summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp2838
1 files changed, 2838 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp b/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp
new file mode 100644
index 00000000..fa731415
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp
@@ -0,0 +1,2838 @@
+/* $Id: NEMR3Native-linux.cpp $ */
+/** @file
+ * NEM - Native execution manager, native ring-3 Linux backend.
+ */
+
+/*
+ * Copyright (C) 2021-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_NEM
+#define VMCPU_INCL_CPUM_GST_CTX
+#include <VBox/vmm/nem.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/apic.h>
+#include <VBox/vmm/pdm.h>
+#include <VBox/vmm/trpm.h>
+#include "NEMInternal.h"
+#include <VBox/vmm/vmcc.h>
+
+#include <iprt/alloca.h>
+#include <iprt/string.h>
+#include <iprt/system.h>
+#include <iprt/x86.h>
+
+#include <errno.h>
+#include <unistd.h>
+#include <sys/ioctl.h>
+#include <sys/fcntl.h>
+#include <sys/mman.h>
+#include <linux/kvm.h>
+
+/*
+ * Supply stuff missing from the kvm.h on the build box.
+ */
+#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */
+# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
+#endif
+
+
+
+/**
+ * Worker for nemR3NativeInit that gets the hypervisor capabilities.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pErrInfo Where to always return error info.
+ */
+static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
+{
+ AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
+
+ /*
+ * Capabilities.
+ */
+ static const struct
+ {
+ const char *pszName;
+ int iCap;
+ uint32_t offNem : 24;
+ uint32_t cbNem : 3;
+ uint32_t fReqNonZero : 1;
+ uint32_t uReserved : 4;
+ } s_aCaps[] =
+ {
+#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 }
+#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
+#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
+#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
+#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
+
+ CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */
+ CAP_ENTRY_ML(KVM_CAP_HLT),
+ CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
+ CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
+ CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
+ CAP_ENTRY__U(5),
+ CAP_ENTRY__L(KVM_CAP_VAPIC),
+ CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
+ CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
+ CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
+ CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */
+ CAP_ENTRY__L(KVM_CAP_PIT),
+ CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
+ CAP_ENTRY__L(KVM_CAP_PV_MMU),
+ CAP_ENTRY__L(KVM_CAP_MP_STATE),
+ CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
+ CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
+ CAP_ENTRY__U(17),
+ CAP_ENTRY__L(KVM_CAP_IOMMU),
+ CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
+ CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
+ CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */
+ CAP_ENTRY__L(KVM_CAP_USER_NMI),
+#ifdef __KVM_HAVE_GUEST_DEBUG
+ CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
+#endif
+#ifdef __KVM_HAVE_PIT
+ CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
+#endif
+ CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
+ CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
+ CAP_ENTRY__U(27),
+ CAP_ENTRY__U(28),
+ CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
+ CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */
+#ifdef __KVM_HAVE_MCE
+ CAP_ENTRY__L(KVM_CAP_MCE),
+#endif
+ CAP_ENTRY__L(KVM_CAP_IRQFD),
+#ifdef __KVM_HAVE_PIT
+ CAP_ENTRY__L(KVM_CAP_PIT2),
+#endif
+ CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
+#ifdef __KVM_HAVE_PIT_STATE2
+ CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
+#endif
+ CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
+ CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
+#ifdef __KVM_HAVE_XEN_HVM
+ CAP_ENTRY__L(KVM_CAP_XEN_HVM),
+#endif
+ CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
+ CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */
+#ifdef __KVM_HAVE_VCPU_EVENTS
+ CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
+#else
+ CAP_ENTRY_MU(41),
+#endif
+ CAP_ENTRY__L(KVM_CAP_S390_PSW),
+ CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
+ CAP_ENTRY__L(KVM_CAP_HYPERV),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
+ CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
+ CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
+ CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
+#ifdef __KVM_HAVE_DEBUGREGS
+ CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */
+#endif
+ CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
+ CAP_ENTRY__L(KVM_CAP_PPC_OSI),
+ CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
+ CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
+#ifdef __KVM_HAVE_XSAVE
+ CAP_ENTRY_ML(KVM_CAP_XSAVE),
+#else
+ CAP_ENTRY_MU(55),
+#endif
+#ifdef __KVM_HAVE_XCRS
+ CAP_ENTRY_ML(KVM_CAP_XCRS),
+#else
+ CAP_ENTRY_MU(56),
+#endif
+ CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
+ CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
+ CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
+ CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */
+ CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
+ CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
+ CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
+ CAP_ENTRY__L(KVM_CAP_PPC_SMT),
+ CAP_ENTRY__L(KVM_CAP_PPC_RMA),
+ CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
+ CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
+ CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
+ CAP_ENTRY__L(KVM_CAP_SW_TLB),
+ CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */
+ CAP_ENTRY__L(KVM_CAP_S390_GMAP),
+ CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
+ CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
+ CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
+ CAP_ENTRY__L(KVM_CAP_PCI_2_3),
+ CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
+ CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
+ CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
+ CAP_ENTRY__L(KVM_CAP_S390_COW),
+ CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */
+ CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
+ CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
+ CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
+ CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
+ CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
+ CAP_ENTRY__L(KVM_CAP_PPC_EPR),
+ CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
+ CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
+ CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
+ CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */
+ CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
+ CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
+ CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
+ CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
+ CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
+ CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
+ CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
+ CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
+ CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */
+ CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
+ CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
+ CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
+ CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
+ CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
+ CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
+ CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
+ CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
+ CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
+ CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */
+ CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
+ CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
+ CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
+ CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
+ CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
+ CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
+ CAP_ENTRY__L(KVM_CAP_X86_SMM),
+ CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
+ CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
+ CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */
+ CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
+ CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
+ CAP_ENTRY__L(KVM_CAP_S390_RI),
+ CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
+ CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
+ CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
+ CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
+ CAP_ENTRY__L(KVM_CAP_X2APIC_API),
+ CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */
+ CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
+ CAP_ENTRY__L(KVM_CAP_PPC_HTM),
+ CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
+ CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
+ CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
+ CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
+ CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
+ CAP_ENTRY__L(KVM_CAP_MIPS_TE),
+ CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
+ CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */
+ CAP_ENTRY__L(KVM_CAP_S390_AIS),
+ CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
+ CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
+ CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ),
+ CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
+ CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
+ CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
+ CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */
+ CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
+ CAP_ENTRY__L(KVM_CAP_S390_BPB),
+ CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
+ CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
+ CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
+ CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
+ CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
+ CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */
+ CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
+ CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
+ CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
+ CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
+ CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
+ CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
+ CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
+ CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */
+ CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
+ CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
+ CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
+ CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
+ CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
+ CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
+ CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
+ CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
+ CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
+ CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */
+ CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
+ CAP_ENTRY__L(KVM_CAP_HALT_POLL),
+ CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
+ CAP_ENTRY__L(KVM_CAP_LAST_CPU),
+ CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
+ CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
+ CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
+ CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */
+ CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
+ CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */
+ CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
+ CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
+ CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
+ CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
+ CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
+ CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
+ CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
+ CAP_ENTRY__L(KVM_CAP_PTP_KVM),
+ CAP_ENTRY__U(199),
+ CAP_ENTRY__U(200),
+ CAP_ENTRY__U(201),
+ CAP_ENTRY__U(202),
+ CAP_ENTRY__U(203),
+ CAP_ENTRY__U(204),
+ CAP_ENTRY__U(205),
+ CAP_ENTRY__U(206),
+ CAP_ENTRY__U(207),
+ CAP_ENTRY__U(208),
+ CAP_ENTRY__U(209),
+ CAP_ENTRY__U(210),
+ CAP_ENTRY__U(211),
+ CAP_ENTRY__U(212),
+ CAP_ENTRY__U(213),
+ CAP_ENTRY__U(214),
+ CAP_ENTRY__U(215),
+ CAP_ENTRY__U(216),
+ };
+
+ LogRel(("NEM: KVM capabilities (system):\n"));
+ int rcRet = VINF_SUCCESS;
+ for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
+ {
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
+ if (rc >= 10)
+ LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
+ else if (rc >= 0)
+ LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc));
+ else
+ LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
+ switch (s_aCaps[i].cbNem)
+ {
+ case 0:
+ break;
+ case 1:
+ {
+ uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
+ AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
+ *puValue = (uint8_t)rc;
+ AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
+ break;
+ }
+ case 2:
+ {
+ uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
+ AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
+ *puValue = (uint16_t)rc;
+ AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
+ break;
+ }
+ case 4:
+ {
+ uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
+ AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
+ *puValue = (uint32_t)rc;
+ AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
+ break;
+ }
+ default:
+ rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
+ i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
+ AssertFailedReturn(rcRet);
+ }
+
+ /*
+ * Is a require non-zero entry zero or failing?
