From f215e02bf85f68d3a6106c2a1f4f7f063f819064 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:17:27 +0200 Subject: Adding upstream version 7.0.14-dfsg. Signed-off-by: Daniel Baumann --- src/VBox/VMM/VMMR3/TM.cpp | 4314 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4314 insertions(+) create mode 100644 src/VBox/VMM/VMMR3/TM.cpp (limited to 'src/VBox/VMM/VMMR3/TM.cpp') diff --git a/src/VBox/VMM/VMMR3/TM.cpp b/src/VBox/VMM/VMMR3/TM.cpp new file mode 100644 index 00000000..a5f516d1 --- /dev/null +++ b/src/VBox/VMM/VMMR3/TM.cpp @@ -0,0 +1,4314 @@ +/* $Id: TM.cpp $ */ +/** @file + * TM - Time Manager. + */ + +/* + * Copyright (C) 2006-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see . + * + * SPDX-License-Identifier: GPL-3.0-only + */ + +/** @page pg_tm TM - The Time Manager + * + * The Time Manager abstracts the CPU clocks and manages timers used by the VMM, + * device and drivers. + * + * @see grp_tm + * + * + * @section sec_tm_clocks Clocks + * + * There are currently 4 clocks: + * - Virtual (guest). + * - Synchronous virtual (guest). + * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a + * function of the virtual clock. + * - Real (host). This is only used for display updates atm. + * + * The most important clocks are the three first ones and of these the second is + * the most interesting. + * + * + * The synchronous virtual clock is tied to the virtual clock except that it + * will take into account timer delivery lag caused by host scheduling. It will + * normally never advance beyond the head timer, and when lagging too far behind + * it will gradually speed up to catch up with the virtual clock. All devices + * implementing time sources accessible to and used by the guest is using this + * clock (for timers and other things). This ensures consistency between the + * time sources. + * + * The virtual clock is implemented as an offset to a monotonic, high + * resolution, wall clock. The current time source is using the RTTimeNanoTS() + * machinery based upon the Global Info Pages (GIP), that is, we're using TSC + * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is + * a fairly high res clock that works in all contexts and on all hosts. The + * virtual clock is paused when the VM isn't in the running state. + * + * The CPU tick (TSC) is normally virtualized as a function of the synchronous + * virtual clock, where the frequency defaults to the host cpu frequency (as we + * measure it). In this mode it is possible to configure the frequency. Another + * (non-default) option is to use the raw unmodified host TSC values. And yet + * another, to tie it to time spent executing guest code. All these things are + * configurable should non-default behavior be desirable. + * + * The real clock is a monotonic clock (when available) with relatively low + * resolution, though this a bit host specific. Note that we're currently not + * servicing timers using the real clock when the VM is not running, this is + * simply because it has not been needed yet therefore not implemented. + * + * + * @subsection subsec_tm_timesync Guest Time Sync / UTC time + * + * Guest time syncing is primarily taken care of by the VMM device. The + * principle is very simple, the guest additions periodically asks the VMM + * device what the current UTC time is and makes adjustments accordingly. + * + * A complicating factor is that the synchronous virtual clock might be doing + * catchups and the guest perception is currently a little bit behind the world + * but it will (hopefully) be catching up soon as we're feeding timer interrupts + * at a slightly higher rate. Adjusting the guest clock to the current wall + * time in the real world would be a bad idea then because the guest will be + * advancing too fast and run ahead of world time (if the catchup works out). + * To solve this problem TM provides the VMM device with an UTC time source that + * gets adjusted with the current lag, so that when the guest eventually catches + * up the lag it will be showing correct real world time. + * + * + * @section sec_tm_timers Timers + * + * The timers can use any of the TM clocks described in the previous section. + * Each clock has its own scheduling facility, or timer queue if you like. + * There are a few factors which makes it a bit complex. First, there is the + * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there + * is the timer thread that periodically checks whether any timers has expired + * without EMT noticing. On the API level, all but the create and save APIs + * must be multithreaded. EMT will always run the timers. + * + * The design is using a doubly linked list of active timers which is ordered + * by expire date. This list is only modified by the EMT thread. Updates to + * the list are batched in a singly linked list, which is then processed by the + * EMT thread at the first opportunity (immediately, next time EMT modifies a + * timer on that clock, or next timer timeout). Both lists are offset based and + * all the elements are therefore allocated from the hyper heap. + * + * For figuring out when there is need to schedule and run timers TM will: + * - Poll whenever somebody queries the virtual clock. + * - Poll the virtual clocks from the EM and REM loops. + * - Poll the virtual clocks from trap exit path. + * - Poll the virtual clocks and calculate first timeout from the halt loop. + * - Employ a thread which periodically (100Hz) polls all the timer queues. + * + * + * @image html TMTIMER-Statechart-Diagram.gif + * + * @section sec_tm_timer Logging + * + * Level 2: Logs a most of the timer state transitions and queue servicing. + * Level 3: Logs a few oddments. + * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events. + * + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_TM +#ifdef DEBUG_bird +# define DBGFTRACE_DISABLED /* annoying */ +#endif +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "TMInternal.h" +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "TMInline.h" + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The current saved state version.*/ +#define TM_SAVED_STATE_VERSION 3 + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +static bool tmR3HasFixedTSC(PVM pVM); +static uint64_t tmR3CalibrateTSC(void); +static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM); +static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); +#ifdef VBOX_WITH_STATISTICS +static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers); +#endif +static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick); +static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent); +#ifndef VBOX_WITHOUT_NS_ACCOUNTING +static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser); +#endif +static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); +static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); +static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); +static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs); +static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData); +static const char *tmR3GetTSCModeName(PVM pVM); +static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode); +static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers); + + +/** + * Initializes the TM. