diff options
Diffstat (limited to 'src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp')
-rw-r--r-- | src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp | 2838 |
1 files changed, 2838 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp b/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp new file mode 100644 index 00000000..fa731415 --- /dev/null +++ b/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp @@ -0,0 +1,2838 @@ +/* $Id: NEMR3Native-linux.cpp $ */ +/** @file + * NEM - Native execution manager, native ring-3 Linux backend. + */ + +/* + * Copyright (C) 2021-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_NEM +#define VMCPU_INCL_CPUM_GST_CTX +#include <VBox/vmm/nem.h> +#include <VBox/vmm/iem.h> +#include <VBox/vmm/em.h> +#include <VBox/vmm/apic.h> +#include <VBox/vmm/pdm.h> +#include <VBox/vmm/trpm.h> +#include "NEMInternal.h" +#include <VBox/vmm/vmcc.h> + +#include <iprt/alloca.h> +#include <iprt/string.h> +#include <iprt/system.h> +#include <iprt/x86.h> + +#include <errno.h> +#include <unistd.h> +#include <sys/ioctl.h> +#include <sys/fcntl.h> +#include <sys/mman.h> +#include <linux/kvm.h> + +/* + * Supply stuff missing from the kvm.h on the build box. + */ +#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */ +# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4 +#endif + + + +/** + * Worker for nemR3NativeInit that gets the hypervisor capabilities. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pErrInfo Where to always return error info. + */ +static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo) +{ + AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); + + /* + * Capabilities. + */ + static const struct + { + const char *pszName; + int iCap; + uint32_t offNem : 24; + uint32_t cbNem : 3; + uint32_t fReqNonZero : 1; + uint32_t uReserved : 4; + } s_aCaps[] = + { +#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 } +#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 } +#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 } +#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 } +#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 } + + CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */ + CAP_ENTRY_ML(KVM_CAP_HLT), + CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL), + CAP_ENTRY_ML(KVM_CAP_USER_MEMORY), + CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR), + CAP_ENTRY__U(5), + CAP_ENTRY__L(KVM_CAP_VAPIC), + CAP_ENTRY__L(KVM_CAP_EXT_CPUID), + CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE), + CAP_ENTRY__L(KVM_CAP_NR_VCPUS), + CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */ + CAP_ENTRY__L(KVM_CAP_PIT), + CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY), + CAP_ENTRY__L(KVM_CAP_PV_MMU), + CAP_ENTRY__L(KVM_CAP_MP_STATE), + CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO), + CAP_ENTRY__L(KVM_CAP_SYNC_MMU), + CAP_ENTRY__U(17), + CAP_ENTRY__L(KVM_CAP_IOMMU), + CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */ + CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */ + CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */ + CAP_ENTRY__L(KVM_CAP_USER_NMI), +#ifdef __KVM_HAVE_GUEST_DEBUG + CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG), +#endif +#ifdef __KVM_HAVE_PIT + CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL), +#endif + CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING), + CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS), + CAP_ENTRY__U(27), + CAP_ENTRY__U(28), + CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ), + CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */ +#ifdef __KVM_HAVE_MCE + CAP_ENTRY__L(KVM_CAP_MCE), +#endif + CAP_ENTRY__L(KVM_CAP_IRQFD), +#ifdef __KVM_HAVE_PIT + CAP_ENTRY__L(KVM_CAP_PIT2), +#endif + CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID), +#ifdef __KVM_HAVE_PIT_STATE2 + CAP_ENTRY__L(KVM_CAP_PIT_STATE2), +#endif + CAP_ENTRY__L(KVM_CAP_IOEVENTFD), + CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR), +#ifdef __KVM_HAVE_XEN_HVM + CAP_ENTRY__L(KVM_CAP_XEN_HVM), +#endif + CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK), + CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */ +#ifdef __KVM_HAVE_VCPU_EVENTS + CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS), +#else + CAP_ENTRY_MU(41), +#endif + CAP_ENTRY__L(KVM_CAP_S390_PSW), + CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE), + CAP_ENTRY__L(KVM_CAP_HYPERV), + CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC), + CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN), + CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT), + CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES), + CAP_ENTRY__L(KVM_CAP_INTR_SHADOW), +#ifdef __KVM_HAVE_DEBUGREGS + CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */ +#endif + CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep), + CAP_ENTRY__L(KVM_CAP_PPC_OSI), + CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ), + CAP_ENTRY__L(KVM_CAP_ENABLE_CAP), +#ifdef __KVM_HAVE_XSAVE + CAP_ENTRY_ML(KVM_CAP_XSAVE), +#else + CAP_ENTRY_MU(55), +#endif +#ifdef __KVM_HAVE_XCRS + CAP_ENTRY_ML(KVM_CAP_XCRS), +#else + CAP_ENTRY_MU(56), +#endif + CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO), + CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL), + CAP_ENTRY__L(KVM_CAP_ASYNC_PF), + CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */ + CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ), + CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS), + CAP_ENTRY__L(KVM_CAP_SPAPR_TCE), + CAP_ENTRY__L(KVM_CAP_PPC_SMT), + CAP_ENTRY__L(KVM_CAP_PPC_RMA), + CAP_ENTRY__L(KVM_CAP_MAX_VCPUS), + CAP_ENTRY__L(KVM_CAP_PPC_HIOR), + CAP_ENTRY__L(KVM_CAP_PPC_PAPR), + CAP_ENTRY__L(KVM_CAP_SW_TLB), + CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */ + CAP_ENTRY__L(KVM_CAP_S390_GMAP), + CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER), + CAP_ENTRY__L(KVM_CAP_S390_UCONTROL), + CAP_ENTRY__L(KVM_CAP_SYNC_REGS), + CAP_ENTRY__L(KVM_CAP_PCI_2_3), + CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL), + CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI), + CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO), + CAP_ENTRY__L(KVM_CAP_S390_COW), + CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */ + CAP_ENTRY__L(KVM_CAP_READONLY_MEM), + CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE), + CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG), + CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD), + CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT), + CAP_ENTRY__L(KVM_CAP_PPC_EPR), + CAP_ENTRY__L(KVM_CAP_ARM_PSCI), + CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR), + CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL), + CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */ + CAP_ENTRY__L(KVM_CAP_PPC_RTAS), + CAP_ENTRY__L(KVM_CAP_IRQ_XICS), + CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT), + CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE), + CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID), + CAP_ENTRY__L(KVM_CAP_HYPERV_TIME), + CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED), + CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM), + CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP), + CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */ + CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES), + CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2), + CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL), + CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL), + CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM), + CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP), + CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS), + CAP_ENTRY__L(KVM_CAP_S390_MEM_OP), + CAP_ENTRY__L(KVM_CAP_S390_USER_STSI), + CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */ + CAP_ENTRY__L(KVM_CAP_MIPS_FPU), + CAP_ENTRY__L(KVM_CAP_MIPS_MSA), + CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ), + CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE), + CAP_ENTRY__L(KVM_CAP_PPC_HWRNG), + CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS), + CAP_ENTRY__L(KVM_CAP_X86_SMM), + CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE), + CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS), + CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */ + CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP), + CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH), + CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC), + CAP_ENTRY__L(KVM_CAP_S390_RI), + CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64), + CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3), + CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES), + CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID), + CAP_ENTRY__L(KVM_CAP_X2APIC_API), + CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */ + CAP_ENTRY__L(KVM_CAP_MSI_DEVID), + CAP_ENTRY__L(KVM_CAP_PPC_HTM), + CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT), + CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX), + CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3), + CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT), + CAP_ENTRY__L(KVM_CAP_MIPS_VZ), + CAP_ENTRY__L(KVM_CAP_MIPS_TE), + CAP_ENTRY__L(KVM_CAP_MIPS_64BIT), + CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */ + CAP_ENTRY__L(KVM_CAP_S390_AIS), + CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO), + CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS), + CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ), + CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION), + CAP_ENTRY__L(KVM_CAP_PPC_FWNMI), + CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE), + CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2), + CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX), + CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */ + CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR), + CAP_ENTRY__L(KVM_CAP_S390_BPB), + CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES), + CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD), + CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH), + CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M), + CAP_ENTRY__L(KVM_CAP_NESTED_STATE), + CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR), + CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO), + CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */ + CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI), + CAP_ENTRY__L(KVM_CAP_COALESCED_PIO), + CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS), + CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD), + CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE), + CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT), + CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID), + CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2), + CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE), + CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */ + CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS), + CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC), + CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER), + CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2), + CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH), + CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP), + CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER), + CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT), + CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS), + CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */ + CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST), + CAP_ENTRY__L(KVM_CAP_HALT_POLL), + CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT), + CAP_ENTRY__L(KVM_CAP_LAST_CPU), + CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR), + CAP_ENTRY__L(KVM_CAP_S390_DIAG318), + CAP_ENTRY__L(KVM_CAP_STEAL_TIME), + CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */ + CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER), + CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */ + CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID), + CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING), + CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT), + CAP_ENTRY__L(KVM_CAP_PPC_DAWR1), + CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2), + CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE), + CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM), + CAP_ENTRY__L(KVM_CAP_PTP_KVM), + CAP_ENTRY__U(199), + CAP_ENTRY__U(200), + CAP_ENTRY__U(201), + CAP_ENTRY__U(202), + CAP_ENTRY__U(203), + CAP_ENTRY__U(204), + CAP_ENTRY__U(205), + CAP_ENTRY__U(206), + CAP_ENTRY__U(207), + CAP_ENTRY__U(208), + CAP_ENTRY__U(209), + CAP_ENTRY__U(210), + CAP_ENTRY__U(211), + CAP_ENTRY__U(212), + CAP_ENTRY__U(213), + CAP_ENTRY__U(214), + CAP_ENTRY__U(215), + CAP_ENTRY__U(216), + }; + + LogRel(("NEM: KVM capabilities (system):\n")); + int rcRet = VINF_SUCCESS; + for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++) + { + int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap); + if (rc >= 10) + LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc)); + else if (rc >= 0) + LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc)); + else + LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno)); + switch (s_aCaps[i].cbNem) + { + case 0: + break; + case 1: + { + uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem]; + AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); + *puValue = (uint8_t)rc; + AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); + break; + } + case 2: + { + uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem]; + AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); + *puValue = (uint16_t)rc; + AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); + break; + } + case 4: + { + uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem]; + AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); + *puValue = (uint32_t)rc; + AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); + break; + } + default: + rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s", + i, s_aCaps[i].pszName, s_aCaps[i].cbNem); + AssertFailedReturn(rcRet); + } + + /* + * Is a require non-zero entry zero or failing? + */ + if (s_aCaps[i].fReqNonZero && rc <= 0) + rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, + "Required capability '%s' is missing!", s_aCaps[i].pszName); + } + + /* + * Get per VCpu KVM_RUN MMAP area size. + */ + int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL); + if ((unsigned)rc < _64M) + { + pVM->nem.s.cbVCpuMmap = (uint32_t)rc; + LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc)); + } + else if (rc < 0) + rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno); + else + rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc); + + /* + * Init the slot ID bitmap. + */ + ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */ + if (pVM->nem.s.cMaxMemSlots < _32K) + ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K); + ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */ + + return rcRet; +} + + +/** + * Does the early setup of a KVM VM. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pErrInfo Where to always return error info. + */ +static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo) +{ + AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); + + /* + * Enable user space MSRs and let us check everything KVM cannot handle. + * We will set up filtering later when ring-3 init has completed. + */ + struct kvm_enable_cap CapEn = + { + KVM_CAP_X86_USER_SPACE_MSR, 0, + { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0} + }; + int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn); + if (rcLnx == -1) + return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno); + + /* + * Create the VCpus. + */ + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PVMCPU pVCpu = pVM->apCpusR3[idCpu]; + + /* Create it. */ + pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu); + if (pVCpu->nem.s.fdVCpu < 0) + return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno); + + /* Map the KVM_RUN area. */ + pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED, + pVCpu->nem.s.fdVCpu, 0 /*offset*/); + if ((void *)pVCpu->nem.s.pRun == MAP_FAILED) + return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno); + + /* We want all x86 registers and events on each exit. */ + pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS; + } + return VINF_SUCCESS; +} + + +/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */ +static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser) +{ + RT_NOREF(pVM, pvUser); + int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/); + AssertLogRelRC(rc); + return VINF_SUCCESS; +} + + +/** + * Try initialize the native API. + * + * This may only do part of the job, more can be done in + * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted(). + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param fFallback Whether we're in fallback mode or use-NEM mode. In + * the latter we'll fail if we cannot initialize. + * @param fForced Whether the HMForced flag is set and we should + * fail if we cannot initialize. + */ +int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced) +{ + RT_NOREF(pVM, fFallback, fForced); + /* + * Some state init. + */ + pVM->nem.s.fdKvm = -1; + pVM->nem.s.fdVm = -1; + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s; + pNemCpu->fdVCpu = -1; + } + + /* + * Error state. + * The error message will be non-empty on failure and 'rc' will be set too. + */ + RTERRINFOSTATIC ErrInfo; + PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo); + + /* + * Open kvm subsystem so we can issue system ioctls. + */ + int rc; + int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC); + if (fdKvm >= 0) + { + pVM->nem.s.fdKvm = fdKvm; + + /* + * Create an empty VM since it is recommended we check capabilities on + * the VM rather than the system descriptor. + */ + int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */); + if (fdVm >= 0) + { + pVM->nem.s.fdVm = fdVm; + + /* + * Check capabilities. + */ + rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo); + if (RT_SUCCESS(rc)) + { + /* + * Set up the VM (more on this later). + */ + rc = nemR3LnxInitSetupVm(pVM, pErrInfo); + if (RT_SUCCESS(rc)) + { + /* + * Set ourselves as the execution engine and make config adjustments. + */ + VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API); + Log(("NEM: Marked active!\n")); + PGMR3EnableNemMode(pVM); + + /* + * Register release statistics + */ + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s; + STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu); + STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu); + } + + /* + * Success. + */ + return VINF_SUCCESS; + } + + /* + * Bail out. + */ + } + close(fdVm); + pVM->nem.s.fdVm = -1; + } + else + rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno); + close(fdKvm); + pVM->nem.s.fdKvm = -1; + } + else if (errno == EACCES) + rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing."); + else if (errno == ENOENT) + rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)"); + else + rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno); + + /* + * We only fail if in forced mode, otherwise just log the complaint and return. + */ + Assert(RTErrInfoIsSet(pErrInfo)); + if ( (fForced || !fFallback) + && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API) + return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg); + LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg)); + return VINF_SUCCESS; +} + + +/** + * This is called after CPUMR3Init is done. + * + * @returns VBox status code. + * @param pVM The VM handle.. + */ +int nemR3NativeInitAfterCPUM(PVM pVM) +{ + /* + * Validate sanity. + */ + AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER); + AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER); + AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER); + + /** @todo */ + + return VINF_SUCCESS; +} + + +/** + * Update the CPUID leaves for a VCPU. + * + * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo + * everything when there really just are single bit changes. That said, it + * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled + * bit(s), so it should suffice if we do this at startup, I hope. + */ +static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu) +{ + uint32_t cLeaves = 0; + PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves); + struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2])); + + pReq->nent = cLeaves; + pReq->padding = 0; + + for (uint32_t i = 0; i < cLeaves; i++) + { + CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/, + &pReq->entries[i].eax, + &pReq->entries[i].ebx, + &pReq->entries[i].ecx, + &pReq->entries[i].edx); + pReq->entries[i].function = paLeaves[i].uLeaf; + pReq->entries[i].index = paLeaves[i].uSubLeaf; + pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + pReq->entries[i].padding[0] = 0; + pReq->entries[i].padding[1] = 0; + pReq->entries[i].padding[2] = 0; + } + + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno)); + + return VINF_SUCCESS; +} + + +int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) +{ + /* + * Make RTThreadPoke work again (disabled for avoiding unnecessary + * critical section issues in ring-0). + */ + if (enmWhat == VMINITCOMPLETED_RING3) + VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL); + + /* + * Configure CPUIDs after ring-3 init has been done. + */ + if (enmWhat == VMINITCOMPLETED_RING3) + { + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]); + AssertRCReturn(rc, rc); + } + } + + /* + * Configure MSRs after ring-3 init is done. + * + * We only need to tell KVM which MSRs it can handle, as we already + * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN + * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we + * will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the + * bitmaps should be deferred to ring-3. + */ + if (enmWhat == VMINITCOMPLETED_RING3) + { + struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */ + MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY; + + unsigned iRange = 0; +#define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \ + AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \ + uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \ + do { \ + uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \ + uint32_t const uBase = UINT32_C(a_uBase); \ + uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \ + MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \ + MsrFilters.ranges[iRange].nmsrs = cMsrs; \ + MsrFilters.ranges[iRange].flags = (a_fFlags); \ + MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0] +#define MSR_RANGE_ADD(a_Msr) \ + do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0) +#define MSR_RANGE_END(a_cMinMsrs) \ + /* optimize the range size before closing: */ \ + uint32_t cBitmap = cMsrs / 64; \ + while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \ + cBitmap -= 1; \ + MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \ + iRange++; \ + } while (0) + + /* 1st Intel range: 0000_0000 to 0000_3000. */ + MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE); + MSR_RANGE_ADD(MSR_IA32_TSC); + MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS); + MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP); + MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP); + MSR_RANGE_ADD(MSR_IA32_CR_PAT); + /** @todo more? */ + MSR_RANGE_END(64); + + /* 1st AMD range: c000_0000 to c000_3000 */ + MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE); + MSR_RANGE_ADD(MSR_K6_EFER); + MSR_RANGE_ADD(MSR_K6_STAR); + MSR_RANGE_ADD(MSR_K8_GS_BASE); + MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE); + MSR_RANGE_ADD(MSR_K8_LSTAR); + MSR_RANGE_ADD(MSR_K8_CSTAR); + MSR_RANGE_ADD(MSR_K8_SF_MASK); + MSR_RANGE_ADD(MSR_K8_TSC_AUX); + /** @todo add more? */ + MSR_RANGE_END(64); + + /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get + * the MSR requests instead of KVM. */ + + int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters); + if (rcLnx == -1) + return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, + "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno); + } + + return VINF_SUCCESS; +} + + +int nemR3NativeTerm(PVM pVM) +{ + /* + * Per-cpu data + */ + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PVMCPU pVCpu = pVM->apCpusR3[idCpu]; + + if (pVCpu->nem.s.fdVCpu != -1) + { + close(pVCpu->nem.s.fdVCpu); + pVCpu->nem.s.fdVCpu = -1; + } + if (pVCpu->nem.s.pRun) + { + munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap); + pVCpu->nem.s.pRun = NULL; + } + } + + /* + * Global data. + */ + if (pVM->nem.s.fdVm != -1) + { + close(pVM->nem.s.fdVm); + pVM->nem.s.fdVm = -1; + } + + if (pVM->nem.s.fdKvm != -1) + { + close(pVM->nem.s.fdKvm); + pVM->nem.s.fdKvm = -1; + } + return VINF_SUCCESS; +} + + +/** + * VM reset notification. + * + * @param pVM The cross context VM structure. + */ +void nemR3NativeReset(PVM pVM) +{ + RT_NOREF(pVM); +} + + +/** + * Reset CPU due to INIT IPI or hot (un)plugging. + * + * @param pVCpu The cross context virtual CPU structure of the CPU being + * reset. + * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case. + */ +void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi) +{ + RT_NOREF(pVCpu, fInitIpi); +} + + +/********************************************************************************************************************************* +* Memory management * +*********************************************************************************************************************************/ + + +/** + * Allocates a memory slot ID. + * + * @returns Slot ID on success, UINT16_MAX on failure. + */ +static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM) +{ + /* Use the hint first. */ + uint16_t idHint = pVM->nem.s.idPrevSlot; + if (idHint < _32K - 1) + { + int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint); + Assert(idx < _32K); + if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx)) + return pVM->nem.s.idPrevSlot = (uint16_t)idx; + } + + /* + * Search the whole map from the start. + */ + int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K); + Assert(idx < _32K); + if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx)) + return pVM->nem.s.idPrevSlot = (uint16_t)idx; + + Assert(idx < 0 /*shouldn't trigger unless there is a race */); + return UINT16_MAX; /* caller is expected to assert. */ +} + + +/** + * Frees a memory slot ID + */ +static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot) +{ + if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot))) + { /*likely*/ } + else + AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot)); +} + + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3, + uint8_t *pu2State, uint32_t *puNemRange) +{ + uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); + AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); + + Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n", + GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot)); + + struct kvm_userspace_memory_region Region; + Region.slot = idSlot; + Region.flags = 0; + Region.guest_phys_addr = GCPhys; + Region.memory_size = cb; + Region.userspace_addr = (uintptr_t)pvR3; + + int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); + if (rc == 0) + { + *pu2State = 0; + *puNemRange = idSlot; + return VINF_SUCCESS; + } + + LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno)); + nemR3LnxMemSlotIdFree(pVM, idSlot); + return VERR_NEM_MAP_PAGES_FAILED; +} + + +VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM) +{ + RT_NOREF(pVM); + return true; +} + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, + void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) +{ + Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n", + GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX)); + RT_NOREF(pvRam); + + if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) + { + /** @todo implement splitting and whatnot of ranges if we want to be 100% + * conforming (just modify RAM registrations in MM.cpp to test). */ + AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2), + VERR_NEM_MAP_PAGES_FAILED); + } + + /* + * Register MMIO2. + */ + if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2) + { + AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED); + AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED); + + uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); + AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); + + struct kvm_userspace_memory_region Region; + Region.slot = idSlot; + Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0; + Region.guest_phys_addr = GCPhys; + Region.memory_size = cb; + Region.userspace_addr = (uintptr_t)pvMmio2; + + int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); + if (rc == 0) + { + *pu2State = 0; + *puNemRange = idSlot; + Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n", + GCPhys, cb, fFlags, pvMmio2, idSlot)); + return VINF_SUCCESS; + } + + nemR3LnxMemSlotIdFree(pVM, idSlot); + AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n", + GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc), + VERR_NEM_MAP_PAGES_FAILED); + } + + /* MMIO, don't care. */ + *pu2State = 0; + *puNemRange = UINT32_MAX; + return VINF_SUCCESS; +} + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, + void *pvRam, void *pvMmio2, uint32_t *puNemRange) +{ + RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange); + return VINF_SUCCESS; +} + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, + void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) +{ + Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n", + GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange)); + RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State); + + if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) + { + /** @todo implement splitting and whatnot of ranges if we want to be 100% + * conforming (just modify RAM registrations in MM.cpp to test). */ + AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2), + VERR_NEM_UNMAP_PAGES_FAILED); + } + + if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2) + { + uint32_t const idSlot = *puNemRange; + AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4); + AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4); + + struct kvm_userspace_memory_region Region; + Region.slot = idSlot; + Region.flags = 0; + Region.guest_phys_addr = GCPhys; + Region.memory_size = 0; /* this deregisters it. */ + Region.userspace_addr = (uintptr_t)pvMmio2; + + int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); + if (rc == 0) + { + if (pu2State) + *pu2State = 0; + *puNemRange = UINT32_MAX; + nemR3LnxMemSlotIdFree(pVM, idSlot); + return