From f215e02bf85f68d3a6106c2a1f4f7f063f819064 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:17:27 +0200 Subject: Adding upstream version 7.0.14-dfsg. Signed-off-by: Daniel Baumann --- src/VBox/VMM/VMMAll/CPUMAllRegs.cpp | 3039 +++++++++++++++++++++++++++++++++++ 1 file changed, 3039 insertions(+) create mode 100644 src/VBox/VMM/VMMAll/CPUMAllRegs.cpp (limited to 'src/VBox/VMM/VMMAll/CPUMAllRegs.cpp') diff --git a/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp new file mode 100644 index 00000000..753aaa71 --- /dev/null +++ b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp @@ -0,0 +1,3039 @@ +/* $Id: CPUMAllRegs.cpp $ */ +/** @file + * CPUM - CPU Monitor(/Manager) - Getters and Setters. + */ + +/* + * Copyright (C) 2006-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see . + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_CPUM +#include +#include +#include +#include +#include +#include +#include +#include +#include "CPUMInternal.h" +#include +#include +#include +#include +#include +#include +#include +#include +#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) +# include +#endif +#ifdef IN_RING3 +# include +#endif + +/** Disable stack frame pointer generation here. */ +#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86) +# pragma optimize("y", off) +#endif + +AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures); + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** + * Converts a CPUMCPU::Guest pointer into a VMCPU pointer. + * + * @returns Pointer to the Virtual CPU. + * @param a_pGuestCtx Pointer to the guest context. + */ +#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest) + +/** + * Lazily loads the hidden parts of a selector register when using raw-mode. + */ +#define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) + +/** @def CPUM_INT_ASSERT_NOT_EXTRN + * Macro for asserting that @a a_fNotExtrn are present. + * + * @param a_pVCpu The cross context virtual CPU structure of the calling EMT. + * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check. + */ +#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \ + AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \ + ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn))) + + +VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3) +{ + pVCpu->cpum.s.Hyper.cr3 = cr3; +} + +VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.cr3; +} + + +/** @def MAYBE_LOAD_DRx + * Macro for updating DRx values in raw-mode and ring-0 contexts. + */ +#ifdef IN_RING0 +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0) +#else +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0) +#endif + +VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0) +{ + pVCpu->cpum.s.Hyper.dr[0] = uDr0; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0); +} + + +VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1) +{ + pVCpu->cpum.s.Hyper.dr[1] = uDr1; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1); +} + + +VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2) +{ + pVCpu->cpum.s.Hyper.dr[2] = uDr2; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2); +} + + +VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3) +{ + pVCpu->cpum.s.Hyper.dr[3] = uDr3; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3); +} + + +VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6) +{ + pVCpu->cpum.s.Hyper.dr[6] = uDr6; +} + + +VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7) +{ + pVCpu->cpum.s.Hyper.dr[7] = uDr7; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[0]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[1]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[2]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[3]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[6]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[7]; +} + + +/** + * Checks that the special cookie stored in unused reserved RFLAGS bits + * + * @retval true if cookie is ok. + * @retval false if cookie is not ok. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(bool) CPUMAssertGuestRFlagsCookie(PVM pVM, PVMCPU pVCpu) +{ + AssertLogRelMsgReturn( ( pVCpu->cpum.s.Guest.rflags.uBoth + & ~(uint64_t)(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64)) + == pVM->cpum.s.fReservedRFlagsCookie + && (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK + && (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RAZ_MASK & CPUMX86EFLAGS_HW_MASK_64) == 0, + ("rflags=%#RX64 vs fReservedRFlagsCookie=%#RX64\n", + pVCpu->cpum.s.Guest.rflags.uBoth, pVM->cpum.s.fReservedRFlagsCookie), + false); + return true; +} + + +/** + * Queries the pointer to the internal CPUMCTX structure. + * + * @returns The CPUMCTX pointer. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu) +{ + return &pVCpu->cpum.s.Guest; +} + + +/** + * Queries the pointer to the internal CPUMCTXMSRS structure. + * + * This is for NEM only. + * + * @returns The CPUMCTX pointer. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu) +{ + return &pVCpu->cpum.s.GuestMsrs; +} + + +VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) +{ + pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit; + pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) +{ + pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit; + pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr) +{ + pVCpu->cpum.s.Guest.tr.Sel = tr; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr) +{ + pVCpu->cpum.s.Guest.ldtr.Sel = ldtr; + /* The caller will set more hidden bits if it has them. */ + pVCpu->cpum.s.Guest.ldtr.ValidSel = 0; + pVCpu->cpum.s.Guest.ldtr.fFlags = 0; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +/** + * Set the guest CR0. + * + * When called in GC, the hyper CR0 may be updated if that is + * required. The caller only has to take special action if AM, + * WP, PG or PE changes. + * + * @returns VINF_SUCCESS (consider it void). + * @param pVCpu The cross context virtual CPU structure. + * @param cr0 The new CR0 value. + */ +VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0) +{ + /* + * Check for changes causing TLB flushes (for REM). + * The caller is responsible for calling PGM when appropriate. + */ + if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) + != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0; + + /* + * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack) + */ + if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP)) + PGMCr0WpEnabled(pVCpu); + + /* The ET flag is settable on a 386 and hardwired on 486+. */ + if ( !(cr0 & X86_CR0_ET) + && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386) + cr0 |= X86_CR0_ET; + + pVCpu->cpum.s.Guest.cr0 = cr0; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2) +{ + pVCpu->cpum.s.Guest.cr2 = cr2; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3) +{ + pVCpu->cpum.s.Guest.cr3 = cr3; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4) +{ + /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */ + + if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) + != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; + + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4; + pVCpu->cpum.s.Guest.cr4 = cr4; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags) +{ + pVCpu->cpum.s.Guest.eflags.u = eflags; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip) +{ + pVCpu->cpum.s.Guest.eip = eip; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax) +{ + pVCpu->cpum.s.Guest.eax = eax; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx) +{ + pVCpu->cpum.s.Guest.ebx = ebx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx) +{ + pVCpu->cpum.s.Guest.ecx = ecx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx) +{ + pVCpu->cpum.s.Guest.edx = edx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp) +{ + pVCpu->cpum.s.Guest.esp = esp; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp) +{ + pVCpu->cpum.s.Guest.ebp = ebp; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi) +{ + pVCpu->cpum.s.Guest.esi = esi; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi) +{ + pVCpu->cpum.s.Guest.edi = edi; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss) +{ + pVCpu->cpum.s.Guest.ss.Sel = ss; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs) +{ + pVCpu->cpum.s.Guest.cs.Sel = cs; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds) +{ + pVCpu->cpum.s.Guest.ds.Sel = ds; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es) +{ + pVCpu->cpum.s.Guest.es.Sel = es; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs) +{ + pVCpu->cpum.s.Guest.fs.Sel = fs; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs) +{ + pVCpu->cpum.s.Guest.gs.Sel = gs; + return VINF_SUCCESS; +} + + +VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val) +{ + pVCpu->cpum.s.Guest.msrEFER = val; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER; +} + + +VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR); + if (pcbLimit) + *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt; + return pVCpu->cpum.s.Guest.idtr.pIdt; +} + + +VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR); + if (pHidden) + *pHidden = pVCpu->cpum.s.Guest.tr; + return pVCpu->cpum.s.Guest.tr.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS); + return pVCpu->cpum.s.Guest.cs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS); + return pVCpu->cpum.s.Guest.ds.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES); + return pVCpu->cpum.s.Guest.es.