal); + + LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal)); + +#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + PGM_LOCK_VOID(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); + PGM_UNLOCK(pVM); +# endif +#endif /* !NESTED && !EPT */ + +#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + /* + * Nested / EPT / None - No work. + */ + return VINF_SUCCESS; + +#elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + /* + * AMD64 (Shw & Gst) - No need to check all paging levels; we zero + * out the shadow parts when the guest modifies its tables. + */ + return VINF_SUCCESS; + +#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ + + return VINF_SUCCESS; +#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ +} + + + + +#ifdef VBOX_STRICT + +/** + * Checks that the shadow page table is in sync with the guest one. + * + * @returns The number of errors. + * @param pVCpu The cross context virtual CPU structure. + * @param cr3 Guest context CR3 register. + * @param cr4 Guest context CR4 register. + * @param GCPtr Where to start. Defaults to 0. + * @param cb How much to check. Defaults to everything. + */ +PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPUCC pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb) +{ + NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb); +#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + return 0; +#else + unsigned cErrors = 0; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + +# if PGM_GST_TYPE == PGM_TYPE_PAE + /** @todo currently broken; crashes below somewhere */ + AssertFailed(); +# endif + +# if PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 + + bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu); + PPGMCPU pPGM = &pVCpu->pgm.s; + RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */ + RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */ +# ifndef IN_RING0 + RTHCPHYS HCPhys; /* general usage. */ +# endif + int rc; + + /* + * Check that the Guest CR3 and all its mappings are correct. + */ + AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), + ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3), + false); +# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64 +# if 0 +# if PGM_GST_TYPE == PGM_TYPE_32BIT + rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw); +# else + rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw); +# endif + AssertRCReturn(rc, 1); + HCPhys = NIL_RTHCPHYS; + rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys); + AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false); +# endif +# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3) + pgmGstGet32bitPDPtr(pVCpu); + RTGCPHYS GCPhys; + rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys); + AssertRCReturn(rc, 1); + AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false); +# endif +# endif /* !IN_RING0 */ + + /* + * Get and check the Shadow CR3. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + unsigned cPDEs = X86_PG_ENTRIES; + unsigned cIncrement = X86_PG_ENTRIES * GUEST_PAGE_SIZE; +# elif PGM_SHW_TYPE == PGM_TYPE_PAE +# if PGM_GST_TYPE == PGM_TYPE_32BIT + unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */ +# else + unsigned cPDEs = X86_PG_PAE_ENTRIES; +# endif + unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE; +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + unsigned cPDEs = X86_PG_PAE_ENTRIES; + unsigned cIncrement = X86_PG_PAE_ENTRIES * GUEST_PAGE_SIZE; +# endif + if (cb != ~(RTGCPTR)0) + cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1); + +/** @todo call the other two PGMAssert*() functions. */ + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; + + for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++) + { + PPGMPOOLPAGE pShwPdpt = NULL; + PX86PML4E pPml4eSrc; + PX86PML4E pPml4eDst; + RTGCPHYS GCPhysPdptSrc; + + pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4); + pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4); + + /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */ + if (!(pPml4eDst->u & X86_PML4E_P)) + { + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + continue; + } + + pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK); + GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK); + + if ((pPml4eSrc->u & X86_PML4E_P) != (pPml4eDst->u & X86_PML4E_P)) + { + AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } + + if (GCPhysPdptSrc != pShwPdpt->GCPhys) + { + AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } + + if ( (pPml4eDst->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX)) + != (pPml4eSrc->u & (X86_PML4E_US | X86_PML4E_RW | X86_PML4E_NX))) + { + AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } +# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ + { +# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE + /* + * Check the PDPTEs too. + */ + unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; + + for (;iPdpt <= SHW_PDPT_MASK; iPdpt++) + { + unsigned iPDSrc = 0; /* initialized to shut up gcc */ + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPE pPdpeDst; + RTGCPHYS GCPhysPdeSrc; + X86PDPE PdpeSrc; + PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */ +# if PGM_GST_TYPE == PGM_TYPE_PAE + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc); + PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); +# else + PX86PML4E pPml4eSrcIgn; + PX86PDPT pPdptDst; + PX86PDPAE pPDDst; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc); + + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); + GCPtr += 512 * _2M; + continue; /* next PDPTE */ + } + Assert(pPDDst); +# endif + Assert(iPDSrc == 0); + + pPdpeDst = &pPdptDst->a[iPdpt]; + + if (!