+ */
+ if (s_aCaps[i].fReqNonZero && rc <= 0)
+ rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
+ "Required capability '%s' is missing!", s_aCaps[i].pszName);
+ }
+
+ /*
+ * Get per VCpu KVM_RUN MMAP area size.
+ */
+ int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
+ if ((unsigned)rc < _64M)
+ {
+ pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
+ LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
+ }
+ else if (rc < 0)
+ rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
+ else
+ rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
+
+ /*
+ * Init the slot ID bitmap.
+ */
+ ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */
+ if (pVM->nem.s.cMaxMemSlots < _32K)
+ ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
+ ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */
+
+ return rcRet;
+}
+
+
+/**
+ * Does the early setup of a KVM VM.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pErrInfo Where to always return error info.
+ */
+static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
+{
+ AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
+
+ /*
+ * Enable user space MSRs and let us check everything KVM cannot handle.
+ * We will set up filtering later when ring-3 init has completed.
+ */
+ struct kvm_enable_cap CapEn =
+ {
+ KVM_CAP_X86_USER_SPACE_MSR, 0,
+ { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0}
+ };
+ int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn);
+ if (rcLnx == -1)
+ return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno);
+
+ /*
+ * Create the VCpus.
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ /* Create it. */
+ pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
+ if (pVCpu->nem.s.fdVCpu < 0)
+ return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
+
+ /* Map the KVM_RUN area. */
+ pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
+ pVCpu->nem.s.fdVCpu, 0 /*offset*/);
+ if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
+ return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno);
+
+ /* We want all x86 registers and events on each exit. */
+ pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */
+static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
+{
+ RT_NOREF(pVM, pvUser);
+ int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
+ AssertLogRelRC(rc);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Try initialize the native API.
+ *
+ * This may only do part of the job, more can be done in
+ * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param fFallback Whether we're in fallback mode or use-NEM mode. In
+ * the latter we'll fail if we cannot initialize.
+ * @param fForced Whether the HMForced flag is set and we should
+ * fail if we cannot initialize.
+ */
+int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
+{
+ RT_NOREF(pVM, fFallback, fForced);
+ /*
+ * Some state init.
+ */
+ pVM->nem.s.fdKvm = -1;
+ pVM->nem.s.fdVm = -1;
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
+ pNemCpu->fdVCpu = -1;
+ }
+
+ /*
+ * Error state.
+ * The error message will be non-empty on failure and 'rc' will be set too.
+ */
+ RTERRINFOSTATIC ErrInfo;
+ PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
+
+ /*
+ * Open kvm subsystem so we can issue system ioctls.
+ */
+ int rc;
+ int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
+ if (fdKvm >= 0)
+ {
+ pVM->nem.s.fdKvm = fdKvm;
+
+ /*
+ * Create an empty VM since it is recommended we check capabilities on
+ * the VM rather than the system descriptor.
+ */
+ int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
+ if (fdVm >= 0)
+ {
+ pVM->nem.s.fdVm = fdVm;
+
+ /*
+ * Check capabilities.
+ */
+ rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Set up the VM (more on this later).
+ */
+ rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Set ourselves as the execution engine and make config adjustments.
+ */
+ VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
+ Log(("NEM: Marked active!\n"));
+ PGMR3EnableNemMode(pVM);
+
+ /*
+ * Register release statistics
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
+ STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
+ STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
+ }
+
+ /*
+ * Success.
+ */
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Bail out.
+ */
+ }
+ close(fdVm);
+ pVM->nem.s.fdVm = -1;
+ }
+ else
+ rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
+ close(fdKvm);
+ pVM->nem.s.fdKvm = -1;
+ }
+ else if (errno == EACCES)
+ rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
+ else if (errno == ENOENT)
+ rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
+ else
+ rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
+
+ /*
+ * We only fail if in forced mode, otherwise just log the complaint and return.
+ */
+ Assert(RTErrInfoIsSet(pErrInfo));
+ if ( (fForced || !fFallback)
+ && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
+ return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
+ LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * This is called after CPUMR3Init is done.
+ *
+ * @returns VBox status code.
+ * @param pVM The VM handle..
+ */
+int nemR3NativeInitAfterCPUM(PVM pVM)
+{
+ /*
+ * Validate sanity.
+ */
+ AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
+ AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
+ AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
+
+ /** @todo */
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Update the CPUID leaves for a VCPU.
+ *
+ * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
+ * everything when there really just are single bit changes. That said, it
+ * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled
+ * bit(s), so it should suffice if we do this at startup, I hope.
+ */
+static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
+{
+ uint32_t cLeaves = 0;
+ PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
+ struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
+
+ pReq->nent = cLeaves;
+ pReq->padding = 0;
+
+ for (uint32_t i = 0; i < cLeaves; i++)
+ {
+ CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/,
+ &pReq->entries[i].eax,
+ &pReq->entries[i].ebx,
+ &pReq->entries[i].ecx,
+ &pReq->entries[i].edx);
+ pReq->entries[i].function = paLeaves[i].uLeaf;
+ pReq->entries[i].index = paLeaves[i].uSubLeaf;
+ pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ pReq->entries[i].padding[0] = 0;
+ pReq->entries[i].padding[1] = 0;
+ pReq->entries[i].padding[2] = 0;
+ }
+
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
+
+ return VINF_SUCCESS;
+}
+
+
+int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
+{
+ /*
+ * Make RTThreadPoke work again (disabled for avoiding unnecessary
+ * critical section issues in ring-0).
+ */
+ if (enmWhat == VMINITCOMPLETED_RING3)
+ VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
+
+ /*
+ * Configure CPUIDs after ring-3 init has been done.
+ */
+ if (enmWhat == VMINITCOMPLETED_RING3)
+ {
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
+ AssertRCReturn(rc, rc);
+ }
+ }
+
+ /*
+ * Configure MSRs after ring-3 init is done.
+ *
+ * We only need to tell KVM which MSRs it can handle, as we already
+ * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN
+ * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we
+ * will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the
+ * bitmaps should be deferred to ring-3.
