summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/testcase/Instructions/InstructionTestGen.py')
-rwxr-xr-xsrc/VBox/VMM/testcase/Instructions/InstructionTestGen.py2249
1 files changed, 2249 insertions, 0 deletions
diff --git a/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py b/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py
new file mode 100755
index 00000000..f78cf4eb
--- /dev/null
+++ b/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py
@@ -0,0 +1,2249 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+# $Id: InstructionTestGen.py $
+
+"""
+Instruction Test Generator.
+"""
+
+from __future__ import print_function;
+
+__copyright__ = \
+"""
+Copyright (C) 2012-2023 Oracle and/or its affiliates.
+
+This file is part of VirtualBox base platform packages, as
+available from https://www.virtualbox.org.
+
+This program is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public License
+as published by the Free Software Foundation, in version 3 of the
+License.
+
+This program is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, see <https://www.gnu.org/licenses>.
+
+SPDX-License-Identifier: GPL-3.0-only
+"""
+__version__ = "$Revision: 155244 $";
+
+
+# pylint: disable=C0103,R0913
+
+
+# Standard python imports.
+import io;
+import os;
+from optparse import OptionParser
+import random;
+import sys;
+
+
+## @name Exit codes
+## @{
+RTEXITCODE_SUCCESS = 0;
+RTEXITCODE_SYNTAX = 2;
+## @}
+
+## @name Various C macros we're used to.
+## @{
+UINT8_MAX = 0xff
+UINT16_MAX = 0xffff
+UINT32_MAX = 0xffffffff
+UINT64_MAX = 0xffffffffffffffff
+def RT_BIT_32(iBit): # pylint: disable=C0103
+ """ 32-bit one bit mask. """
+ return 1 << iBit;
+def RT_BIT_64(iBit): # pylint: disable=C0103
+ """ 64-bit one bit mask. """
+ return 1 << iBit;
+## @}
+
+
+## @name ModR/M
+## @{
+X86_MODRM_RM_MASK = 0x07;
+X86_MODRM_REG_MASK = 0x38;
+X86_MODRM_REG_SMASK = 0x07;
+X86_MODRM_REG_SHIFT = 3;
+X86_MODRM_MOD_MASK = 0xc0;
+X86_MODRM_MOD_SMASK = 0x03;
+X86_MODRM_MOD_SHIFT = 6;
+## @}
+
+## @name SIB
+## @{
+X86_SIB_BASE_MASK = 0x07;
+X86_SIB_INDEX_MASK = 0x38;
+X86_SIB_INDEX_SMASK = 0x07;
+X86_SIB_INDEX_SHIFT = 3;
+X86_SIB_SCALE_MASK = 0xc0;
+X86_SIB_SCALE_SMASK = 0x03;
+X86_SIB_SCALE_SHIFT = 6;
+## @}
+
+## @name Prefixes
+## @
+X86_OP_PRF_CS = 0x2e;
+X86_OP_PRF_SS = 0x36;
+X86_OP_PRF_DS = 0x3e;
+X86_OP_PRF_ES = 0x26;
+X86_OP_PRF_FS = 0x64;
+X86_OP_PRF_GS = 0x65;
+X86_OP_PRF_SIZE_OP = 0x66;
+X86_OP_PRF_SIZE_ADDR = 0x67;
+X86_OP_PRF_LOCK = 0xf0;
+X86_OP_PRF_REPNZ = 0xf2;
+X86_OP_PRF_REPZ = 0xf3;
+X86_OP_REX_B = 0x41;
+X86_OP_REX_X = 0x42;
+X86_OP_REX_R = 0x44;
+X86_OP_REX_W = 0x48;
+## @}
+
+
+## @name General registers
+## @
+X86_GREG_xAX = 0
+X86_GREG_xCX = 1
+X86_GREG_xDX = 2
+X86_GREG_xBX = 3
+X86_GREG_xSP = 4
+X86_GREG_xBP = 5
+X86_GREG_xSI = 6
+X86_GREG_xDI = 7
+X86_GREG_x8 = 8
+X86_GREG_x9 = 9
+X86_GREG_x10 = 10
+X86_GREG_x11 = 11
+X86_GREG_x12 = 12
+X86_GREG_x13 = 13
+X86_GREG_x14 = 14
+X86_GREG_x15 = 15
+## @}
+
+
+## @name Register names.
+## @{
+g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
+g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15');
+g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi',
+ 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
+g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi',
+ 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d');
+g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di',
+ 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
+g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di',
+ 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w');
+g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ch', 'dh', 'bh');
+g_asGRegs8Rex = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil',
+ 'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b',
+ 'ah', 'ch', 'dh', 'bh');
+## @}
+
+## @name EFLAGS/RFLAGS/EFLAGS
+## @{
+X86_EFL_CF = RT_BIT_32(0);
+X86_EFL_CF_BIT = 0;
+X86_EFL_1 = RT_BIT_32(1);
+X86_EFL_PF = RT_BIT_32(2);
+X86_EFL_AF = RT_BIT_32(4);
+X86_EFL_AF_BIT = 4;
+X86_EFL_ZF = RT_BIT_32(6);
+X86_EFL_ZF_BIT = 6;
+X86_EFL_SF = RT_BIT_32(7);
+X86_EFL_SF_BIT = 7;
+X86_EFL_TF = RT_BIT_32(8);
+X86_EFL_IF = RT_BIT_32(9);
+X86_EFL_DF = RT_BIT_32(10);
+X86_EFL_OF = RT_BIT_32(11);
+X86_EFL_OF_BIT = 11;
+X86_EFL_IOPL = (RT_BIT_32(12) | RT_BIT_32(13));
+X86_EFL_NT = RT_BIT_32(14);
+X86_EFL_RF = RT_BIT_32(16);
+X86_EFL_VM = RT_BIT_32(17);
+X86_EFL_AC = RT_BIT_32(18);
+X86_EFL_VIF = RT_BIT_32(19);
+X86_EFL_VIP = RT_BIT_32(20);
+X86_EFL_ID = RT_BIT_32(21);
+X86_EFL_LIVE_MASK = 0x003f7fd5;
+X86_EFL_RA1_MASK = RT_BIT_32(1);
+X86_EFL_IOPL_SHIFT = 12;
+X86_EFL_STATUS_BITS = ( X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF );
+## @}
+
+## @name Random
+## @{
+g_iMyRandSeed = int((os.urandom(4)).encode('hex'), 16);
+#g_iMyRandSeed = 286523426;
+#g_iMyRandSeed = 1994382324;
+g_oMyRand = random.Random(g_iMyRandSeed);
+#g_oMyRand = random.SystemRandom();
+
+def randU8():
+ """ Unsigned 8-bit random number. """
+ return g_oMyRand.getrandbits(8);
+
+def randU16():
+ """ Unsigned 16-bit random number. """
+ return g_oMyRand.getrandbits(16);
+
+def randU32():
+ """ Unsigned 32-bit random number. """
+ return g_oMyRand.getrandbits(32);
+
+def randU64():
+ """ Unsigned 64-bit random number. """
+ return g_oMyRand.getrandbits(64);
+
+def randUxx(cBits):
+ """ Unsigned 8-, 16-, 32-, or 64-bit random number. """
+ return g_oMyRand.getrandbits(cBits);
+
+def randSxx(cBits):
+ """ Signed 8-, 16-, 32-, or 64-bit random number. """
+ uVal = randUxx(cBits);
+ iRet = uVal & ((1 << (cBits - 1)) - 1);
+ if iRet != uVal:
+ iRet = -iRet;
+ return iRet;
+
+def randUxxList(cBits, cElements):
+ """ List of unsigned 8-, 16-, 32-, or 64-bit random numbers. """
+ return [randUxx(cBits) for _ in range(cElements)];
+## @}
+
+
+
+
+## @name Instruction Emitter Helpers
+## @{
+
+def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0):
+ """
+ Calculates a rex prefix if neccessary given the two registers
+ and optional rex size prefixes.
+ Returns an empty array if not necessary.
+ """
+ bRex = bOtherRexPrefixes;
+ if iReg >= 8:
+ bRex |= X86_OP_REX_R;
+ if iRm >= 8:
+ bRex |= X86_OP_REX_B;
+ if bRex == 0:
+ return [];
+ return [bRex,];
+
+def calcModRmForTwoRegs(iReg, iRm):
+ """
+ Calculate the RM byte for two registers.
+ Returns an array with one byte in it.
+ """
+ bRm = (0x3 << X86_MODRM_MOD_SHIFT) \
+ | ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \
+ | (iRm & X86_MODRM_RM_MASK);
+ return [bRm,];
+
+## @}
+
+
+## @name Misc
+## @{
+
+def convU32ToSigned(u32):
+ """ Converts a 32-bit unsigned value to 32-bit signed. """
+ if u32 < 0x80000000:
+ return u32;
+ return u32 - UINT32_MAX - 1;
+
+def rotateLeftUxx(cBits, uVal, cShift):
+ """ Rotate a xx-bit wide unsigned number to the left. """
+ assert cShift < cBits;
+
+ if cBits == 16:
+ uMask = UINT16_MAX;
+ elif cBits == 32:
+ uMask = UINT32_MAX;
+ elif cBits == 64:
+ uMask = UINT64_MAX;
+ else:
+ assert cBits == 8;
+ uMask = UINT8_MAX;
+
+ uVal &= uMask;
+ uRet = (uVal << cShift) & uMask;
+ uRet |= (uVal >> (cBits - cShift));
+ return uRet;
+
+def rotateRightUxx(cBits, uVal, cShift):
+ """ Rotate a xx-bit wide unsigned number to the right. """
+ assert cShift < cBits;
+
+ if cBits == 16:
+ uMask = UINT16_MAX;
+ elif cBits == 32:
+ uMask = UINT32_MAX;
+ elif cBits == 64:
+ uMask = UINT64_MAX;
+ else:
+ assert cBits == 8;
+ uMask = UINT8_MAX;
+
+ uVal &= uMask;
+ uRet = (uVal >> cShift);
+ uRet |= (uVal << (cBits - cShift)) & uMask;
+ return uRet;
+
+def gregName(iReg, cBits, fRexByteRegs = True):
+ """ Gets the name of a general register by index and width. """
+ if cBits == 64:
+ return g_asGRegs64[iReg];
+ if cBits == 32:
+ return g_asGRegs32[iReg];
+ if cBits == 16:
+ return g_asGRegs16[iReg];
+ assert cBits == 8;
+ if fRexByteRegs:
+ return g_asGRegs8Rex[iReg];
+ return g_asGRegs8[iReg];
+
+## @}
+
+
+class TargetEnv(object):
+ """
+ Target Runtime Environment.