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(int) TMR3Init(PVM pVM) +{ + LogFlow(("TMR3Init:\n")); + + /* + * Assert alignment and sizes. + */ + AssertCompileMemberAlignment(VM, tm.s, 32); + AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding)); + AssertCompileMemberAlignment(TM, VirtualSyncLock, 8); + + /* + * Init the structure. + */ + pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */ + + int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock"); + AssertLogRelRCReturn(rc, rc); + + strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual"); + strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */ + strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real"); + strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc"); + + for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++) + { + Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0'); + pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i; + pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX; + pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX; + pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX; + pVM->tm.s.aTimerQueues[i].idxFreeHint = 1; + pVM->tm.s.aTimerQueues[i].fBeingProcessed = false; + pVM->tm.s.aTimerQueues[i].fCannotGrow = false; + pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD; + pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT; + + rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS, + "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName); + AssertLogRelRCReturn(rc, rc); + + rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS, + "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName); + AssertLogRelRCReturn(rc, rc); + } + + /* + * We directly use the GIP to calculate the virtual time. We map the + * the GIP into the guest context so we can do this calculation there + * as well and save costly world switches. + */ + PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; + if (pGip || !SUPR3IsDriverless()) + { + pVM->tm.s.pvGIPR3 = (void *)pGip; + AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED); + AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16), + ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION), + VERR_TM_GIP_VERSION); + + /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */ + if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC + && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */) + return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS, + N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"), + pGip->u32UpdateIntervalNS, pGip->u32UpdateHz); + + /* Log GIP info that may come in handy. */ + LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n", + pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS, + pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus)); + LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n", + pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip))); + for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++) + { + uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]; + if (iGipCpu != UINT16_MAX) + LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n", + iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta, + pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors)); + } + } + + /* + * Setup the VirtualGetRaw backend. + */ + pVM->tm.s.pfnVirtualGetRaw = tmVirtualNanoTSRediscover; + pVM->tm.s.VirtualGetRawData.pfnRediscover = tmVirtualNanoTSRediscover; + pVM->tm.s.VirtualGetRawData.pfnBad = tmVirtualNanoTSBad; + pVM->tm.s.VirtualGetRawData.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex; + pVM->tm.s.VirtualGetRawData.pu64Prev = &pVM->tm.s.u64VirtualRawPrev; + + /* + * Get our CFGM node, create it if necessary. + */ + PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM"); + if (!pCfgHandle) + { + rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle); + AssertRCReturn(rc, rc); + } + + /* + * Specific errors about some obsolete TM settings (remove after 2015-12-03). + */ + if (CFGMR3Exists(pCfgHandle, "TSCVirtualized")) + return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, + N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead.")); + if (CFGMR3Exists(pCfgHandle, "UseRealTSC")) + return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, + N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead.")); + + if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC")) + return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, + N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead.")); + + /* + * Validate the rest of the TM settings. + */ + rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/", + "TSCMode|" + "TSCModeSwitchAllowed|" + "TSCTicksPerSecond|" + "TSCTiedToExecution|" + "TSCNotTiedToHalt|" + "ScheduleSlack|" + "CatchUpStopThreshold|" + "CatchUpGiveUpThreshold|" + "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|" + "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|" + "CatchUpStartThreshold8|CatchUpStartThreshold9|" + "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|" + "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|" + "CatchUpPrecentage8|CatchUpPrecentage9|" + "UTCOffset|" + "UTCTouchFileOnJump|" + "WarpDrivePercentage|" + "HostHzMax|" + "HostHzFudgeFactorTimerCpu|" + "HostHzFudgeFactorOtherCpu|" + "HostHzFudgeFactorCatchUp100|" + "HostHzFudgeFactorCatchUp200|" + "HostHzFudgeFactorCatchUp400|" + "TimerMillies" + , + "", + "TM", 0); + if (RT_FAILURE(rc)) + return rc; + + /* + * Determine the TSC configuration and frequency. + */ + /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config} + * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic. + * The default depends on the VM configuration and the capabilities of the + * host CPU. Other config options or runtime changes may override the TSC + * mode specified here. + */ + char szTSCMode[32]; + rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode)); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + { + /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so + * fall back on the more expensive emulated mode. With the current TSC handling + * (frequent switching between offsetted mode and taking VM exits, on all VCPUs + * without any kind of coordination) will lead to inconsistent TSC behavior with + * guest SMP, including TSC going backwards. */ + pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API + : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED; + } + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\"")); + else + { + if (!RTStrCmp(szTSCMode, "VirtTSCEmulated")) + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + else if (!RTStrCmp(szTSCMode, "RealTSCOffset")) + pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET; + else if (!RTStrCmp(szTSCMode, "Dynamic")) + pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC; + else + return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode); + if (NEMR3NeedSpecialTscMode(pVM)) + { + LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode)); + pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API; + } + } + + /** + * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed + * at runtime} + * When using paravirtualized guests, we dynamically switch TSC modes to a more + * optimal one for performance. This setting allows overriding this behaviour. + */ + rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + { + /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */ + pVM->tm.s.fTSCModeSwitchAllowed = true; + } + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\"")); + if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) + { + LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n")); + pVM->tm.s.fTSCModeSwitchAllowed = false; + } + + /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP} + * The number of TSC ticks per second (i.e. the TSC frequency). This will + * override enmTSCMode. + */ + pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC(); + rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + { + pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost; + if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC + || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED) + && pVM->tm.s.cTSCTicksPerSecond >= _4G) + { + pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */ + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + } + } + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\"")); + else if ( pVM->tm.s.cTSCTicksPerSecond < _1M + || pVM->tm.s.cTSCTicksPerSecond >= _4G) + return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"), + pVM->tm.s.cTSCTicksPerSecond); + else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API) + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + else + { + LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond)); + pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost; + } + + /** @cfgm{/TM/TSCTiedToExecution, bool, false} + * Whether the TSC should be tied