+ */
+ if (enmWhat == VMINITCOMPLETED_RING3)
+ {
+ struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */
+ MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY;
+
+ unsigned iRange = 0;
+#define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \
+ AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \
+ uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \
+ do { \
+ uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \
+ uint32_t const uBase = UINT32_C(a_uBase); \
+ uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \
+ MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \
+ MsrFilters.ranges[iRange].nmsrs = cMsrs; \
+ MsrFilters.ranges[iRange].flags = (a_fFlags); \
+ MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0]
+#define MSR_RANGE_ADD(a_Msr) \
+ do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0)
+#define MSR_RANGE_END(a_cMinMsrs) \
+ /* optimize the range size before closing: */ \
+ uint32_t cBitmap = cMsrs / 64; \
+ while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \
+ cBitmap -= 1; \
+ MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \
+ iRange++; \
+ } while (0)
+
+ /* 1st Intel range: 0000_0000 to 0000_3000. */
+ MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
+ MSR_RANGE_ADD(MSR_IA32_TSC);
+ MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS);
+ MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP);
+ MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP);
+ MSR_RANGE_ADD(MSR_IA32_CR_PAT);
+ /** @todo more? */
+ MSR_RANGE_END(64);
+
+ /* 1st AMD range: c000_0000 to c000_3000 */
+ MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
+ MSR_RANGE_ADD(MSR_K6_EFER);
+ MSR_RANGE_ADD(MSR_K6_STAR);
+ MSR_RANGE_ADD(MSR_K8_GS_BASE);
+ MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE);
+ MSR_RANGE_ADD(MSR_K8_LSTAR);
+ MSR_RANGE_ADD(MSR_K8_CSTAR);
+ MSR_RANGE_ADD(MSR_K8_SF_MASK);
+ MSR_RANGE_ADD(MSR_K8_TSC_AUX);
+ /** @todo add more? */
+ MSR_RANGE_END(64);
+
+ /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get
+ * the MSR requests instead of KVM. */
+
+ int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters);
+ if (rcLnx == -1)
+ return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
+ "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+int nemR3NativeTerm(PVM pVM)
+{
+ /*
+ * Per-cpu data
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ if (pVCpu->nem.s.fdVCpu != -1)
+ {
+ close(pVCpu->nem.s.fdVCpu);
+ pVCpu->nem.s.fdVCpu = -1;
+ }
+ if (pVCpu->nem.s.pRun)
+ {
+ munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
+ pVCpu->nem.s.pRun = NULL;
+ }
+ }
+
+ /*
+ * Global data.
+ */
+ if (pVM->nem.s.fdVm != -1)
+ {
+ close(pVM->nem.s.fdVm);
+ pVM->nem.s.fdVm = -1;
+ }
+
+ if (pVM->nem.s.fdKvm != -1)
+ {
+ close(pVM->nem.s.fdKvm);
+ pVM->nem.s.fdKvm = -1;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM reset notification.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void nemR3NativeReset(PVM pVM)
+{
+ RT_NOREF(pVM);
+}
+
+
+/**
+ * Reset CPU due to INIT IPI or hot (un)plugging.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the CPU being
+ * reset.
+ * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
+ */
+void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
+{
+ RT_NOREF(pVCpu, fInitIpi);
+}
+
+
+/*********************************************************************************************************************************
+* Memory management *
+*********************************************************************************************************************************/
+
+
+/**
+ * Allocates a memory slot ID.
+ *
+ * @returns Slot ID on success, UINT16_MAX on failure.
+ */
+static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
+{
+ /* Use the hint first. */
+ uint16_t idHint = pVM->nem.s.idPrevSlot;
+ if (idHint < _32K - 1)
+ {
+ int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
+ Assert(idx < _32K);
+ if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
+ return pVM->nem.s.idPrevSlot = (uint16_t)idx;
+ }
+
+ /*
+ * Search the whole map from the start.
+ */
+ int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
+ Assert(idx < _32K);
+ if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
+ return pVM->nem.s.idPrevSlot = (uint16_t)idx;
+
+ Assert(idx < 0 /*shouldn't trigger unless there is a race */);
+ return UINT16_MAX; /* caller is expected to assert. */
+}
+
+
+/**
+ * Frees a memory slot ID
+ */
+static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
+{
+ if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
+ { /*likely*/ }
+ else
+ AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
+}
+
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
+ uint8_t *pu2State, uint32_t *puNemRange)
+{
+ uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
+ AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
+
+ Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
+ GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
+
+ struct kvm_userspace_memory_region Region;
+ Region.slot = idSlot;
+ Region.flags = 0;
+ Region.guest_phys_addr = GCPhys;
+ Region.memory_size = cb;
+ Region.userspace_addr = (uintptr_t)pvR3;
+
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
+ if (rc == 0)
+ {
+ *pu2State = 0;
+ *puNemRange = idSlot;
+ return VINF_SUCCESS;
+ }
+
+ LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
+ nemR3LnxMemSlotIdFree(pVM, idSlot);
+ return VERR_NEM_MAP_PAGES_FAILED;
+}
+
+
+VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
+{
+ RT_NOREF(pVM);
+ return true;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
+ void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
+ GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
+ RT_NOREF(pvRam);
+
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
+ {
+ /** @todo implement splitting and whatnot of ranges if we want to be 100%
+ * conforming (just modify RAM registrations in MM.cpp to test). */
+ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
+ VERR_NEM_MAP_PAGES_FAILED);
+ }
+
+ /*
+ * Register MMIO2.
+ */
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
+ {
+ AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
+ AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
+
+ uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
+ AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
+
+ struct kvm_userspace_memory_region Region;
+ Region.slot = idSlot;
+ Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
+ Region.guest_phys_addr = GCPhys;
+ Region.memory_size = cb;
+ Region.userspace_addr = (uintptr_t)pvMmio2;
+
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
+ if (rc == 0)
+ {
+ *pu2State = 0;
+ *puNemRange = idSlot;
+ Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
+ GCPhys, cb, fFlags, pvMmio2, idSlot));
+ return VINF_SUCCESS;
+ }
+
+ nemR3LnxMemSlotIdFree(pVM, idSlot);
+ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
+ GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
+ VERR_NEM_MAP_PAGES_FAILED);
+ }
+
+ /* MMIO, don't care. */
+ *pu2State = 0;
+ *puNemRange = UINT32_MAX;
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
+ void *pvRam, void *pvMmio2, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
+ void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
+ GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
+ RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
+
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
+ {
+ /** @todo implement splitting and whatnot of ranges if we want to be 100%
+ * conforming (just modify RAM registrations in MM.cpp to test). */
+ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
+ VERR_NEM_UNMAP_PAGES_FAILED);
+ }
+
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
+ {
+ uint32_t const idSlot = *puNemRange;
+ AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
+ AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
+
+ struct kvm_userspace_memory_region Region;
+ Region.slot = idSlot;
+ Region.flags = 0;
+ Region.guest_phys_addr = GCPhys;
+ Region.memory_size = 0; /* this deregisters it. */
+ Region.userspace_addr = (uintptr_t)pvMmio2;
+
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
+ if (rc == 0)
+ {
+ if (pu2State)
+ *pu2State = 0;
+ *puNemRange = UINT32_MAX;
+ nemR3LnxMemSlotIdFree(pVM, idSlot);
+ return VINF_SUCCESS;
+ }
+
+ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
+ GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
+ VERR_NEM_UNMAP_PAGES_FAILED);
+ }
+
+ if (pu2State)
+ *pu2State = UINT8_MAX;
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
+ void *pvBitmap, size_t cbBitmap)
+{
+ AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
+ AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
+
+ RT_NOREF(GCPhys, cbBitmap);
+
+ struct kvm_dirty_log DirtyLog;
+ DirtyLog.slot = uNemRange;
+ DirtyLog.padding1 = 0;
+ DirtyLog.dirty_bitmap = pvBitmap;
+
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
+ AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
+ VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
+
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
+ uint8_t *pu2State, uint32_t *puNemRange)
+{
+ Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
+ *pu2State = UINT8_MAX;
+
+ /* Don't support puttint ROM where there is already RAM. For
+ now just shuffle the registrations till it works... */
+ AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
+ VERR_NEM_MAP_PAGES_FAILED);
+
+ /** @todo figure out how to do shadow ROMs. */
+
+ /*
+ * We only allocate a slot number here in case we need to use it to
+ * fend of physical handler fun.