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS); + return pVCpu->cpum.s.Guest.fs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS); + return pVCpu->cpum.s.Guest.gs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS); + return pVCpu->cpum.s.Guest.ss.Sel; +} + + +VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( !CPUMIsGuestInLongMode(pVCpu) + || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) + return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base; + return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base; +} + + +VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); + if ( !CPUMIsGuestInLongMode(pVCpu) + || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) + return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base; + return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base; +} + + +VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); + return pVCpu->cpum.s.Guest.ldtr.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); + *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base; + *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit; + return pVCpu->cpum.s.Guest.ldtr.Sel; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return pVCpu->cpum.s.Guest.cr0; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); + return pVCpu->cpum.s.Guest.cr2; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); + return pVCpu->cpum.s.Guest.cr3; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + return pVCpu->cpum.s.Guest.cr4; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu) +{ + uint64_t u64; + int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64); + if (RT_FAILURE(rc)) + u64 = 0; + return u64; +} + + +VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR); + *pGDTR = pVCpu->cpum.s.Guest.gdtr; +} + + +VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); + return pVCpu->cpum.s.Guest.eip; +} + + +VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); + return pVCpu->cpum.s.Guest.rip; +} + + +VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX); + return pVCpu->cpum.s.Guest.eax; +} + + +VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX); + return pVCpu->cpum.s.Guest.ebx; +} + + +VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX); + return pVCpu->cpum.s.Guest.ecx; +} + + +VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX); + return pVCpu->cpum.s.Guest.edx; +} + + +VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI); + return pVCpu->cpum.s.Guest.esi; +} + + +VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI); + return pVCpu->cpum.s.Guest.edi; +} + + +VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP); + return pVCpu->cpum.s.Guest.esp; +} + + +VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP); + return pVCpu->cpum.s.Guest.ebp; +} + + +VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS); + return pVCpu->cpum.s.Guest.eflags.u; +} + + +VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue) +{ + switch (iReg) + { + case DISCREG_CR0: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + *pValue = pVCpu->cpum.s.Guest.cr0; + break; + + case DISCREG_CR2: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); + *pValue = pVCpu->cpum.s.Guest.cr2; + break; + + case DISCREG_CR3: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); + *pValue = pVCpu->cpum.s.Guest.cr3; + break; + + case DISCREG_CR4: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + *pValue = pVCpu->cpum.s.Guest.cr4; + break; + + case DISCREG_CR8: + { + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR); + uint8_t u8Tpr; + int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */); + if (RT_FAILURE(rc)) + { + AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc)); + *pValue = 0; + return rc; + } + *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */ + break; + } + + default: + return VERR_INVALID_PARAMETER; + } + return VINF_SUCCESS; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[0]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[1]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[2]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[3]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6); + return pVCpu->cpum.s.Guest.dr[6]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7); + return pVCpu->cpum.s.Guest.dr[7]; +} + + +VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK); + AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); + /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ + if (iReg == 4 || iReg == 5) + iReg += 2; + *pValue = pVCpu->cpum.s.Guest.dr[iReg]; + return VINF_SUCCESS; +} + + +VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return pVCpu->cpum.s.Guest.msrEFER; +} + + +/** + * Looks up a CPUID leaf in the CPUID leaf array, no subleaf. + * + * @returns Pointer to the leaf if found, NULL if not. + * + * @param pVM The cross context VM structure. + * @param uLeaf The leaf to get. + */ +PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf) +{ + unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)); + if (iEnd) + { + unsigned iStart = 0; + PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves; + for (;;) + { + unsigned i = iStart + (iEnd - iStart) / 2U; + if (uLeaf < paLeaves[i].uLeaf) + { + if (i <= iStart) + return NULL; + iEnd = i; + } + else if (uLeaf > paLeaves[i].uLeaf) + { + i += 1; + if (i >= iEnd) + return NULL; + iStart = i; + } + else + { + if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0)) + return &paLeaves[i]; + + /* This shouldn't normally happen. But in case the it does due + to user configuration overrids or something, just return the + first sub-leaf. */ + AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n", + uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf)); + while ( paLeaves[i].uSubLeaf != 0 + && i > 0 + && uLeaf == paLeaves[i - 1].uLeaf) + i--; + return &paLeaves[i]; + } + } + } + + return NULL; +} + + +/** + * Looks up a CPUID leaf in the CPUID leaf array. + * + * @returns Pointer to the leaf if found, NULL if not. + * + * @param pVM The cross context VM structure. + * @param uLeaf The leaf to get. + * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it + * isn't. + * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not. + */ +PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit) +{ + unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)); + if (iEnd) + { + unsigned iStart = 0; + PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves; + for (;;) + { + unsigned i = iStart + (iEnd - iStart) / 2U; + if (uLeaf < paLeaves[i].uLeaf) + { + if (i <= iStart) + return NULL; + iEnd = i; + } + else if (uLeaf > paLeaves[i].uLeaf) + { + i += 1; + if (i >= iEnd) + return NULL; + iStart = i; + } + else + { + uSubLeaf &= paLeaves[i].fSubLeafMask; + if (uSubLeaf == paLeaves[i].uSubLeaf) + *pfExactSubLeafHit = true; + else + { + /* Find the right subleaf. We return the last one before + uSubLeaf if we don't find an exact match. */ + if (uSubLeaf < paLeaves[i].uSubLeaf) + while ( i > 0 + && uLeaf == paLeaves[i - 1].uLeaf + && uSubLeaf <= paLeaves[i - 1].uSubLeaf) + i--; + else + while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves + && uLeaf == paLeaves[i + 1].uLeaf + && uSubLeaf >= paLeaves[i + 1].uSubLeaf) + i++; + *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf; + } + return &paLeaves[i]; + } + } + } + + *pfExactSubLeafHit = false; + return NULL; +} + + +/** + * Gets a CPUID leaf. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uLeaf The CPUID leaf to get. + * @param uSubLeaf The CPUID sub-leaf to get, if applicable. + * @param f64BitMode A tristate indicate if the caller is in 64-bit mode or + * not: 1=true, 0=false, 1=whatever. This affect how the + * X86_CPUID_EXT_FEATURE_EDX_SYSCALL flag is returned on + * Intel CPUs, where it's only returned in 64-bit mode. + * @param pEax Where to store the EAX value. + * @param pEbx Where to store the EBX value. + * @param pEcx Where to store the ECX value. + * @param pEdx Where to store the EDX value. + */ +VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, int f64BitMode, + uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) +{ + bool fExactSubLeafHit; + PVM pVM = pVCpu->CTX_SUFF(pVM); + PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit); + if (pLeaf) + { + AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf)); + if (fExactSubLeafHit) + { + *pEax = pLeaf->uEax; + *pEbx = pLeaf->uEbx; + *pEcx = pLeaf->uEcx; + *pEdx = pLeaf->uEdx; + + /* + * Deal with CPU specific information. + */ + if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID + | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE + | CPUMCPUIDLEAF_F_CONTAINS_APIC )) + { + if (uLeaf == 1) + { + /* EBX: Bits 31-24: Initial APIC ID. */ + Assert(pVCpu->idCpu <= 255); + AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */ + *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24); + + /* EDX: Bit 9: AND with APICBASE.EN. */ + if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) + *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC; + + /* ECX: Bit 27: CR4.OSXSAVE mirror. */ + *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE) + | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0); + } + else if (uLeaf == 0xb) + { + /* EDX: Initial extended APIC ID. */ + AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */ + *pEdx = pVCpu->idCpu; + Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES))); + } + else if (uLeaf == UINT32_C(0x8000001e)) + { + /* EAX: Initial extended APIC ID. */ + AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */ + *pEax = pVCpu->idCpu; + Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)); + } + else if (uLeaf == UINT32_C(0x80000001)) + { + /* EDX: Bit 9: AND with APICBASE.EN. */ + if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible) + *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; + Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC)); + } + else + AssertMsgFailed(("uLeaf=%#x\n", uLeaf)); + } + + /* Intel CPUs supresses the SYSCALL bit when not executing in 64-bit mode: */ + if ( uLeaf == UINT32_C(0x80000001) + && f64BitMode == false + && (*pEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL) + && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL + || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA /*?