to execution. This will exclude most of the + * virtualization overhead, but will by default include the time spent in the + * halt state (see TM/TSCNotTiedToHalt). This setting will override all other + * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should + * be used avoided or used with great care. Note that this will only work right + * together with VT-x or AMD-V, and with a single virtual CPU. */ + rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\"")); + if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) + return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!")); + if (pVM->tm.s.fTSCTiedToExecution) + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + + + /** @cfgm{/TM/TSCNotTiedToHalt, bool, false} + * This is used with /TM/TSCTiedToExecution to control how TSC operates + * accross HLT instructions. When true HLT is considered execution time and + * TSC continues to run, while when false (default) TSC stops during halt. */ + rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\"")); + + /* + * Configure the timer synchronous virtual time. + */ + /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000} + * Scheduling slack when processing timers. */ + rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */ + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\"")); + + /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000} + * When to stop a catch-up, considering it successful. */ + rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */ + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\"")); + + /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000} + * When to give up a catch-up attempt. */ + rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */ + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\"")); + + + /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various} + * The catch-up percent for a given period. */ + /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX} + * The catch-up period threshold, or if you like, when a period starts. */ +#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \ + do \ + { \ + uint64_t u64; \ + rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \ + if (rc == VERR_CFGM_VALUE_NOT_FOUND) \ + u64 = UINT64_C(DefStart); \ + else if (RT_FAILURE(rc)) \ + return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \ + if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \ + || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \ + return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \ + pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \ + rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \ + if (rc == VERR_CFGM_VALUE_NOT_FOUND) \ + pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \ + else if (RT_FAILURE(rc)) \ + return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \ + } while (0) + /* This needs more tuning. Not sure if we really need so many period and be so gentle. */ + TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */ + TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */ + TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */ + TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */ + TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */ + TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */ + TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */ + TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */ + TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */ + TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */ + AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10); +#undef TM_CFG_PERIOD + + /* + * Configure real world time (UTC). + */ + /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0} + * The UTC offset. This is used to put the guest back or forwards in time. */ + rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.offUTC = 0; /* ns */ + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\"")); + + /** @cfgm{/TM/UTCTouchFileOnJump, string, none} + * File to be written to everytime the host time jumps. */ + rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.pszUtcTouchFileOnJump = NULL; + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\"")); + + /* + * Setup the warp drive. + */ + /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100} + * The warp drive percentage, 100% is normal speed. This is used to speed up + * or slow down the virtual clock, which can be useful for fast forwarding + * borring periods during tests. */ + rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */ + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + pVM->tm.s.u32VirtualWarpDrivePercentage = 100; + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\"")); + else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2 + || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000) + return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"), + pVM->tm.s.u32VirtualWarpDrivePercentage); + pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100; + if (pVM->tm.s.fVirtualWarpDrive) + { + if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) + LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n", + pVM->tm.s.u32VirtualWarpDrivePercentage)); + else + { + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage)); + } + } + + /* + * Gather the Host Hz configuration values. + */ + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\"")); + + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\"")); + + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\"")); + + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\"")); + + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\"")); + + rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200); + if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\"")); + + /* + * Finally, setup and report. + */ + pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode; + CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD); + LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n" + "TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n" + "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n", + pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), + pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost, + pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt)); + + /* + * Start the timer (guard against REM not yielding). + */ + /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10} + * The watchdog timer interval. */ + uint32_t u32Millies; + rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies); + if (rc == VERR_CFGM_VALUE_NOT_FOUND) + u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10; + else if (RT_FAILURE(rc)) + return VMSetError(pVM, rc, RT_SRC_POS, + N_("Configuration error: Failed to query uint32_t value \"TimerMillies\"")); + rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM); + if (RT_FAILURE(rc)) + { + AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc)); + return rc; + } + Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies)); + pVM->tm.s.u32TimerMillies = u32Millies; + + /* + * Register saved state. + */ + rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8, + NULL, NULL, NULL, + NULL, tmR3Save, NULL, + NULL, tmR3Load, NULL); + if (RT_FAILURE(rc)) + return rc; + + /* + * Register statistics. + */ + STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)."); + STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen)."); +#if 0 /** @todo retreive from ring-0 */ + STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)."); + STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen)."); +#endif + STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)"); + STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with."); + STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint."); + for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++) + { + rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ, + "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName); + AssertRC(rc); + } + +#ifdef VBOX_WITH_STATISTICS + STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps)."); + STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp."); +# if 