+ */
+ uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
+ AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
+
+ *pu2State = 0;
+ *puNemRange = idSlot;
+ Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
+ GCPhys, cb, fFlags, pvPages, idSlot));
+ RT_NOREF(GCPhys, cb, fFlags, pvPages);
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
+ uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
+ GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
+
+ AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
+
+ uint32_t const idSlot = *puNemRange;
+ AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
+ AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
+
+ *pu2State = UINT8_MAX;
+
+ /*
+ * Do the actual setting of the user pages here now that we've
+ * got a valid pvPages (typically isn't available during the early
+ * notification, unless we're replacing RAM).
+ */
+ struct kvm_userspace_memory_region Region;
+ Region.slot = idSlot;
+ Region.flags = 0;
+ Region.guest_phys_addr = GCPhys;
+ Region.memory_size = cb;
+ Region.userspace_addr = (uintptr_t)pvPages;
+
+ int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
+ if (rc == 0)
+ {
+ *pu2State = 0;
+ Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
+ GCPhys, cb, fFlags, pvPages, idSlot));
+ return VINF_SUCCESS;
+ }
+ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
+ GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
+ VERR_NEM_MAP_PAGES_FAILED);
+}
+
+
+VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
+{
+ Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
+ Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
+ RT_NOREF(pVCpu, fEnabled);
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
+ RTR3PTR pvMemR3, uint8_t *pu2State)
+{
+ Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
+ GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
+
+ *pu2State = UINT8_MAX;
+ RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
+ RT_NOREF(pVM, enmKind, GCPhys, cb);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
+ RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
+ GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
+ RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
+}
+
+
+int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
+ return VINF_SUCCESS;
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ Assert(VM_IS_NEM_ENABLED(pVM));
+ RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
+
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
+ RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
+ Assert(VM_IS_NEM_ENABLED(pVM));
+ RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
+}
+
+
+/*********************************************************************************************************************************
+* CPU State *
+*********************************************************************************************************************************/
+
+/**
+ * Worker that imports selected state from KVM.
+ */
+static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
+{
+ fWhat &= pVCpu->cpum.GstCtx.fExtrn;
+ if (!fWhat)
+ return VINF_SUCCESS;
+
+ /*
+ * Stuff that goes into kvm_run::s.regs.regs:
+ */
+ if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
+ {
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ pCtx->rip = pRun->s.regs.regs.rip;
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ pCtx->rflags.u = pRun->s.regs.regs.rflags;
+
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ pCtx->rax = pRun->s.regs.regs.rax;
+ if (fWhat & CPUMCTX_EXTRN_RCX)
+ pCtx->rcx = pRun->s.regs.regs.rcx;
+ if (fWhat & CPUMCTX_EXTRN_RDX)
+ pCtx->rdx = pRun->s.regs.regs.rdx;
+ if (fWhat & CPUMCTX_EXTRN_RBX)
+ pCtx->rbx = pRun->s.regs.regs.rbx;
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ pCtx->rsp = pRun->s.regs.regs.rsp;
+ if (fWhat & CPUMCTX_EXTRN_RBP)
+ pCtx->rbp = pRun->s.regs.regs.rbp;
+ if (fWhat & CPUMCTX_EXTRN_RSI)
+ pCtx->rsi = pRun->s.regs.regs.rsi;
+ if (fWhat & CPUMCTX_EXTRN_RDI)
+ pCtx->rdi = pRun->s.regs.regs.rdi;
+ if (fWhat & CPUMCTX_EXTRN_R8_R15)
+ {
+ pCtx->r8 = pRun->s.regs.regs.r8;
+ pCtx->r9 = pRun->s.regs.regs.r9;
+ pCtx->r10 = pRun->s.regs.regs.r10;
+ pCtx->r11 = pRun->s.regs.regs.r11;
+ pCtx->r12 = pRun->s.regs.regs.r12;
+ pCtx->r13 = pRun->s.regs.regs.r13;
+ pCtx->r14 = pRun->s.regs.regs.r14;
+ pCtx->r15 = pRun->s.regs.regs.r15;
+ }
+ }
+
+ /*
+ * Stuff that goes into kvm_run::s.regs.sregs.
+ *
+ * Note! The apic_base can be ignored because we gets all MSR writes to it
+ * and VBox always keeps the correct value.
+ */
+ bool fMaybeChangedMode = false;
+ bool fUpdateCr3 = false;
+ if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
+ | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
+ {
+ /** @todo what about Attr.n.u4LimitHigh? */
+#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
+ (a_CtxSeg).u64Base = (a_KvmSeg).base; \
+ (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \
+ (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
+ (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \
+ (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \
+ (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \
+ (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \
+ (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \
+ (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \
+ (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \
+ (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
+ (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \
+ (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \
+ CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
+ } while (0)
+
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
+ }
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base;
+ pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit;
+ }
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base;
+ pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit;
+ }
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ {
+ if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
+ {
+ CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
+ fMaybeChangedMode = true;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ pCtx->cr2 = pRun->s.regs.sregs.cr2;
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ {
+ if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
+ {
+ CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
+ fUpdateCr3 = true;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ {
+ if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
+ {
+ CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
+ fMaybeChangedMode = true;
+ }
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ {
+ if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
+ {
+ Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
+ if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
+ PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
+ pCtx->msrEFER = pRun->s.regs.sregs.efer;
+ fMaybeChangedMode = true;
+ }
+ }
+#undef NEM_LNX_IMPORT_SEG
+ }
+
+ /*
+ * Debug registers.
+ */
+ if (fWhat & CPUMCTX_EXTRN_DR_MASK)
+ {
+ struct kvm_debugregs DbgRegs = {{0}};
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ pCtx->dr[0] = DbgRegs.db[0];
+ pCtx->dr[1] = DbgRegs.db[1];
+ pCtx->dr[2] = DbgRegs.db[2];
+ pCtx->dr[3] = DbgRegs.db[3];
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ pCtx->dr[6] = DbgRegs.dr6;
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ pCtx->dr[7] = DbgRegs.dr7;
+ }
+
+ /*
+ * FPU, SSE, AVX, ++.
+ */
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
+ {
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
+ {
+ fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
+
+ AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_XCRx)
+ {
+ struct kvm_xcrs Xcrs =
+ { /*.nr_xcrs = */ 2,
+ /*.flags = */ 0,
+ /*.xcrs= */ {
+ { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
+ { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
+ }
+ };
+
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+
+ pCtx->aXcr[0] = Xcrs.xcrs[0].value;
+ pCtx->aXcr[1] = Xcrs.xcrs[1].value;
+ }
+ }
+
+ /*
+ * MSRs.
