From f215e02bf85f68d3a6106c2a1f4f7f063f819064 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:17:27 +0200 Subject: Adding upstream version 7.0.14-dfsg. Signed-off-by: Daniel Baumann --- src/VBox/Runtime/common/checksum/alt-sha256.cpp | 693 ++++++++++++++++++++++++ 1 file changed, 693 insertions(+) create mode 100644 src/VBox/Runtime/common/checksum/alt-sha256.cpp (limited to 'src/VBox/Runtime/common/checksum/alt-sha256.cpp') diff --git a/src/VBox/Runtime/common/checksum/alt-sha256.cpp b/src/VBox/Runtime/common/checksum/alt-sha256.cpp new file mode 100644 index 00000000..28acca96 --- /dev/null +++ b/src/VBox/Runtime/common/checksum/alt-sha256.cpp @@ -0,0 +1,693 @@ +/* $Id: alt-sha256.cpp $ */ +/** @file + * IPRT - SHA-256 and SHA-224 hash functions, Alternative Implementation. + */ + +/* + * Copyright (C) 2009-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see . + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included + * in the VirtualBox distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + * + * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 + */ + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The SHA-256 block size (in bytes). */ +#define RTSHA256_BLOCK_SIZE 64U + +/** Enables the unrolled code. */ +#define RTSHA256_UNROLLED 1 + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "internal/iprt.h" +#include +#include +#include +#include + + +/** Our private context structure. */ +typedef struct RTSHA256ALTPRIVATECTX +{ + /** The W array. + * Buffering happens in the first 16 words, converted from big endian to host + * endian immediately before processing. The amount of buffered data is kept + * in the 6 least significant bits of cbMessage. */ + uint32_t auW[64]; + /** The message length (in bytes). */ + uint64_t cbMessage; + /** The 8 hash values. */ + uint32_t auH[8]; +} RTSHA256ALTPRIVATECTX; + +#define RT_SHA256_PRIVATE_ALT_CONTEXT +#include + + +AssertCompile(RT_SIZEOFMEMB(RTSHA256CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA256CONTEXT, AltPrivate)); +AssertCompileMemberSize(RTSHA256ALTPRIVATECTX, auH, RTSHA256_HASH_SIZE); + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +#ifndef RTSHA256_UNROLLED +/** The K constants */ +static uint32_t const g_auKs[] = +{ + UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5), + UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5), + UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3), + UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174), + UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc), + UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da), + UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7), + UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967), + UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13), + UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85), + UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3), + UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070), + UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5), + UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3), + UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208), + UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2), +}; +#endif /* !RTSHA256_UNROLLED */ + + + +RTDECL(void) RTSha256Init(PRTSHA256CONTEXT pCtx) +{ + pCtx->AltPrivate.cbMessage = 0; + pCtx->AltPrivate.auH[0] = UINT32_C(0x6a09e667); + pCtx->AltPrivate.auH[1] = UINT32_C(0xbb67ae85); + pCtx->AltPrivate.auH[2] = UINT32_C(0x3c6ef372); + pCtx->AltPrivate.auH[3] = UINT32_C(0xa54ff53a); + pCtx->AltPrivate.auH[4] = UINT32_C(0x510e527f); + pCtx->AltPrivate.auH[5] = UINT32_C(0x9b05688c); + pCtx->AltPrivate.auH[6] = UINT32_C(0x1f83d9ab); + pCtx->AltPrivate.auH[7] = UINT32_C(0x5be0cd19); +} +RT_EXPORT_SYMBOL(RTSha256Init); + + +/** Function 4.2. */ +DECL_FORCE_INLINE(uint32_t) rtSha256Ch(uint32_t uX, uint32_t uY, uint32_t uZ) +{ +#if 1 + /* Optimization that saves one operation and probably a temporary variable. */ + uint32_t uResult = uY; + uResult ^= uZ; + uResult &= uX; + uResult ^= uZ; + return uResult; +#else + /* The original. */ + uint32_t uResult = uX & uY; + uResult ^= ~uX & uZ; + return uResult; +#endif +} + + +/** Function 4.3. */ +DECL_FORCE_INLINE(uint32_t) rtSha256Maj(uint32_t uX, uint32_t uY, uint32_t uZ) +{ +#if 1 + /* Optimization that save one operation and probably a temporary variable. */ + uint32_t uResult = uY; + uResult ^= uZ; + uResult &= uX; + uResult ^= uY & uZ; + return uResult; +#else + /* The original. */ + uint32_t uResult = uX & uY; + uResult ^= uX & uZ; + uResult ^= uY & uZ; + return uResult; +#endif +} + + +/** Function 4.4. */ +DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma0(uint32_t uX) +{ + uint32_t uResult = uX = ASMRotateRightU32(uX, 2); + uX = ASMRotateRightU32(uX, 13 - 2); + uResult ^= uX; + uX = ASMRotateRightU32(uX, 22 - 13); + uResult ^= uX; + return uResult; +} + + +/** Function 4.5. */ +DECL_FORCE_INLINE(uint32_t) rtSha256CapitalSigma1(uint32_t uX) +{ + uint32_t uResult = uX = ASMRotateRightU32(uX, 6); + uX = ASMRotateRightU32(uX, 11 - 6); + uResult ^= uX; + uX = ASMRotateRightU32(uX, 25 - 11); + uResult ^= uX; + return uResult; +} + + +/** Function 4.6. */ +DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma0(uint32_t uX) +{ + uint32_t uResult = uX >> 3; + uX = ASMRotateRightU32(uX, 7); + uResult ^= uX; + uX = ASMRotateRightU32(uX, 18 - 7); + uResult ^= uX; + return uResult; +} + + +/** Function 4.7. */ +DECL_FORCE_INLINE(uint32_t) rtSha256SmallSigma1(uint32_t uX) +{ + uint32_t uResult = uX >> 10; + uX = ASMRotateRightU32(uX, 17); + uResult ^= uX; + uX = ASMRotateRightU32(uX, 19 - 17); + uResult ^= uX; + return uResult; +} + + +/** + * Initializes the auW array from the specfied input block. + * + * @param pCtx The SHA-256 context. + * @param pbBlock The block. Must be arch-bit-width aligned. + */ +DECLINLINE(void) rtSha256BlockInit(PRTSHA256CONTEXT pCtx, uint8_t const *pbBlock) +{ +#ifdef RTSHA256_UNROLLED + /* Copy and byte-swap the block. Initializing the rest of the Ws are done + in the processing loop. */ +# ifdef RT_LITTLE_ENDIAN +# if 0 /* Just an idea... very little gain as this isn't the expensive code. */ + __m128i const uBSwapConst = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 }; + __m128i const *puSrc = (__m128i const *)pbBlock; + __m128i *puDst = (__m128i *)&pCtx->AltPrivate.auW[0]; + + _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++; + _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++; + _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++; + _mm_storeu_si128(puDst, _mm_shuffle_epi8(_mm_loadu_si128(puSrc), uBSwapConst)); puDst++; puSrc++; + +# elif ARCH_BITS == 64 + uint64_t const *puSrc = (uint64_t const *)pbBlock; + uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puSrc & 7)); + Assert(!