*/ + || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_SHANGHAI /*?*/ ) ) + *pEdx &= ~X86_CPUID_EXT_FEATURE_EDX_SYSCALL; + + } + /* + * Out of range sub-leaves aren't quite as easy and pretty as we emulate + * them here, but we do the best we can here... + */ + else + { + *pEax = *pEbx = *pEcx = *pEdx = 0; + if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES) + { + *pEcx = uSubLeaf & 0xff; + *pEdx = pVCpu->idCpu; + } + } + } + else + { + /* + * Different CPUs have different ways of dealing with unknown CPUID leaves. + */ + switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod) + { + default: + AssertFailed(); + RT_FALL_THRU(); + case CPUMUNKNOWNCPUID_DEFAULTS: + case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */ + case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */ + *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax; + *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx; + *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx; + *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx; + break; + case CPUMUNKNOWNCPUID_PASSTHRU: + *pEax = uLeaf; + *pEbx = 0; + *pEcx = uSubLeaf; + *pEdx = 0; + break; + } + } + Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx)); +} + + +/** + * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and + * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits. + * + * @returns Previous value. + * @param pVCpu The cross context virtual CPU structure to make the + * change on. Usually the calling EMT. + * @param fVisible Whether to make it visible (true) or hide it (false). + * + * @remarks This is "VMMDECL" so that it still links with + * the old APIC code which is in VBoxDD2 and not in + * the VMM module. + */ +VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible) +{ + bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible; + pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible; + return fOld; +} + + +/** + * Gets the host CPU vendor. + * + * @returns CPU vendor. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM) +{ + return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor; +} + + +/** + * Gets the host CPU microarchitecture. + * + * @returns CPU microarchitecture. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM) +{ + return pVM->cpum.s.HostFeatures.enmMicroarch; +} + + +/** + * Gets the guest CPU vendor. + * + * @returns CPU vendor. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM) +{ + return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor; +} + + +/** + * Gets the guest CPU microarchitecture. + * + * @returns CPU microarchitecture. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM) +{ + return pVM->cpum.s.GuestFeatures.enmMicroarch; +} + + +/** + * Gets the maximum number of physical and linear address bits supported by the + * guest. + * + * @param pVM The cross context VM structure. + * @param pcPhysAddrWidth Where to store the physical address width. + * @param pcLinearAddrWidth Where to store the linear address width. + */ +VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth) +{ + AssertPtr(pVM); + AssertReturnVoid(pcPhysAddrWidth); + AssertReturnVoid(pcLinearAddrWidth); + *pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth; + *pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth; +} + + +VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0) +{ + pVCpu->cpum.s.Guest.dr[0] = uDr0; + return CPUMRecalcHyperDRx(pVCpu, 0); +} + + +VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1) +{ + pVCpu->cpum.s.Guest.dr[1] = uDr1; + return CPUMRecalcHyperDRx(pVCpu, 1); +} + + +VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2) +{ + pVCpu->cpum.s.Guest.dr[2] = uDr2; + return CPUMRecalcHyperDRx(pVCpu, 2); +} + + +VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3) +{ + pVCpu->cpum.s.Guest.dr[3] = uDr3; + return CPUMRecalcHyperDRx(pVCpu, 3); +} + + +VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6) +{ + pVCpu->cpum.s.Guest.dr[6] = uDr6; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6; + return VINF_SUCCESS; /* No need to recalc. */ +} + + +VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7) +{ + pVCpu->cpum.s.Guest.dr[7] = uDr7; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7; + return CPUMRecalcHyperDRx(pVCpu, 7); +} + + +VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value) +{ + AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); + /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ + if (iReg == 4 || iReg == 5) + iReg += 2; + pVCpu->cpum.s.Guest.dr[iReg] = Value; + return CPUMRecalcHyperDRx(pVCpu, iReg); +} + + +/** + * Recalculates the hypervisor DRx register values based on current guest + * registers and DBGF breakpoints, updating changed registers depending on the + * context. + * + * This is called whenever a guest DRx register is modified (any context) and + * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous). + * + * In raw-mode context this function will reload any (hyper) DRx registers which + * comes out with a different value. It may also have to save the host debug + * registers if that haven't been done already. In this context though, we'll + * be intercepting and emulating all DRx accesses, so the hypervisor DRx values + * are only important when breakpoints are actually enabled. + * + * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be + * reloaded by the HM code if it changes. Further more, we will only use the + * combined register set when the VBox debugger is actually using hardware BPs, + * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't + * concern us here). + * + * In ring-3 we won't be loading anything, so well calculate hypervisor values + * all the time. + * + * @returns VINF_SUCCESS. + * @param pVCpu The cross context virtual CPU structure. + * @param iGstReg The guest debug register number that was modified. + * UINT8_MAX if not guest register. + */ +VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); +#ifndef IN_RING0 + RT_NOREF_PV(iGstReg); +#endif + + /* + * Compare the DR7s first. + * + * We only care about the enabled flags. GD is virtualized when we + * dispatch the #DB, we never enable it. The DBGF DR7 value is will + * always have the LE and GE bits set, so no need to check and disable + * stuff if they're cleared like we have to for the guest DR7. + */ + RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu); + /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */ + if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE))) + uGstDr7 = 0; + else if (!(uGstDr7 & X86_DR7_LE)) + uGstDr7 &= ~X86_DR7_LE_ALL; + else if (!(uGstDr7 & X86_DR7_GE)) + uGstDr7 &= ~X86_DR7_GE_ALL; + + const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); + if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK) + { + Assert(!CPUMIsGuestDebugStateActive(pVCpu)); + + /* + * Ok, something is enabled. Recalc each of the breakpoints, taking + * the VM debugger ones of the guest ones. In raw-mode context we will + * not allow breakpoints with values inside the hypervisor area. + */ + RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK; + + /* bp 0 */ + RTGCUINTREG uNewDr0; + if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); + uNewDr0 = DBGFBpGetDR0(pVM); + } + else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) + { + uNewDr0 = CPUMGetGuestDR0(pVCpu); + uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); + } + else + uNewDr0 = 0; + + /* bp 1 */ + RTGCUINTREG uNewDr1; + if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); + uNewDr1 = DBGFBpGetDR1(pVM); + } + else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) + { + uNewDr1 = CPUMGetGuestDR1(pVCpu); + uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); + } + else + uNewDr1 = 0; + + /* bp 2 */ + RTGCUINTREG uNewDr2; + if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); + uNewDr2 = DBGFBpGetDR2(pVM); + } + else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) + { + uNewDr2 = CPUMGetGuestDR2(pVCpu); + uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); + } + else + uNewDr2 = 0; + + /* bp 3 */ + RTGCUINTREG uNewDr3; + if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); + uNewDr3 = DBGFBpGetDR3(pVM); + } + else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) + { + uNewDr3 = CPUMGetGuestDR3(pVCpu); + uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); + } + else + uNewDr3 = 0; + + /* + * Apply the updates. + */ + pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER; + if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3]) + CPUMSetHyperDR3(pVCpu, uNewDr3); + if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2]) + CPUMSetHyperDR2(pVCpu, uNewDr2); + if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1]) + CPUMSetHyperDR1(pVCpu, uNewDr1); + if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0]) + CPUMSetHyperDR0(pVCpu, uNewDr0); + if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7]) + CPUMSetHyperDR7(pVCpu, uNewDr7); + } +#ifdef IN_RING0 + else if (CPUMIsGuestDebugStateActive(pVCpu)) + { + /* + * Reload