+ */
+ if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
+ | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
+ {
+ union
+ {
+ struct kvm_msrs Core;
+ uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
+ } uBuf;
+ uint64_t *pauDsts[32];
+ uint32_t iMsr = 0;
+ PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+
+#define ADD_MSR(a_Msr, a_uValue) do { \
+ Assert(iMsr < 32); \
+ uBuf.Core.entries[iMsr].index = (a_Msr); \
+ uBuf.Core.entries[iMsr].reserved = 0; \
+ uBuf.Core.entries[iMsr].data = UINT64_MAX; \
+ pauDsts[iMsr] = &(a_uValue); \
+ iMsr += 1; \
+ } while (0)
+
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
+ ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
+ ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
+ ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
+ ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
+ ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
+ }
+ if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
+ ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
+ /** @todo What do we _have_ to add here?
+ * We also have: Mttr*, MiscEnable, FeatureControl. */
+ }
+
+ uBuf.Core.pad = 0;
+ uBuf.Core.nmsrs = iMsr;
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
+ AssertMsgReturn(rc == (int)iMsr,
+ ("rc=%d iMsr=%d (->%#x) errno=%d\n",
+ rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
+ VERR_NEM_IPE_3);
+
+ while (iMsr-- > 0)
+ *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
+#undef ADD_MSR
+ }
+
+ /*
+ * Interruptibility state and pending interrupts.
+ */
+ if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
+ {
+ fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
+
+ struct kvm_vcpu_events KvmEvents = {0};
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
+
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
+ pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
+
+ CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
+ RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
+ RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_STI),
+ pVCpu->cpum.GstCtx.rip);
+ CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
+
+ if (KvmEvents.interrupt.injected)
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
+ TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
+ }
+
+ Assert(KvmEvents.nmi.injected == 0);
+ Assert(KvmEvents.nmi.pending == 0);
+ }
+
+ /*
+ * Update the external mask.
+ */
+ pCtx->fExtrn &= ~fWhat;
+ pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+
+ /*
+ * We sometimes need to update PGM on the guest status.
+ */
+ if (!fMaybeChangedMode && !fUpdateCr3)
+ { /* likely */ }
+ else
+ {
+ /*
+ * Make sure we got all the state PGM might need.
+ */
+ Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
+ pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
+ if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
+ {
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
+ {
+ if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
+ {
+ CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
+ fMaybeChangedMode = true;
+ }
+ }
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
+ {
+ if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
+ {
+ CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
+ fUpdateCr3 = true;
+ }
+ }
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
+ {
+ if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
+ {
+ CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
+ fMaybeChangedMode = true;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ {
+ if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
+ {
+ Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
+ if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
+ PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
+ pCtx->msrEFER = pRun->s.regs.sregs.efer;
+ fMaybeChangedMode = true;
+ }
+ }
+
+ pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ }
+
+ /*
+ * Notify PGM about the changes.
+ */
+ if (fMaybeChangedMode)
+ {
+ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4,
+ pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/);
+ AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
+ }
+
+ if (fUpdateCr3)
+ {
+ int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
+ if (rc == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Interface for importing state on demand (used by IEM).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
+{
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
+ return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
+}
+
+
+/**
+ * Exports state to KVM.
+ */
+static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
+{
+ uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
+ Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
+
+ /*
+ * Stuff that goes into kvm_run::s.regs.regs:
+ */
+ if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
+ {
+ if (fExtrn & CPUMCTX_EXTRN_RIP)
+ pRun->s.regs.regs.rip = pCtx->rip;
+ if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
+ pRun->s.regs.regs.rflags = pCtx->rflags.u;
+
+ if (fExtrn & CPUMCTX_EXTRN_RAX)
+ pRun->s.regs.regs.rax = pCtx->rax;
+ if (fExtrn & CPUMCTX_EXTRN_RCX)
+ pRun->s.regs.regs.rcx = pCtx->rcx;
+ if (fExtrn & CPUMCTX_EXTRN_RDX)
+ pRun->s.regs.regs.rdx = pCtx->rdx;
+ if (fExtrn & CPUMCTX_EXTRN_RBX)
+ pRun->s.regs.regs.rbx = pCtx->rbx;
+ if (fExtrn & CPUMCTX_EXTRN_RSP)
+ pRun->s.regs.regs.rsp = pCtx->rsp;
+ if (fExtrn & CPUMCTX_EXTRN_RBP)
+ pRun->s.regs.regs.rbp = pCtx->rbp;
+ if (fExtrn & CPUMCTX_EXTRN_RSI)
+ pRun->s.regs.regs.rsi = pCtx->rsi;
+ if (fExtrn & CPUMCTX_EXTRN_RDI)
+ pRun->s.regs.regs.rdi = pCtx->rdi;
+ if (fExtrn & CPUMCTX_EXTRN_R8_R15)
+ {
+ pRun->s.regs.regs.r8 = pCtx->r8;
+ pRun->s.regs.regs.r9 = pCtx->r9;
+ pRun->s.regs.regs.r10 = pCtx->r10;
+ pRun->s.regs.regs.r11 = pCtx->r11;
+ pRun->s.regs.regs.r12 = pCtx->r12;
+ pRun->s.regs.regs.r13 = pCtx->r13;
+ pRun->s.regs.regs.r14 = pCtx->r14;
+ pRun->s.regs.regs.r15 = pCtx->r15;
+ }
+ pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
+ }
+
+ /*
+ * Stuff that goes into kvm_run::s.regs.sregs:
+ *
+ * The APIC base register updating is a little suboptimal... But at least
+ * VBox always has the right base register value, so it's one directional.
+ */
+ uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu);
+ if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
+ | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
+ || uApicBase != pVCpu->nem.s.uKvmApicBase)
+ {
+ if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN)
+ Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase));
+ pRun->s.regs.sregs.apic_base = uApicBase;
+ pVCpu->nem.s.uKvmApicBase = uApicBase;
+
+ if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
+ pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu);
+
+#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
+ (a_KvmSeg).base = (a_CtxSeg).u64Base; \
+ (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \
+ (a_KvmSeg).selector = (a_CtxSeg).Sel; \
+ (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \
+ (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \
+ (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \
+ (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \
+ (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \
+ (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \
+ (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \
+ (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \
+ (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
+ (a_KvmSeg).padding = 0; \
+ } while (0)
+
+ if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fExtrn & CPUMCTX_EXTRN_ES)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
+ if (fExtrn & CPUMCTX_EXTRN_CS)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
+ if (fExtrn & CPUMCTX_EXTRN_SS)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
+ if (fExtrn & CPUMCTX_EXTRN_DS)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
+ if (fExtrn & CPUMCTX_EXTRN_FS)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
+ if (fExtrn & CPUMCTX_EXTRN_GS)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
+ }
+ if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fExtrn & CPUMCTX_EXTRN_GDTR)
+ {
+ pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt;
+ pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
+ pRun->s.regs.sregs.gdt.padding[0] = 0;
+ pRun->s.regs.sregs.gdt.padding[1] = 0;
+ pRun->s.regs.sregs.gdt.padding[2] = 0;
+ }
+ if (fExtrn & CPUMCTX_EXTRN_IDTR)
+ {
+ pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt;
+ pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
+ pRun->s.regs.sregs.idt.padding[0] = 0;
+ pRun->s.regs.sregs.idt.padding[1] = 0;
+ pRun->s.regs.sregs.idt.padding[2] = 0;
+ }
+ if (fExtrn & CPUMCTX_EXTRN_LDTR)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
+ if (fExtrn & CPUMCTX_EXTRN_TR)
+ NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
+ }
+ if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fExtrn & CPUMCTX_EXTRN_CR0)
+ pRun->s.regs.sregs.cr0 = pCtx->cr0;
+ if (fExtrn & CPUMCTX_EXTRN_CR2)
+ pRun->s.regs.sregs.cr2 = pCtx->cr2;
+ if (fExtrn & CPUMCTX_EXTRN_CR3)
+ pRun->s.regs.sregs.cr3 = pCtx->cr3;
+ if (fExtrn & CPUMCTX_EXTRN_CR4)
+ pRun->s.regs.sregs.cr4 = pCtx->cr4;
+ }
+ if (fExtrn & CPUMCTX_EXTRN_EFER)
+ pRun->s.regs.sregs.efer = pCtx->msrEFER;
+
+ RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
+
+ pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
+ }
+
+ /*
+ * Debug registers.