+ """
+
+ ## @name CPU Modes
+ ## @{
+ ksCpuMode_Real = 'real';
+ ksCpuMode_Protect = 'prot';
+ ksCpuMode_Paged = 'paged';
+ ksCpuMode_Long = 'long';
+ ksCpuMode_V86 = 'v86';
+ ## @}
+
+ ## @name Instruction set.
+ ## @{
+ ksInstrSet_16 = '16';
+ ksInstrSet_32 = '32';
+ ksInstrSet_64 = '64';
+ ## @}
+
+ def __init__(self, sName,
+ sInstrSet = ksInstrSet_32,
+ sCpuMode = ksCpuMode_Paged,
+ iRing = 3,
+ ):
+ self.sName = sName;
+ self.sInstrSet = sInstrSet;
+ self.sCpuMode = sCpuMode;
+ self.iRing = iRing;
+ self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32;
+ self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp;
+
+ def isUsingIprt(self):
+ """ Whether it's an IPRT environment or not. """
+ return self.sName.startswith('iprt');
+
+ def is64Bit(self):
+ """ Whether it's a 64-bit environment or not. """
+ return self.sInstrSet == self.ksInstrSet_64;
+
+ def getDefOpBits(self):
+ """ Get the default operand size as a bit count. """
+ if self.sInstrSet == self.ksInstrSet_16:
+ return 16;
+ return 32;
+
+ def getDefOpBytes(self):
+ """ Get the default operand size as a byte count. """
+ return self.getDefOpBits() / 8;
+
+ def getMaxOpBits(self):
+ """ Get the max operand size as a bit count. """
+ if self.sInstrSet == self.ksInstrSet_64:
+ return 64;
+ return 32;
+
+ def getMaxOpBytes(self):
+ """ Get the max operand size as a byte count. """
+ return self.getMaxOpBits() / 8;
+
+ def getDefAddrBits(self):
+ """ Get the default address size as a bit count. """
+ if self.sInstrSet == self.ksInstrSet_16:
+ return 16;
+ if self.sInstrSet == self.ksInstrSet_32:
+ return 32;
+ return 64;
+
+ def getDefAddrBytes(self):
+ """ Get the default address size as a byte count. """
+ return self.getDefAddrBits() / 8;
+
+ def getGRegCount(self, cbEffBytes = 4):
+ """ Get the number of general registers. """
+ if self.sInstrSet == self.ksInstrSet_64:
+ if cbEffBytes == 1:
+ return 16 + 4;
+ return 16;
+ return 8;
+
+ def randGRegNoSp(self, cbEffBytes = 4):
+ """ Returns a random general register number, excluding the SP register. """
+ iReg = randU16() % self.getGRegCount(cbEffBytes);
+ while iReg == X86_GREG_xSP:
+ iReg = randU16() % self.getGRegCount(cbEffBytes);
+ return iReg;
+
+ def randGRegNoSpList(self, cItems, cbEffBytes = 4):
+ """ List of randGRegNoSp values. """
+ aiRegs = [];
+ for _ in range(cItems):
+ aiRegs.append(self.randGRegNoSp(cbEffBytes));
+ return aiRegs;
+
+ def getAddrModes(self):
+ """ Gets a list of addressing mode (16, 32, or/and 64). """
+ if self.sInstrSet == self.ksInstrSet_16:
+ return [16, 32];
+ if self.sInstrSet == self.ksInstrSet_32:
+ return [32, 16];
+ return [64, 32];
+
+ def is8BitHighGReg(self, cbEffOp, iGReg):
+ """ Checks if the given register is a high 8-bit general register (AH, CH, DH or BH). """
+ assert cbEffOp in [1, 2, 4, 8];
+ if cbEffOp == 1:
+ if iGReg >= 16:
+ return True;
+ if iGReg >= 4 and not self.is64Bit():
+ return True;
+ return False;
+
+ def gregNameBits(self, iReg, cBits):
+ """ Gets the name of the given register for the specified width (bits). """
+ return gregName(iReg, cBits, self.is64Bit());
+
+ def gregNameBytes(self, iReg, cbWidth):
+ """ Gets the name of the given register for the specified with (in bytes). """
+ return gregName(iReg, cbWidth * 8, self.is64Bit());
+
+
+
+
+## Target environments.
+g_dTargetEnvs = {
+ 'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3),
+ 'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3),
+ 'bs2-r0-64': TargetEnv('bs2-r0-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0),
+ 'bs2-r0-64-big': TargetEnv('bs2-r0-64-big', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0),
+ 'bs2-r0-32-big': TargetEnv('bs2-r0-32-big', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 0),
+};
+
+
+class InstrTestBase(object):
+ """
+ Base class for testing one instruction.
+ """
+
+ def __init__(self, sName, sInstr = None):
+ self.sName = sName;
+ self.sInstr = sInstr if sInstr else sName.split()[0];
+
+ def isApplicable(self, oGen):
+ """
+ Tests if the instruction test is applicable to the selected environment.
+ """
+ _ = oGen;
+ return True;
+
+ def generateTest(self, oGen, sTestFnName):
+ """
+ Emits the test assembly code.
+ """
+ oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName));
+ return True;
+
+ def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False):
+ """ Generate a list of inputs. """
+ if fLong:
+ #
+ # Try do extremes as well as different ranges of random numbers.
+ #
+ auRet = [0, 1, ];
+ if cbMaxOp >= 1:
+ auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ];
+ if cbMaxOp >= 2:
+ auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ];
+ if cbMaxOp >= 4:
+ auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ];
+ if cbMaxOp >= 8:
+ auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ];
+
+ if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
+ for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ):
+ if cBits < cbMaxOp * 8:
+ auRet += randUxxList(cBits, cValues);
+ cWanted = 16;
+ elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
+ for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ):
+ if cBits < cbMaxOp * 8:
+ auRet += randUxxList(cBits, cValues);
+ cWanted = 64;
+ else:
+ for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ):
+ if cBits < cbMaxOp * 8:
+ auRet += randUxxList(cBits, cValues);
+ cWanted = 168;
+ if len(auRet) < cWanted:
+ auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet));
+ else:
+ #
+ # Short list, just do some random numbers.
+ #
+ auRet = [];
+ if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
+ auRet += randUxxList(cbMaxOp, 1);
+ elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
+ auRet += randUxxList(cbMaxOp, 2);
+ else:
+ auRet = [];
+ for cBits in (8, 16, 32, 64):
+ if cBits < cbMaxOp * 8:
+ auRet += randUxxList(cBits, 1);
+ return auRet;
+
+
+class InstrTest_MemOrGreg_2_Greg(InstrTestBase):
+ """
+ Instruction reading memory or general register and writing the result to a
+ general register.
+ """
+
+ def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None):
+ InstrTestBase.__init__(self, sName, sInstr);
+ self.fnCalcResult = fnCalcResult;
+ self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars);
+ self.fTestRegForm = True;
+ self.fTestMemForm = True;
+
+ ## @name Test Instruction Writers
+ ## @{
+
+ def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
+ """ Writes the instruction with two general registers as operands. """
+ oGen.write(' %s %s, %s\n'
+ % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),));
+ return True;
+
+ def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen):
+ """ Writes the instruction with two general registers as operands. """
+ oGen.write(' ');
+ if iOp2 == 13 and iMod == 0 and cAddrBits == 64:
+ oGen.write('altrexb '); # Alternative encoding for rip relative addressing.
+ oGen.write('%s %s, [' % (self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),));
+ if (iOp2 == 5 or iOp2 == 13) and iMod == 0:
+ oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,))
+ if oGen.oTarget.is64Bit():
+ oGen.write(' wrt rip');
+ else:
+ if iMod == 1:
+ oGen.write('byte %d + ' % (offDisp,));
+ elif iMod == 2:
+ oGen.write('dword %d + ' % (offDisp,));
+ else:
+ assert iMod == 0;
+
+ if cAddrBits == 64:
+ oGen.write(g_asGRegs64[iOp2]);
+ elif cAddrBits == 32:
+ oGen.write(g_asGRegs32[iOp2]);
+ elif cAddrBits == 16:
+ assert False; ## @todo implement 16-bit addressing.
+ else:
+ assert False, str(cAddrBits);
+
+ oGen.write(']\n');
+ return True;
+
+ def writeInstrGregSibLabel(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
+ """ Writes the instruction taking a register and a label (base only w/o reg), SIB form. """
+ assert offDisp is None; assert iBaseReg in [5, 13]; assert iIndexReg == 4; assert cAddrBits != 16;
+ if cAddrBits == 64:
+ # Note! Cannot test this in 64-bit mode in any sensible way because the disp is 32-bit
+ # and we cannot (yet) make assumtions about where we're loaded.
+ ## @todo Enable testing this in environments where we can make assumptions (boot sector).
+ oGen.write(' %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP]\n'
+ % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8,));
+ else:
+ oGen.write(' altsibx%u %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP] ; iOp1=%s cbEffOp=%s\n'
+ % ( iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8, iOp1, cbEffOp));
+ return True;
+
+ def writeInstrGregSibScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
+ """ Writes the instruction taking a register and disp+scaled register (no base reg), SIB form. """
+ assert iBaseReg in [5, 13]; assert iIndexReg != 4; assert cAddrBits != 16;
+ # Note! Using altsibxN to force scaled encoding. This is only really a
+ # necessity for iScale=1, but doesn't hurt for the rest.