the register that was modified. Normally this won't happen + * as we won't intercept DRx writes when not having the hyper debug + * state loaded, but in case we do for some reason we'll simply deal + * with it. + */ + switch (iGstReg) + { + case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break; + case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break; + case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break; + case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break; + default: + AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3); + } + } +#endif + else + { + /* + * No active debug state any more. In raw-mode this means we have to + * make sure DR7 has everything disabled now, if we armed it already. + * In ring-0 we might end up here when just single stepping. + */ +#ifdef IN_RING0 + if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) + { + if (pVCpu->cpum.s.Hyper.dr[0]) + ASMSetDR0(0); + if (pVCpu->cpum.s.Hyper.dr[1]) + ASMSetDR1(0); + if (pVCpu->cpum.s.Hyper.dr[2]) + ASMSetDR2(0); + if (pVCpu->cpum.s.Hyper.dr[3]) + ASMSetDR3(0); + pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER; + } +#endif + pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER; + + /* Clear all the registers. */ + pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK; + pVCpu->cpum.s.Hyper.dr[3] = 0; + pVCpu->cpum.s.Hyper.dr[2] = 0; + pVCpu->cpum.s.Hyper.dr[1] = 0; + pVCpu->cpum.s.Hyper.dr[0] = 0; + + } + Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", + pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], + pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6], + pVCpu->cpum.s.Hyper.dr[7])); + + return VINF_SUCCESS; +} + + +/** + * Set the guest XCR0 register. + * + * Will load additional state if the FPU state is already loaded (in ring-0 & + * raw-mode context). + * + * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input + * value. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uNewValue The new value. + * @thread EMT(pVCpu) + */ +VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx); + if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0 + /* The X87 bit cannot be cleared. */ + && (uNewValue & XSAVE_C_X87) + /* AVX requires SSE. */ + && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM + /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */ + && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 + || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) + == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) ) + ) + { + pVCpu->cpum.s.Guest.aXcr[0] = uNewValue; + + /* If more state components are enabled, we need to take care to load + them if the FPU/SSE state is already loaded. May otherwise leak + host state to the guest. */ + uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue; + if (fNewComponents) + { +#ifdef IN_RING0 + if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST) + { + if (pVCpu->cpum.s.Guest.fXStateMask != 0) + /* Adding more components. */ + ASMXRstor(&pVCpu->cpum.s.Guest.XState, fNewComponents); + else + { + /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */ + pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE; + if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)) + ASMXRstor(&pVCpu->cpum.s.Guest.XState, uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)); + } + } +#endif + pVCpu->cpum.s.Guest.fXStateMask |= uNewValue; + } + return VINF_SUCCESS; + } + return VERR_CPUM_RAISE_GP_0; +} + + +/** + * Tests if the guest has No-Execute Page Protection Enabled (NXE). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE); +} + + +/** + * Tests if the guest has the Page Size Extension enabled (PSE). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */ + return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE)); +} + + +/** + * Tests if the guest has the paging enabled (PG). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG); +} + + +/** + * Tests if the guest has the paging enabled (PG). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP); +} + + +/** + * Tests if the guest is running in real mode or not. + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); +} + + +/** + * Tests if the guest is running in real or virtual 8086 mode. + * + * @returns @c true if it is, @c false if not. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS); + return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) + || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */ +} + + +/** + * Tests if the guest is running in protected or not. + * + * @returns true if in protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); +} + + +/** + * Tests if the guest is running in paged protected or not. + * + * @returns true if in paged protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG); +} + + +/** + * Tests if the guest is running in long mode or not. + * + * @returns true if in long mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA; +} + + +/** + * Tests if the guest is running in PAE mode or not. + * + * @returns true if in PAE mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); + /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather + than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */ + return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE) + && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG) + && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA); +} + + +/** + * Tests if the guest is running in 64 bits mode or not. + * + * @returns true if in 64 bits protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + if (!CPUMIsGuestInLongMode(pVCpu)) + return false; + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long; +} + + +/** + * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS + * registers. + * + * @returns true if in 64 bits protected mode, otherwise false. + * @param pCtx Pointer to the current guest CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx) +{ + return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx)); +} + + +/** + * Sets the specified changed flags (CPUM_CHANGED_*). + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param fChangedAdd The changed flags to add. + */ +VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd) +{ + pVCpu->cpum.s.fChanged |= fChangedAdd; +} + + +/** + * Checks if the CPU supports the XSAVE and XRSTOR instruction. + * + * @returns true if supported. + * @returns false if not supported. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMSupportsXSave(PVM pVM) +{ + return pVM->cpum.s.HostFeatures.fXSaveRstor != 0; +} + + +/** + * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. + * @returns true if used. + * @returns false if not used. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) +{ + return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER); +} + + +/** + * Checks if the host OS uses the SYSCALL / SYSRET instructions. + * @returns true if used. + * @returns false if not used. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) +{ + return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL); +} + + +/** + * Checks if we activated the FPU/XMM state of the guest OS. + * + * Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to + * the next time we'll be executing guest code, so it may return true for + * 64-on-32 when we still haven't actually loaded the FPU status, just scheduled + * it to be loaded the next time we go thru the world switcher + * (CPUM_SYNC_FPU_STATE). + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) +{ + bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); + AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet)); + return fRet; +} + + +/** + * Checks if we've really loaded the FPU/XMM state of the guest OS. + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu) +{ + bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); + AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet)); + return fRet; +} + + +/** + * Checks if we saved the FPU/XMM state of the host OS. + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST); +} + + +/** + * Checks if the guest debug state is active. + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST); +} + + +/** + * Checks if the hyper debug state is active. + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER); +} + + +/** + * Mark the guest's debug state as inactive. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @todo This API doesn't make sense any more. + */ +VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu) +{ + Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST))); + NOREF(pVCpu); +} + + +/** + * Get the current privilege level of the guest. + * + * @returns CPL + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu) +{ + /* + * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not. + * + * Note! We used to check CS.DPL here, assuming it was always equal to + * CPL even if a conforming segment was loaded. But this turned out to + * only apply to older AMD-V. With VT-x we had an ACP2 regression + * during install after a far call to ring 2 with VT-x. Then on newer + * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl + * as well as ss.Attr.n.u2Dpl to make this (and other) code work right. + * + * So, forget CS.DPL, always use SS.DPL. + * + * Note! The SS RPL is always equal to the CPL, while the CS RPL + * isn't necessarily equal if the segment is conforming. + * See section 4.11.1 in the AMD manual. + * + * Update: Where the heck does it say CS.RPL can differ from CPL other than + * right after real->prot mode switch and when in V8086 mode? That + * section says the RPL specified in a direct transfere (call, jmp, + * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL + * it would be impossible for an exception handle or the iret + * instruction to figure out whether SS:ESP are part of the frame + * or not. VBox or qemu bug must've lead to this misconception. + * + * Update2: On an AMD bulldozer system here, I've no trouble loading a null + * selector into SS with an RPL other than the CPL when CPL != 3 and + * we're in 64-bit mode. The intel dev box doesn't allow this, on + * RPL = CPL. Weird. + */ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS); + uint32_t uCpl; + if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) + { + if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss)) + uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl; + else + uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL); + } + else + uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */ + } + else + uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */ + return uCpl; +} + + +/** + * Gets the current guest CPU mode. + * + * If paging mode is what you need, check out PGMGetGuestMode(). + * + * @returns The CPU mode. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); + CPUMMODE enmMode; + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + enmMode = CPUMMODE_REAL; + else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + enmMode = CPUMMODE_PROTECTED; + else + enmMode = CPUMMODE_LONG; + + return enmMode; +} + + +/** + * Figure whether the CPU is currently executing 16, 32 or 64 bit code. + * + * @returns 16, 32 or 64. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); + + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + return 16; + + if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); + return 16; + } + + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long + && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + return 64; + + if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) + return 32; + + return 16; +} + + +VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); + + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + return DISCPUMODE_16BIT; + + if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); + return DISCPUMODE_16BIT; + } + + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long + && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + return DISCPUMODE_64BIT; + + if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) + return DISCPUMODE_32BIT; + + return DISCPUMODE_16BIT; +} + + +/** + * Gets the guest MXCSR_MASK value. + * + * This does not access the x87 state, but the value we determined at VM + * initialization. + * + * @returns MXCSR mask. + * @param pVM The cross context VM structure. + */ +VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM) +{ + return pVM->cpum.s.GuestInfo.fMxCsrMask; +} + + +/** + * Returns whether the guest has physical interrupts enabled. + * + * @returns @c true if interrupts are enabled, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Warning! This function does -not- take into account the global-interrupt + * flag (GIF). + */ +VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu) +{ + switch (CPUMGetGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)) + { + case CPUMHWVIRT_NONE: + default: + return pVCpu->cpum.s.Guest.eflags.Bits.u1IF; + case CPUMHWVIRT_VMX: + return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest); + case CPUMHWVIRT_SVM: + return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); + } +} + + +/** + * Returns whether the nested-guest has virtual interrupts enabled. + * + * @returns @c true if interrupts are enabled, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Warning! This function does -not- take into account the global-interrupt + * flag (GIF). + */ +VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu) +{ + PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + Assert(CPUMIsGuestInNestedHwvirtMode(pCtx)); + + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + return CPUMIsGuestVmxVirtIntrEnabled(pCtx); + + Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); + return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx); +} + + +/** + * Calculates the interruptiblity of the guest. + * + * @returns Interruptibility level. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu) +{ +#if 1 + /* Global-interrupt flag blocks pretty much everything we care about here. */ + if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest)) + { + /* + * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access + * it directly here. If and how EFLAGS are used depends on the context (nested-guest + * or raw-mode). Hence we use the function below which handles the details. + */ + if ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_ALL_MASK) + || ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI) + && pVCpu->cpum.s.Guest.uRipInhibitInt != pVCpu->cpum.s.Guest.rip)) + { + /** @todo OPT: this next call should be inlined! */ + if (CPUMIsGuestPhysIntrEnabled(pVCpu)) + { + /** @todo OPT: type this out as it repeats tests. */ + if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest) + || CPUMIsGuestVirtIntrEnabled(pVCpu)) + return CPUMINTERRUPTIBILITY_UNRESTRAINED; + + /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */ + return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED; + } + return CPUMINTERRUPTIBILITY_INT_DISABLED; + } + + /* + * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation + * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow. + * However, there is some uncertainity regarding the converse, i.e. whether + * NMI-blocking until IRET blocks delivery of physical interrupts. + * + * See Intel spec. 25.4.1 "Event Blocking". + */ + /** @todo r=bird: The above comment mixes up VMX root-mode and non-root. Section + * 25.4.1 is only applicable to VMX non-root mode. In root mode / + * non-VMX mode, I have not see any evidence in the intel manuals that + * NMIs are not blocked when in an interrupt shadow. Section "6.7 + * NONMASKABLE INTERRUPT (NMI)" in SDM 3A seems pretty clear to me. + */ + if (!(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI)) + return CPUMINTERRUPTIBILITY_INT_INHIBITED; + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; +#else + if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF) + { + if (pVCpu->cpum.s.Guest.hwvirt.fGif) + { + if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS)) + return CPUMINTERRUPTIBILITY_UNRESTRAINED; + + /** @todo does blocking NMIs mean interrupts are also inhibited? */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) + { + if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + return CPUMINTERRUPTIBILITY_INT_INHIBITED; + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + } + AssertFailed(); + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; + } + else + { + if (pVCpu->cpum.s.Guest.hwvirt.fGif) + { + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + return CPUMINTERRUPTIBILITY_INT_DISABLED; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; + } +#endif +} + + +/** + * Checks whether the SVM nested-guest has physical interrupts enabled. + * + * @returns true if interrupts are enabled, false otherwise. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + * + * @remarks This does -not- take into account the global-interrupt flag. + */ +VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx) +{ + /** @todo Optimization: Avoid this function call and use a pointer to the + * relevant eflags instead (setup during VMRUN instruction emulation). */ + Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); + + X86EFLAGS fEFlags; + if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) + fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; + else + fEFlags.u = pCtx->eflags.u; + + return fEFlags.Bits.u1IF; +} + + +/** + * Checks whether the SVM nested-guest is in a state to receive virtual (setup + * for injection by VMRUN instruction) interrupts. + * + * @returns VBox status code. + * @retval true if it's ready, false otherwise. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx) +{ + RT_NOREF(pVCpu); + Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); + + PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.Vmcb.ctrl; + PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl; + Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */ + if ( !pVmcbIntCtrl->n.u1IgnoreTPR + && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR) + return false; + + return RT_BOOL(pCtx->eflags.u & X86_EFL_IF); +} + + +/** + * Gets the pending SVM nested-guest interruptvector. + * + * @returns The nested-guest interrupt to inject. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx) +{ + return pCtx->hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VIntrVector; +} + + +/** + * Restores the host-state from the host-state save area as part of a \#VMEXIT. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx) +{ + /* + * Reload the guest's "host state". + */ + PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; + pCtx->es = pHostState->es; + pCtx->cs = pHostState->cs; + pCtx->ss = pHostState->ss; + pCtx->ds = pHostState->ds; + pCtx->gdtr = pHostState->gdtr; + pCtx->idtr = pHostState->idtr; + CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr); + CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE); + pCtx->cr3 = pHostState->uCr3; + CPUMSetGuestCR4(pVCpu, pHostState->uCr4); + pCtx->rflags.u = pHostState->rflags.u; + pCtx->rflags.Bits.u1VM = 0; + pCtx->rip = pHostState->uRip; + pCtx->rsp = pHostState->uRsp; + pCtx->rax = pHostState->uRax; + pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); + pCtx->dr[7] |= X86_DR7_RA1_MASK; + Assert(pCtx->ss.Attr.n.u2Dpl == 0); + + /** @todo if RIP is not canonical or outside the CS segment limit, we need to + * raise \#GP(0) in the guest. */ + + /** @todo check the loaded host-state for consistency. Figure out what + * exactly this involves? */ +} + + +/** + * Saves the host-state to the host-state save area as part of a VMRUN. + * + * @param pCtx The guest-CPU context. + * @param cbInstr The length of the VMRUN instruction in bytes. + */ +VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr) +{ + PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; + pHostState->es = pCtx->es; + pHostState->cs = pCtx->cs; + pHostState->ss = pCtx->ss; + pHostState->ds = pCtx->ds; + pHostState->gdtr = pCtx->gdtr; + pHostState->idtr = pCtx->idtr; + pHostState->uEferMsr = pCtx->msrEFER; + pHostState->uCr0 = pCtx->cr0; + pHostState->uCr3 = pCtx->cr3; + pHostState->uCr4 = pCtx->cr4; + pHostState->rflags.u = pCtx->rflags.u; + pHostState->uRip = pCtx->rip + cbInstr; + pHostState->uRsp = pCtx->rsp; + pHostState->uRax = pCtx->rax; +} + + +/** + * Applies the TSC offset of a nested-guest if any and returns the TSC value for the + * nested-guest. + * + * @returns The TSC offset after applying any nested-guest TSC offset. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uTscValue The guest TSC. + * + * @sa CPUMRemoveNestedGuestTscOffset. + */ +VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue) +{ + PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + { + if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING)) + return uTscValue + pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u; + return uTscValue; + } + + if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) + { + uint64_t offTsc; + if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc)) + offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset; + return uTscValue + offTsc; + } + return uTscValue; +} + + +/** + * Removes the TSC offset of a nested-guest if any and returns the TSC value for the + * guest. + * + * @returns The TSC offset after removing any nested-guest TSC offset. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uTscValue The nested-guest TSC. + * + * @sa CPUMApplyNestedGuestTscOffset. + */ +VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue) +{ + PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + { + if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING)) + return uTscValue - pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u; + return uTscValue; + } + + if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) + { + uint64_t offTsc; + if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc)) + offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset; + return uTscValue - offTsc; + } + return uTscValue; +} + + +/** + * Used to dynamically imports state residing in NEM or HM. + * + * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param fExtrnImport The fields to import. + * @thread EMT(pVCpu) + */ +VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport) +{ + VMCPU_ASSERT_EMT(pVCpu); + if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport) + { + switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK) + { + case CPUMCTX_EXTRN_KEEPER_NEM: + { + int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport); + Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); + return rc; + } + + case CPUMCTX_EXTRN_KEEPER_HM: + { +#ifdef IN_RING0 + int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport); + Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); + return rc; +#else + AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport)); + return VINF_SUCCESS; +#endif + } + default: + AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); + } + } + return VINF_SUCCESS; +} + + +/** + * Gets valid CR4 bits for the guest. + * + * @returns Valid CR4 bits. + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM) +{ + PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures; + uint64_t fMask = X86_CR4_VME | X86_CR4_PVI + | X86_CR4_TSD | X86_CR4_DE + | X86_CR4_MCE | X86_CR4_PCE; + if (pGuestFeatures->fPae) + fMask |= X86_CR4_PAE; + if (pGuestFeatures->fPge) + fMask |= X86_CR4_PGE; + if (pGuestFeatures->fPse) + fMask |= X86_CR4_PSE; + if (pGuestFeatures->fFxSaveRstor) + fMask |= X86_CR4_OSFXSR; + if (pGuestFeatures->fVmx) + fMask |= X86_CR4_VMXE; + if (pGuestFeatures->fXSaveRstor) + fMask |= X86_CR4_OSXSAVE; + if (pGuestFeatures->fPcid) + fMask |= X86_CR4_PCIDE; + if (pGuestFeatures->fFsGsBase) + fMask |= X86_CR4_FSGSBASE; + if (pGuestFeatures->fSse) + fMask |= X86_CR4_OSXMMEEXCPT; + return fMask; +} + + +/** + * Sets the PAE PDPEs for the guest. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param paPaePdpes The PAE PDPEs to set. + */ +VMM_INT_DECL(void) CPUMSetGuestPaePdpes(PVMCPU pVCpu, PCX86PDPE paPaePdpes) +{ + Assert(paPaePdpes); + for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++) + pVCpu->cpum.s.Guest.aPaePdpes[i].u = paPaePdpes[i].u; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; +} + + +/** + * Gets the PAE PDPTEs for the guest. + * + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param paPaePdpes Where to store the PAE PDPEs. + */ +VMM_INT_DECL(void) CPUMGetGuestPaePdpes(PVMCPU pVCpu, PX86PDPE paPaePdpes) +{ + Assert(paPaePdpes); + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); + for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++) + paPaePdpes[i].u = pVCpu->cpum.s.Guest.aPaePdpes[i].u; +} + + +/** + * Starts a VMX-preemption timer to expire as specified by the nested hypervisor. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param uTimer The VMCS preemption timer value. + * @param cShift The VMX-preemption timer shift (usually based on guest + * VMX MSR rate). + * @param pu64EntryTick Where to store the current tick when the timer is + * programmed. + * @thread EMT(pVCpu) + */ +VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick) +{ + Assert(uTimer); + Assert(cShift <= 31); + Assert(pu64EntryTick); + VMCPU_ASSERT_EMT(pVCpu); + uint64_t const cTicksToNext = uTimer << cShift; + return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick); +} + + +/** + * Stops the VMX-preemption timer from firing. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @thread EMT. + * + * @remarks This can be called during VM reset, so we cannot assume it will be on + * the EMT corresponding to @c pVCpu. + */ +VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu) +{ + /* + * CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted(). + * However, we still get called during CPUMR3Init() and hence we need to check if we have + * a valid timer object before trying to stop it. + */ + int rc; + TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer; + if (hTimer != NIL_TMTIMERHANDLE) + { + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + rc = TMTimerLock(pVM, hTimer, VERR_IGNORED); + if (rc == VINF_SUCCESS) + { + if (TMTimerIsActive(pVM, hTimer)) + TMTimerStop(pVM, hTimer); + TMTimerUnlock(pVM, hTimer); + } + } + else + rc = VERR_NOT_FOUND; + return rc; +} + + +/** + * Gets the read and write permission bits for an MSR in an MSR bitmap. + * + * @returns VMXMSRPM_XXX - the MSR permission. + * @param pvMsrBitmap Pointer to the MSR bitmap. + * @param idMsr The MSR to get permissions for. + * + * @sa hmR0VmxSetMsrPermission. + */ +VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr) +{ + AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR); + + uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap; + + /* + * MSR Layout: + * Byte index MSR range Interpreted as + * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits. + * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits. + * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits. + * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits. + * + * A bit corresponding to an MSR within the above range causes a VM-exit + * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of + * the MSR range, it always cause a VM-exit. + * + * See Intel spec. 24.6.9 "MSR-Bitmap Address". + */ + uint32_t const offBitmapRead = 0; + uint32_t const offBitmapWrite = 0x800; + uint32_t offMsr; + uint32_t iBit; + if (idMsr <= UINT32_C(0x00001fff)) + { + offMsr = 0; + iBit = idMsr; + } + else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff)) + { + offMsr = 0x400; + iBit = idMsr - UINT32_C(0xc0000000); + } + else + { + LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr)); + return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR; + } + + /* + * Get the MSR read permissions. + */ + uint32_t fRet; + uint32_t const offMsrRead = offBitmapRead + offMsr; + Assert(offMsrRead + (iBit >> 3) < offBitmapWrite); + if (ASMBitTest(pbMsrBitmap, (offMsrRead << 3) + iBit)) + fRet = VMXMSRPM_EXIT_RD; + else + fRet = VMXMSRPM_ALLOW_RD; + + /* + * Get the MSR write permissions. + */ + uint32_t const offMsrWrite = offBitmapWrite + offMsr; + Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE); + if (ASMBitTest(pbMsrBitmap, (offMsrWrite << 3) + iBit)) + fRet |= VMXMSRPM_EXIT_WR; + else + fRet |= VMXMSRPM_ALLOW_WR; + + Assert(VMXMSRPM_IS_FLAG_VALID(fRet)); + return fRet; +} + + +/** + * Checks the permission bits for the specified I/O port from the given I/O bitmap + * to see if causes a VM-exit. + * + * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise. + * @param pbIoBitmap Pointer to I/O bitmap. + * @param uPort The I/O port being accessed. + * @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes). + */ +static bool cpumGetVmxIoBitmapPermission(uint8_t const *pbIoBitmap, uint16_t uPort, uint8_t cbAccess) +{ + Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4); + + /* + * If the I/O port access wraps around the 16-bit port I/O space, we must cause a + * VM-exit. + * + * Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not + * constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes + * from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any + * access to -both- ports 0xffff and port 0 is a wrap around. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + uint32_t const uPortLast = uPort + cbAccess; + if (uPortLast > 0x10000) + return true; + + /* + * If any bit corresponding to the I/O access is set, we must cause a VM-exit. + */ + uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */ + uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */ + Assert(idxPermBit < 8); + static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */ + uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */ + + /* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */ + RTUINT16U uPerm; + uPerm.s.Lo = pbIoBitmap[offPerm]; + if (idxPermBit + cbAccess > 8) + uPerm.s.Hi = pbIoBitmap[offPerm + 1]; + else + uPerm.s.Hi = 0; + + /* If any bit for the access is 1, we must cause a VM-exit. */ + if (uPerm.u & fMask) + return true; + + return false; +} + + +/** + * Returns whether the given VMCS field is valid and supported for the guest. + * + * @param pVM The cross context VM structure. + * @param u64VmcsField The VMCS field. + * + * @remarks This takes into account the CPU features exposed to the guest. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField) +{ + uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField); + uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField); + if (!uFieldEncHi) + { /* likely */ } + else + return false; + + PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures; + switch (uFieldEncLo) + { + /* + * 16-bit fields. + */ + /* Control fields. */ + case VMX_VMCS16_VPID: return pFeat->fVmxVpid; + case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt; + case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe; + + /* Guest-state fields. */ + case VMX_VMCS16_GUEST_ES_SEL: + case VMX_VMCS16_GUEST_CS_SEL: + case VMX_VMCS16_GUEST_SS_SEL: + case VMX_VMCS16_GUEST_DS_SEL: + case VMX_VMCS16_GUEST_FS_SEL: + case VMX_VMCS16_GUEST_GS_SEL: + case VMX_VMCS16_GUEST_LDTR_SEL: + case VMX_VMCS16_GUEST_TR_SEL: return true; + case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery; + case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml; + + /* Host-state fields. */ + case VMX_VMCS16_HOST_ES_SEL: + case VMX_VMCS16_HOST_CS_SEL: + case VMX_VMCS16_HOST_SS_SEL: + case VMX_VMCS16_HOST_DS_SEL: + case VMX_VMCS16_HOST_FS_SEL: + case VMX_VMCS16_HOST_GS_SEL: + case VMX_VMCS16_HOST_TR_SEL: return true; + + /* + * 64-bit fields. + */ + /* Control fields. */ + case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL: + case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH: + case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL: + case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps; + case VMX_VMCS64_CTRL_MSR_BITMAP_FULL: + case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps; + case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL: + case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH: + case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL: + case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH: + case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL: + case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH: + case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL: + case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true; + case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL: + case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml; + case VMX_VMCS64_CTRL_TSC_OFFSET_FULL: + case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true; + case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL: + case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow; + case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL: + case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess; + case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL: + case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt; + case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL: + case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc; + case VMX_VMCS64_CTRL_EPTP_FULL: + case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt; + case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH: + case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL: + case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery; + case VMX_VMCS64_CTRL_EPTP_LIST_FULL: + case VMX_VMCS64_CTRL_EPTP_LIST_HIGH: + { + PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0]; + uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc; + return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING)); + } + case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL: + case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH: + case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL: + case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing; + case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL: + case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe; + case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL: + case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors; + case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL: + case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling; + case VMX_VMCS64_CTRL_PROC_EXEC3_FULL: + case VMX_VMCS64_CTRL_PROC_EXEC3_HIGH: return pFeat->fVmxTertiaryExecCtls; + + /* Read-only data fields. */ + case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL: + case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt; + + /* Guest-state fields. */ + case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL: + case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH: + case VMX_VMCS64_GUEST_DEBUGCTL_FULL: + case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true; + case VMX_VMCS64_GUEST_PAT_FULL: + case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr; + case VMX_VMCS64_GUEST_EFER_FULL: + case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr; + case VMX_VMCS64_GUEST_PDPTE0_FULL: + case VMX_VMCS64_GUEST_PDPTE0_HIGH: + case VMX_VMCS64_GUEST_PDPTE1_FULL: + case VMX_VMCS64_GUEST_PDPTE1_HIGH: + case VMX_VMCS64_GUEST_PDPTE2_FULL: + case VMX_VMCS64_GUEST_PDPTE2_HIGH: + case VMX_VMCS64_GUEST_PDPTE3_FULL: + case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt; + + /* Host-state fields. */ + case VMX_VMCS64_HOST_PAT_FULL: + case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr; + case VMX_VMCS64_HOST_EFER_FULL: + case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr; + + /* + * 32-bit fields. + */ + /* Control fields. */ + case VMX_VMCS32_CTRL_PIN_EXEC: + case VMX_VMCS32_CTRL_PROC_EXEC: + case VMX_VMCS32_CTRL_EXCEPTION_BITMAP: + case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK: + case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH: + case VMX_VMCS32_CTRL_CR3_TARGET_COUNT: + case VMX_VMCS32_CTRL_EXIT: + case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT: + case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT: + case VMX_VMCS32_CTRL_ENTRY: + case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT: + case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO: + case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE: + case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true; + case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow; + case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls; + case VMX_VMCS32_CTRL_PLE_GAP: + case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit; + + /* Read-only data fields. */ + case VMX_VMCS32_RO_VM_INSTR_ERROR: + case VMX_VMCS32_RO_EXIT_REASON: + case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO: + case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE: + case VMX_VMCS32_RO_IDT_VECTORING_INFO: + case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE: + case VMX_VMCS32_RO_EXIT_INSTR_LENGTH: + case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true; + + /* Guest-state fields. */ + case VMX_VMCS32_GUEST_ES_LIMIT: + case VMX_VMCS32_GUEST_CS_LIMIT: + case VMX_VMCS32_GUEST_SS_LIMIT: + case VMX_VMCS32_GUEST_DS_LIMIT: + case VMX_VMCS32_GUEST_FS_LIMIT: + case VMX_VMCS32_GUEST_GS_LIMIT: + case VMX_VMCS32_GUEST_LDTR_LIMIT: + case VMX_VMCS32_GUEST_TR_LIMIT: + case VMX_VMCS32_GUEST_GDTR_LIMIT: + case VMX_VMCS32_GUEST_IDTR_LIMIT: + case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS: + case VMX_VMCS32_GUEST_INT_STATE: + case VMX_VMCS32_GUEST_ACTIVITY_STATE: + case VMX_VMCS32_GUEST_SMBASE: + case VMX_VMCS32_GUEST_SYSENTER_CS: return true; + case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer; + + /* Host-state fields. */ + case VMX_VMCS32_HOST_SYSENTER_CS: return true; + + /* + * Natural-width fields. + */ + /* Control fields. */ + case VMX_VMCS_CTRL_CR0_MASK: + case VMX_VMCS_CTRL_CR4_MASK: + case VMX_VMCS_CTRL_CR0_READ_SHADOW: + case VMX_VMCS_CTRL_CR4_READ_SHADOW: + case VMX_VMCS_CTRL_CR3_TARGET_VAL0: + case VMX_VMCS_CTRL_CR3_TARGET_VAL1: + case VMX_VMCS_CTRL_CR3_TARGET_VAL2: + case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true; + + /* Read-only data fields. */ + case