+ */
+ if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
+ {
+ struct kvm_debugregs DbgRegs = {{0}};
+
+ if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
+ {
+ /* Partial debug state, we must get DbgRegs first so we can merge: */
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+ }
+
+ if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ DbgRegs.db[0] = pCtx->dr[0];
+ DbgRegs.db[1] = pCtx->dr[1];
+ DbgRegs.db[2] = pCtx->dr[2];
+ DbgRegs.db[3] = pCtx->dr[3];
+ }
+ if (fExtrn & CPUMCTX_EXTRN_DR6)
+ DbgRegs.dr6 = pCtx->dr[6];
+ if (fExtrn & CPUMCTX_EXTRN_DR7)
+ DbgRegs.dr7 = pCtx->dr[7];
+
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+ }
+
+ /*
+ * FPU, SSE, AVX, ++.
+ */
+ if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
+ {
+ if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
+ {
+ /** @todo could IEM just grab state partial control in some situations? */
+ Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
+ == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
+
+ AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+ }
+
+ if (fExtrn & CPUMCTX_EXTRN_XCRx)
+ {
+ struct kvm_xcrs Xcrs =
+ { /*.nr_xcrs = */ 2,
+ /*.flags = */ 0,
+ /*.xcrs= */ {
+ { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
+ { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
+ }
+ };
+
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
+ AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
+ }
+ }
+
+ /*
+ * MSRs.
+ */
+ if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
+ | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
+ {
+ union
+ {
+ struct kvm_msrs Core;
+ uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
+ } uBuf;
+ uint32_t iMsr = 0;
+ PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+
+#define ADD_MSR(a_Msr, a_uValue) do { \
+ Assert(iMsr < 32); \
+ uBuf.Core.entries[iMsr].index = (a_Msr); \
+ uBuf.Core.entries[iMsr].reserved = 0; \
+ uBuf.Core.entries[iMsr].data = (a_uValue); \
+ iMsr += 1; \
+ } while (0)
+
+ if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
+ if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
+ ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
+ ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
+ ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
+ }
+ if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
+ ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
+ ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
+ }
+ if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
+ ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
+ if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
+ /** @todo What do we _have_ to add here?
+ * We also have: Mttr*, MiscEnable, FeatureControl. */
+ }
+
+ uBuf.Core.pad = 0;
+ uBuf.Core.nmsrs = iMsr;
+ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
+ AssertMsgReturn(rc == (int)iMsr,
+ ("rc=%d iMsr=%d (->%#x) errno=%d\n",
+ rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
+ VERR_NEM_IPE_3);
+ }
+
+ /*
+ * Interruptibility state.
+ *
+ * Note! This I/O control function sets most fields passed in, so when
+ * raising an interrupt, NMI, SMI or exception, this must be done
+ * by the code doing the rasing or we'll overwrite it here.
+ */
+ if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
+ {
+ Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
+ == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
+
+ struct kvm_vcpu_events KvmEvents = {0};
+
+ KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
+ if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
+ { /* probably likely */ }
+ else
+ KvmEvents.interrupt.shadow = (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0)
+ | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0);
+
+ /* No flag - this is updated unconditionally. */
+ KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
+
+ if (TRPMHasTrap(pVCpu))
+ {
+ TRPMEVENT enmType = TRPM_32BIT_HACK;
+ uint8_t bTrapNo = 0;
+ TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
+ Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
+ if ( enmType == TRPM_HARDWARE_INT
+ || enmType == TRPM_SOFTWARE_INT)
+ {
+ KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT;
+ KvmEvents.interrupt.nr = bTrapNo;
+ KvmEvents.interrupt.injected = 1;
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
+ TRPMResetTrap(pVCpu);
+ }
+ else
+ AssertFailed();
+ }
+
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
+ }
+
+ /*
+ * KVM now owns all the state.
+ */
+ pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
+
+ RT_NOREF(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Query the CPU tick counter and optionally the TSC_AUX MSR value.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param pcTicks Where to return the CPU tick count.
+ * @param puAux Where to return the TSC_AUX register value.
+ */
+VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
+{
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
+ // KVM_GET_CLOCK?
+ RT_NOREF(pVCpu, pcTicks, puAux);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Resumes CPU clock (TSC) on all virtual CPUs.
+ *
+ * This is called by TM when the VM is started, restored, resumed or similar.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context CPU structure of the calling EMT.
+ * @param uPausedTscValue The TSC value at the time of pausing.
+ */
+VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
+{
+ // KVM_SET_CLOCK?
+ RT_NOREF(pVM, pVCpu, uPausedTscValue);
+ return VINF_SUCCESS;
+}
+
+
+VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
+{
+ RT_NOREF(pVM);
+ return NEM_FEAT_F_NESTED_PAGING
+ | NEM_FEAT_F_FULL_GST_EXEC
+ | NEM_FEAT_F_XSAVE_XRSTOR;
+}
+
+
+
+/*********************************************************************************************************************************
+* Execution *
+*********************************************************************************************************************************/
+
+
+VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
+{
+ /*
+ * Only execute when the A20 gate is enabled as I cannot immediately
+ * spot any A20 support in KVM.
+ */
+ RT_NOREF(pVM);
+ Assert(VM_IS_NEM_ENABLED(pVM));
+ return PGMPhysIsA20Enabled(pVCpu);
+}
+
+
+bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
+{
+ NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
+ return false;
+}
+
+
+void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
+{
+ int rc = RTThreadPoke(pVCpu->hThread);
+ LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
+ AssertRC(rc);
+ RT_NOREF(pVM, fFlags);
+}
+
+
+DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
+{
+ RT_NOREF(pVM, fUseDebugLoop);
+ return false;
+}
+
+
+DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
+{
+ RT_NOREF(pVM, pVCpu, fUseDebugLoop);
+ return false;
+}
+
+
+/**
+ * Deals with pending interrupt FFs prior to executing guest code.
+ */
+static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
+{
+ RT_NOREF_PV(pVM);
+
+ /*
+ * Do not doing anything if TRPM has something pending already as we can
+ * only inject one event per KVM_RUN call. This can only happend if we
+ * can directly from the loop in EM, so the inhibit bits must be internal.
+ */
+ if (!TRPMHasTrap(pVCpu))
+ { /* semi likely */ }
+ else
+ {
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
+ Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * First update APIC. We ASSUME this won't need TPR/CR8.