+ oGen.write(' altsibx%u %s %s, [%s * %#x'
+ % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,));
+ if offDisp is not None:
+ oGen.write(' + %#x' % (offDisp,));
+ oGen.write(']\n');
+ _ = iBaseReg;
+ return True;
+
+ def writeInstrGregSibBase(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
+ """ Writes the instruction taking a register and base only (with reg), SIB form. """
+ oGen.write(' altsibx%u %s %s, [%s'
+ % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits),));
+ if offDisp is not None:
+ oGen.write(' + %#x' % (offDisp,));
+ oGen.write(']\n');
+ _ = iIndexReg;
+ return True;
+
+ def writeInstrGregSibBaseAndScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen):
+ """ Writes tinstruction taking a register and full featured SIB form address. """
+ # Note! From the looks of things, yasm will encode the following instructions the same way:
+ # mov eax, [rsi*1 + rbx]
+ # mov eax, [rbx + rsi*1]
+ # So, when there are two registers involved, the '*1' selects
+ # which is index and which is base.
+ oGen.write(' %s %s, [%s + %s * %u'
+ % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),
+ oGen.gregNameBits(iBaseReg, cAddrBits), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,));
+ if offDisp is not None:
+ oGen.write(' + %#x' % (offDisp,));
+ oGen.write(']\n');
+ return True;
+
+ ## @}
+
+
+ ## @name Memory setups
+ ## @{
+
+ def generateMemSetupReadByLabel(self, oGen, cbEffOp, uInput):
+ """ Sets up memory for a memory read. """
+ oGen.pushConst(uInput);
+ oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,));
+ return True;
+
+ def generateMemSetupReadByReg(self, oGen, cAddrBits, cbEffOp, iReg1, uInput, offDisp = None):
+ """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """
+ oGen.pushConst(uInput);
+ oGen.write(' call VBINSTST_NAME(%s)\n'
+ % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iReg1, offDisp = offDisp),));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iReg1],));
+ return True;
+
+ def generateMemSetupReadByScaledReg(self, oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp = None):
+ """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """
+ oGen.pushConst(uInput);
+ oGen.write(' call VBINSTST_NAME(%s)\n'
+ % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],));
+ return True;
+
+ def generateMemSetupReadByBaseAndScaledReg(self, oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp):
+ """ Sets up memory for a memory read indirectly addressed thru two registers with optional displacement. """
+ oGen.pushConst(uInput);
+ oGen.write(' call VBINSTST_NAME(%s)\n'
+ % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iBaseReg, offDisp = offDisp,
+ iIndexReg = iIndexReg, iScale = iScale),));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iBaseReg],));
+ return True;
+
+ def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None):
+ """ Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """
+ oGen.pushConst(uInput);
+ assert offDisp is None or iMod != 0;
+ if (iOp2 != 5 and iOp2 != 13) or iMod != 0:
+ oGen.write(' call VBINSTST_NAME(%s)\n'
+ % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),));
+ else:
+ oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
+ return True;
+
+ ## @}
+
+ def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult):
+ """ Generate one standard instr greg,greg test. """
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uInput,));
+ if iOp1X != iOp2X:
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
+ self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen);
+ oGen.pushConst(uResult);
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1X, iOp2X if iOp1X != iOp2X else None),));
+ _ = cbMaxOp;
+ return True;
+
+ def generateOneStdTestGregGreg8BitHighPain(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput):
+ """ High 8-bit registers are a real pain! """
+ assert oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) or oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2);
+ # Figure out the register indexes of the max op sized regs involved.
+ iOp1X = iOp1 & 3;
+ iOp2X = iOp2 & 3;
+ oGen.write(' ; iOp1=%u iOp1X=%u iOp2=%u iOp2X=%u\n' % (iOp1, iOp1X, iOp2, iOp2X,));
+
+ # Calculate unshifted result.
+ if iOp1X != iOp2X:
+ uCur = oGen.auRegValues[iOp1X];
+ if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
+ uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8);
+ else:
+ uCur = uInput;
+ if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) != oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
+ if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
+ uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8);
+ else:
+ uCur = rotateLeftUxx(cbMaxOp * 8, uCur, 8);
+ uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen);
+
+
+ # Rotate the input and/or result to match their max-op-sized registers.
+ if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
+ uInput = rotateLeftUxx(cbMaxOp * 8, uInput, 8);
+ if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1):
+ uResult = rotateLeftUxx(cbMaxOp * 8, uResult, 8);
+
+ # Hand it over to an overridable worker method.
+ return self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult);
+
+
+ def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult):
+ """ Generate mode 0, 1 and 2 test for the R/M=iOp2. """
+ if cAddrBits == 16:
+ _ = cbMaxOp;
+ else:
+ iMod = 0; # No disp, except for i=5.
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput);
+ self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen);
+ oGen.pushConst(uResult);
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
+
+ if iOp2 != 5 and iOp2 != 13:
+ iMod = 1;
+ for offDisp in oGen.getDispForMod(iMod):
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
+ self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
+ oGen.pushConst(uResult);
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
+
+ iMod = 2;
+ for offDisp in oGen.getDispForMod(iMod):
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp);
+ self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen);
+ oGen.pushConst(uResult);
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),));
+
+ return True;
+
+ def generateOneStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, # pylint: disable=R0913
+ iBaseReg, iIndexReg, iScale, uInput, uResult):
+ """ Generate one SIB variations. """
+ for offDisp in oGen.getDispForMod(iMod, cbEffOp):
+ if ((iBaseReg == 5 or iBaseReg == 13) and iMod == 0):
+ if iIndexReg == 4:
+ if cAddrBits == 64:
+ continue; # skipping.
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ self.generateMemSetupReadByLabel(oGen, cbEffOp, uInput);
+ self.writeInstrGregSibLabel(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
+ sChecker = oGen.needGRegChecker(iOp1);
+ else:
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ self.generateMemSetupReadByScaledReg(oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp);
+ self.writeInstrGregSibScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
+ sChecker = oGen.needGRegChecker(iOp1, iIndexReg);
+ else:
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ if iIndexReg == 4:
+ self.generateMemSetupReadByReg(oGen, cAddrBits, cbEffOp, iBaseReg, uInput, offDisp);
+ self.writeInstrGregSibBase(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
+ sChecker = oGen.needGRegChecker(iOp1, iBaseReg);
+ else:
+ if iIndexReg == iBaseReg and iScale == 1 and offDisp is not None and (offDisp & 1):
+ if offDisp < 0: offDisp += 1;
+ else: offDisp -= 1;
+ self.generateMemSetupReadByBaseAndScaledReg(oGen, cAddrBits, cbEffOp, iBaseReg,
+ iIndexReg, iScale, uInput, offDisp);
+ self.writeInstrGregSibBaseAndScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen);
+ sChecker = oGen.needGRegChecker(iOp1, iBaseReg, iIndexReg);
+ oGen.pushConst(uResult);
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (sChecker,));
+ _ = cbMaxOp;
+ return True;
+
+ def generateStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, auInputs):
+ """ Generate all SIB variations for the given iOp1 (reg) value. """
+ assert cAddrBits in [32, 64];
+ i = oGen.cSibBasePerRun;
+ while i > 0:
+ oGen.iSibBaseReg = (oGen.iSibBaseReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8);
+ if oGen.iSibBaseReg == X86_GREG_xSP: # no RSP testing atm.
+ continue;
+
+ j = oGen.getSibIndexPerRun();
+ while j > 0:
+ oGen.iSibIndexReg = (oGen.iSibIndexReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8);
+ if oGen.iSibIndexReg == iOp1 and oGen.iSibIndexReg != 4 and cAddrBits != cbMaxOp:
+ continue; # Don't know the high bit of the address ending up the result - skip it for now.
+
+ for iMod in [0, 1, 2]:
+ if oGen.iSibBaseReg == iOp1 \
+ and ((oGen.iSibBaseReg != 5 and oGen.iSibBaseReg != 13) or iMod != 0) \
+ and cAddrBits != cbMaxOp:
+ continue; # Don't know the high bit of the address ending up the result - skip it for now.
+
+ for _ in oGen.oSibScaleRange:
+ oGen.iSibScale *= 2;
+ if oGen.iSibScale > 8:
+ oGen.iSibScale = 1;
+
+ for uInput in auInputs:
+ oGen.newSubTest();
+ uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen);
+ self.generateOneStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod,
+ oGen.iSibBaseReg, oGen.iSibIndexReg, oGen.iSibScale,
+ uInput, uResult);
+ j -= 1;
+ i -= 1;
+
+ return True;
+
+
+ def generateStandardTests(self, oGen):
+ """ Generate standard tests. """
+
+ # Parameters.
+ cbDefOp = oGen.oTarget.getDefOpBytes();
+ cbMaxOp = oGen.oTarget.getMaxOpBytes();
+ auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen);
+ auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True);
+ iLongOp1 = oGen.oTarget.randGRegNoSp();
+ iLongOp2 = oGen.oTarget.randGRegNoSp();
+
+ # Register tests
+ if self.fTestRegForm:
+ for cbEffOp in self.acbOpVars:
+ if cbEffOp > cbMaxOp:
+ continue;
+ oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp));
+ if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
+ oOp2Range = [iLongOp2,];
+ oGen.write('; cbEffOp=%u\n' % (cbEffOp,));
+
+ for iOp1 in range(oGen.oTarget.getGRegCount(cbEffOp)):
+ if iOp1 == X86_GREG_xSP:
+ continue; # Cannot test xSP atm.
+ for iOp2 in oOp2Range:
+ if (iOp2 >= 16 and iOp1 in range(4, 16)) \
+ or (iOp1 >= 16 and iOp2 in range(4, 16)):
+ continue; # Any REX encoding turns AH,CH,DH,BH regs into SPL,BPL,SIL,DIL.
+ if iOp2 == X86_GREG_xSP:
+ continue; # Cannot test xSP atm.
+
+ oGen.write('; iOp2=%u cbEffOp=%u\n' % (iOp2, cbEffOp));
+ for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs):
+ oGen.newSubTest();
+ if not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) and not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2):
+ uCur = oGen.auRegValues[iOp1 & 15] if iOp1 != iOp2 else uInput;
+ uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen);
+ self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1 & 15, iOp2, iOp2 & 15,
+ uInput, uResult);
+ else:
+ self.generateOneStdTestGregGreg8BitHighPain(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput);
+
+ # Memory test.