VINF_SUCCESS; + } + + AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n", + GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc), + VERR_NEM_UNMAP_PAGES_FAILED); + } + + if (pu2State) + *pu2State = UINT8_MAX; + return VINF_SUCCESS; +} + + +VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange, + void *pvBitmap, size_t cbBitmap) +{ + AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4); + AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4); + + RT_NOREF(GCPhys, cbBitmap); + + struct kvm_dirty_log DirtyLog; + DirtyLog.slot = uNemRange; + DirtyLog.padding1 = 0; + DirtyLog.dirty_bitmap = pvBitmap; + + int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog); + AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc), + VERR_NEM_QUERY_DIRTY_BITMAP_FAILED); + + return VINF_SUCCESS; +} + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags, + uint8_t *pu2State, uint32_t *puNemRange) +{ + Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags)); + *pu2State = UINT8_MAX; + + /* Don't support puttint ROM where there is already RAM. For + now just shuffle the registrations till it works... */ + AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags), + VERR_NEM_MAP_PAGES_FAILED); + + /** @todo figure out how to do shadow ROMs. */ + + /* + * We only allocate a slot number here in case we need to use it to + * fend of physical handler fun. + */ + uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); + AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); + + *pu2State = 0; + *puNemRange = idSlot; + Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n", + GCPhys, cb, fFlags, pvPages, idSlot)); + RT_NOREF(GCPhys, cb, fFlags, pvPages); + return VINF_SUCCESS; +} + + +VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, + uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange) +{ + Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n", + GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange)); + + AssertPtrReturn(pvPages, VERR_NEM_IPE_5); + + uint32_t const idSlot = *puNemRange; + AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4); + AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4); + + *pu2State = UINT8_MAX; + + /* + * Do the actual setting of the user pages here now that we've + * got a valid pvPages (typically isn't available during the early + * notification, unless we're replacing RAM). + */ + struct kvm_userspace_memory_region Region; + Region.slot = idSlot; + Region.flags = 0; + Region.guest_phys_addr = GCPhys; + Region.memory_size = cb; + Region.userspace_addr = (uintptr_t)pvPages; + + int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); + if (rc == 0) + { + *pu2State = 0; + Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n", + GCPhys, cb, fFlags, pvPages, idSlot)); + return VINF_SUCCESS; + } + AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n", + GCPhys, cb, fFlags, pvPages, idSlot, errno, rc), + VERR_NEM_MAP_PAGES_FAILED); +} + + +VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled) +{ + Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled)); + Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM))); + RT_NOREF(pVCpu, fEnabled); +} + + +VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb, + RTR3PTR pvMemR3, uint8_t *pu2State) +{ + Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n", + GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State)); + + *pu2State = UINT8_MAX; + RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3); +} + + +void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb) +{ + Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind)); + RT_NOREF(pVM, enmKind, GCPhys, cb); +} + + +void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld, + RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM) +{ + Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n", + GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM)); + RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM); +} + + +int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt, + PGMPAGETYPE enmType, uint8_t *pu2State) +{ + Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", + GCPhys, HCPhys, fPageProt, enmType, *pu2State)); + RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State); + return VINF_SUCCESS; +} + + +VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt, + PGMPAGETYPE enmType, uint8_t *pu2State) +{ + Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", + GCPhys, HCPhys, fPageProt, enmType, *pu2State)); + Assert(VM_IS_NEM_ENABLED(pVM)); + RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State); + +} + + +VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew, + RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) +{ + Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n", + GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State)); + Assert(VM_IS_NEM_ENABLED(pVM)); + RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State); +} + + +/********************************************************************************************************************************* +* CPU State * +*********************************************************************************************************************************/ + +/** + * Worker that imports selected state from KVM. + */ +static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun) +{ + fWhat &= pVCpu->cpum.GstCtx.fExtrn; + if (!fWhat) + return VINF_SUCCESS; + + /* + * Stuff that goes into kvm_run::s.regs.regs: + */ + if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK)) + { + if (fWhat & CPUMCTX_EXTRN_RIP) + pCtx->rip = pRun->s.regs.regs.rip; + if (fWhat & CPUMCTX_EXTRN_RFLAGS) + pCtx->rflags.u = pRun->s.regs.regs.rflags; + + if (fWhat & CPUMCTX_EXTRN_RAX) + pCtx->rax = pRun->s.regs.regs.rax; + if (fWhat & CPUMCTX_EXTRN_RCX) + pCtx->rcx = pRun->s.regs.regs.rcx; + if (fWhat & CPUMCTX_EXTRN_RDX) + pCtx->rdx = pRun->s.regs.regs.rdx; + if (fWhat & CPUMCTX_EXTRN_RBX) + pCtx->rbx = pRun->s.regs.regs.rbx; + if (fWhat & CPUMCTX_EXTRN_RSP) + pCtx->rsp = pRun->s.regs.regs.rsp; + if (fWhat & CPUMCTX_EXTRN_RBP) + pCtx->rbp = pRun->s.regs.regs.rbp; + if (fWhat & CPUMCTX_EXTRN_RSI) + pCtx->rsi = pRun->s.regs.regs.rsi; + if (fWhat & CPUMCTX_EXTRN_RDI) + pCtx->rdi = pRun->s.regs.regs.rdi; + if (fWhat & CPUMCTX_EXTRN_R8_R15) + { + pCtx->r8 = pRun->s.regs.regs.r8; + pCtx->r9 = pRun->s.regs.regs.r9; + pCtx->r10 = pRun->s.regs.regs.r10; + pCtx->r11 = pRun->s.regs.regs.r11; + pCtx->r12 = pRun->s.regs.regs.r12; + pCtx->r13 = pRun->s.regs.regs.r13; + pCtx->r14 = pRun->s.regs.regs.r14; + pCtx->r15 = pRun->s.regs.regs.r15; + } + } + + /* + * Stuff that goes into kvm_run::s.regs.sregs. + * + * Note! The apic_base can be ignored because we gets all MSR writes to it + * and VBox always keeps the correct value. + */ + bool fMaybeChangedMode = false; + bool fUpdateCr3 = false; + if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK + | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR)) + { + /** @todo what about Attr.n.u4LimitHigh? */ +#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \ + (a_CtxSeg).u64Base = (a_KvmSeg).base; \ + (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \ + (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \ + (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \ + (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \ + (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \ + (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \ + (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \ + (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \ + (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \ + (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \ + (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \ + (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \ + CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \ + } while (0) + + if (fWhat & CPUMCTX_EXTRN_SREG_MASK) + { + if (fWhat & CPUMCTX_EXTRN_ES) + NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es); + if (fWhat & CPUMCTX_EXTRN_CS) + NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs); + if (fWhat & CPUMCTX_EXTRN_SS) + NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss); + if (fWhat & CPUMCTX_EXTRN_DS) + NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds); + if (fWhat & CPUMCTX_EXTRN_FS) + NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs); + if (fWhat & CPUMCTX_EXTRN_GS) + NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs); + } + if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fWhat & CPUMCTX_EXTRN_GDTR) + { + pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base; + pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit; + } + if (fWhat & CPUMCTX_EXTRN_IDTR) + { + pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base; + pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit; + } + if (fWhat & CPUMCTX_EXTRN_LDTR) + NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt); + if (fWhat & CPUMCTX_EXTRN_TR) + NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr); + } + if (fWhat & CPUMCTX_EXTRN_CR_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CR0) + { + if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0) + { + CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0); + fMaybeChangedMode = true; + } + } + if (fWhat & CPUMCTX_EXTRN_CR2) + pCtx->cr2 = pRun->s.regs.sregs.cr2; + if (fWhat & CPUMCTX_EXTRN_CR3) + { + if (pCtx->cr3 != pRun->s.regs.sregs.cr3) + { + CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3); + fUpdateCr3 = true; + } + } + if (fWhat & CPUMCTX_EXTRN_CR4) + { + if (pCtx->cr4 != pRun->s.regs.sregs.cr4) + { + CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4); + fMaybeChangedMode = true; + } + } + } + if (fWhat & CPUMCTX_EXTRN_APIC_TPR) + APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4); + if (fWhat & CPUMCTX_EXTRN_EFER) + { + if (pCtx->msrEFER != pRun->s.regs.sregs.efer) + { + Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer)); + if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE) + PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE)); + pCtx->msrEFER = pRun->s.regs.sregs.efer; + fMaybeChangedMode = true; + } + } +#undef NEM_LNX_IMPORT_SEG + } + + /* + * Debug registers. + */ + if (fWhat & CPUMCTX_EXTRN_DR_MASK) + { + struct kvm_debugregs DbgRegs = {{0}}; + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + + if (fWhat & CPUMCTX_EXTRN_DR0_DR3) + { + pCtx->dr[0] = DbgRegs.db[0]; + pCtx->dr[1] = DbgRegs.db[1]; + pCtx->dr[2] = DbgRegs.db[2]; + pCtx->dr[3] = DbgRegs.db[3]; + } + if (fWhat & CPUMCTX_EXTRN_DR6) + pCtx->dr[6] = DbgRegs.dr6; + if (fWhat & CPUMCTX_EXTRN_DR7) + pCtx->dr[7] = DbgRegs.dr7; + } + + /* + * FPU, SSE, AVX, ++. + */ + if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx)) + { + if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) + { + fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */ + + AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave)); + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + } + + if (fWhat & CPUMCTX_EXTRN_XCRx) + { + struct kvm_xcrs Xcrs = + { /*.nr_xcrs = */ 2, + /*.flags = */ 0, + /*.xcrs= */ { + { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] }, + { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] }, + } + }; + + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + + pCtx->aXcr[0] = Xcrs.xcrs[0].value; + pCtx->aXcr[1] = Xcrs.xcrs[1].value; + } + } + + /* + * MSRs. + */ + if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS + | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) + { + union + { + struct kvm_msrs Core; + uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32]; + } uBuf; + uint64_t *pauDsts[32]; + uint32_t iMsr = 0; + PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); + +#define ADD_MSR(a_Msr, a_uValue) do { \ + Assert(iMsr < 32); \ + uBuf.Core.entries[iMsr].index = (a_Msr); \ + uBuf.Core.entries[iMsr].reserved = 0; \ + uBuf.Core.entries[iMsr].data = UINT64_MAX; \ + pauDsts[iMsr] = &(a_uValue); \ + iMsr += 1; \ + } while (0) + + if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE); + if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR); + ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR); + ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR); + ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK); + } + if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs); + ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip); + ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp); + } + if (fWhat & CPUMCTX_EXTRN_TSC_AUX) + ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux); + if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) + { + ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT); + /** @todo What do we _have_ to add here? + * We also have: Mttr*, MiscEnable, FeatureControl. */ + } + + uBuf.Core.pad = 0; + uBuf.Core.nmsrs = iMsr; + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf); + AssertMsgReturn(rc == (int)iMsr, + ("rc=%d iMsr=%d (->%#x) errno=%d\n", + rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno), + VERR_NEM_IPE_3); + + while (iMsr-- > 0) + *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data; +#undef ADD_MSR + } + + /* + * Interruptibility state and pending interrupts. + */ + if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) + { + fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */ + + struct kvm_vcpu_events KvmEvents = {0}; + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3); + + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP) + pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip; + + CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx, + RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS), + RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_STI), + pVCpu->cpum.GstCtx.rip); + CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0); + + if (KvmEvents.interrupt.injected) + { + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt); + TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT); + } + + Assert(KvmEvents.nmi.injected == 0); + Assert(KvmEvents.nmi.pending == 0); + } + + /* + * Update the external mask. + */ + pCtx->fExtrn &= ~fWhat; + pVCpu->cpum.GstCtx.fExtrn &= ~fWhat; + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) + pVCpu->cpum.GstCtx.fExtrn = 0; + + /* + * We sometimes need to update PGM on the guest status. + */ + if (!fMaybeChangedMode && !fUpdateCr3) + { /* likely */ } + else + { + /* + * Make sure we got all the state PGM might need. + */ + Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3, + pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) )); + if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER)) + { + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0) + { + if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0) + { + CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0); + fMaybeChangedMode = true; + } + } + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3) + { + if (pCtx->cr3 != pRun->s.regs.sregs.cr3) + { + CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3); + fUpdateCr3 = true; + } + } + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4) + { + if (pCtx->cr4 != pRun->s.regs.sregs.cr4) + { + CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4); + fMaybeChangedMode = true; + } + } + if (fWhat & CPUMCTX_EXTRN_EFER) + { + if (pCtx->msrEFER != pRun->s.regs.sregs.efer) + { + Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer)); + if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE) + PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE)); + pCtx->msrEFER = pRun->s.regs.sregs.efer; + fMaybeChangedMode = true; + } + } + + pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER); + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) + pVCpu->cpum.GstCtx.fExtrn = 0; + } + + /* + * Notify PGM about the changes. + */ + if (fMaybeChangedMode) + { + int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, + pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/); + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1); + } + + if (fUpdateCr3) + { + int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3); + if (rc == VINF_SUCCESS) + { /* likely */ } + else + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2); + } + } + + return VINF_SUCCESS; +} + + +/** + * Interface for importing state on demand (used by IEM). + * + * @returns VBox status code. + * @param pVCpu The cross context CPU structure. + * @param fWhat What to import, CPUMCTX_EXTRN_XXX. + */ +VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) +{ + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand); + return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun); +} + + +/** + * Exports state to KVM. + */ +static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun) +{ + uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL; + Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL); + + /* + * Stuff that goes into kvm_run::s.regs.regs: + */ + if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK)) + { + if (fExtrn & CPUMCTX_EXTRN_RIP) + pRun->s.regs.regs.rip = pCtx->rip; + if (fExtrn & CPUMCTX_EXTRN_RFLAGS) + pRun->s.regs.regs.rflags = pCtx->rflags.u; + + if (fExtrn & CPUMCTX_EXTRN_RAX) + pRun->s.regs.regs.rax = pCtx->rax; + if (fExtrn & CPUMCTX_EXTRN_RCX) + pRun->s.regs.regs.rcx = pCtx->rcx; + if (fExtrn & CPUMCTX_EXTRN_RDX) + pRun->s.regs.regs.rdx = pCtx->rdx; + if (fExtrn & CPUMCTX_EXTRN_RBX) + pRun->s.regs.regs.rbx = pCtx->rbx; + if (fExtrn & CPUMCTX_EXTRN_RSP) + pRun->s.regs.regs.rsp = pCtx->rsp; + if (fExtrn & CPUMCTX_EXTRN_RBP) + pRun->s.regs.regs.rbp = pCtx->rbp; + if (fExtrn & CPUMCTX_EXTRN_RSI) + pRun->s.regs.regs.rsi = pCtx->rsi; + if (fExtrn & CPUMCTX_EXTRN_RDI) + pRun->s.regs.regs.rdi = pCtx->rdi; + if (fExtrn & CPUMCTX_EXTRN_R8_R15) + { + pRun->s.regs.regs.r8 = pCtx->r8; + pRun->s.regs.regs.r9 = pCtx->r9; + pRun->s.regs.regs.r10 = pCtx->r10; + pRun->s.regs.regs.r11 = pCtx->r11; + pRun->s.regs.regs.r12 = pCtx->r12; + pRun->s.regs.regs.r13 = pCtx->r13; + pRun->s.regs.regs.r14 = pCtx->r14; + pRun->s.regs.regs.r15 = pCtx->r15; + } + pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS; + } + + /* + * Stuff that goes into kvm_run::s.regs.sregs: + * + * The APIC base register updating is a little suboptimal... But at least + * VBox always has the right base register value, so it's one directional. + */ + uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu); + if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK + | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR)) + || uApicBase != pVCpu->nem.s.uKvmApicBase) + { + if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN) + Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase)); + pRun->s.regs.sregs.apic_base = uApicBase; + pVCpu->nem.s.uKvmApicBase = uApicBase; + + if (fExtrn & CPUMCTX_EXTRN_APIC_TPR) + pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu); + +#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \ + (a_KvmSeg).base = (a_CtxSeg).u64Base; \ + (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \ + (a_KvmSeg).selector = (a_CtxSeg).Sel; \ + (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \ + (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \ + (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \ + (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \ + (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \ + (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \ + (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \ + (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \ + (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \ + (a_KvmSeg).padding = 0; \ + } while (0) + + if (fExtrn & CPUMCTX_EXTRN_SREG_MASK) + { + if (fExtrn & CPUMCTX_EXTRN_ES) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es); + if (fExtrn & CPUMCTX_EXTRN_CS) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs); + if (fExtrn & CPUMCTX_EXTRN_SS) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss); + if (fExtrn & CPUMCTX_EXTRN_DS) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds); + if (fExtrn & CPUMCTX_EXTRN_FS) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs); + if (fExtrn & CPUMCTX_EXTRN_GS) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs); + } + if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fExtrn & CPUMCTX_EXTRN_GDTR) + { + pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt; + pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt; + pRun->s.regs.sregs.gdt.padding[0] = 0; + pRun->s.regs.sregs.gdt.padding[1] = 0; + pRun->s.regs.sregs.gdt.padding[2] = 0; + } + if (fExtrn & CPUMCTX_EXTRN_IDTR) + { + pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt; + pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt; + pRun->s.regs.sregs.idt.padding[0] = 