+ */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
+ {
+ APICUpdatePendingInterrupts(pVCpu);
+ if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * We don't currently implement SMIs.
+ */
+ AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
+
+ /*
+ * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
+ * are tied together with interrupt and NMI delivery, so we must get and
+ * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
+ * If we don't we may lose the interrupt/NMI we marked pending here when the
+ * state is exported again before execution.
+ */
+ struct kvm_vcpu_events KvmEvents = {0};
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
+
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
+ pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
+
+ KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
+ KvmEvents.interrupt.shadow = !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx) ? 0
+ : (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0)
+ | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0);
+ else
+ CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
+ RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
+ RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_STI),
+ pRun->s.regs.regs.rip);
+
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
+ KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
+ else
+ CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
+
+ /* KVM will own the INT + NMI inhibit state soon: */
+ pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
+ | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
+
+ /*
+ * NMI? Try deliver it first.
+ */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
+ {
+#if 0
+ int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
+#else
+ KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
+ KvmEvents.nmi.pending = 1;
+#endif
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
+ }
+
+ /*
+ * APIC or PIC interrupt?
+ */
+ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
+ {
+ if (pRun->s.regs.regs.rflags & X86_EFL_IF)
+ {
+ if (KvmEvents.interrupt.shadow == 0)
+ {
+ /*
+ * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
+ * work correctly.
+ */
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
+ APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
+
+ uint8_t bInterrupt;
+ int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(KvmEvents.interrupt.injected == false);
+#if 0
+ int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
+#else
+ KvmEvents.interrupt.nr = bInterrupt;
+ KvmEvents.interrupt.soft = false;
+ KvmEvents.interrupt.injected = true;
+#endif
+ Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u));
+ }
+ else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
+ Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
+ else
+ Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
+ }
+ else
+ {
+ pRun->request_interrupt_window = 1;
+ Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
+ }
+ }
+ else
+ {
+ pRun->request_interrupt_window = 1;
+ Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
+ }
+ }
+
+ /*
+ * Now, update the state.
+ */
+ /** @todo skip when possible... */
+ rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
+ AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles KVM_EXIT_INTERNAL_ERROR.
+ */
+static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
+{
+ Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
+ pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
+
+ /*
+ * Deal with each suberror, returning if we don't want IEM to handle it.
+ */
+ switch (pRun->internal.suberror)
+ {
+ case KVM_INTERNAL_ERROR_EMULATION:
+ {
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
+ break;
+ }
+
+ case KVM_INTERNAL_ERROR_SIMUL_EX:
+ case KVM_INTERNAL_ERROR_DELIVERY_EV:
+ case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
+ default:
+ {
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
+ const char *pszName;
+ switch (pRun->internal.suberror)
+ {
+ case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
+ case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
+ case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
+ case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
+ default: pszName = "unknown"; break;
+ }
+ LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
+ pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
+ return VERR_NEM_IPE_0;
+ }
+ }
+
+ /*
+ * Execute instruction in IEM and try get on with it.
+ */
+ Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
+ VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
+ IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
+ | CPUMCTX_EXTRN_INHIBIT_NMI,
+ &pVCpu->cpum.GstCtx, pRun);
+ if (RT_SUCCESS(rcStrict))
+ rcStrict = IEMExecOne(pVCpu);
+ return rcStrict;
+}
+
+
+/**
+ * Handles KVM_EXIT_IO.
+ */
+static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
+{
+ /*
+ * Input validation.
+ */
+ Assert(pRun->io.count > 0);
+ Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
+ Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
+ Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
+ Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
+
+ /*
+ * We cannot easily act on the exit history here, because the I/O port
+ * exit is stateful and the instruction will be completed in the next
+ * KVM_RUN call. There seems no way to avoid this.
+ */
+ EMHistoryAddExit(pVCpu,
+ pRun->io.count == 1
+ ? ( pRun->io.direction == KVM_EXIT_IO_IN
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
+ : ( pRun->io.direction == KVM_EXIT_IO_IN
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+
+ /*
+ * Do the requested job.
+ */
+ VBOXSTRICTRC rcStrict;
+ RTPTRUNION uPtrData;
+ uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
+ if (pRun->io.count == 1)
+ {
+ if (pRun->io.direction == KVM_EXIT_IO_IN)
+ {
+ uint32_t uValue = 0;
+ rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
+ Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ if (IOM_SUCCESS(rcStrict))
+ {
+ if (pRun->io.size == 4)
+ *uPtrData.pu32 = uValue;
+ else if (pRun->io.size == 2)
+ *uPtrData.pu16 = (uint16_t)uValue;
+ else
+ *uPtrData.pu8 = (uint8_t)uValue;
+ }
+ }
+ else
+ {
+ uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
+ : pRun->io.size == 2 ? *uPtrData.pu16
+ : *uPtrData.pu8;
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
+ Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ }
+ else
+ {
+ uint32_t cTransfers = pRun->io.count;
+ if (pRun->io.direction == KVM_EXIT_IO_IN)
+ {
+ rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
+ Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
+ }
+ else
+ {
+ rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
+ Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
+ }
+ Assert(cTransfers == 0);
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Handles KVM_EXIT_MMIO.
+ */
+static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
+{
+ /*
+ * Input validation.
+ */
+ Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
+ Assert(pRun->mmio.is_write <= 1);
+
+ /*
+ * We cannot easily act on the exit history here, because the MMIO port
+ * exit is stateful and the instruction will be completed in the next
+ * KVM_RUN call. There seems no way to circumvent this.
+ */
+ EMHistoryAddExit(pVCpu,
+ pRun->mmio.is_write
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+
+ /*
+ * Do the requested job.
+ */
+ VBOXSTRICTRC rcStrict;
+ if (pRun->mmio.is_write)
+ {
+ rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
+ Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ else
+ {
+ rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
+ Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Handles KVM_EXIT_RDMSR
+ */
+static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
+{
+ /*
+ * Input validation.
+ */
+ Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
+ || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
+ || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
+
+ /*
+ * We cannot easily act on the exit history here, because the MSR exit is
+ * stateful and the instruction will be completed in the next KVM_RUN call.
+ * There seems no way to circumvent this.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+
+ /*
+ * Do the requested job.
+ */
+ uint64_t uValue = 0;
+ VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue);
+ pRun->msr.data = uValue;
+ if (rcStrict != VERR_CPUM_RAISE_GP_0)
+ {
+ Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu,
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
+ pRun->msr.error = 0;
+ }
+ else
+ {
+ Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu,
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue));
+ pRun->msr.error = 1;
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+}
+
+
+/**
+ * Handles KVM_EXIT_WRMSR
+ */
+static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
+{
+ /*
+ * Input validation.
+ */
+ Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
+ || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
+ || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
+
+ /*
+ * We cannot easily act on the exit history here, because the MSR exit is
+ * stateful and the instruction will be completed in the next KVM_RUN call.
+ * There seems no way to circumvent this.
+ */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+
+ /*
+ * Do the requested job.