+ if self.fTestMemForm:
+ for cAddrBits in oGen.oTarget.getAddrModes():
+ for cbEffOp in self.acbOpVars:
+ if cbEffOp > cbMaxOp:
+ continue;
+
+ for _ in oGen.getModRegRange(cbEffOp):
+ oGen.iModReg = (oGen.iModReg + 1) % oGen.oTarget.getGRegCount(cbEffOp);
+ if oGen.iModReg == X86_GREG_xSP:
+ continue; # Cannot test xSP atm.
+ if oGen.iModReg > 15:
+ continue; ## TODO AH,CH,DH,BH
+
+ auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs;
+ for _ in oGen.oModRmRange:
+ oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8);
+ if oGen.iModRm != 4 or cAddrBits == 16:
+ for uInput in auInputs:
+ oGen.newSubTest();
+ if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 \
+ and oGen.iModRm != 13 and cbEffOp != cbMaxOp:
+ continue; # Don't know the high bit of the address ending up the result - skip it for now.
+ uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen);
+ self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp,
+ oGen.iModReg, oGen.iModRm, uInput, uResult);
+ else:
+ # SIB - currently only short list of inputs or things may get seriously out of hand.
+ self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs);
+ return True;
+
+ def generateTest(self, oGen, sTestFnName):
+ oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
+
+ self.generateStandardTests(oGen);
+
+ oGen.write(' ret\n');
+ oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
+ return True;
+
+
+
+class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
+ """
+ Tests MOV Gv,Ev.
+ """
+ def __init__(self):
+ InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov);
+
+ @staticmethod
+ def calc_mov(cbEffOp, uInput, uCur, oGen):
+ """ Calculates the result of a mov instruction."""
+ if cbEffOp == 8:
+ return uInput & UINT64_MAX;
+ if cbEffOp == 4:
+ return uInput & UINT32_MAX;
+ if cbEffOp == 2:
+ return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX);
+ assert cbEffOp == 1; _ = oGen;
+ return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX);
+
+
+class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg):
+ """
+ Tests MOVSXD Gv,Ev.
+ """
+ def __init__(self):
+ InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]);
+ self.fTestMemForm = False; # drop this...
+
+ def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen):
+ """ Writes the instruction with two general registers as operands. """
+ if cbEffOp == 8:
+ oGen.write(' movsxd %s, %s\n'
+ % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp / 2),));
+ else:
+ oGen.write(' oddmovsxd %s, %s\n'
+ % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),));
+ return True;
+
+ def isApplicable(self, oGen):
+ return oGen.oTarget.is64Bit();
+
+ @staticmethod
+ def calc_movsxd(cbEffOp, uInput, uCur, oGen):
+ """
+ Calculates the result of a movxsd instruction.
+ Returns the result value (cbMaxOp sized).
+ """
+ _ = oGen;
+ if cbEffOp == 8 and (uInput & RT_BIT_32(31)):
+ return (UINT32_MAX << 32) | (uInput & UINT32_MAX);
+ if cbEffOp == 2:
+ return (uCur & 0xffffffffffff0000) | (uInput & 0xffff);
+ return uInput & UINT32_MAX;
+
+
+class InstrTest_DivIDiv(InstrTestBase):
+ """
+ Tests IDIV and DIV instructions.
+ """
+
+ def __init__(self, fIsIDiv):
+ if not fIsIDiv:
+ InstrTestBase.__init__(self, 'div Gv,Ev', 'div');
+ else:
+ InstrTestBase.__init__(self, 'idiv Gv,Ev', 'idiv');
+ self.fIsIDiv = fIsIDiv;
+
+ def generateInputEdgeCases(self, cbEffOp, fLong, fXcpt):
+ """ Generate edge case inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """
+ # Test params.
+ uStep = 1 << (cbEffOp * 8);
+ if self.fIsIDiv:
+ uStep /= 2;
+
+ # edge tests
+ auRet = [];
+
+ uDivisor = 1 if fLong else 3;
+ uDividend = uStep * uDivisor - 1;
+ for i in range(5 if fLong else 3):
+ auRet.append([uDividend + fXcpt, uDivisor]);
+ if self.fIsIDiv:
+ auRet.append([-uDividend - fXcpt, -uDivisor]);
+ auRet.append([-(uDividend + uDivisor + fXcpt), uDivisor]);
+ auRet.append([ (uDividend + uDivisor + fXcpt), -uDivisor]);
+ if i <= 3 and fLong:
+ auRet.append([uDividend - 1 + fXcpt*3, uDivisor]);
+ if self.fIsIDiv:
+ auRet.append([-(uDividend - 1 + fXcpt*3), -uDivisor]);
+ uDivisor += 1;
+ uDividend += uStep;
+
+ uDivisor = uStep - 1;
+ uDividend = uStep * uDivisor - 1;
+ for _ in range(3 if fLong else 1):
+ auRet.append([uDividend + fXcpt, uDivisor]);
+ if self.fIsIDiv:
+ auRet.append([-uDividend - fXcpt, -uDivisor]);
+ uDivisor -= 1;
+ uDividend -= uStep;
+
+ if self.fIsIDiv:
+ uDivisor = -uStep;
+ for _ in range(3 if fLong else 1):
+ auRet.append([uDivisor * (-uStep - 1) - (not fXcpt), uDivisor]);
+ uDivisor += 1
+ uDivisor = uStep - 1;
+ for _ in range(3 if fLong else 1):
+ auRet.append([-(uDivisor * (uStep + 1) - (not fXcpt)), uDivisor]);
+ uDivisor -= 1
+
+ return auRet;
+
+ def generateInputsNoXcpt(self, cbEffOp, fLong = False):
+ """ Generate inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """
+ # Test params.
+ uStep = 1 << (cbEffOp * 8);
+ if self.fIsIDiv:
+ uStep /= 2;
+
+ # edge tests
+ auRet = self.generateInputEdgeCases(cbEffOp, fLong, False)
+
+ # random tests.
+ if self.fIsIDiv:
+ for _ in range(6 if fLong else 2):
+ while True:
+ uDivisor = randSxx(cbEffOp * 8);
+ if uDivisor == 0 or uDivisor >= uStep or uDivisor < -uStep:
+ continue;
+ uDividend = randSxx(cbEffOp * 16);
+ uResult = uDividend / uDivisor;
+ if uResult >= uStep or uResult <= -uStep: # exclude difficulties
+ continue;
+ break;
+ auRet.append([uDividend, uDivisor]);
+ else:
+ for _ in range(6 if fLong else 2):
+ while True:
+ uDivisor = randUxx(cbEffOp * 8);
+ if uDivisor == 0 or uDivisor >= uStep:
+ continue;
+ uDividend = randUxx(cbEffOp * 16);
+ uResult = uDividend / uDivisor;
+ if uResult >= uStep:
+ continue;
+ break;
+ auRet.append([uDividend, uDivisor]);
+
+ return auRet;
+
+ def generateOneStdTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
+ """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test. """
+ cbMaxOp = oGen.oTarget.getMaxOpBytes();
+ fEffOp = ((1 << (cbEffOp *8) ) - 1);
+ fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
+ fTopOp = fMaxOp - fEffOp;
+ fFullOp1 = ((1 << (cbEffOp*16)) - 1);
+
+ uAX = iDividend & fFullOp1; # full with unsigned
+ uDX = uAX >> (cbEffOp*8);
+ uAX &= fEffOp;
+ uOp2Val = iDivisor & fEffOp;
+
+ iQuotient = iDividend / iDivisor;
+ iReminder = iDividend % iDivisor;
+ if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division.
+ iQuotient += 1;
+ iReminder -= iDivisor;
+ uAXResult = iQuotient & fEffOp;
+ uDXResult = iReminder & fEffOp;
+
+ if cbEffOp < cbMaxOp:
+ uAX |= randUxx(cbMaxOp * 8) & fTopOp;
+ uDX |= randUxx(cbMaxOp * 8) & fTopOp;
+ uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp;
+ if cbEffOp < 4:
+ uAXResult |= uAX & fTopOp;
+ uDXResult |= uDX & fTopOp;
+ oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
+ ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n'
+ % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,
+ iQuotient & fEffOp, iQuotient, iReminder & fEffOp, iReminder, ));
+
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,));
+
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
+ oGen.pushConst(uDXResult);
+ oGen.pushConst(uAXResult);
+
+ oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),));
+ return True;
+
+ def generateOneStdTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
+ """ Generate code of one '[I]DIV AX,<GREG>' test (8-bit). """
+ cbMaxOp = oGen.oTarget.getMaxOpBytes();
+ fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
+ iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2;
+ assert iOp2X != X86_GREG_xAX;
+
+ uAX = iDividend & UINT16_MAX; # full with unsigned
+ uOp2Val = iDivisor & UINT8_MAX;
+
+ iQuotient = iDividend / iDivisor;
+ iReminder = iDividend % iDivisor;
+ if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division.
+ iQuotient += 1;
+ iReminder -= iDivisor;
+ uAXResult = (iQuotient & UINT8_MAX) | ((iReminder & UINT8_MAX) << 8);
+
+ uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX);
+ uAXResult |= uAX & (fMaxOp - UINT16_MAX);
+ uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX);
+ if iOp2X != iOp2:
+ uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8);
+ oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
+ ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n'
+ % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,
+ iQuotient & UINT8_MAX, iQuotient, iReminder & UINT8_MAX, iReminder, ));
+
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
+ oGen.pushConst(uAXResult);
+
+ oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),));
+ return;
+
+
+ def generateStandardTests(self, oGen):
+ """ Generates test that causes no exceptions. """
+
+ # Parameters.
+ iLongOp2 = oGen.oTarget.randGRegNoSp();
+
+ # Register tests
+ if True:
+ for cbEffOp in ( 8, 4, 2, 1 ):
+ if cbEffOp > oGen.oTarget.getMaxOpBytes():
+ continue;
+ oGen.write('; cbEffOp=%u\n' % (cbEffOp,));
+ oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp));
+ if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
+ oOp2Range = [iLongOp2,];
+ for iOp2 in oOp2Range:
+ if iOp2 == X86_GREG_xSP:
+ continue; # Cannot test xSP atm.
+ if iOp2 == X86_GREG_xAX or (cbEffOp > 1 and iOp2 == X86_GREG_xDX):
+ continue; # Will overflow or be too complicated to get right.
+ if cbEffOp == 1 and iOp2 == (16 if oGen.oTarget.is64Bit() else 4):
+ continue; # Avoid dividing by AH, same reasons as above.