0; + pRun->s.regs.sregs.idt.padding[1] = 0; + pRun->s.regs.sregs.idt.padding[2] = 0; + } + if (fExtrn & CPUMCTX_EXTRN_LDTR) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr); + if (fExtrn & CPUMCTX_EXTRN_TR) + NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr); + } + if (fExtrn & CPUMCTX_EXTRN_CR_MASK) + { + if (fExtrn & CPUMCTX_EXTRN_CR0) + pRun->s.regs.sregs.cr0 = pCtx->cr0; + if (fExtrn & CPUMCTX_EXTRN_CR2) + pRun->s.regs.sregs.cr2 = pCtx->cr2; + if (fExtrn & CPUMCTX_EXTRN_CR3) + pRun->s.regs.sregs.cr3 = pCtx->cr3; + if (fExtrn & CPUMCTX_EXTRN_CR4) + pRun->s.regs.sregs.cr4 = pCtx->cr4; + } + if (fExtrn & CPUMCTX_EXTRN_EFER) + pRun->s.regs.sregs.efer = pCtx->msrEFER; + + RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */ + + pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS; + } + + /* + * Debug registers. + */ + if (fExtrn & CPUMCTX_EXTRN_DR_MASK) + { + struct kvm_debugregs DbgRegs = {{0}}; + + if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK) + { + /* Partial debug state, we must get DbgRegs first so we can merge: */ + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + } + + if (fExtrn & CPUMCTX_EXTRN_DR0_DR3) + { + DbgRegs.db[0] = pCtx->dr[0]; + DbgRegs.db[1] = pCtx->dr[1]; + DbgRegs.db[2] = pCtx->dr[2]; + DbgRegs.db[3] = pCtx->dr[3]; + } + if (fExtrn & CPUMCTX_EXTRN_DR6) + DbgRegs.dr6 = pCtx->dr[6]; + if (fExtrn & CPUMCTX_EXTRN_DR7) + DbgRegs.dr7 = pCtx->dr[7]; + + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + } + + /* + * FPU, SSE, AVX, ++. + */ + if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx)) + { + if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) + { + /** @todo could IEM just grab state partial control in some situations? */ + Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) + == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */ + + AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave)); + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + } + + if (fExtrn & CPUMCTX_EXTRN_XCRx) + { + struct kvm_xcrs Xcrs = + { /*.nr_xcrs = */ 2, + /*.flags = */ 0, + /*.xcrs= */ { + { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] }, + { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] }, + } + }; + + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs); + AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); + } + } + + /* + * MSRs. + */ + if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS + | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) + { + union + { + struct kvm_msrs Core; + uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32]; + } uBuf; + uint32_t iMsr = 0; + PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); + +#define ADD_MSR(a_Msr, a_uValue) do { \ + Assert(iMsr < 32); \ + uBuf.Core.entries[iMsr].index = (a_Msr); \ + uBuf.Core.entries[iMsr].reserved = 0; \ + uBuf.Core.entries[iMsr].data = (a_uValue); \ + iMsr += 1; \ + } while (0) + + if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE) + ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE); + if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR); + ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR); + ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR); + ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK); + } + if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs); + ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip); + ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp); + } + if (fExtrn & CPUMCTX_EXTRN_TSC_AUX) + ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux); + if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS) + { + ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT); + /** @todo What do we _have_ to add here? + * We also have: Mttr*, MiscEnable, FeatureControl. */ + } + + uBuf.Core.pad = 0; + uBuf.Core.nmsrs = iMsr; + int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf); + AssertMsgReturn(rc == (int)iMsr, + ("rc=%d iMsr=%d (->%#x) errno=%d\n", + rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno), + VERR_NEM_IPE_3); + } + + /* + * Interruptibility state. + * + * Note! This I/O control function sets most fields passed in, so when + * raising an interrupt, NMI, SMI or exception, this must be done + * by the code doing the rasing or we'll overwrite it here. + */ + if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) + { + Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) + == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)); + + struct kvm_vcpu_events KvmEvents = {0}; + + KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW; + if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) + { /* probably likely */ } + else + KvmEvents.interrupt.shadow = (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0) + | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0); + + /* No flag - this is updated unconditionally. */ + KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx); + + if (TRPMHasTrap(pVCpu)) + { + TRPMEVENT enmType = TRPM_32BIT_HACK; + uint8_t bTrapNo = 0; + TRPMQueryTrap(pVCpu, &bTrapNo, &enmType); + Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType)); + if ( enmType == TRPM_HARDWARE_INT + || enmType == TRPM_SOFTWARE_INT) + { + KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT; + KvmEvents.interrupt.nr = bTrapNo; + KvmEvents.interrupt.injected = 1; + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt); + TRPMResetTrap(pVCpu); + } + else + AssertFailed(); + } + + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3); + } + + /* + * KVM now owns all the state. + */ + pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL; + + RT_NOREF(pVM); + return VINF_SUCCESS; +} + + +/** + * Query the CPU tick counter and optionally the TSC_AUX MSR value. + * + * @returns VBox status code. + * @param pVCpu The cross context CPU structure. + * @param pcTicks Where to return the CPU tick count. + * @param puAux Where to return the TSC_AUX register value. + */ +VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux) +{ + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick); + // KVM_GET_CLOCK? + RT_NOREF(pVCpu, pcTicks, puAux); + return VINF_SUCCESS; +} + + +/** + * Resumes CPU clock (TSC) on all virtual CPUs. + * + * This is called by TM when the VM is started, restored, resumed or similar. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context CPU structure of the calling EMT. + * @param uPausedTscValue The TSC value at the time of pausing. + */ +VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue) +{ + // KVM_SET_CLOCK? + RT_NOREF(pVM, pVCpu, uPausedTscValue); + return VINF_SUCCESS; +} + + +VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM) +{ + RT_NOREF(pVM); + return NEM_FEAT_F_NESTED_PAGING + | NEM_FEAT_F_FULL_GST_EXEC + | NEM_FEAT_F_XSAVE_XRSTOR; +} + + + +/********************************************************************************************************************************* +* Execution * +*********************************************************************************************************************************/ + + +VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu) +{ + /* + * Only execute when the A20 gate is enabled as I cannot immediately + * spot any A20 support in KVM. + */ + RT_NOREF(pVM); + Assert(VM_IS_NEM_ENABLED(pVM)); + return PGMPhysIsA20Enabled(pVCpu); +} + + +bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable) +{ + NOREF(pVM); NOREF(pVCpu); NOREF(fEnable); + return false; +} + + +void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags) +{ + int rc = RTThreadPoke(pVCpu->hThread); + LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc)); + AssertRC(rc); + RT_NOREF(pVM, fFlags); +} + + +DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop) +{ + RT_NOREF(pVM, fUseDebugLoop); + return false; +} + + +DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop) +{ + RT_NOREF(pVM, pVCpu, fUseDebugLoop); + return false; +} + + +/** + * Deals with pending interrupt FFs prior to executing guest code. + */ +static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun) +{ + RT_NOREF_PV(pVM); + + /* + * Do not doing anything if TRPM has something pending already as we can + * only inject one event per KVM_RUN call. This can only happend if we + * can directly from the loop in EM, so the inhibit bits must be internal. + */ + if (!TRPMHasTrap(pVCpu)) + { /* semi likely */ } + else + { + Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))); + Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n")); + return VINF_SUCCESS; + } + + /* + * First update APIC. We ASSUME this won't need TPR/CR8. + */ + if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC)) + { + APICUpdatePendingInterrupts(pVCpu); + if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC + | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) + return VINF_SUCCESS; + } + + /* + * We don't currently implement SMIs. + */ + AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0); + + /* + * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states + * are tied together with interrupt and NMI delivery, so we must get and + * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags. + * If we don't we may lose the interrupt/NMI we marked pending here when the + * state is exported again before execution. + */ + struct kvm_vcpu_events KvmEvents = {0}; + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); + + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)) + pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip; + + KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW; + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT)) + KvmEvents.interrupt.shadow = !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx) ? 