VMX_VMCS_RO_EXIT_QUALIFICATION: + case VMX_VMCS_RO_IO_RCX: + case VMX_VMCS_RO_IO_RSI: + case VMX_VMCS_RO_IO_RDI: + case VMX_VMCS_RO_IO_RIP: + case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true; + + /* Guest-state fields. */ + case VMX_VMCS_GUEST_CR0: + case VMX_VMCS_GUEST_CR3: + case VMX_VMCS_GUEST_CR4: + case VMX_VMCS_GUEST_ES_BASE: + case VMX_VMCS_GUEST_CS_BASE: + case VMX_VMCS_GUEST_SS_BASE: + case VMX_VMCS_GUEST_DS_BASE: + case VMX_VMCS_GUEST_FS_BASE: + case VMX_VMCS_GUEST_GS_BASE: + case VMX_VMCS_GUEST_LDTR_BASE: + case VMX_VMCS_GUEST_TR_BASE: + case VMX_VMCS_GUEST_GDTR_BASE: + case VMX_VMCS_GUEST_IDTR_BASE: + case VMX_VMCS_GUEST_DR7: + case VMX_VMCS_GUEST_RSP: + case VMX_VMCS_GUEST_RIP: + case VMX_VMCS_GUEST_RFLAGS: + case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS: + case VMX_VMCS_GUEST_SYSENTER_ESP: + case VMX_VMCS_GUEST_SYSENTER_EIP: return true; + + /* Host-state fields. */ + case VMX_VMCS_HOST_CR0: + case VMX_VMCS_HOST_CR3: + case VMX_VMCS_HOST_CR4: + case VMX_VMCS_HOST_FS_BASE: + case VMX_VMCS_HOST_GS_BASE: + case VMX_VMCS_HOST_TR_BASE: + case VMX_VMCS_HOST_GDTR_BASE: + case VMX_VMCS_HOST_IDTR_BASE: + case VMX_VMCS_HOST_SYSENTER_ESP: + case VMX_VMCS_HOST_SYSENTER_EIP: + case VMX_VMCS_HOST_RSP: + case VMX_VMCS_HOST_RIP: return true; + } + + return false; +} + + +/** + * Checks whether the given I/O access should cause a nested-guest VM-exit. + * + * @returns @c true if it causes a VM-exit, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param u16Port The I/O port being accessed. + * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes). + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess) +{ + PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT)) + return true; + + if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS)) + return cpumGetVmxIoBitmapPermission(pCtx->hwvirt.vmx.abIoBitmap, u16Port, cbAccess); + + return false; +} + + +/** + * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit. + * + * @returns @c true if it causes a VM-exit, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uNewCr3 The CR3 value being written. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3) +{ + /* + * If the CR3-load exiting control is set and the new CR3 value does not + * match any of the CR3-target values in the VMCS, we must cause a VM-exit. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + PCCPUMCTX const pCtx = &pVCpu->cpum.s.Guest; + if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT)) + { + uint32_t const uCr3TargetCount = pCtx->hwvirt.vmx.Vmcs.u32Cr3TargetCount; + Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT); + + /* If the CR3-target count is 0, cause a VM-exit. */ + if (uCr3TargetCount == 0) + return true; + + /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */ + AssertCompile(VMX_V_CR3_TARGET_COUNT == 4); + if ( uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target0.u + && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target1.u + && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target2.u + && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target3.u) + return true; + } + return false; +} + + +/** + * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a + * VM-exit or not. + * + * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or + * VMX_EXIT_VMREAD). + * @param u64VmcsField The VMCS field. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField) +{ + Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest)); + Assert( uExitReason == VMX_EXIT_VMREAD + || uExitReason == VMX_EXIT_VMWRITE); + + /* + * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. + */ + if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING)) + return true; + + /* + * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE + * is intercepted. This excludes any reserved bits in the valid parts of the field + * encoding (i.e. bit 12). + */ + if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK) + return true; + + /* + * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. + */ + uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField); + uint8_t const * const pbBitmap = uExitReason == VMX_EXIT_VMREAD + ? &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmreadBitmap[0] + : &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmwriteBitmap[0]; + Assert(pbBitmap); + Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); + return ASMBitTest(pbBitmap, (u32VmcsField << 3) + (u32VmcsField & 7)); +} + + + +/** + * Determines whether the given I/O access should cause a nested-guest \#VMEXIT. + * + * @param pvIoBitmap Pointer to the nested-guest IO bitmap. + * @param u16Port The IO port being accessed. + * @param enmIoType The type of IO access. + * @param cbReg The IO operand size in bytes. + * @param cAddrSizeBits The address size bits (for 16, 32 or 64). + * @param iEffSeg The effective segment number. + * @param fRep Whether this is a repeating IO instruction (REP prefix). + * @param fStrIo Whether this is a string IO instruction. + * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled. + * Optional, can be NULL. + */ +VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg, + uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, + PSVMIOIOEXITINFO pIoExitInfo) +{ + Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64); + Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8); + + /* + * The IOPM layout: + * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or + * two 4K pages. + * + * For IO instructions that access more than a single byte, the permission bits + * for all bytes are checked; if any bit is set to 1, the IO access is intercepted. + * + * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes), + * we need 3 extra bits beyond the second 4K page. + */ + static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 }; + + uint16_t const offIopm = u16Port >> 3; + uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7]; + uint8_t const cShift = u16Port - (offIopm << 3); + uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift); + + uint8_t const *pbIopm = (uint8_t *)pvIoBitmap; + Assert(pbIopm); + pbIopm += offIopm; + uint16_t const u16Iopm = *(uint16_t *)pbIopm; + if (u16Iopm & fIopmMask) + { + if (pIoExitInfo) + { + static const uint32_t s_auIoOpSize[] = + { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 }; + + static const uint32_t s_auIoAddrSize[] = + { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 }; + + pIoExitInfo->u = s_auIoOpSize[cbReg & 7]; + pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7]; + pIoExitInfo->n.u1Str = fStrIo; + pIoExitInfo->n.u1Rep = fRep; + pIoExitInfo->n.u3Seg = iEffSeg & 7; + pIoExitInfo->n.u1Type = enmIoType; + pIoExitInfo->n.u16Port = u16Port; + } + return true; + } + + /** @todo remove later (for debugging as VirtualBox always traps all IO + * intercepts). */ + AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n")); + return false; +} + + +/** + * Gets the MSR permission bitmap byte and bit offset for the specified MSR. + * + * @returns VBox status code. + * @param idMsr The MSR being requested. + * @param pbOffMsrpm Where to store the byte offset in the MSR permission + * bitmap for @a idMsr. + * @param puMsrpmBit Where to store the bit offset starting at the byte + * returned in @a pbOffMsrpm. + */ +VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit) +{ + Assert(pbOffMsrpm); + Assert(puMsrpmBit); + + /* + * MSRPM Layout: + * Byte offset MSR range + * 0x000 - 0x7ff 0x00000000 - 0x00001fff + * 0x800 - 0xfff 0xc0000000 - 0xc0001fff + * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff + * 0x1800 - 0x1fff Reserved + * + * Each MSR is represented by 2 permission bits (read and write). + */ + if (idMsr <= 0x00001fff) + { + /* Pentium-compatible MSRs. */ + uint32_t const bitoffMsr = idMsr << 1; + *pbOffMsrpm = bitoffMsr >> 3; + *puMsrpmBit = bitoffMsr & 7; + return VINF_SUCCESS; + } + + if ( idMsr >= 0xc0000000 + && idMsr <= 0xc0001fff) + { + /* AMD Sixth Generation x86 Processor MSRs. */ + uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1; + *pbOffMsrpm = 0x800 + (bitoffMsr >> 3); + *puMsrpmBit = bitoffMsr & 7; + return VINF_SUCCESS; + } + + if ( idMsr >= 0xc0010000 + && idMsr <= 0xc0011fff) + { + /* AMD Seventh and Eighth Generation Processor MSRs. */ + uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1; + *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3); + *puMsrpmBit = bitoffMsr & 7; + return VINF_SUCCESS; + } + + *pbOffMsrpm = 0; + *puMsrpmBit = 0; + return VERR_OUT_OF_RANGE; +} + + +/** + * Checks whether the guest is in VMX non-root mode and using EPT paging. + * + * @returns @c true if in VMX non-root operation with EPT, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxEptPagingEnabled(PCVMCPUCC pVCpu) +{ + return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest); +} + + +/** + * Checks whether the guest is in VMX non-root mode and using EPT paging and the + * nested-guest is in PAE mode. + * + * @returns @c true if in VMX non-root operation with EPT, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxEptPaePagingEnabled(PCVMCPUCC pVCpu) +{ + return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest) + && CPUMIsGuestInPAEModeEx(&pVCpu->cpum.s.Guest); +} + + +/** + * Returns the guest-physical address of the APIC-access page when executing a + * nested-guest. + * + * @returns The APIC-access page guest-physical address. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(uint64_t) CPUMGetGuestVmxApicAccessPageAddr(PCVMCPUCC pVCpu) +{ + return CPUMGetGuestVmxApicAccessPageAddrEx(&pVCpu->cpum.s.Guest); +} + -- cgit v1.2.3