+
+ for iDividend, iDivisor in self.generateInputsNoXcpt(cbEffOp, iOp2 == iLongOp2):
+ oGen.newSubTest();
+ if cbEffOp > 1:
+ self.generateOneStdTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor);
+ else:
+ self.generateOneStdTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor);
+
+ ## Memory test.
+ #if False:
+ # for cAddrBits in oGen.oTarget.getAddrModes():
+ # for cbEffOp in self.acbOpVars:
+ # if cbEffOp > cbMaxOp:
+ # continue;
+ #
+ # auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs;
+ # for _ in oGen.oModRmRange:
+ # oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8);
+ # if oGen.iModRm != 4 or cAddrBits == 16:
+ # for uInput in auInputs:
+ # oGen.newSubTest();
+ # if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 and oGen.iModRm != 13 and cbEffOp != cbMaxOp:
+ # continue; # Don't know the high bit of the address ending up the result - skip it for now.
+ # uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen);
+ # self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp,
+ # oGen.iModReg, oGen.iModRm, uInput, uResult);
+ # else:
+ # # SIB - currently only short list of inputs or things may get seriously out of hand.
+ # self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs);
+ #
+ return True;
+
+ def generateInputsXcpt(self, cbEffOp, fLong = False):
+ """
+ Generate inputs for cbEffOp that will overflow or underflow.
+ Returns a list of pairs, dividen + divisor.
+ """
+ # Test params.
+ uStep = 1 << (cbEffOp * 8);
+ if self.fIsIDiv:
+ uStep /= 2;
+
+ # edge tests
+ auRet = self.generateInputEdgeCases(cbEffOp, fLong, True);
+ auRet.extend([[0, 0], [1, 0], [ uStep * uStep / 2 - 1, 0]]);
+
+ # random tests.
+ if self.fIsIDiv:
+ for _ in range(6 if fLong else 2):
+ while True:
+ uDivisor = randSxx(cbEffOp * 8);
+ uDividend = randSxx(cbEffOp * 16);
+ if uDivisor >= uStep or uDivisor < -uStep:
+ continue;
+ if uDivisor != 0:
+ uResult = uDividend / uDivisor;
+ if (uResult <= uStep and uResult >= 0) or (uResult >= -uStep and uResult < 0):
+ continue; # exclude difficulties
+ break;
+ auRet.append([uDividend, uDivisor]);
+ else:
+ for _ in range(6 if fLong else 2):
+ while True:
+ uDivisor = randUxx(cbEffOp * 8);
+ uDividend = randUxx(cbEffOp * 16);
+ if uDivisor >= uStep:
+ continue;
+ if uDivisor != 0:
+ uResult = uDividend / uDivisor;
+ if uResult < uStep:
+ continue;
+ break;
+ auRet.append([uDividend, uDivisor]);
+
+ return auRet;
+
+ def generateOneDivideErrorTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
+ """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test that causes #DE. """
+ cbMaxOp = oGen.oTarget.getMaxOpBytes();
+ fEffOp = ((1 << (cbEffOp *8) ) - 1);
+ fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
+ fTopOp = fMaxOp - fEffOp;
+ fFullOp1 = ((1 << (cbEffOp*16)) - 1);
+
+ uAX = iDividend & fFullOp1; # full with unsigned
+ uDX = uAX >> (cbEffOp*8);
+ uAX &= fEffOp;
+ uOp2Val = iDivisor & fEffOp;
+
+ if cbEffOp < cbMaxOp:
+ uAX |= randUxx(cbMaxOp * 8) & fTopOp;
+ uDX |= randUxx(cbMaxOp * 8) & fTopOp;
+ uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp;
+ oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
+ % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,));
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX],));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX],));
+ oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n'
+ % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),));
+ return True;
+
+ def generateOneDivideErrorTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor):
+ """ Generate code of one '[I]DIV AX,<GREG>' test that causes #DE (8-bit). """
+ if not oGen.oTarget.is64Bit() and iOp2 == 4: # Avoid AH.
+ iOp2 = 5;
+
+ cbMaxOp = oGen.oTarget.getMaxOpBytes();
+ fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4];
+ iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2;
+ assert iOp2X != X86_GREG_xAX;
+
+ uAX = iDividend & UINT16_MAX; # full with unsigned
+ uOp2Val = iDivisor & UINT8_MAX;
+
+ uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX);
+ uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX);
+ if iOp2X != iOp2:
+ uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8);
+ oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n'
+ % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,));
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,));
+ oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,));
+ oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],));
+ oGen.write(' push sAX\n');
+ oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n'
+ % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),));
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),));
+ return;
+
+ def generateDivideErrorTests(self, oGen):
+ """ Generate divide error tests (raises X86_XCPT_DE). """
+ oGen.write('%ifdef VBINSTST_CAN_DO_TRAPS\n');
+
+ # We do one register variation here, assuming the standard test has got them covered.
+ # Register tests
+ if True:
+ iOp2 = oGen.oTarget.randGRegNoSp();
+ while iOp2 == X86_GREG_xAX or iOp2 == X86_GREG_xDX:
+ iOp2 = oGen.oTarget.randGRegNoSp();
+
+ for cbEffOp in ( 8, 4, 2, 1 ):
+ if cbEffOp > oGen.oTarget.getMaxOpBytes():
+ continue;
+ oGen.write('; cbEffOp=%u iOp2=%u\n' % (cbEffOp, iOp2,));
+
+ for iDividend, iDivisor in self.generateInputsXcpt(cbEffOp, fLong = not oGen.isTiny()):
+ oGen.newSubTest();
+ if cbEffOp > 1:
+ self.generateOneDivideErrorTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor);
+ else:
+ self.generateOneDivideErrorTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor);
+
+ oGen.write('%endif ; VBINSTST_CAN_DO_TRAPS\n');
+ return True;
+
+
+ def generateTest(self, oGen, sTestFnName):
+ oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
+ #oGen.write(' int3\n');
+
+ self.generateStandardTests(oGen);
+ self.generateDivideErrorTests(oGen);
+
+ #oGen.write(' int3\n');
+ oGen.write(' ret\n');
+ oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
+ return True;
+
+
+
+class InstrTest_DaaDas(InstrTestBase):
+ """ Tests the DAA and DAS instructions. """
+
+ def __init__(self, fIsDas):
+ InstrTestBase.__init__(self, 'das' if fIsDas else 'daa');
+ self.fIsDas = fIsDas;
+
+ def isApplicable(self, oGen):
+ return not oGen.oTarget.is64Bit();
+
+ def generateTest(self, oGen, sTestFnName):
+ if self.fIsDas: from itgTableDas import g_aItgDasResults as aItgResults;
+ else: from itgTableDaa import g_aItgDaaResults as aItgResults;
+ cMax = len(aItgResults);
+ if oGen.isTiny():
+ cMax = 64;
+
+ oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,));
+ oGen.write(' xor ebx, ebx\n');
+ oGen.write('.das_loop:\n');
+ # Save the loop variable so we can load known values.
+ oGen.write(' push ebx\n');
+ oGen.newSubTestEx('ebx');
+
+ # Push the results.
+ oGen.write(' movzx eax, byte [.abAlResults + ebx]\n');
+ oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,));
+ oGen.write(' push eax\n');
+ oGen.write(' movzx eax, byte [.aFlagsResults + ebx]\n');
+ oGen.write(' push eax\n');
+ # Calc and push the inputs.
+ oGen.write(' mov eax, ebx\n');
+ oGen.write(' shr eax, 2\n');
+ oGen.write(' and eax, 0ffh\n');
+ oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,));
+ oGen.write(' push eax\n');
+
+ oGen.write(' pushfd\n')
+ oGen.write(' and dword [xSP], ~(X86_EFL_CF | X86_EFL_AF)\n');
+ oGen.write(' mov al, bl\n');
+ oGen.write(' and al, 2\n');
+ oGen.write(' shl al, X86_EFL_AF_BIT - 1\n');
+ oGen.write(' or [xSP], al\n');
+ oGen.write(' mov al, bl\n');
+ oGen.write(' and al, X86_EFL_CF\n');
+ oGen.write(' or [xSP], al\n');
+
+ # Load register values and do the test.
+ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n');
+ oGen.write(' popfd\n');
+ oGen.write(' pop eax\n');
+ if self.fIsDas:
+ oGen.write(' das\n');
+ else:
+ oGen.write(' daa\n');
+
+ # Verify the results.
+ fFlagsToCheck = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_ZF;
+ oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needFlagsGRegChecker(fFlagsToCheck, X86_GREG_xAX),));
+
+ # Restore the loop variable and advance.
+ oGen.write(' pop ebx\n');
+ oGen.write(' inc ebx\n');
+ oGen.write(' cmp ebx, %#x\n' % (cMax,));
+ oGen.write(' jb .das_loop\n');
+
+ oGen.write(' ret\n');
+
+ oGen.write('.abAlResults:\n');
+ for i in range(cMax):
+ oGen.write(' db %#x\n' % (aItgResults[i][0],));
+
+ oGen.write('.aFlagsResults:\n');
+ for i in range(cMax):
+ oGen.write(' db %#x\n' % (aItgResults[i][1],));
+
+ oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,));
+ return True;
+
+
+##
+# Instruction Tests.
+#
+g_aoInstructionTests = [
+ InstrTest_Mov_Gv_Ev(),
+ InstrTest_MovSxD_Gv_Ev(),
+ InstrTest_DivIDiv(fIsIDiv = False),
+ InstrTest_DivIDiv(fIsIDiv = True),
+ InstrTest_DaaDas(fIsDas = False),
+ InstrTest_DaaDas(fIsDas = True),
+];
+
+
+
+
+
+class InstructionTestGen(object): # pylint: disable=R0902
+ """
+ Instruction Test Generator.
+ """
+
+ ## @name Test size
+ ## @{
+ ksTestSize_Large = 'large';
+ ksTestSize_Medium = 'medium';
+ ksTestSize_Tiny = 'tiny';
+ ## @}
+ kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny );
+
+ ## The prefix for the checker functions.
+ ksCheckerPrefix = 'Common_Check_'
+
+
+ def __init__(self, oOptions):
+ self.oOptions = oOptions;
+ self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv];
+
+ # Calculate the number of output files.