0 + : (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0) + | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0); + else + CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx, + RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS), + RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_STI), + pRun->s.regs.regs.rip); + + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI)) + KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx); + else + CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0); + + /* KVM will own the INT + NMI inhibit state soon: */ + pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK) + | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; + + /* + * NMI? Try deliver it first. + */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) + { +#if 0 + int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); +#else + KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; + KvmEvents.nmi.pending = 1; +#endif + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI); + Log8(("Queuing NMI on %u\n", pVCpu->idCpu)); + } + + /* + * APIC or PIC interrupt? + */ + if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)) + { + if (pRun->s.regs.regs.rflags & X86_EFL_IF) + { + if (KvmEvents.interrupt.shadow == 0) + { + /* + * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will + * work correctly. + */ + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR) + APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4); + + uint8_t bInterrupt; + int rc = PDMGetInterrupt(pVCpu, &bInterrupt); + if (RT_SUCCESS(rc)) + { + Assert(KvmEvents.interrupt.injected == false); +#if 0 + int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); +#else + KvmEvents.interrupt.nr = bInterrupt; + KvmEvents.interrupt.soft = false; + KvmEvents.interrupt.injected = true; +#endif + Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu, + pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u)); + } + else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */ + Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */ + else + Log8(("PDMGetInterrupt failed -> %Rrc\n", rc)); + } + else + { + pRun->request_interrupt_window = 1; + Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu)); + } + } + else + { + pRun->request_interrupt_window = 1; + Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu)); + } + } + + /* + * Now, update the state. + */ + /** @todo skip when possible... */ + rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents); + AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); + + return VINF_SUCCESS; +} + + +/** + * Handles KVM_EXIT_INTERNAL_ERROR. + */ +static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun) +{ + Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, + pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0])); + + /* + * Deal with each suberror, returning if we don't want IEM to handle it. + */ + switch (pRun->internal.suberror) + { + case KVM_INTERNAL_ERROR_EMULATION: + { + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation); + break; + } + + case KVM_INTERNAL_ERROR_SIMUL_EX: + case KVM_INTERNAL_ERROR_DELIVERY_EV: + case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: + default: + { + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal); + const char *pszName; + switch (pRun->internal.suberror) + { + case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break; + case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break; + case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break; + case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break; + default: pszName = "unknown"; break; + } + LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName, + pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0])); + return VERR_NEM_IPE_0; + } + } + + /* + * Execute instruction in IEM and try get on with it. + */ + Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n", + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip)); + VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu, + IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT + | CPUMCTX_EXTRN_INHIBIT_NMI, + &pVCpu->cpum.GstCtx, pRun); + if (RT_SUCCESS(rcStrict)) + rcStrict = IEMExecOne(pVCpu); + return rcStrict; +} + + +/** + * Handles KVM_EXIT_IO. + */ +static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun) +{ + /* + * Input validation. + */ + Assert(pRun->io.count > 0); + Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4); + Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT); + Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap); + Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap); + + /* + * We cannot easily act on the exit history here, because the I/O port + * exit is stateful and the instruction will be completed in the next + * KVM_RUN call. There seems no way to avoid this. + */ + EMHistoryAddExit(pVCpu, + pRun->io.count == 1 + ? ( pRun->io.direction == KVM_EXIT_IO_IN + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)) + : ( pRun->io.direction == KVM_EXIT_IO_IN + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + + /* + * Do the requested job. + */ + VBOXSTRICTRC rcStrict; + RTPTRUNION uPtrData; + uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset; + if (pRun->io.count == 1) + { + if (pRun->io.direction == KVM_EXIT_IO_IN) + { + uint32_t uValue = 0; + rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size); + Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) )); + if (IOM_SUCCESS(rcStrict)) + { + if (pRun->io.size == 4) + *uPtrData.pu32 = uValue; + else if (pRun->io.size == 2) + *uPtrData.pu16 = (uint16_t)uValue; + else + *uPtrData.pu8 = (uint8_t)uValue; + } + } + else + { + uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32 + : pRun->io.size == 2 ? *uPtrData.pu16 + : *uPtrData.pu8; + rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size); + Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) )); + } + } + else + { + uint32_t cTransfers = pRun->io.count; + if (pRun->io.direction == KVM_EXIT_IO_IN) + { + rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size); + Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers )); + } + else + { + rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size); + Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers )); + } + Assert(cTransfers == 0); + } + return rcStrict; +} + + +/** + * Handles KVM_EXIT_MMIO. + */ +static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun) +{ + /* + * Input validation. + */ + Assert(pRun->mmio.len <= sizeof(pRun->mmio.data)); + Assert(pRun->mmio.is_write <= 1); + + /* + * We cannot easily act on the exit history here, because the MMIO port + * exit is stateful and the instruction will be completed in the next + * KVM_RUN call. There seems no way to circumvent this. + */ + EMHistoryAddExit(pVCpu, + pRun->mmio.is_write + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + + /* + * Do the requested job. + */ + VBOXSTRICTRC rcStrict; + if (pRun->mmio.is_write) + { + rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM); + Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) )); + } + else + { + rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM); + Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) )); + } + return rcStrict; +} + + +/** + * Handles KVM_EXIT_RDMSR + */ +static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun) +{ + /* + * Input validation. + */ + Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL + || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN + || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER); + + /* + * We cannot easily act on the exit history here, because the MSR exit is + * stateful and the instruction will be completed in the next KVM_RUN call. + * There seems no way to circumvent this. + */ + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + + /* + * Do the requested job. + */ + uint64_t uValue = 0; + VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue); + pRun->msr.data = uValue; + if (rcStrict != VERR_CPUM_RAISE_GP_0) + { + Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu, + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) )); + pRun->msr.error = 0; + } + else + { + Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu, + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue)); + pRun->msr.error = 1; + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * Handles KVM_EXIT_WRMSR + */ +static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun) +{ + /* + * Input validation. + */ + Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL + || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN + || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER); + + /* + * We cannot easily act on the exit history here, because the MSR exit is + * stateful and the instruction will be completed in the next KVM_RUN call. + * There seems no way to circumvent this. + */ + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + + /* + * Do the requested job. + */ + VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data); + if (rcStrict != VERR_CPUM_RAISE_GP_0) + { + Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu, + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) )); + pRun->msr.error = 0; + } + else + { + Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu, + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason)); + pRun->msr.error = 1; + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + + +static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit) +{ + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal); + switch (pRun->exit_reason) + { + case KVM_EXIT_EXCEPTION: + AssertFailed(); + break; + + case KVM_EXIT_IO: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo); + *pfStatefulExit = true; + return nemHCLnxHandleExitIo(pVM, pVCpu, pRun); + + case KVM_EXIT_MMIO: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio); + *pfStatefulExit = true; + return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun); + + case KVM_EXIT_IRQ_WINDOW_OPEN: + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen); + Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window)); + pRun->request_interrupt_window = 0; + return VINF_SUCCESS; + + case KVM_EXIT_SET_TPR: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr); + AssertFailed(); + break; + + case KVM_EXIT_TPR_ACCESS: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess); + AssertFailed(); + break; + + case KVM_EXIT_X86_RDMSR: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr); + *pfStatefulExit = true; + return nemHCLnxHandleExitRdMsr(pVCpu, pRun); + + case KVM_EXIT_X86_WRMSR: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr); + *pfStatefulExit = true; + return nemHCLnxHandleExitWrMsr(pVCpu, pRun); + + case KVM_EXIT_HLT: + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt); + Log5(("Halt/%u\n", pVCpu->idCpu)); + return VINF_EM_HALT; + + case KVM_EXIT_INTR: /* EINTR */ + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr); + Log5(("Intr/%u\n", pVCpu->idCpu)); + return VINF_SUCCESS; + + case KVM_EXIT_HYPERCALL: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall); + AssertFailed(); + break; + + case KVM_EXIT_DEBUG: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug); + AssertFailed(); + break; + + case KVM_EXIT_SYSTEM_EVENT: + AssertFailed(); + break; + case KVM_EXIT_IOAPIC_EOI: + AssertFailed(); + break; + case KVM_EXIT_HYPERV: + AssertFailed(); + break; + + case KVM_EXIT_DIRTY_RING_FULL: + AssertFailed(); + break; + case KVM_EXIT_AP_RESET_HOLD: + AssertFailed(); + break; + case KVM_EXIT_X86_BUS_LOCK: + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock); + AssertFailed(); + break; + + + case KVM_EXIT_SHUTDOWN: + AssertFailed(); + break; + + case KVM_EXIT_FAIL_ENTRY: + LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n", + pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu)); + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY), + pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); + return VERR_NEM_IPE_1; + + case KVM_EXIT_INTERNAL_ERROR: + /* we're counting sub-reasons inside the function. */ + return nemR3LnxHandleInternalError(pVCpu, pRun); + + /* + * Foreign and unknowns. + */ + case KVM_EXIT_NMI: + AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_EPR: + AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_WATCHDOG: + AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_ARM_NISV: + AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_S390_STSI: + AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_S390_TSCH: + AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_OSI: + AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_PAPR_HCALL: + AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_S390_UCONTROL: + AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_DCR: + AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_S390_SIEIC: + AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_S390_RESET: + AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_UNKNOWN: + AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + case KVM_EXIT_XEN: + AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + default: + AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); + } + + RT_NOREF(pVM, pVCpu, pRun); + return VERR_NOT_IMPLEMENTED; +} + + +VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu) +{ + /* + * Try switch to NEM runloop state. + */ + if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED)) + { /* likely */ } + else + { + VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); + LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu)); + return VINF_SUCCESS; + } + + /* + * The run loop. + */ + struct kvm_run * const pRun = pVCpu->nem.s.pRun; + const bool fSingleStepping = DBGFIsStepping(pVCpu); + VBOXSTRICTRC rcStrict = VINF_SUCCESS; + bool fStatefulExit = false; /* For MMIO and IO exits. */ + for (unsigned iLoop = 0;; iLoop++) + { + /* + * Pending interrupts or such? Need to check and deal with this prior + * to the state syncing. + */ + if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC + | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) + { + /* Try inject interrupt. */ + rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun); + if (rcStrict == VINF_SUCCESS) + { /* likely */ } + else + { + LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); + break; + } + } + + /* + * Do not execute in KVM if the A20 isn't enabled. + */ + if (PGMPhysIsA20Enabled(pVCpu)) + { /* likely */ } + else + { + rcStrict = VINF_EM_RESCHEDULE_REM; + LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu)); + break; + } + + /* + * Ensure KVM has the whole state. + */ + if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL) + { + int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun); + AssertRCReturn(rc2, rc2); + } + + /* + * Poll timers and run for a bit. + * + * With the VID approach (ring-0 or ring-3) we can specify a timeout here, + * so we take the time of the next timer event and uses that as a deadline. + * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine. + */ + /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing + * the whole polling job when timers have changed... */ + uint64_t offDeltaIgnored; + uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt); + if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC) + && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) + { + if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM)) + { + LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n", + pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, + !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags, + pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0)); + TMNotifyStartOfExecution(pVM, pVCpu); + + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL); + + VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT); + TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC()); + +#ifdef LOG_ENABLED + if (LogIsFlowEnabled()) + { + struct kvm_mp_state MpState = {UINT32_MAX}; + ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState); + LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu, + pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag, + pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason, + pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state)); + } +#endif + fStatefulExit = false; + if (RT_LIKELY(rcLnx == 0 || errno == EINTR)) + { + /* + * Deal with the exit. + */ + rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit); + if (rcStrict == VINF_SUCCESS) + { /* hopefully likely */ } + else + { + LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); + break; + } + } + else + { + int rc2 = RTErrConvertFromErrno(errno); + AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2); + } + + /* + * If no relevant FFs are pending, loop. + */ + if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK) + && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) + { /* likely */ } + else + { + + /** @todo Try handle pending flags, not just return to EM loops. Take care + * not to set important RCs here unless we've handled an exit. */ + LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n", + pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions)); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost); + break; + } + } + else + { + LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) )); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel); + break; + } + } + else + { + LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu)); + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre); + break; + } + } /* the run loop */ + + + /* + * If the last exit was stateful, commit the state we provided before + * returning to the EM loop so we have a consistent state and can safely + * be rescheduled and whatnot. This may require us to make multiple runs + * for larger MMIO and I/O operations. Sigh^3. + * + * Note! There is no 'ing way to reset the kernel side completion callback + * for these stateful i/o exits. Very annoying interface. + */ + /** @todo check how this works with string I/O and string MMIO. */ + if (fStatefulExit && RT_SUCCESS(rcStrict)) + { + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn); + uint32_t const uOrgExit = pRun->exit_reason; + for (uint32_t i = 0; ; i++) + { + pRun->immediate_exit = 1; + int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL); + Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason)); + if (rcLnx == -1 && errno == EINTR) + { + switch (i) + { + case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break; + case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break; + case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break; + default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break; + } + break; + } + AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit, + ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit), + rcStrict = VERR_NEM_IPE_6); + VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit); + if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict) + { /* likely */ } + else if (RT_FAILURE(rcStrict2)) + { + rcStrict = rcStrict2; + break; + } + else + { + AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS, + ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)), + rcStrict = VERR_NEM_IPE_7); + rcStrict = rcStrict2; + } + } + pRun->immediate_exit = 0; + } + + /* + * If the CPU is running, make sure to stop it before we try sync back the + * state and return to EM. We don't sync back the whole state if we can help it. + */ + if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM)) + VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); + + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) + { + /* Try anticipate what we might need. */ + uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */ + | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/; + if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) + || RT_FAILURE(rcStrict)) + fImport = CPUMCTX_EXTRN_ALL; +# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */ + else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE + || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE) + fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS; + else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ) + fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS; +# endif + else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC + | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) + fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK; + + if (pVCpu->cpum.GstCtx.fExtrn & fImport) + { + int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun); + if (RT_SUCCESS(rc2)) + pVCpu->cpum.GstCtx.fExtrn &= ~fImport; + else if (RT_SUCCESS(rcStrict)) + rcStrict = rc2; + if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) + pVCpu->cpum.GstCtx.fExtrn = 0; + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn); + } + else + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); + } + else + { + pVCpu->cpum.GstCtx.fExtrn = 0; + STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); + } + + LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) )); + return rcStrict; +} + + +/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux. + * + * This is using KVM. + * + */ + |