((uintptr_t)puW & 7)); + + /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */ + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + *puW++ = ASMRotateRightU64(ASMByteSwapU64(*puSrc++), 32); + +# else + uint32_t const *puSrc = (uint32_t const *)pbBlock; + uint32_t *puW = &pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puSrc & 3)); + Assert(!((uintptr_t)puW & 3)); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); + *puW++ = ASMByteSwapU32(*puSrc++); +# endif +# else /* RT_BIG_ENDIAN */ + memcpy(&pCtx->AltPrivate.auW[0], pbBlock, RTSHA256_BLOCK_SIZE); +# endif /* RT_BIG_ENDIAN */ + +#else /* !RTSHA256_UNROLLED */ + uint32_t const *pu32Block = (uint32_t const *)pbBlock; + Assert(!((uintptr_t)pu32Block & 3)); + + unsigned iWord; + for (iWord = 0; iWord < 16; iWord++) + pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]); + + for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]); + u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]); + u32 += pCtx->AltPrivate.auW[iWord - 7]; + u32 += pCtx->AltPrivate.auW[iWord - 16]; + pCtx->AltPrivate.auW[iWord] = u32; + } +#endif /* !RTSHA256_UNROLLED */ +} + + +/** + * Initializes the auW array from data buffered in the first part of the array. + * + * @param pCtx The SHA-256 context. + */ +DECLINLINE(void) rtSha256BlockInitBuffered(PRTSHA256CONTEXT pCtx) +{ +#ifdef RTSHA256_UNROLLED + /* Do the byte swap if necessary. Initializing the rest of the Ws are done + in the processing loop. */ +# ifdef RT_LITTLE_ENDIAN +# if ARCH_BITS == 64 + uint64_t *puW = (uint64_t *)&pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puW & 7)); + /* b0 b1 b2 b3 b4 b5 b6 b7 --bwap--> b7 b6 b5 b4 b3 b2 b1 b0 --ror--> b3 b2 b1 b0 b7 b6 b5 b4; */ + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + *puW = ASMRotateRightU64(ASMByteSwapU64(*puW), 32); puW++; + +# else + uint32_t *puW = &pCtx->AltPrivate.auW[0]; + Assert(!((uintptr_t)puW & 3)); + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; + *puW = ASMByteSwapU32(*puW); puW++; +# endif +# endif + +#else /* !RTSHA256_UNROLLED */ + unsigned iWord; + for (iWord = 0; iWord < 16; iWord++) + pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]); + + for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t u32 = rtSha256SmallSigma1(pCtx->AltPrivate.auW[iWord - 2]); + u32 += rtSha256SmallSigma0(pCtx->AltPrivate.auW[iWord - 15]); + u32 += pCtx->AltPrivate.auW[iWord - 7]; + u32 += pCtx->AltPrivate.auW[iWord - 16]; + pCtx->AltPrivate.auW[iWord] = u32; + } +#endif /* !RTSHA256_UNROLLED */ +} + + +/** + * Process the current block. + * + * Requires one of the rtSha256BlockInit functions to be called first. + * + * @param pCtx The SHA-256 context. + */ +static void rtSha256BlockProcess(PRTSHA256CONTEXT pCtx) +{ + uint32_t uA = pCtx->AltPrivate.auH[0]; + uint32_t uB = pCtx->AltPrivate.auH[1]; + uint32_t uC = pCtx->AltPrivate.auH[2]; + uint32_t uD = pCtx->AltPrivate.auH[3]; + uint32_t uE = pCtx->AltPrivate.auH[4]; + uint32_t uF = pCtx->AltPrivate.auH[5]; + uint32_t uG = pCtx->AltPrivate.auH[6]; + uint32_t uH = pCtx->AltPrivate.auH[7]; + +#ifdef RTSHA256_UNROLLED + uint32_t *puW = &pCtx->AltPrivate.auW[0]; +# define RTSHA256_BODY(a_iWord, a_uK, a_uA, a_uB, a_uC, a_uD, a_uE, a_uF, a_uG, a_uH) \ + do { \ + if ((a_iWord) < 16) \ + a_uH += *puW++; \ + else \ + { \ + uint32_t u32 = puW[-16]; \ + u32 += rtSha256SmallSigma0(puW[-15]); \ + u32 += puW[-7]; \ + u32 += rtSha256SmallSigma1(puW[-2]); \ + if (a_iWord < 64-2) *puW++ = u32; else puW++; \ + a_uH += u32; \ + } \ + \ + a_uH += rtSha256CapitalSigma1(a_uE); \ + a_uH += a_uK; \ + a_uH += rtSha256Ch(a_uE, a_uF, a_uG); \ + a_uD += a_uH; \ + \ + a_uH += rtSha256CapitalSigma0(a_uA); \ + a_uH += rtSha256Maj(a_uA, a_uB, a_uC); \ + } while (0) +# define RTSHA256_EIGHT(a_uK0, a_uK1, a_uK2, a_uK3, a_uK4, a_uK5, a_uK6, a_uK7, a_iFirst) \ + do { \ + RTSHA256_BODY(a_iFirst + 0, a_uK0, uA, uB, uC, uD, uE, uF, uG, uH); \ + RTSHA256_BODY(a_iFirst + 1, a_uK1, uH, uA, uB, uC, uD, uE, uF, uG); \ + RTSHA256_BODY(a_iFirst + 2, a_uK2, uG, uH, uA, uB, uC, uD, uE, uF); \ + RTSHA256_BODY(a_iFirst + 3, a_uK3, uF, uG, uH, uA, uB, uC, uD, uE); \ + RTSHA256_BODY(a_iFirst + 4, a_uK4, uE, uF, uG, uH, uA, uB, uC, uD); \ + RTSHA256_BODY(a_iFirst + 5, a_uK5, uD, uE, uF, uG, uH, uA, uB, uC); \ + RTSHA256_BODY(a_iFirst + 6, a_uK6, uC, uD, uE, uF, uG, uH, uA, uB); \ + RTSHA256_BODY(a_iFirst + 7, a_uK7, uB, uC, uD, uE, uF, uG, uH, uA); \ + } while (0) + RTSHA256_EIGHT(UINT32_C(0x428a2f98), UINT32_C(0x71374491), UINT32_C(0xb5c0fbcf), UINT32_C(0xe9b5dba5), + UINT32_C(0x3956c25b), UINT32_C(0x59f111f1), UINT32_C(0x923f82a4), UINT32_C(0xab1c5ed5), 0); + RTSHA256_EIGHT(UINT32_C(0xd807aa98), UINT32_C(0x12835b01), UINT32_C(0x243185be), UINT32_C(0x550c7dc3), + UINT32_C(0x72be5d74), UINT32_C(0x80deb1fe), UINT32_C(0x9bdc06a7), UINT32_C(0xc19bf174), 8); + RTSHA256_EIGHT(UINT32_C(0xe49b69c1), UINT32_C(0xefbe4786), UINT32_C(0x0fc19dc6), UINT32_C(0x240ca1cc), + UINT32_C(0x2de92c6f), UINT32_C(0x4a7484aa), UINT32_C(0x5cb0a9dc), UINT32_C(0x76f988da), 16); + RTSHA256_EIGHT(UINT32_C(0x983e5152), UINT32_C(0xa831c66d), UINT32_C(0xb00327c8), UINT32_C(0xbf597fc7), + UINT32_C(0xc6e00bf3), UINT32_C(0xd5a79147), UINT32_C(0x06ca6351), UINT32_C(0x14292967), 24); + RTSHA256_EIGHT(UINT32_C(0x27b70a85), UINT32_C(0x2e1b2138), UINT32_C(0x4d2c6dfc), UINT32_C(0x53380d13), + UINT32_C(0x650a7354), UINT32_C(0x766a0abb), UINT32_C(0x81c2c92e), UINT32_C(0x92722c85), 32); + RTSHA256_EIGHT(UINT32_C(0xa2bfe8a1), UINT32_C(0xa81a664b), UINT32_C(0xc24b8b70), UINT32_C(0xc76c51a3), + UINT32_C(0xd192e819), UINT32_C(0xd6990624), UINT32_C(0xf40e3585), UINT32_C(0x106aa070), 40); + RTSHA256_EIGHT(UINT32_C(0x19a4c116), UINT32_C(0x1e376c08), UINT32_C(0x2748774c), UINT32_C(0x34b0bcb5), + UINT32_C(0x391c0cb3), UINT32_C(0x4ed8aa4a), UINT32_C(0x5b9cca4f), UINT32_C(0x682e6ff3), 48); + RTSHA256_EIGHT(UINT32_C(0x748f82ee), UINT32_C(0x78a5636f), UINT32_C(0x84c87814), UINT32_C(0x8cc70208), + UINT32_C(0x90befffa), UINT32_C(0xa4506ceb), UINT32_C(0xbef9a3f7), UINT32_C(0xc67178f2), 56); + +#else /* !RTSHA256_UNROLLED */ + for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) + { + uint32_t uT1 = uH; + uT1 += rtSha256CapitalSigma1(uE); + uT1 += rtSha256Ch(uE, uF, uG); + uT1 += g_auKs[iWord]; + uT1 += pCtx->AltPrivate.auW[iWord]; + + uint32_t uT2 = rtSha256CapitalSigma0(uA); + uT2 += rtSha256Maj(uA, uB, uC); + + uH = uG; + uG = uF; + uF = uE; + uE = uD + uT1; + uD = uC; + uC = uB; + uB = uA; + uA = uT1 + uT2; + } +#endif /* !RTSHA256_UNROLLED */ + + pCtx->AltPrivate.auH[0] += uA; + pCtx->AltPrivate.auH[1] += uB; + pCtx->AltPrivate.auH[2] += uC; + pCtx->AltPrivate.auH[3] += uD; + pCtx->AltPrivate.auH[4] += uE; + pCtx->AltPrivate.auH[5] += uF; + pCtx->AltPrivate.auH[6] += uG; + pCtx->AltPrivate.auH[7] += uH; +} + + +RTDECL(void) RTSha256Update(PRTSHA256CONTEXT pCtx, const void *pvBuf, size_t cbBuf) +{ + Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8); + uint8_t const *pbBuf = (uint8_t const *)pvBuf; + + /* + * Deal with buffered bytes first. + */ + size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U); + if (cbBuffered) + { + size_t cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered; + if (cbBuf >= cbMissing) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing); + pCtx->AltPrivate.cbMessage += cbMissing; + pbBuf += cbMissing; + cbBuf -= cbMissing; + + rtSha256BlockInitBuffered(pCtx); + rtSha256BlockProcess(pCtx); + } + else + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf); + pCtx->AltPrivate.cbMessage += cbBuf; + return; + } + } + + if (!((uintptr_t)pbBuf & (sizeof(void *) - 1))) + { + /* + * Process full blocks directly from the input buffer. + */ + while (cbBuf >= RTSHA256_BLOCK_SIZE) + { + rtSha256BlockInit(pCtx, pbBuf); + rtSha256BlockProcess(pCtx); + + pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE; + pbBuf += RTSHA256_BLOCK_SIZE; + cbBuf -= RTSHA256_BLOCK_SIZE; + } + } + else + { + /* + * Unaligned input, so buffer it. + */ + while (cbBuf >= RTSHA256_BLOCK_SIZE) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA256_BLOCK_SIZE); + rtSha256BlockInitBuffered(pCtx); + rtSha256BlockProcess(pCtx); + + pCtx->AltPrivate.cbMessage += RTSHA256_BLOCK_SIZE; + pbBuf += RTSHA256_BLOCK_SIZE; + cbBuf -= RTSHA256_BLOCK_SIZE; + } + } + + /* + * Stash any remaining bytes into the context buffer. + */ + if (cbBuf > 0) + { + memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf); + pCtx->AltPrivate.cbMessage += cbBuf; + } +} +RT_EXPORT_SYMBOL(RTSha256Update); + + +/** + * Internal worker for RTSha256Final and RTSha224Final that finalizes the + * computation but does not copy out the hash value. + * + * @param pCtx The SHA-256 context. + */ +static void rtSha256FinalInternal(PRTSHA256CONTEXT pCtx) +{ + Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 8); + + /* + * Complete the message by adding a single bit (0x80), padding till + * the next 448-bit boundrary, the add the message length. + */ + uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8; + + unsigned cbMissing = RTSHA256_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U)); + static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; + if (cbMissing < 1U + 8U) + /* Less than 64+8 bits left in the current block, force a new block. */ + RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding)); + else + RTSha256Update(pCtx, &s_abSingleBitAndSomePadding, 1); + + unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA256_BLOCK_SIZE - 1U); + cbMissing = RTSHA256_BLOCK_SIZE - cbBuffered; + Assert(cbMissing >= 8); + memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8); + + *(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits); + + /* + * Process the last buffered block constructed/completed above. + */ + rtSha256BlockInitBuffered(pCtx); + rtSha256BlockProcess(pCtx); + + /* + * Convert the byte order of the hash words and we're done. + */ + pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]); + pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]); + pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]); + pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]); + pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]); + pCtx->AltPrivate.auH[5] = RT_H2BE_U32(pCtx->AltPrivate.auH[5]); + pCtx->AltPrivate.auH[6] = RT_H2BE_U32(pCtx->AltPrivate.auH[6]); + pCtx->AltPrivate.auH[7] = RT_H2BE_U32(pCtx->AltPrivate.auH[7]); + + RT_ZERO(pCtx->AltPrivate.auW); + pCtx->AltPrivate.cbMessage = UINT64_MAX; +} +RT_EXPORT_SYMBOL(RTSha256Final); + + +RTDECL(void) RTSha256Final(PRTSHA256CONTEXT pCtx, uint8_t pabDigest[RTSHA256_HASH_SIZE]) +{ + rtSha256FinalInternal(pCtx); + memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA256_HASH_SIZE); + RT_ZERO(pCtx->AltPrivate.auH); +} +RT_EXPORT_SYMBOL(RTSha256Final); + + +RTDECL(void) RTSha256(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA256_HASH_SIZE]) +{ + RTSHA256CONTEXT Ctx; + RTSha256Init(&Ctx); + RTSha256Update(&Ctx, pvBuf, cbBuf); + RTSha256Final(&Ctx, pabDigest); +} +RT_EXPORT_SYMBOL(RTSha256); + + +RTDECL(bool) RTSha256Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA256_HASH_SIZE]) +{ + RTSHA256CONTEXT Ctx; + RTSha256Init(&Ctx); + RTSha256Update(&Ctx, pvBuf, cbBuf); + rtSha256FinalInternal(&Ctx); + + bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA256_HASH_SIZE) == 0; + + RT_ZERO(Ctx.AltPrivate.auH); + return fRet; +} +RT_EXPORT_SYMBOL(RTSha256Check); + + + +/* + * SHA-224 is just SHA-256 with different initial values an a truncated result. + */ + +RTDECL(void) RTSha224Init(PRTSHA224CONTEXT pCtx) +{ + pCtx->AltPrivate.cbMessage = 0; + pCtx->AltPrivate.auH[0] = UINT32_C(0xc1059ed8); + pCtx->AltPrivate.auH[1] = UINT32_C(0x367cd507); + pCtx->AltPrivate.auH[2] = UINT32_C(0x3070dd17); + pCtx->AltPrivate.auH[3] = UINT32_C(0xf70e5939); + pCtx->AltPrivate.auH[4] = UINT32_C(0xffc00b31); + pCtx->AltPrivate.auH[5] = UINT32_C(0x68581511); + pCtx->AltPrivate.auH[6] = UINT32_C(0x64f98fa7); + pCtx->AltPrivate.auH[7] = UINT32_C(0xbefa4fa4); +} +RT_EXPORT_SYMBOL(RTSha224Init); + + +RTDECL(void) RTSha224Update(PRTSHA224CONTEXT pCtx, const void *pvBuf, size_t cbBuf) +{ + RTSha256Update(pCtx, pvBuf, cbBuf); +} +RT_EXPORT_SYMBOL(RTSha224Update); + + +RTDECL(void) RTSha224Final(PRTSHA224CONTEXT pCtx, uint8_t pabDigest[RTSHA224_HASH_SIZE]) +{ + rtSha256FinalInternal(pCtx); + memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA224_HASH_SIZE); + RT_ZERO(pCtx->AltPrivate.auH); +} +RT_EXPORT_SYMBOL(RTSha224Final); + + +RTDECL(void) RTSha224(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA224_HASH_SIZE]) +{ + RTSHA224CONTEXT Ctx; + RTSha224Init(&Ctx); + RTSha224Update(&Ctx, pvBuf, cbBuf); + RTSha224Final(&Ctx, pabDigest); +} +RT_EXPORT_SYMBOL(RTSha224); + + +RTDECL(bool) RTSha224Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA224_HASH_SIZE]) +{ + RTSHA224CONTEXT Ctx; + RTSha224Init(&Ctx); + RTSha224Update(&Ctx, pvBuf, cbBuf); + rtSha256FinalInternal(&Ctx); + + bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA224_HASH_SIZE) == 0; + + RT_ZERO(Ctx.AltPrivate.auH); + return fRet; +} +RT_EXPORT_SYMBOL(RTSha224Check); + -- cgit v1.2.3