+ self.cFiles = 1;
+ if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile:
+ self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile;
+ if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests):
+ self.cFiles += 1;
+
+ # Fix the known register values.
+ self.au64Regs = randUxxList(64, 16);
+ self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)];
+ self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)];
+ self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs;
+
+ # Declare state variables used while generating.
+ self.oFile = sys.stderr;
+ self.iFile = -1;
+ self.sFile = '';
+ self._dCheckFns = dict();
+ self._dMemSetupFns = dict();
+ self._d64BitConsts = dict();
+
+ # State variables used while generating test convenientely placed here (lazy bird)...
+ self.iModReg = 0;
+ self.iModRm = 0;
+ self.iSibBaseReg = 0;
+ self.iSibIndexReg = 0;
+ self.iSibScale = 1;
+ if self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny:
+ self._oModRegRange = range(2);
+ self._oModRegRange8 = range(2);
+ self.oModRmRange = range(2);
+ self.cSibBasePerRun = 1;
+ self._cSibIndexPerRun = 2;
+ self.oSibScaleRange = range(1);
+ elif self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium:
+ self._oModRegRange = range( 5 if self.oTarget.is64Bit() else 4);
+ self._oModRegRange8 = range( 6 if self.oTarget.is64Bit() else 4);
+ self.oModRmRange = range(5);
+ self.cSibBasePerRun = 5;
+ self._cSibIndexPerRun = 4
+ self.oSibScaleRange = range(2);
+ else:
+ self._oModRegRange = range(16 if self.oTarget.is64Bit() else 8);
+ self._oModRegRange8 = range(20 if self.oTarget.is64Bit() else 8);
+ self.oModRmRange = range(16 if self.oTarget.is64Bit() else 8);
+ self.cSibBasePerRun = 8;
+ self._cSibIndexPerRun = 9;
+ self.oSibScaleRange = range(4);
+ self.iSibIndexRange = 0;
+
+
+ #
+ # Methods used by instruction tests.
+ #
+
+ def write(self, sText):
+ """ Writes to the current output file. """
+ return self.oFile.write(unicode(sText));
+
+ def writeln(self, sText):
+ """ Writes a line to the current output file. """
+ self.write(sText);
+ return self.write('\n');
+
+ def writeInstrBytes(self, abInstr):
+ """
+ Emits an instruction given as a sequence of bytes values.
+ """
+ self.write(' db %#04x' % (abInstr[0],));
+ for i in range(1, len(abInstr)):
+ self.write(', %#04x' % (abInstr[i],));
+ return self.write('\n');
+
+ def newSubTest(self):
+ """
+ Indicates that a new subtest has started.
+ """
+ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n');
+ return True;
+
+ def newSubTestEx(self, sIndicator):
+ """
+ Indicates that a new subtest has started.
+ """
+ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], %s\n' % (sIndicator, ));
+ return True;
+
+ def needGRegChecker(self, iReg1, iReg2 = None, iReg3 = None):
+ """
+ Records the need for a given register checker function, returning its label.
+ """
+ if iReg2 is not None:
+ if iReg3 is not None:
+ sName = '%s_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2], self.oTarget.asGRegs[iReg3],);
+ else:
+ sName = '%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2],);
+ else:
+ sName = '%s' % (self.oTarget.asGRegs[iReg1],);
+ assert iReg3 is None;
+
+ if sName in self._dCheckFns:
+ self._dCheckFns[sName] += 1;
+ else:
+ self._dCheckFns[sName] = 1;
+
+ return self.ksCheckerPrefix + sName;
+
+ def needFlagsGRegChecker(self, fFlagsToCheck, iReg1, iReg2 = None, iReg3 = None):
+ """
+ Records the need for a given rFLAGS + register checker function, returning its label.
+ """
+ sWorkerName = self.needGRegChecker(iReg1, iReg2, iReg3);
+
+ sName = 'eflags_%#x_%s' % (fFlagsToCheck, sWorkerName[len(self.ksCheckerPrefix):]);
+ if sName in self._dCheckFns:
+ self._dCheckFns[sName] += 1;
+ else:
+ self._dCheckFns[sName] = 1;
+
+ return self.ksCheckerPrefix + sName;
+
+ def needGRegMemSetup(self, cAddrBits, cbEffOp, iBaseReg = None, offDisp = None, iIndexReg = None, iScale = 1):
+ """
+ Records the need for a given register checker function, returning its label.
+ """
+ assert cAddrBits in [64, 32, 16];
+ assert cbEffOp in [8, 4, 2, 1];
+ assert iScale in [1, 2, 4, 8];
+
+ sName = '%ubit_U%u' % (cAddrBits, cbEffOp * 8,);
+ if iBaseReg is not None:
+ sName += '_%s' % (gregName(iBaseReg, cAddrBits),);
+ sName += '_x%u' % (iScale,);
+ if iIndexReg is not None:
+ sName += '_%s' % (gregName(iIndexReg, cAddrBits),);
+ if offDisp is not None:
+ sName += '_%#010x' % (offDisp & UINT32_MAX, );
+ if sName in self._dMemSetupFns:
+ self._dMemSetupFns[sName] += 1;
+ else:
+ self._dMemSetupFns[sName] = 1;
+ return 'Common_MemSetup_' + sName;
+
+ def need64BitConstant(self, uVal):
+ """
+ Records the need for a 64-bit constant, returning its label.
+ These constants are pooled to attempt reduce the size of the whole thing.
+ """
+ assert uVal >= 0 and uVal <= UINT64_MAX;
+ if uVal in self._d64BitConsts:
+ self._d64BitConsts[uVal] += 1;
+ else:
+ self._d64BitConsts[uVal] = 1;
+ return 'g_u64Const_0x%016x' % (uVal, );
+
+ def pushConst(self, uResult):
+ """
+ Emits a push constant value, taking care of high values on 64-bit hosts.
+ """
+ if self.oTarget.is64Bit() and uResult >= 0x80000000:
+ self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),));
+ else:
+ self.write(' push dword 0x%x\n' % (uResult,));
+ return True;
+
+ def getDispForMod(self, iMod, cbAlignment = 1):
+ """
+ Get a set of address dispositions for a given addressing mode.
+ The alignment restriction is for SIB scaling.
+ """
+ assert cbAlignment in [1, 2, 4, 8];
+ if iMod == 0:
+ aoffDisp = [ None, ];
+ elif iMod == 1:
+ aoffDisp = [ 127 & ~(cbAlignment - 1), -128 ];
+ elif iMod == 2:
+ aoffDisp = [ 2147483647 & ~(cbAlignment - 1), -2147483648 ];
+ else: assert False;
+ return aoffDisp;
+
+ def getModRegRange(self, cbEffOp):
+ """
+ The Mod R/M register range varies with the effective operand size, for
+ 8-bit registers we have 4 more.
+ """
+ if cbEffOp == 1:
+ return self._oModRegRange8;
+ return self._oModRegRange;
+
+ def getSibIndexPerRun(self):
+ """
+ We vary the SIB index test range a little to try cover more operand
+ combinations and avoid repeating the same ones.
+ """
+ self.iSibIndexRange += 1;
+ self.iSibIndexRange %= 3;
+ if self.iSibIndexRange == 0:
+ return self._cSibIndexPerRun - 1;
+ return self._cSibIndexPerRun;
+
+ def isTiny(self):
+ """ Checks if we're in tiny mode."""
+ return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny;
+
+ def isMedium(self):
+ """ Checks if we're in medium mode."""
+ return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium;
+
+
+ #
+ # Forwarding calls for oTarget to shorted typing and lessen the attacks
+ # on the right margin.
+ #
+
+ def gregNameBits(self, iReg, cBitsWide):
+ """ Target: Get the name of a general register for the given size (in bits). """
+ return self.oTarget.gregNameBits(iReg, cBitsWide);
+
+ def gregNameBytes(self, iReg, cbWide):
+ """ Target: Get the name of a general register for the given size (in bytes). """
+ return self.oTarget.gregNameBytes(iReg, cbWide);
+
+ def is64Bit(self):
+ """ Target: Is the target 64-bit? """
+ return self.oTarget.is64Bit();
+
+
+ #
+ # Internal machinery.
+ #
+
+ def _randInitIndexes(self):
+ """
+ Initializes the Mod R/M and SIB state index with random numbers prior
+ to generating a test.
+
+ Note! As with all other randomness and variations we do, we cannot
+ test all combinations for each and every instruction so we try
+ get coverage over time.
+ """
+ self.iModReg = randU8();
+ self.iModRm = randU8();
+ self.iSibBaseReg = randU8();
+ self.iSibIndexReg = randU8();
+ self.iSibScale = 1 << (randU8() & 3);
+ self.iSibIndexRange = randU8();
+ return True;
+
+ def _calcTestFunctionName(self, oInstrTest, iInstrTest):
+ """
+ Calc a test function name for the given instruction test.
+ """
+ sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName);
+ return sName.replace(',', '_').replace(' ', '_').replace('%', '_');
+
+ def _generateFileHeader(self, ):
+ """
+ Writes the file header.
+ Raises exception on trouble.
+ """
+ self.write('; $Id: InstructionTestGen.py $\n'
+ ';; @file %s\n'
+ '; Autogenerate by %s %s. DO NOT EDIT\n'
+ ';\n'
+ '\n'
+ ';\n'
+ '; Headers\n'
+ ';\n'
+ '%%include "env-%s.mac"\n'
+ % ( os.path.basename(self.sFile),
+ os.path.basename(__file__), __version__[11:-1],
+ self.oTarget.sName,
+ ) );
+ # Target environment specific init stuff.
+
+ #
+ # Global variables.
+ #
+ self.write('\n\n'
+ ';\n'
+ '; Globals\n'
+ ';\n');
+ self.write('VBINSTST_BEGINDATA\n'
+ 'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n'
+ ' dq 0\n'
+ 'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n'
+ ' dq 0\n'
+ 'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n'
+ ' dq 0\n'
+ 'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n'
+ ' dd 0\n'
+ '%ifdef VBINSTST_CAN_DO_TRAPS\n'
+ 'VBINSTST_TRAP_RECS_BEGIN\n'
+ '%endif\n'
+ 'VBINSTST_BEGINCODE\n'
+ );
+ self.write('%ifdef RT_ARCH_AMD64\n');
+ for i in range(len(g_asGRegs64)):
+ self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i]));
+ self.write('%endif\n\n')
+
+ #
+ # Common functions.
