From f215e02bf85f68d3a6106c2a1f4f7f063f819064 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:17:27 +0200 Subject: Adding upstream version 7.0.14-dfsg. Signed-off-by: Daniel Baumann --- src/VBox/Runtime/common/math/sinf.asm | 185 ++++++++++++++++++++++++++++++++++ 1 file changed, 185 insertions(+) create mode 100644 src/VBox/Runtime/common/math/sinf.asm (limited to 'src/VBox/Runtime/common/math/sinf.asm') diff --git a/src/VBox/Runtime/common/math/sinf.asm b/src/VBox/Runtime/common/math/sinf.asm new file mode 100644 index 00000000..1d2325d1 --- /dev/null +++ b/src/VBox/Runtime/common/math/sinf.asm @@ -0,0 +1,185 @@ +; $Id: sinf.asm $ +;; @file +; IPRT - No-CRT sinf - AMD64 & X86. +; + +; +; Copyright (C) 2006-2023 Oracle and/or its affiliates. +; +; This file is part of VirtualBox base platform packages, as +; available from https://www.virtualbox.org. +; +; This program is free software; you can redistribute it and/or +; modify it under the terms of the GNU General Public License +; as published by the Free Software Foundation, in version 3 of the +; License. +; +; This program is distributed in the hope that it will be useful, but +; WITHOUT ANY WARRANTY; without even the implied warranty of +; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +; General Public License for more details. +; +; You should have received a copy of the GNU General Public License +; along with this program; if not, see . +; +; The contents of this file may alternatively be used under the terms +; of the Common Development and Distribution License Version 1.0 +; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included +; in the VirtualBox distribution, in which case the provisions of the +; CDDL are applicable instead of those of the GPL. +; +; You may elect to license modified versions of this file under the +; terms and conditions of either the GPL or the CDDL or both. +; +; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 +; + + +%define RT_ASM_WITH_SEH64 +%include "iprt/asmdefs.mac" +%include "iprt/x86.mac" + + +BEGINCODE + + +;; +; Compute the sine of rd, measured in radians. +; +; @returns st(0) / xmm0 +; @param rd [rbp + xCB*2] / xmm0 +; +RT_NOCRT_BEGINPROC sinf + push xBP + SEH64_PUSH_xBP + mov xBP, xSP + SEH64_SET_FRAME_xBP 0 + sub xSP, 20h + SEH64_ALLOCATE_STACK 20h + SEH64_END_PROLOGUE + +%ifdef RT_OS_WINDOWS + ; + ; Make sure we use full precision and not the windows default of 53 bits. + ; + fnstcw [xBP - 20h] + mov ax, [xBP - 20h] + or ax, X86_FCW_PC_64 ; includes both bits, so no need to clear the mask. + mov [xBP - 1ch], ax + fldcw [xBP - 1ch] +%endif + + ; + ; Load the input into st0. + ; +%ifdef RT_ARCH_AMD64 + movss [xBP - 10h], xmm0 + fld dword [xBP - 10h] +%else + fld dword [xBP + xCB*2] +%endif + + ; + ; We examin the input and weed out non-finit numbers first. + ; + fxam + fnstsw ax + and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0 + cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero) + je .finite + cmp ax, X86_FSW_C3 ; Zero + je .zero + cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals - treat them as zero. + je .zero + cmp ax, X86_FSW_C0 ; NaN - must handle it special, + je .nan + + ; Pass infinities and unsupported inputs to fsin, assuming it does the right thing. +.do_sin: + fsin + jmp .return_val + + ; + ; Finite number. + ; +.finite: + ; For very tiny numbers, 0 < abs(input) < 2**-25, we can return the + ; input value directly. + fld st0 ; duplicate st0 + fabs ; make it an absolute (positive) value. + fld qword [.s_r64Tiny xWrtRIP] + fcomip st1 ; compare s_r64Tiny and fabs(input) + ja .return_tiny_number_as_is ; jump if fabs(input) is smaller + + ; FSIN is documented to be reasonable for the range ]-3pi/4,3pi/4[, so + ; while we have fabs(input) loaded already, check for that here and + ; allow rtNoCrtMathSinCore to assume it won't see values very close to + ; zero, except by cos -> sin conversion where they won't be relevant to + ; any assumpttions about precision approximation. + fld qword [.s_r64FSinOkay xWrtRIP] + fcomip st1 + ffreep st0 ; drop the fabs(input) value + ja .do_sin + + ; + ; Call common sine/cos worker. + ; + mov ecx, 0 ; float + extern NAME(rtNoCrtMathSinCore) + call NAME(rtNoCrtMathSinCore) + + ; + ; Run st0. + ; +.return_val: +%ifdef RT_ARCH_AMD64 + fstp dword [xBP - 10h] + movss xmm0, [xBP - 10h] +%endif +%ifdef RT_OS_WINDOWS + fldcw [xBP - 20h] ; restore original +%endif +.return: + leave + ret + + ; + ; As explained already, we can return tiny numbers directly too as the + ; output from sinf(input) = input given our precision. + ; We can skip the st0 -> xmm0 translation here, so follow the same path + ; as .zero & .nan, after we've removed the fabs(input) value. + ; +.return_tiny_number_as_is: + ffreep st0 + + ; + ; sinf(+/-0.0) = +/-0.0 (preserve the sign) + ; We can skip the st0 -> xmm0 translation here, so follow the .nan code path. + ; +.zero: + + ; + ; Input is NaN, output it unmodified as far as we can (FLD changes SNaN + ; to QNaN when masked). + ; +.nan: +%ifdef RT_ARCH_AMD64 + ffreep st0 +%endif + jmp .return + +ALIGNCODE(8) + ; Ca. 2**-26, absolute value. Inputs closer to zero than this can be + ; returns directly as the sinf(input) value should be basically the same + ; given the precision we're working with and FSIN probably won't even + ; manage that. + ;; @todo experiment when FSIN gets better than this. +.s_r64Tiny: + dq 1.49011612e-8 + ; The absolute limit of FSIN "good" range. +.s_r64FSinOkay: + dq 2.356194490192344928845 ; 3pi/4 + ;dq 1.57079632679489661923 ; pi/2 - alternative. + +ENDPROC RT_NOCRT(sinf) + -- cgit v1.2.3