(pPdpeDst->u & X86_PDPE_P)) + { + GCPtr += 512 * _2M; + continue; /* next PDPTE */ + } + + pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK); + GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK); + + if ((pPdpeDst->u & X86_PDPE_P) != (PdpeSrc.u & X86_PDPE_P)) + { + AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); + GCPtr += 512 * _2M; + cErrors++; + continue; + } + + if (GCPhysPdeSrc != pShwPde->GCPhys) + { +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); +# else + AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); +# endif + GCPtr += 512 * _2M; + cErrors++; + continue; + } + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + if ( (pPdpeDst->u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX)) + != (PdpeSrc.u & (X86_PDPE_US | X86_PDPE_RW | X86_PDPE_LM_NX))) + { + AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); + GCPtr += 512 * _2M; + cErrors++; + continue; + } +# endif + +# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ + { +# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ +# if PGM_GST_TYPE == PGM_TYPE_32BIT + GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu); +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); +# endif +# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */ + /* + * Iterate the shadow page directory. + */ + GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT; + unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; + + for (; + iPDDst < cPDEs; + iPDDst++, GCPtr += cIncrement) + { +# if PGM_SHW_TYPE == PGM_TYPE_PAE + const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr); +# else + const SHWPDE PdeDst = pPDDst->a[iPDDst]; +# endif + if ( (PdeDst.u & X86_PDE_P) + || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) ) + { + HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK; + PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw); + if (!pPoolPage) + { + AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n", + HCPhysShw, GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage); + + if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD)) + { + AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + } + + if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D)) + { + AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + } + + const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK]; + if (!(PdeSrc.u & X86_PDE_P)) + { + AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + + if ( !(PdeSrc.u & X86_PDE_PS) + || !fBigPagesSupported) + { + GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (GUEST_PAGE_SIZE / 2))); +# endif + } + else + { +# if PGM_GST_TYPE == PGM_TYPE_32BIT + if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK) + { + AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } +# endif + GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT))); +# endif + } + + if ( pPoolPage->enmKind + != (!(PdeSrc.u & X86_PDE_PS) || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG)) + { + AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n", + pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + } + + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { + AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", + GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + + if (GCPhysGst != pPoolPage->GCPhys) + { + AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n", + GCPhysGst, pPoolPage->GCPhys, GCPtr)); + cErrors++; + continue; + } + + if ( !(PdeSrc.u & X86_PDE_PS) + || !fBigPagesSupported) + { + /* + * Page Table. + */ + const GSTPT *pPTSrc; + rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(GUEST_PAGE_SIZE - 1)), + &pPTSrc); + if (RT_FAILURE(rc)) + { + AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", + GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)) + != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))) + { + /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here! + // (This problem will go away when/if we shadow multiple CR3s.) + AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) + { + AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + + /* iterate the page table. */ +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + for (unsigned iPT = 0, off = 0; + iPT < RT_ELEMENTS(pPTDst->a); + iPT++, off += GUEST_PAGE_SIZE) + { + const SHWPTE PteDst = pPTDst->a[iPT]; + + /* skip not-present and dirty tracked entries. */ + if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */ + continue; + Assert(SHW_PTE_IS_P(PteDst)); + + const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc]; + if (!(PteSrc.u & X86_PTE_P)) + { +# ifdef IN_RING3 + PGMAssertHandlerAndFlagsInSync(pVM); + DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE + | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3, + 0, 0, UINT64_MAX, 99, NULL); +# endif + AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0], + (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc))); + cErrors++; + continue; + } + + uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT; +# if 1 /** @todo sync accessed bit properly... */ + fIgnoreFlags |= X86_PTE_A; +# endif + + /* match the physical addresses */ + HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); + GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc); + +# ifdef IN_RING3 + rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); + if (RT_FAILURE(rc)) + { +# if 0 + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + } + else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + + pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { +# if 0 + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; + } + else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + + /* flags */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage) && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)) + { + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) + { + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_RW; + } + else + { + if ( SHW_PTE_IS_P(PteDst) +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + && !PGM_PAGE_IS_MMIO(pPhysPage) +# endif + ) + { + AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_P; + } + } + else + { + if ((PteSrc.u & (X86_PTE_RW | X86_PTE_D)) == X86_PTE_RW) + { + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (!SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (SHW_PTE_IS_D(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } +# if 0 /** @todo sync access bit properly... */ + if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed) + { + AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; +# else + fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; +# endif + } + else if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + /* access bit emulation (not implemented). */ + if ((PteSrc.u & X86_PTE_A) || SHW_PTE_IS_P(PteDst)) + { + AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (!SHW_PTE_IS_A(PteDst)) + { + AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_P; + } +# ifdef DEBUG_sandervl + fIgnoreFlags |= X86_PTE_D | X86_PTE_A; +# endif + } + + if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + ) + { + AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + } /* foreach PTE */ + } + else + { + /* + * Big Page. + */ + uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD; + if ((PdeSrc.u & (X86_PDE_RW | X86_PDE4M_D)) == X86_PDE_RW) + { + if (PdeDst.u & X86_PDE_RW) + { + AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)) + { + AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } +# if 0 /** @todo sync access bit properly... */ + if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed) + { + AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; +# else + fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; +# endif + } + else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) + { + /* access bit emulation (not implemented). */ + if ((PdeSrc.u & X86_PDE_A) || SHW_PDE_IS_P(PdeDst)) + { + AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (!SHW_PDE_IS_A(PdeDst)) + { + AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + fIgnoreFlags |= X86_PTE_P; + } + + if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags)) + { + AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + + /* iterate the page table. */ + for (unsigned iPT = 0, off = 0; + iPT < RT_ELEMENTS(pPTDst->a); + iPT++, off += GUEST_PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + GUEST_PAGE_SIZE)) + { + const SHWPTE PteDst = pPTDst->a[iPT]; + + if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + + /* skip not-present entries. */ + if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */ + continue; + + fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX; + + /* match the physical addresses */ + HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); + +# ifdef IN_RING3 + rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); + if (RT_FAILURE(rc)) + { +# if 0 + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } +# endif + } + else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { +# if 0 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; + } + else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + + /* flags */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) + { + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) + { + if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED) + { + if ( SHW_PTE_IS_RW(PteDst) + && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage)) + { + AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_RW; + } + } + else + { + if ( SHW_PTE_IS_P(PteDst) + && !PGM_PAGE_IS_HNDL_PHYS_NOT_IN_HM(pPhysPage) +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + && !PGM_PAGE_IS_MMIO(pPhysPage) +# endif + ) + { + AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_P; + } + } + + if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */ + ) + { + AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + } /* for each PTE */ + } + } + /* not present */ + + } /* for each PDE */ + + } /* for each PDPTE */ + + } /* for each PML4E */ + +# ifdef DEBUG + if (cErrors) + LogFlow(("AssertCR3: cErrors=%d\n", cErrors)); +# endif +# endif /* GST is in {32BIT, PAE, AMD64} */ + return cErrors; +#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ +} +#endif /* VBOX_STRICT */ + + +/** + * Sets up the CR3 for shadow paging + * + * @returns Strict VBox status code. + * @retval VINF_SUCCESS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysCR3 The physical address in the CR3 register. (A20 mask + * already applied.) + */ +PGM_BTH_DECL(int, MapCR3)(PVMCPUCC pVCpu, RTGCPHYS GCPhysCR3) +{ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + int rc = VINF_SUCCESS; + + /* Update guest paging info. */ +#if PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 + + LogFlow(("MapCR3: %RGp\n", GCPhysCR3)); + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); + +# if PGM_GST_TYPE == PGM_TYPE_PAE + if ( !pVCpu->pgm.s.CTX_SUFF(fPaePdpesAndCr3Mapped) + || pVCpu->pgm.s.GCPhysPaeCR3 != GCPhysCR3) +# endif + { + /* + * Map the page CR3 points at. + */ + RTHCPTR HCPtrGuestCR3; + rc = pgmGstMapCr3(pVCpu, GCPhysCR3, &HCPtrGuestCR3); + if (RT_SUCCESS(rc)) + { +# if PGM_GST_TYPE == PGM_TYPE_32BIT +# ifdef IN_RING3 + pVCpu->pgm.s.pGst32BitPdR3 = (PX86PD)HCPtrGuestCR3; + pVCpu->pgm.s.pGst32BitPdR0 = NIL_RTR0PTR; +# else + pVCpu->pgm.s.pGst32BitPdR3 = NIL_RTR3PTR; + pVCpu->pgm.s.pGst32BitPdR0 = (PX86PD)HCPtrGuestCR3; +# endif + +# elif PGM_GST_TYPE == PGM_TYPE_PAE +# ifdef IN_RING3 + pVCpu->pgm.s.pGstPaePdptR3 = (PX86PDPT)HCPtrGuestCR3; + pVCpu->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR; +# else + pVCpu->pgm.s.pGstPaePdptR3 = NIL_RTR3PTR; + pVCpu->pgm.s.pGstPaePdptR0 = (PX86PDPT)HCPtrGuestCR3; +# endif + + X86PDPE aGstPaePdpes[X86_PG_PAE_PDPE_ENTRIES]; +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT + /* + * When EPT is enabled by the nested-hypervisor and the nested-guest is in PAE mode, + * the guest-CPU context would've already been updated with the 4 PAE PDPEs specified + * in the virtual VMCS. The PDPEs can differ from those in guest memory referenced by + * the translated nested-guest CR3. We -MUST- use the PDPEs provided in the virtual VMCS + * rather than those in guest memory. + * + * See Intel spec. 26.3.2.4 "Loading Page-Directory-Pointer-Table Entries". + */ + if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT) + CPUMGetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]); + else +#endif + { + /* Update CPUM with the PAE PDPEs referenced by CR3. */ + memcpy(&aGstPaePdpes, HCPtrGuestCR3, sizeof(aGstPaePdpes)); + CPUMSetGuestPaePdpes(pVCpu, &aGstPaePdpes[0]); + } + + /* + * Map the 4 PAE PDPEs. + */ + rc = PGMGstMapPaePdpes(pVCpu, &aGstPaePdpes[0]); + if (RT_SUCCESS(rc)) + { +# ifdef IN_RING3 + pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = true; + pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false; +# else + pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false; + pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = true; +# endif + pVCpu->pgm.s.GCPhysPaeCR3 = GCPhysCR3; + } + +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 +# ifdef IN_RING3 + pVCpu->pgm.s.pGstAmd64Pml4R3 = (PX86PML4)HCPtrGuestCR3; + pVCpu->pgm.s.pGstAmd64Pml4R0 = NIL_RTR0PTR; +# else + pVCpu->pgm.s.pGstAmd64Pml4R3 = NIL_RTR3PTR; + pVCpu->pgm.s.pGstAmd64Pml4R0 = (PX86PML4)HCPtrGuestCR3; +# endif +# endif + } + else + AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); + } +#endif + + /* + * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64). + */ +# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ + && ( PGM_GST_TYPE != PGM_TYPE_REAL \ + && PGM_GST_TYPE != PGM_TYPE_PROT)) + + Assert(!pVM->pgm.s.fNestedPaging); + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); + + /* + * Update the shadow root page as well since that's not fixed. + */ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + PPGMPOOLPAGE pNewShwPageCR3; + + PGM_LOCK_VOID(pVM); + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); +# endif + + Assert(!(GCPhysCR3 >> (GUEST_PAGE_SHIFT + 32))); /** @todo what is this for? */ + int const rc2 = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, + PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3); + AssertFatalRC(rc2); + + pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pPool, pNewShwPageCR3); + pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pPool, pNewShwPageCR3); + + /* Set the current hypervisor CR3. */ + CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); + + /* Clean up the old CR3 root. */ + if ( pOldShwPageCR3 + && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */) + { + Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); + + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pOldShwPageCR3); + + pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); + } + PGM_UNLOCK(pVM); +# else + NOREF(GCPhysCR3); +# endif + + return rc; +} + +/** + * Unmaps the shadow CR3. + * + * @returns VBox status, no specials. + * @param pVCpu The cross context virtual CPU structure. + */ +PGM_BTH_DECL(int, UnmapCR3)(PVMCPUCC pVCpu) +{ + LogFlow(("UnmapCR3\n")); + + int rc = VINF_SUCCESS; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + /* + * Update guest paging info. + */ +#if PGM_GST_TYPE == PGM_TYPE_32BIT + pVCpu->pgm.s.pGst32BitPdR3 = 0; + pVCpu->pgm.s.pGst32BitPdR0 = 0; + +#elif PGM_GST_TYPE == PGM_TYPE_PAE + pVCpu->pgm.s.pGstPaePdptR3 = 0; + pVCpu->pgm.s.pGstPaePdptR0 = 0; + for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) + { + pVCpu->pgm.s.apGstPaePDsR3[i] = 0; + pVCpu->pgm.s.apGstPaePDsR0[i] = 0; + pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; + } + +#elif PGM_GST_TYPE == PGM_TYPE_AMD64 + pVCpu->pgm.s.pGstAmd64Pml4R3 = 0; + pVCpu->pgm.s.pGstAmd64Pml4R0 = 0; + +#else /* prot/real mode stub */ + /* nothing to do */ +#endif + + /* + * PAE PDPEs (and CR3) might have been mapped via PGMGstMapPaePdpesAtCr3() + * prior to switching to PAE in pfnMapCr3(), so we need to clear them here. + */ + pVCpu->pgm.s.fPaePdpesAndCr3MappedR3 = false; + pVCpu->pgm.s.fPaePdpesAndCr3MappedR0 = false; + pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS; + + /* + * Update shadow paging info. + */ +#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64)) +# if PGM_GST_TYPE != PGM_TYPE_REAL + Assert(!pVM->pgm.s.fNestedPaging); +# endif + PGM_LOCK_VOID(pVM); + + if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); +# endif + + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + + pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX); + pVCpu->pgm.s.pShwPageCR3R3 = 0; + pVCpu->pgm.s.pShwPageCR3R0 = 0; + } + + PGM_UNLOCK(pVM); +#endif + + return rc; +} + |