+ #
+
+ # Loading common values.
+ self.write('\n\n'
+ 'VBINSTST_BEGINPROC Common_LoadKnownValues\n'
+ '%ifdef RT_ARCH_AMD64\n');
+ for i in range(len(g_asGRegs64NoSp)):
+ if g_asGRegs64NoSp[i]:
+ self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],));
+ self.write('%else\n');
+ for i in range(8):
+ if g_asGRegs32NoSp[i]:
+ self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],));
+ self.write('%endif\n'
+ ' ret\n'
+ 'VBINSTST_ENDPROC Common_LoadKnownValues\n'
+ '\n');
+
+ self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n'
+ '%ifdef RT_ARCH_AMD64\n');
+ for i in range(len(g_asGRegs64NoSp)):
+ if g_asGRegs64NoSp[i]:
+ self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n'
+ ' je .ok_%u\n'
+ ' push %u ; register number\n'
+ ' push %s ; actual\n'
+ ' push qword [g_u64KnownValue_%s wrt rip] ; expected\n'
+ ' call VBINSTST_NAME(Common_BadValue)\n'
+ '.ok_%u:\n'
+ % ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,));
+ self.write('%else\n');
+ for i in range(8):
+ if g_asGRegs32NoSp[i]:
+ self.write(' cmp %s, 0x%x\n'
+ ' je .ok_%u\n'
+ ' push %u ; register number\n'
+ ' push %s ; actual\n'
+ ' push dword 0x%x ; expected\n'
+ ' call VBINSTST_NAME(Common_BadValue)\n'
+ '.ok_%u:\n'
+ % ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,));
+ self.write('%endif\n'
+ ' ret\n'
+ 'VBINSTST_ENDPROC Common_CheckKnownValues\n'
+ '\n');
+
+ return True;
+
+ def _generateMemSetupFunctions(self): # pylint: disable=R0915
+ """
+ Generates the memory setup functions.
+ """
+ cDefAddrBits = self.oTarget.getDefAddrBits();
+ for sName in self._dMemSetupFns:
+ # Unpack it.
+ asParams = sName.split('_');
+ cAddrBits = int(asParams[0][:-3]); assert asParams[0][-3:] == 'bit';
+ cEffOpBits = int(asParams[1][1:]); assert asParams[1][0] == 'U';
+ if cAddrBits == 64: asAddrGRegs = g_asGRegs64;
+ elif cAddrBits == 32: asAddrGRegs = g_asGRegs32;
+ else: asAddrGRegs = g_asGRegs16;
+
+ i = 2;
+ iBaseReg = None;
+ sBaseReg = None;
+ if i < len(asParams) and asParams[i] in asAddrGRegs:
+ sBaseReg = asParams[i];
+ iBaseReg = asAddrGRegs.index(sBaseReg);
+ i += 1
+
+ assert i < len(asParams); assert asParams[i][0] == 'x';
+ iScale = iScale = int(asParams[i][1:]); assert iScale in [1, 2, 4, 8], '%u %s' % (iScale, sName);
+ i += 1;
+
+ sIndexReg = None;
+ iIndexReg = None;
+ if i < len(asParams) and asParams[i] in asAddrGRegs:
+ sIndexReg = asParams[i];
+ iIndexReg = asAddrGRegs.index(sIndexReg);
+ i += 1;
+
+ u32Disp = None;
+ if i < len(asParams) and len(asParams[i]) == 10:
+ u32Disp = long(asParams[i], 16);
+ i += 1;
+
+ assert i == len(asParams), 'i=%d len=%d len[i]=%d (%s)' % (i, len(asParams), len(asParams[i]), asParams[i],);
+ assert iScale == 1 or iIndexReg is not None;
+
+ # Find a temporary register.
+ iTmpReg1 = X86_GREG_xCX;
+ while iTmpReg1 in [iBaseReg, iIndexReg]:
+ iTmpReg1 += 1;
+
+ # Prologue.
+ self.write('\n\n'
+ '; cAddrBits=%s cEffOpBits=%s iBaseReg=%s u32Disp=%s iIndexReg=%s iScale=%s\n'
+ 'VBINSTST_BEGINPROC Common_MemSetup_%s\n'
+ ' MY_PUSH_FLAGS\n'
+ ' push %s\n'
+ % ( cAddrBits, cEffOpBits, iBaseReg, u32Disp, iIndexReg, iScale,
+ sName, self.oTarget.asGRegs[iTmpReg1], ));
+
+ # Figure out what to use.
+ if cEffOpBits == 64:
+ sTmpReg1 = g_asGRegs64[iTmpReg1];
+ sDataVar = 'VBINSTST_NAME(g_u64Data)';
+ elif cEffOpBits == 32:
+ sTmpReg1 = g_asGRegs32[iTmpReg1];
+ sDataVar = 'VBINSTST_NAME(g_u32Data)';
+ elif cEffOpBits == 16:
+ sTmpReg1 = g_asGRegs16[iTmpReg1];
+ sDataVar = 'VBINSTST_NAME(g_u16Data)';
+ else:
+ assert cEffOpBits == 8; assert iTmpReg1 < 4;
+ sTmpReg1 = g_asGRegs8Rex[iTmpReg1];
+ sDataVar = 'VBINSTST_NAME(g_u8Data)';
+
+ # Special case: reg + reg * [2,4,8]
+ if iBaseReg == iIndexReg and iBaseReg is not None and iScale != 1:
+ iTmpReg2 = X86_GREG_xBP;
+ while iTmpReg2 in [iBaseReg, iIndexReg, iTmpReg1]:
+ iTmpReg2 += 1;
+ sTmpReg2 = self.gregNameBits(iTmpReg2, cAddrBits);
+ self.write(' push sAX\n'
+ ' push %s\n'
+ ' push sDX\n'
+ % (self.oTarget.asGRegs[iTmpReg2],));
+ if cAddrBits == 16:
+ self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sTmpReg2,));
+ else:
+ self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sTmpReg2,));
+ self.write(' add %s, 0x200\n' % (sTmpReg2,));
+ self.write(' mov %s, %s\n' % (self.gregNameBits(X86_GREG_xAX, cAddrBits), sTmpReg2,));
+ if u32Disp is not None:
+ self.write(' sub %s, %d\n'
+ % ( self.gregNameBits(X86_GREG_xAX, cAddrBits), convU32ToSigned(u32Disp), ));
+ self.write(' xor edx, edx\n'
+ '%if xCB == 2\n'
+ ' push 0\n'
+ '%endif\n');
+ self.write(' push %u\n' % (iScale + 1,));
+ self.write(' div %s [xSP]\n' % ('qword' if cAddrBits == 64 else 'dword',));
+ self.write(' sub %s, %s\n' % (sTmpReg2, self.gregNameBits(X86_GREG_xDX, cAddrBits),));
+ self.write(' pop sDX\n'
+ ' pop sDX\n'); # sTmpReg2 is eff address; sAX is sIndexReg value.
+ # Note! sTmpReg1 can be xDX and that's no problem now.
+ self.write(' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,));
+ self.write(' mov [%s], %s\n' % (sTmpReg2, sTmpReg1,)); # Value in place.
+ self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg2],));
+ if iBaseReg == X86_GREG_xAX:
+ self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg1],));
+ else:
+ self.write(' mov %s, %s\n' % (sBaseReg, self.gregNameBits(X86_GREG_xAX, cAddrBits),));
+ self.write(' pop sAX\n');
+
+ else:
+ # Load the value and mem address, storing the value there.
+ # Note! ASSUMES that the scale and disposition works fine together.
+ sAddrReg = sBaseReg if sBaseReg is not None else sIndexReg;
+ self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,));
+ if cAddrBits >= cDefAddrBits:
+ self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,));
+ self.write(' lea %s, [%s xWrtRIP]\n' % (sAddrReg, sDataVar,));
+ else:
+ if cAddrBits == 16:
+ self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sAddrReg,));
+ else:
+ self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sAddrReg,));
+ self.write(' add %s, %s\n' % (sAddrReg, (randU16() << cEffOpBits) & 0xfff, ));
+ self.write(' mov [%s], %s\n' % (sAddrReg, sTmpReg1, ));
+
+ # Adjust for disposition and scaling.
+ if u32Disp is not None:
+ self.write(' sub %s, %d\n' % ( sAddrReg, convU32ToSigned(u32Disp), ));
+ if iIndexReg is not None:
+ if iBaseReg == iIndexReg:
+ assert iScale == 1;
+ assert u32Disp is None or (u32Disp & 1) == 0;
+ self.write(' shr %s, 1\n' % (sIndexReg,));
+ elif sBaseReg is not None:
+ uIdxRegVal = randUxx(cAddrBits);
+ if cAddrBits == 64:
+ self.write(' mov %s, %u\n'
+ ' sub %s, %s\n'
+ ' mov %s, %u\n'
+ % ( sIndexReg, (uIdxRegVal * iScale) & UINT64_MAX,
+ sBaseReg, sIndexReg,
+ sIndexReg, uIdxRegVal, ));
+ else:
+ assert cAddrBits == 32;
+ self.write(' mov %s, %u\n'
+ ' sub %s, %#06x\n'
+ % ( sIndexReg, uIdxRegVal, sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, ));
+ elif iScale == 2:
+ assert u32Disp is None or (u32Disp & 1) == 0;
+ self.write(' shr %s, 1\n' % (sIndexReg,));
+ elif iScale == 4:
+ assert u32Disp is None or (u32Disp & 3) == 0;
+ self.write(' shr %s, 2\n' % (sIndexReg,));
+ elif iScale == 8:
+ assert u32Disp is None or (u32Disp & 7) == 0;
+ self.write(' shr %s, 3\n' % (sIndexReg,));
+ else:
+ assert iScale == 1;
+
+ # Set upper bits that's supposed to be unused.