+ */
+ VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data);
+ if (rcStrict != VERR_CPUM_RAISE_GP_0)
+ {
+ Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu,
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) ));
+ pRun->msr.error = 0;
+ }
+ else
+ {
+ Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu,
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason));
+ pRun->msr.error = 1;
+ rcStrict = VINF_SUCCESS;
+ }
+ return rcStrict;
+}
+
+
+
+static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit)
+{
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
+ switch (pRun->exit_reason)
+ {
+ case KVM_EXIT_EXCEPTION:
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_IO:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
+ *pfStatefulExit = true;
+ return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
+
+ case KVM_EXIT_MMIO:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
+ *pfStatefulExit = true;
+ return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
+
+ case KVM_EXIT_IRQ_WINDOW_OPEN:
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
+ Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
+ pRun->request_interrupt_window = 0;
+ return VINF_SUCCESS;
+
+ case KVM_EXIT_SET_TPR:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_TPR_ACCESS:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_X86_RDMSR:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
+ *pfStatefulExit = true;
+ return nemHCLnxHandleExitRdMsr(pVCpu, pRun);
+
+ case KVM_EXIT_X86_WRMSR:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
+ *pfStatefulExit = true;
+ return nemHCLnxHandleExitWrMsr(pVCpu, pRun);
+
+ case KVM_EXIT_HLT:
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
+ Log5(("Halt/%u\n", pVCpu->idCpu));
+ return VINF_EM_HALT;
+
+ case KVM_EXIT_INTR: /* EINTR */
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
+ Log5(("Intr/%u\n", pVCpu->idCpu));
+ return VINF_SUCCESS;
+
+ case KVM_EXIT_HYPERCALL:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_DEBUG:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_SYSTEM_EVENT:
+ AssertFailed();
+ break;
+ case KVM_EXIT_IOAPIC_EOI:
+ AssertFailed();
+ break;
+ case KVM_EXIT_HYPERV:
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_DIRTY_RING_FULL:
+ AssertFailed();
+ break;
+ case KVM_EXIT_AP_RESET_HOLD:
+ AssertFailed();
+ break;
+ case KVM_EXIT_X86_BUS_LOCK:
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
+ AssertFailed();
+ break;
+
+
+ case KVM_EXIT_SHUTDOWN:
+ AssertFailed();
+ break;
+
+ case KVM_EXIT_FAIL_ENTRY:
+ LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
+ pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY),
+ pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
+ return VERR_NEM_IPE_1;
+
+ case KVM_EXIT_INTERNAL_ERROR:
+ /* we're counting sub-reasons inside the function. */
+ return nemR3LnxHandleInternalError(pVCpu, pRun);
+
+ /*
+ * Foreign and unknowns.
+ */
+ case KVM_EXIT_NMI:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_EPR:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_WATCHDOG:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_ARM_NISV:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_S390_STSI:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_S390_TSCH:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_OSI:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_PAPR_HCALL:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_S390_UCONTROL:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_DCR:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_S390_SIEIC:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_S390_RESET:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_UNKNOWN:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ case KVM_EXIT_XEN:
+ AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ default:
+ AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
+ }
+
+ RT_NOREF(pVM, pVCpu, pRun);
+ return VERR_NOT_IMPLEMENTED;
+}
+
+
+VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
+{
+ /*
+ * Try switch to NEM runloop state.
+ */
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
+ { /* likely */ }
+ else
+ {
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+ LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * The run loop.
+ */
+ struct kvm_run * const pRun = pVCpu->nem.s.pRun;
+ const bool fSingleStepping = DBGFIsStepping(pVCpu);
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ bool fStatefulExit = false; /* For MMIO and IO exits. */
+ for (unsigned iLoop = 0;; iLoop++)
+ {
+ /*
+ * Pending interrupts or such? Need to check and deal with this prior
+ * to the state syncing.
+ */
+ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ {
+ /* Try inject interrupt. */
+ rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+
+ /*
+ * Do not execute in KVM if the A20 isn't enabled.
+ */
+ if (PGMPhysIsA20Enabled(pVCpu))
+ { /* likely */ }
+ else
+ {
+ rcStrict = VINF_EM_RESCHEDULE_REM;
+ LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
+ break;
+ }
+
+ /*
+ * Ensure KVM has the whole state.
+ */
+ if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
+ {
+ int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
+ AssertRCReturn(rc2, rc2);
+ }
+
+ /*
+ * Poll timers and run for a bit.
+ *
+ * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
+ * so we take the time of the next timer event and uses that as a deadline.
+ * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
+ */
+ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
+ * the whole polling job when timers have changed... */
+ uint64_t offDeltaIgnored;
+ uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
+ if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
+ {
+ LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
+ pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
+ !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
+ pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
+ TMNotifyStartOfExecution(pVM, pVCpu);
+
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
+
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
+ TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
+
+#ifdef LOG_ENABLED
+ if (LogIsFlowEnabled())
+ {
+ struct kvm_mp_state MpState = {UINT32_MAX};
+ ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
+ LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
+ pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
+ pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
+ pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
+ }
+#endif
+ fStatefulExit = false;
+ if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
+ {
+ /*
+ * Deal with the exit.
+ */
+ rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
+ if (rcStrict == VINF_SUCCESS)
+ { /* hopefully likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+ else
+ {
+ int rc2 = RTErrConvertFromErrno(errno);
+ AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
+ }
+
+ /*
+ * If no relevant FFs are pending, loop.
+ */
+ if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
+ { /* likely */ }
+ else
+ {
+
+ /** @todo Try handle pending flags, not just return to EM loops. Take care
+ * not to set important RCs here unless we've handled an exit. */
+ LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
+ pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
+ break;
+ }
+ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
+ break;
+ }
+ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
+ break;
+ }
+ } /* the run loop */
+
+
+ /*
+ * If the last exit was stateful, commit the state we provided before
+ * returning to the EM loop so we have a consistent state and can safely
+ * be rescheduled and whatnot. This may require us to make multiple runs
+ * for larger MMIO and I/O operations. Sigh^3.
+ *
+ * Note! There is no 'ing way to reset the kernel side completion callback
+ * for these stateful i/o exits. Very annoying interface.
+ */
+ /** @todo check how this works with string I/O and string MMIO. */
+ if (fStatefulExit && RT_SUCCESS(rcStrict))
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn);
+ uint32_t const uOrgExit = pRun->exit_reason;
+ for (uint32_t i = 0; ; i++)
+ {
+ pRun->immediate_exit = 1;
+ int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
+ Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason));
+ if (rcLnx == -1 && errno == EINTR)
+ {
+ switch (i)
+ {
+ case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break;
+ case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break;
+ case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break;
+ default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break;
+ }
+ break;
+ }
+ AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit,
+ ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit),
+ rcStrict = VERR_NEM_IPE_6);
+ VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
+ if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict)
+ { /* likely */ }
+ else if (RT_FAILURE(rcStrict2))
+ {
+ rcStrict = rcStrict2;
+ break;
+ }
+ else
+ {
+ AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS,
+ ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)),
+ rcStrict = VERR_NEM_IPE_7);
+ rcStrict = rcStrict2;
+ }
+ }
+ pRun->immediate_exit = 0;
+ }
+
+ /*
+ * If the CPU is running, make sure to stop it before we try sync back the
+ * state and return to EM. We don't sync back the whole state if we can help it.
+ */
+ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
+ {
+ /* Try anticipate what we might need. */
+ uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
+ | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
+ if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
+ || RT_FAILURE(rcStrict))
+ fImport = CPUMCTX_EXTRN_ALL;
+# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
+ fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
+ else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
+ fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
+# endif
+ else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
+
+ if (pVCpu->cpum.GstCtx.fExtrn & fImport)
+ {
+ int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
+ if (RT_SUCCESS(rc2))
+ pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
+ else if (RT_SUCCESS(rcStrict))
+ rcStrict = rc2;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
+ }
+ else
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ }
+
+ LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+}
+
+
+/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
+ *
+ * This is using KVM.
+ *
+ */
+