+ if cDefAddrBits > cAddrBits or cAddrBits == 16:
+ if cDefAddrBits == 64:
+ assert cAddrBits == 32;
+ if iBaseReg is not None:
+ self.write(' mov %s, %#018x\n'
+ ' or %s, %s\n'
+ % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
+ g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],));
+ if iIndexReg is not None and iIndexReg != iBaseReg:
+ self.write(' mov %s, %#018x\n'
+ ' or %s, %s\n'
+ % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000,
+ g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],));
+ else:
+ assert cDefAddrBits == 32; assert cAddrBits == 16; assert iIndexReg is None;
+ if iBaseReg is not None:
+ self.write(' or %s, %#010x\n'
+ % ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, ));
+
+ # Epilogue.
+ self.write(' pop %s\n'
+ ' MY_POP_FLAGS\n'
+ ' ret sCB\n'
+ 'VBINSTST_ENDPROC Common_MemSetup_%s\n'
+ % ( self.oTarget.asGRegs[iTmpReg1], sName,));
+
+
+ def _generateFileFooter(self):
+ """
+ Generates file footer.
+ """
+
+ # Terminate the trap records.
+ self.write('\n\n'
+ ';\n'
+ '; Terminate the trap records\n'
+ ';\n'
+ 'VBINSTST_BEGINDATA\n'
+ '%ifdef VBINSTST_CAN_DO_TRAPS\n'
+ 'VBINSTST_TRAP_RECS_END\n'
+ '%endif\n'
+ 'VBINSTST_BEGINCODE\n');
+
+ # Register checking functions.
+ for sName in self._dCheckFns:
+ asRegs = sName.split('_');
+ sPushSize = 'dword';
+
+ # Do we check eflags first.
+ if asRegs[0] == 'eflags':
+ asRegs.pop(0);
+ sFlagsToCheck = asRegs.pop(0);
+ self.write('\n\n'
+ '; Check flags and then defers to the register-only checker\n'
+ '; To save space, the callee cleans up the stack.'
+ '; Ref count: %u\n'
+ 'VBINSTST_BEGINPROC %s%s\n'
+ ' MY_PUSH_FLAGS\n'
+ ' push sAX\n'
+ ' mov sAX, [xSP + sCB]\n'
+ ' and sAX, %s\n'
+ ' cmp sAX, [xSP + xCB + sCB*2]\n'
+ ' je .equal\n'
+ % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName,
+ sFlagsToCheck,));
+ self.write(' push dword 0xef ; register number\n'
+ ' push sAX ; actual\n'
+ ' mov sAX, [xSP + xCB + sCB*4]\n'
+ ' push sAX ; expected\n'
+ ' call VBINSTST_NAME(Common_BadValue)\n');
+ self.write('.equal:\n'
+ ' mov xAX, [xSP + sCB*2]\n' # Remove the expected eflags value from the stack frame.
+ ' mov [xSP + sCB*2 + xCB + sCB - xCB], xAX\n'
+ ' pop sAX\n'
+ ' MY_POP_FLAGS\n'
+ ' lea xSP, [xSP + sCB]\n'
+ ' jmp VBINSTST_NAME(Common_Check_%s)\n'
+ 'VBINSTST_ENDPROC %s%s\n'
+ % ( '_'.join(asRegs),
+ self.ksCheckerPrefix, sName,) );
+ else:
+ # Prologue
+ self.write('\n\n'
+ '; Checks 1 or more register values, expected values pushed on the stack.\n'
+ '; To save space, the callee cleans up the stack.'
+ '; Ref count: %u\n'
+ 'VBINSTST_BEGINPROC %s%s\n'
+ ' MY_PUSH_FLAGS\n'
+ % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, ) );
+
+ # Register checks.
+ for i in range(len(asRegs)):
+ sReg = asRegs[i];
+ iReg = self.oTarget.asGRegs.index(sReg);
+ if i == asRegs.index(sReg): # Only check once, i.e. input = output reg.
+ self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n'
+ ' je .equal%u\n'
+ ' push %s %u ; register number\n'
+ ' push %s ; actual\n'
+ ' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n'
+ ' push %s ; expected\n'
+ ' call VBINSTST_NAME(Common_BadValue)\n'
+ '.equal%u:\n'
+ % ( sReg, i, i, sPushSize, iReg, sReg, sReg, i, sReg, i, ) );
+
+
+ # Restore known register values and check the other registers.
+ for sReg in asRegs:
+ if self.oTarget.is64Bit():
+ self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg, sReg,));
+ else:
+ iReg = self.oTarget.asGRegs.index(sReg)
+ self.write(' mov %s, 0x%x\n' % (sReg, self.au32Regs[iReg],));
+ self.write(' MY_POP_FLAGS\n'
+ ' call VBINSTST_NAME(Common_CheckKnownValues)\n'
+ ' ret sCB*%u\n'
+ 'VBINSTST_ENDPROC %s%s\n'
+ % (len(asRegs), self.ksCheckerPrefix, sName,));
+
+ # memory setup functions
+ self._generateMemSetupFunctions();
+
+ # 64-bit constants.
+ if len(self._d64BitConsts) > 0:
+ self.write('\n\n'
+ ';\n'
+ '; 64-bit constants\n'
+ ';\n');
+ for uVal in self._d64BitConsts:
+ self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self._d64BitConsts[uVal], ) );
+
+ return True;
+
+ def _generateTests(self):
+ """
+ Generate the test cases.
+ """
+ for self.iFile in range(self.cFiles):
+ if self.cFiles == 1:
+ self.sFile = '%s.asm' % (self.oOptions.sOutputBase,)
+ else:
+ self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile)
+ self.oFile = sys.stdout;
+ if self.oOptions.sOutputBase != '-':
+ self.oFile = io.open(self.sFile, 'w', buffering = 65536, encoding = 'utf-8');
+
+ self._generateFileHeader();
+
+ # Calc the range.
+ iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile;
+ iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile;
+ if iInstrTestEnd > len(g_aoInstructionTests):
+ iInstrTestEnd = len(g_aoInstructionTests);
+
+ # Generate the instruction tests.
+ for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
+ oInstrTest = g_aoInstructionTests[iInstrTest];
+ if oInstrTest.isApplicable(self):
+ self.write('\n'
+ '\n'
+ ';\n'
+ '; %s\n'
+ ';\n'
+ % (oInstrTest.sName,));
+ self._randInitIndexes();
+ oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest));
+
+ # Generate the main function.
+ self.write('\n\n'
+ 'VBINSTST_BEGINPROC TestInstrMain\n'
+ ' MY_PUSH_ALL\n'
+ ' sub xSP, 40h\n'
+ '%ifdef VBINSTST_CAN_DO_TRAPS\n'
+ ' VBINSTST_TRAP_RECS_INSTALL\n'
+ '%endif\n'
+ '\n');
+
+ for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
+ oInstrTest = g_aoInstructionTests[iInstrTest];
+ if oInstrTest.isApplicable(self):
+ self.write('%%ifdef ASM_CALL64_GCC\n'
+ ' lea rdi, [.szInstr%03u wrt rip]\n'
+ '%%elifdef ASM_CALL64_MSC\n'
+ ' lea rcx, [.szInstr%03u wrt rip]\n'
+ '%%else\n'
+ ' mov xAX, .szInstr%03u\n'
+ ' mov [xSP], xAX\n'
+ '%%endif\n'
+ ' VBINSTST_CALL_FN_SUB_TEST\n'
+ ' call VBINSTST_NAME(%s)\n'
+ % ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest)));
+
+ self.write('\n'
+ '%ifdef VBINSTST_CAN_DO_TRAPS\n'
+ ' VBINSTST_TRAP_RECS_UNINSTALL\n'
+ '%endif\n'
+ ' add xSP, 40h\n'
+ ' MY_POP_ALL\n'
+ ' ret\n\n');
+ for iInstrTest in range(iInstrTestStart, iInstrTestEnd):
+ self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,));
+ self.write('VBINSTST_ENDPROC TestInstrMain\n\n');
+
+ self._generateFileFooter();
+ if self.oOptions.sOutputBase != '-':
+ self.oFile.close();
+ self.oFile = None;
+ self.sFile = '';
+
+ return RTEXITCODE_SUCCESS;
+
+ def _runMakefileMode(self):
+ """
+ Generate a list of output files on standard output.
+ """
+ if self.cFiles == 1:
+ print('%s.asm' % (self.oOptions.sOutputBase,));
+ else:
+ print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles)));
+ return RTEXITCODE_SUCCESS;
+
+ def run(self):
+ """
+ Generates the tests or whatever is required.
+ """
+ if self.oOptions.fMakefileMode:
+ return self._runMakefileMode();
+ sys.stderr.write('InstructionTestGen.py: Seed = %s\n' % (g_iMyRandSeed,));
+ return self._generateTests();
+
+ @staticmethod
+ def main():
+ """
+ Main function a la C/C++. Returns exit code.
+ """
+
+ #
+ # Parse the command line.
+ #
+ oParser = OptionParser(version = __version__[11:-1].strip());
+ oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False,
+ help = 'Special mode for use to output a list of output files for the benefit of '
+ 'the make program (kmk).');
+ oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '<instr-per-file>', type = 'int', default = 9999999,
+ help = 'Number of instruction to test per output file.');
+ oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '<file>', default = None,
+ help = 'The output file base name, no suffix please. Required.');
+ oParser.add_option('--target', dest = 'sTargetEnv', metavar = '<target>',
+ default = 'iprt-r3-32',
+ choices = g_dTargetEnvs.keys(),
+ help = 'The target environment. Choices: %s'
+ % (', '.join(sorted(g_dTargetEnvs.keys())),));
+ oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium,
+ choices = InstructionTestGen.kasTestSizes,
+ help = 'Selects the test size.');
+
+ (oOptions, asArgs) = oParser.parse_args();
+ if len(asArgs) > 0:
+ oParser.print_help();
+ return RTEXITCODE_SYNTAX
+ if oOptions.sOutputBase is None:
+ print('syntax error: Missing required option --output-base.', file = sys.stderr);
+ return RTEXITCODE_SYNTAX
+
+ #
+ # Instantiate the program class and run it.
+ #
+ oProgram = InstructionTestGen(oOptions);
+ return oProgram.run();
+
+
+if __name__ == '__main__':
+ sys.exit(InstructionTestGen.main());
+