0 /** @todo retreive from ring-0 */ + STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps)."); + STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp."); +# endif + STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo."); + STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue."); + STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue."); + STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue."); + + STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls."); + STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set."); + STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set."); + STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired."); + STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run."); + STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path."); + STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue."); + STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue."); + + STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3."); + STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC."); + + STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT."); + STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT."); + STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling."); + + STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); + + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); + + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync)."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync)."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); + + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers."); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); + STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); + + STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3."); + STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC."); + + STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp ."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called."); + + STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF."); + STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked."); + + STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower."); + STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%."); + STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%."); + STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%."); + STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed."); + STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking."); + STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking."); + STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active."); + STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet."); + STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value ."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed."); +#endif /* VBOX_WITH_STATISTICS */ + + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i); +#ifndef VBOX_WITHOUT_NS_ACCOUNTING +# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS) + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i); +# endif + STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i); + STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i); +#endif + } +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting"); + STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted"); + STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther"); +#endif + +#ifdef VBOX_WITH_STATISTICS + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up."); + STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator."); + STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)"); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)"); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet)."); + STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)"); + for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++) + { + STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i); + STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i); + STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i); + STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i); + } +#endif /* VBOX_WITH_STATISTICS */ + + /* + * Register info handlers. + */ + DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT); + DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT); + DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT); + DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0); + + return VINF_SUCCESS; +} + + +/** + * Checks if the host CPU has a fixed TSC frequency. + * + * @returns true if it has, false if it hasn't. + * + * @remarks This test doesn't bother with very old CPUs that don't do power + * management or any other stuff that might influence the TSC rate. + * This isn't currently relevant. + */ +static bool tmR3HasFixedTSC(PVM pVM) +{ + /* + * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU + * actually has invariant TSC. + * + * In driverless mode we just assume sync TSC for now regardless of what + * the case actually is. + */ + PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage; + SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC; + if (enmGipMode == SUPGIPMODE_INVARIANT_TSC) + return true; + +#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) + /* + * Go by features and model info from the CPUID instruction. + */ + if (ASMHasCpuId()) + { + uint32_t uEAX, uEBX, uECX, uEDX; + + /* + * By feature. (Used to be AMD specific, intel seems to have picked it up.) + */ + ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX); + if (uEAX >= 0x80000007 && RTX86IsValidExtRange(uEAX)) + { + ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX); + if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */ + && enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */ + return true; + } + + /* + * By model. + */ + if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD) + { + /* + * AuthenticAMD - Check for APM support and that TscInvariant is set. + * + * This test isn't correct with respect to fixed/non-fixed TSC and + * older models, but this isn't relevant since the result is currently + * only used for making a decision on AMD-V models. + */ +# if 0 /* Promoted to generic */ + ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX); + if (uEAX >= 0x80000007) + { + ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX); + if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */ + && ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */ + || enmGipMode == SUPGIPMODE_INVARIANT_TSC)) + return true; + } +# endif + } + else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL) + { + /* + * GenuineIntel - Check the model number. + * + * This test is lacking in the same way and for the same reasons + * as the AMD test above. + */ + /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */ + ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); + unsigned uModel = (uEAX >> 4) & 0x0f; + unsigned uFamily = (uEAX >> 8) & 0x0f; + if (uFamily == 0x0f) + uFamily += (uEAX >> 20) & 0xff; + if (uFamily >= 0x06) + uModel += ((uEAX >> 16) & 0x0f) << 4; + if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03) + || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e)) + return true; + } + else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA) + { + /* + * CentaurHauls - Check the model, family and stepping. + * + * This only checks for VIA CPU models Nano X2, Nano X3, + * Eden X2 and QuadCore. + */ + /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */ + ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); + unsigned uStepping = (uEAX & 0x0f); + unsigned uModel = (uEAX >> 4) & 0x0f; + unsigned uFamily = (uEAX >> 8) & 0x0f; + if ( uFamily == 0x06 + && uModel == 0x0f + && uStepping >= 0x0c + && uStepping <= 0x0f) + return true; + } + else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI) + { + /* + * Shanghai - Check the model, family and stepping. + */ + /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */ + ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); + unsigned uFamily = (uEAX >> 8) & 0x0f; + if ( uFamily == 0x06 + || uFamily == 0x07) + { + return true; + } + } + } + +# else /* !X86 && !AMD64 */ + RT_NOREF_PV(pVM); +# endif /* !X86 && !AMD64 */ + return false; +} + + +/** + * Calibrate the CPU tick. + * + * @returns Number of ticks per second. + */ +static uint64_t tmR3CalibrateTSC(void) +{ + uint64_t u64Hz; + + /* + * Use GIP when available. Prefere the nominal one, no need to wait for it. + */ + PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; + if (pGip) + { + u64Hz = pGip->u64CpuHz; + if (u64Hz < _1T && u64Hz > _1M) + return u64Hz; + AssertFailed(); /* This shouldn't happen. */ + + u64Hz = SUPGetCpuHzFromGip(pGip); + if (u64Hz < _1T && u64Hz > _1M) + return u64Hz; + + AssertFailed(); /* This shouldn't happen. */ + } + else + Assert(SUPR3IsDriverless()); + + /* Call this once first to make sure it's initialized. */ + RTTimeNanoTS(); + + /* + * Yield the CPU to increase our chances of getting a correct value. + */ + RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */ + static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 }; + uint64_t au64Samples[5]; + unsigned i; + for (i = 0; i < RT_ELEMENTS(au64Samples); i++) + { + RTMSINTERVAL cMillies; + int cTries = 5; + uint64_t u64Start = ASMReadTSC(); + uint64_t u64End; + uint64_t StartTS = RTTimeNanoTS(); + uint64_t EndTS; + do + { + RTThreadSleep(s_auSleep[i]); + u64End = ASMReadTSC(); + EndTS = RTTimeNanoTS(); + cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000); + } while ( cMillies == 0 /* the sleep may be interrupted... */ + || (cMillies < 20 && --cTries > 0)); + uint64_t u64Diff = u64End - u64Start; + + au64Samples[i] = (u64Diff * 1000) / cMillies; + AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i)); + } + + /* + * Discard the highest and lowest results and calculate the average. + */ + unsigned iHigh = 0; + unsigned iLow = 0; + for (i = 1; i < RT_ELEMENTS(au64Samples); i++) + { + if (au64Samples[i] < au64Samples[iLow]) + iLow = i; + if (au64Samples[i] > au64Samples[iHigh]) + iHigh = i; + } + au64Samples[iLow] = 0; + au64Samples[iHigh] = 0; + + u64Hz = au64Samples[0]; + for (i = 1; i < RT_ELEMENTS(au64Samples); i++) + u64Hz += au64Samples[i]; + u64Hz /= RT_ELEMENTS(au64Samples) - 2; + + return u64Hz; +} + + +/** + * Finalizes the TM initialization. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM) +{ + int rc; + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + /* + * Create a timer for refreshing the CPU load stats. + */ + TMTIMERHANDLE hTimer; + rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer); + if (RT_SUCCESS(rc)) + rc = TMTimerSetMillies(pVM, hTimer, 1000); +#endif + + /* + * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override). + */ + pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM); + LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed)); + + /* + * Grow the virtual & real timer tables so we've got sufficient + * space for dynamically created timers. We cannot allocate more + * after ring-0 init completes. + */ + static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} }; + for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++) + { + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue]; + PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); + if (s_aExtra[i].cExtra > pQueue->cTimersFree) + { + uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree; + rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc); + AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc); + } + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + } + +#ifdef VBOX_WITH_STATISTICS + /* + * Register timer statistics now that we've fixed the timer table sizes. + */ + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true; + tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX); + } +#endif + + return rc; +} + + +/** + * Applies relocations to data and code managed by this + * component. This function will be called at init and + * whenever the VMM need to relocate it self inside the GC. + * + * @param pVM The cross context VM structure. + * @param offDelta Relocation delta relative to old location. + */ +VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta) +{ + LogFlow(("TMR3Relocate\n")); + RT_NOREF(pVM, offDelta); +} + + +/** + * Terminates the TM. + * + * Termination means cleaning up and freeing all resources, + * the VM it self is at this point powered off or suspended. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(int) TMR3Term(PVM pVM) +{ + if (pVM->tm.s.pTimer) + { + int rc = RTTimerDestroy(pVM->tm.s.pTimer); + AssertRC(rc); + pVM->tm.s.pTimer = NULL; + } + + return VINF_SUCCESS; +} + + +/** + * The VM is being reset. + * + * For the TM component this means that a rescheduling is preformed, + * the FF is cleared and but without running the queues. We'll have to + * check if this makes sense or not, but it seems like a good idea now.... + * + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(void) TMR3Reset(PVM pVM) +{ + LogFlow(("TMR3Reset:\n")); + VM_ASSERT_EMT(pVM); + + /* + * Abort any pending catch up. + * This isn't perfect... + */ + if (pVM->tm.s.fVirtualSyncCatchUp) + { + const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM); + const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM); + if (pVM->tm.s.fVirtualSyncCatchUp) + { + STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); + + const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp; + const uint64_t offNew = offVirtualNow - offVirtualSyncNow; + Assert(offOld <= offNew); + ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); + ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); + LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew)); + } + } + + /* + * Process the queues. + */ + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + tmTimerQueueSchedule(pVM, pQueue, pQueue); + PDMCritSectLeave(pVM, &pQueue->TimerLock); + } +#ifdef VBOX_STRICT + tmTimerQueuesSanityChecks(pVM, "TMR3Reset"); +#endif + + PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; + VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */ + + /* + * Switch TM TSC mode back to the original mode after a reset for + * paravirtualized guests that alter the TM TSC mode during operation. + * We're already in an EMT rendezvous at this point. + */ + if ( pVM->tm.s.fTSCModeSwitchAllowed + && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode) + { + VM_ASSERT_EMT0(pVM); + tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */); + } + Assert(!GIMIsParavirtTscEnabled(pVM)); + pVM->tm.s.fParavirtTscEnabled = false; + + /* + * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows + * sees TSC value beyond 0x40000000000 at startup, it will reset the + * TSC on boot-up CPU only, causing confusion and mayhem with SMP. + */ + VM_ASSERT_EMT0(pVM); + uint64_t offTscRawSrc; + switch (pVM->tm.s.enmTSCMode) + { + case TMTSCMODE_REAL_TSC_OFFSET: + offTscRawSrc = SUPReadTsc(); + break; + case TMTSCMODE_DYNAMIC: + case TMTSCMODE_VIRT_TSC_EMULATED: + offTscRawSrc = TMVirtualSyncGetNoCheck(pVM); + offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL); + break; + case TMTSCMODE_NATIVE_API: + /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */ + offTscRawSrc = 0; + break; + default: + AssertFailedBreakStmt(offTscRawSrc = 0); + } + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + { + PVMCPU pVCpu = pVM->apCpusR3[idCpu]; + pVCpu->tm.s.offTSCRawSrc = offTscRawSrc; + pVCpu->tm.s.u64TSC = 0; + pVCpu->tm.s.u64TSCLastSeen = 0; + } +} + + +/** + * Execute state save operation. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pSSM SSM operation handle. + */ +static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM) +{ + LogFlow(("tmR3Save:\n")); +#ifdef VBOX_STRICT + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + Assert(!pVCpu->tm.s.fTSCTicking); + } + Assert(!pVM->tm.s.cVirtualTicking); + Assert(!pVM->tm.s.fVirtualSyncTicking); + Assert(!pVM->tm.s.cTSCsTicking); +#endif + + /* + * Save the virtual clocks. + */ + /* the virtual clock. */ + SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL); + SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual); + + /* the virtual timer synchronous clock. */ + SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync); + SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync); + SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp); + SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev); + SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp); + + /* real time clock */ + SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL); + + /* the cpu tick clock. */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu)); + } + return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond); +} + + +/** + * Execute state load operation. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pSSM SSM operation handle. + * @param uVersion Data layout version. + * @param uPass The data pass. + */ +static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) +{ + LogFlow(("tmR3Load:\n")); + + Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); +#ifdef VBOX_STRICT + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + Assert(!pVCpu->tm.s.fTSCTicking); + } + Assert(!pVM->tm.s.cVirtualTicking); + Assert(!pVM->tm.s.fVirtualSyncTicking); + Assert(!pVM->tm.s.cTSCsTicking); +#endif + + /* + * Validate version. + */ + if (uVersion != TM_SAVED_STATE_VERSION) + { + AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion)); + return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; + } + + /* + * Load the virtual clock. + */ + pVM->tm.s.cVirtualTicking = 0; + /* the virtual clock. */ + uint64_t u64Hz; + int rc = SSMR3GetU64(pSSM, &u64Hz); + if (RT_FAILURE(rc)) + return rc; + if (u64Hz != TMCLOCK_FREQ_VIRTUAL) + { + AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n", + u64Hz, TMCLOCK_FREQ_VIRTUAL)); + return VERR_SSM_VIRTUAL_CLOCK_HZ; + } + SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual); + pVM->tm.s.u64VirtualOffset = 0; + + /* the virtual timer synchronous clock. */ + pVM->tm.s.fVirtualSyncTicking = false; + uint64_t u64; + SSMR3GetU64(pSSM, &u64); + pVM->tm.s.u64VirtualSync = u64; + SSMR3GetU64(pSSM, &u64); + pVM->tm.s.offVirtualSync = u64; + SSMR3GetU64(pSSM, &u64); + pVM->tm.s.offVirtualSyncGivenUp = u64; + SSMR3GetU64(pSSM, &u64); + pVM->tm.s.u64VirtualSyncCatchUpPrev = u64; + bool f; + SSMR3GetBool(pSSM, &f); + pVM->tm.s.fVirtualSyncCatchUp = f; + + /* the real clock */ + rc = SSMR3GetU64(pSSM, &u64Hz); + if (RT_FAILURE(rc)) + return rc; + if (u64Hz != TMCLOCK_FREQ_REAL) + { + AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n", + u64Hz, TMCLOCK_FREQ_REAL)); + return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */ + } + + /* the cpu tick clock. */ + pVM->tm.s.cTSCsTicking = 0; + pVM->tm.s.offTSCPause = 0; + pVM->tm.s.u64LastPausedTSC = 0; + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + + pVCpu->tm.s.fTSCTicking = false; + SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC); + if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC) + pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC; + + if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) + pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */ + } + + rc = SSMR3GetU64(pSSM, &u64Hz); + if (RT_FAILURE(rc)) + return rc; + if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET) + pVM->tm.s.cTSCTicksPerSecond = u64Hz; + + LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n", + pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM))); + + /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */ +#if 0 + /* + * If the current host TSC frequency is incompatible with what is in the + * saved state of the VM, fall back to emulating TSC and disallow TSC mode + * switches during VM runtime (e.g. by GIM). + */ + if ( GIMIsEnabled(pVM) + || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) + { + uint64_t uGipCpuHz; + bool fRelax = RTSystemIsInsideVM(); + bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax); + if (!fCompat) + { + pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; + pVM->tm.s.fTSCModeSwitchAllowed = false; + if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC) + { + LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n", + uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed)); + } + else + { + LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n", + uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed)); + } + } + } +#endif + + /* + * Make sure timers get rescheduled immediately. + */ + PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; + VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); + + return VINF_SUCCESS; +} + +#ifdef VBOX_WITH_STATISTICS + +/** + * Register statistics for a timer. + * + * @param pVM The cross context VM structure. + * @param pQueue The queue the timer belongs to. + * @param pTimer The timer to register statistics for. + */ +static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) +{ + STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, + pQueue->szName, "/TM/Timers/%s", pTimer->szName); + STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, + "", "/TM/Timers/%s/CritSectEnter", pTimer->szName); + STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, + "", "/TM/Timers/%s/Get", pTimer->szName); + STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, + "", "/TM/Timers/%s/SetAbsolute", pTimer->szName); + STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, + "", "/TM/Timers/%s/SetRelative", pTimer->szName); + STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, + "", "/TM/Timers/%s/Stop", pTimer->szName); +} + + +/** + * Deregister the statistics for a timer. + */ +static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer) +{ + char szPrefix[128]; + size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName); + STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix); + szPrefix[cchPrefix - 1] = '\0'; + STAMR3Deregister(pVM->pUVM, szPrefix); +} + + +/** + * Register statistics for all allocated timers in a queue. + * + * @param pVM The cross context VM structure. + * @param pQueue The queue to register statistics for. + * @param cTimers Number of timers to consider (in growth scenario). + */ +static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers) +{ + uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc); + while (idxTimer-- > 0) + { + PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; + TMTIMERSTATE enmState = pTimer->enmState; + if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY) + tmR3TimerRegisterStats(pVM, pQueue, pTimer); + } +} + +#endif /* VBOX_WITH_STATISTICS */ + + +/** + * Grows a timer queue. + * + * @returns VBox status code (errors are LogRel'ed already). + * @param pVM The cross context VM structure. + * @param pQueue The timer queue to grow. + * @param cNewTimers The minimum number of timers after growing. + * @note Caller owns the queue's allocation lock. + */ +static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers) +{ + /* + * Validate input and state. + */ + VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); + VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */ + AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW); + + uint32_t const cOldEntries = pQueue->cTimersAlloc; + AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1); + AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1); + + /* + * Do the growing. + */ + int rc; + if (!SUPR3IsDriverless()) + { + rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE, + RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL); + AssertLogRelRCReturn(rc, rc); + AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3); + } + else + { + AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS); + ASMCompilerBarrier(); + + /* + * Round up the request to the nearest page and do the allocation. + */ + size_t cbNew = sizeof(TMTIMER) * cNewTimers; + cbNew = RT_ALIGN_Z(cbNew, HOST_PAGE_SIZE); + cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER)); + + PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew); + if (paTimers) + { + /* + * Copy over the old timer, init the new free ones, then switch over + * and free the old ones. + */ + PTMTIMER const paOldTimers = pQueue->paTimers; + tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries); + + pQueue->paTimers = paTimers; + pQueue->cTimersAlloc = cNewTimers; + pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1); + + RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, HOST_PAGE_SIZE)); + rc = VINF_SUCCESS; + } + else + rc = VERR_NO_PAGE_MEMORY; + } + return rc; +} + + +/** + * Internal TMR3TimerCreate worker. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param enmClock The timer clock. + * @param fFlags TMTIMER_FLAGS_XXX. + * @param pszName The timer name. + * @param ppTimer Where to store the timer pointer on success. + */ +static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer) +{ + PTMTIMER pTimer; + + /* + * Validate input. + */ + VM_ASSERT_EMT(pVM); + + AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), + VERR_INVALID_FLAGS); + + AssertPtrReturn(pszName, VERR_INVALID_POINTER); + size_t const cchName = strlen(pszName); + AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME); + AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME); + + AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX, + ("%d\n", enmClock), VERR_INVALID_PARAMETER); + AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED); + if (enmClock == TMCLOCK_VIRTUAL_SYNC) + VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER); + + /* + * Exclusively lock the queue. + * + * Note! This means that it is not possible to allocate timers from a timer callback. + */ + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock]; + int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); + AssertRCReturn(rc, rc); + + /* + * Allocate the timer. + */ + if (!pQueue->cTimersFree) + { + rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64); + AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc); + } + + /* Scan the array for free timers. */ + pTimer = NULL; + PTMTIMER const paTimers = pQueue->paTimers; + uint32_t const cTimersAlloc = pQueue->cTimersAlloc; + uint32_t idxTimer = pQueue->idxFreeHint; + for (uint32_t iScan = 0; iScan < 2; iScan++) + { + while (idxTimer < cTimersAlloc) + { + if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE) + { + pTimer = &paTimers[idxTimer]; + pQueue->idxFreeHint = idxTimer + 1; + break; + } + idxTimer++; + } + if (pTimer != NULL) + break; + idxTimer = 1; + } + AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree, + pQueue->cTimersAlloc, pQueue->szName), + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3); + pQueue->cTimersFree -= 1; + + /* + * Initialize it. + */ + Assert(idxTimer != 0); + Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK); + pTimer->hSelf = idxTimer + | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT); + Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK)); + pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK); + + pTimer->u64Expire = 0; + pTimer->enmState = TMTIMERSTATE_STOPPED; + pTimer->idxScheduleNext = UINT32_MAX; + pTimer->idxNext = UINT32_MAX; + pTimer->idxPrev = UINT32_MAX; + pTimer->fFlags = fFlags; + pTimer->uHzHint = 0; + pTimer->pvUser = NULL; + pTimer->pCritSect = NULL; + memcpy(pTimer->szName, pszName, cchName); + pTimer->szName[cchName] = '\0'; + +#ifdef VBOX_STRICT + tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate"); +#endif + + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + +#ifdef VBOX_WITH_STATISTICS + /* + * Only register statistics if we're passed the no-realloc point. + */ + if (pQueue->fCannotGrow) + tmR3TimerRegisterStats(pVM, pQueue, pTimer); +#endif + + *ppTimer = pTimer; + return VINF_SUCCESS; +} + + +/** + * Creates a device timer. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns Device instance. + * @param enmClock The clock to use on this timer. + * @param pfnCallback Callback function. + * @param pvUser The user argument to the callback. + * @param fFlags Timer creation flags, see grp_tm_timer_flags. + * @param pszName Timer name (will be copied). Max 31 chars. + * @param phTimer Where to store the timer handle on success. + */ +VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, + PFNTMTIMERDEV pfnCallback, void *pvUser, + uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) +{ + AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)), + VERR_INVALID_FLAGS); + + /* + * Allocate and init stuff. + */ + PTMTIMER pTimer; + int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); + if (RT_SUCCESS(rc)) + { + pTimer->enmType = TMTIMERTYPE_DEV; + pTimer->u.Dev.pfnTimer = pfnCallback; + pTimer->u.Dev.pDevIns = pDevIns; + pTimer->pvUser = pvUser; + if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT)) + pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns); + *phTimer = pTimer->hSelf; + Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName)); + } + + return rc; +} + + + + +/** + * Creates a USB device timer. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pUsbIns The USB device instance. + * @param enmClock The clock to use on this timer. + * @param pfnCallback Callback function. + * @param pvUser The user argument to the callback. + * @param fFlags Timer creation flags, see grp_tm_timer_flags. + * @param pszName Timer name (will be copied). Max 31 chars. + * @param phTimer Where to store the timer handle on success. + */ +VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock, + PFNTMTIMERUSB pfnCallback, void *pvUser, + uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) +{ + AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER); + + /* + * Allocate and init stuff. + */ + PTMTIMER pTimer; + int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); + if (RT_SUCCESS(rc)) + { + pTimer->enmType = TMTIMERTYPE_USB; + pTimer->u.Usb.pfnTimer = pfnCallback; + pTimer->u.Usb.pUsbIns = pUsbIns; + pTimer->pvUser = pvUser; + //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT)) + //{ + // if (pDevIns->pCritSectR3) + // pTimer->pCritSect = pUsbIns->pCritSectR3; + // else + // pTimer->pCritSect = IOMR3GetCritSect(pVM); + //} + *phTimer = pTimer->hSelf; + Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName)); + } + + return rc; +} + + +/** + * Creates a driver timer. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDrvIns Driver instance. + * @param enmClock The clock to use on this timer. + * @param pfnCallback Callback function. + * @param pvUser The user argument to the callback. + * @param fFlags Timer creation flags, see grp_tm_timer_flags. + * @param pszName Timer name (will be copied). Max 31 chars. + * @param phTimer Where to store the timer handle on success. + */ +VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser, + uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) +{ + AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)), + VERR_INVALID_FLAGS); + + /* + * Allocate and init stuff. + */ + PTMTIMER pTimer; + int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); + if (RT_SUCCESS(rc)) + { + pTimer->enmType = TMTIMERTYPE_DRV; + pTimer->u.Drv.pfnTimer = pfnCallback; + pTimer->u.Drv.pDrvIns = pDrvIns; + pTimer->pvUser = pvUser; + *phTimer = pTimer->hSelf; + Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName)); + } + + return rc; +} + + +/** + * Creates an internal timer. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param enmClock The clock to use on this timer. + * @param pfnCallback Callback function. + * @param pvUser User argument to be passed to the callback. + * @param fFlags Timer creation flags, see grp_tm_timer_flags. + * @param pszName Timer name (will be copied). Max 31 chars. + * @param phTimer Where to store the timer handle on success. + */ +VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, + uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) +{ + AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS); + AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), + VERR_INVALID_FLAGS); + + /* + * Allocate and init stuff. + */ + PTMTIMER pTimer; + int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); + if (RT_SUCCESS(rc)) + { + pTimer->enmType = TMTIMERTYPE_INTERNAL; + pTimer->u.Internal.pfnTimer = pfnCallback; + pTimer->pvUser = pvUser; + *phTimer = pTimer->hSelf; + Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName)); + } + + return rc; +} + + +/** + * Destroy a timer + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pQueue The queue the timer is on. + * @param pTimer Timer handle as returned by one of the create functions. + */ +static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) +{ + bool fActive = false; + bool fPending = false; + + AssertMsg( !pTimer->pCritSect + || VMR3GetState(pVM) != VMSTATE_RUNNING + || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName)); + + /* + * The rest of the game happens behind the lock, just + * like create does. All the work is done here. + */ + PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + + for (int cRetries = 1000;; cRetries--) + { + /* + * Change to the DESTROY state. + */ + TMTIMERSTATE const enmState = pTimer->enmState; + Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n", + pTimer, tmTimerState(enmState), pTimer->szName, cRetries)); + switch (enmState) + { + case TMTIMERSTATE_STOPPED: + case TMTIMERSTATE_EXPIRED_DELIVER: + break; + + case TMTIMERSTATE_ACTIVE: + fActive = true; + break; + + case TMTIMERSTATE_PENDING_STOP: + case TMTIMERSTATE_PENDING_STOP_SCHEDULE: + case TMTIMERSTATE_PENDING_RESCHEDULE: + fActive = true; + fPending = true; + break; + + case TMTIMERSTATE_PENDING_SCHEDULE: + fPending = true; + break; + + /* + * This shouldn't happen as the caller should make sure there are no races. + */ + case TMTIMERSTATE_EXPIRED_GET_UNLINK: + case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE: + case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE: + AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName)); + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + + AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName), + VERR_TM_UNSTABLE_STATE); + if (!RTThreadYield()) + RTThreadSleep(1); + + PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + continue; + + /* + * Invalid states. + */ + case TMTIMERSTATE_FREE: + case TMTIMERSTATE_DESTROY: + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE); + + default: + AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName)); + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + return VERR_TM_UNKNOWN_STATE; + } + + /* + * Try switch to the destroy state. + * This should always succeed as the caller should make sure there are no race. + */ + bool fRc; + TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc); + if (fRc) + break; + AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName)); + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + + AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName), + VERR_TM_UNSTABLE_STATE); + + PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + } + + /* + * Unlink from the active list. + */ + if (fActive) + { + const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer); + const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer); + if (pPrev) + tmTimerSetNext(pQueue, pPrev, pNext); + else + { + tmTimerQueueSetHead(pQueue, pQueue, pNext); + pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX; + } + if (pNext) + tmTimerSetPrev(pQueue, pNext, pPrev); + pTimer->idxNext = UINT32_MAX; + pTimer->idxPrev = UINT32_MAX; + } + + /* + * Unlink from the schedule list by running it. + */ + if (fPending) + { + Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n")); + STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a); + Assert(pQueue->idxSchedule < pQueue->cTimersAlloc); + tmTimerQueueSchedule(pVM, pQueue, pQueue); + STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a); + } + +#ifdef VBOX_WITH_STATISTICS + /* + * Deregister statistics. + */ + tmR3TimerDeregisterStats(pVM, pTimer); +#endif + + /* + * Change it to free state and update the queue accordingly. + */ + Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX); + + TM_SET_STATE(pTimer, TMTIMERSTATE_FREE); + + pQueue->cTimersFree += 1; + uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers); + if (idxTimer < pQueue->idxFreeHint) + pQueue->idxFreeHint = idxTimer; + +#ifdef VBOX_STRICT + tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy"); +#endif + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); + return VINF_SUCCESS; +} + + +/** + * Destroy a timer + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param hTimer Timer handle as returned by one of the create functions. + */ +VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer) +{ + /* We ignore NILs here. */ + if (hTimer == NIL_TMTIMERHANDLE) + return VINF_SUCCESS; + TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ + return tmR3TimerDestroy(pVM, pQueue, pTimer); +} + + +/** + * Destroy all timers owned by a device. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDevIns Device which timers should be destroyed. + */ +VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns) +{ + LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns)); + if (!pDevIns) + return VERR_INVALID_PARAMETER; + + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + uint32_t idxTimer = pQueue->cTimersAlloc; + while (idxTimer-- > 0) + { + PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; + if ( pTimer->enmType == TMTIMERTYPE_DEV + && pTimer->u.Dev.pDevIns == pDevIns + && pTimer->enmState < TMTIMERSTATE_DESTROY) + { + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + + int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); + AssertRC(rc); + + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + } + } + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + } + + LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; +} + + +/** + * Destroy all timers owned by a USB device. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pUsbIns USB device which timers should be destroyed. + */ +VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns) +{ + LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns)); + if (!pUsbIns) + return VERR_INVALID_PARAMETER; + + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + uint32_t idxTimer = pQueue->cTimersAlloc; + while (idxTimer-- > 0) + { + PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; + if ( pTimer->enmType == TMTIMERTYPE_USB + && pTimer->u.Usb.pUsbIns == pUsbIns + && pTimer->enmState < TMTIMERSTATE_DESTROY) + { + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + + int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); + AssertRC(rc); + + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + } + } + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + } + + LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; +} + + +/** + * Destroy all timers owned by a driver. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pDrvIns Driver which timers should be destroyed. + */ +VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns) +{ + LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns)); + if (!pDrvIns) + return VERR_INVALID_PARAMETER; + + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + uint32_t idxTimer = pQueue->cTimersAlloc; + while (idxTimer-- > 0) + { + PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; + if ( pTimer->enmType == TMTIMERTYPE_DRV + && pTimer->u.Drv.pDrvIns == pDrvIns + && pTimer->enmState < TMTIMERSTATE_DESTROY) + { + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + + int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); + AssertRC(rc); + + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + } + } + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + } + + LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; +} + + +/** + * Internal function for getting the clock time. + * + * @returns clock time. + * @param pVM The cross context VM structure. + * @param enmClock The clock. + */ +DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock) +{ + switch (enmClock) + { + case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM); + case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM); + case TMCLOCK_REAL: return TMRealGet(pVM); + case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */); + default: + AssertMsgFailed(("enmClock=%d\n", enmClock)); + return ~(uint64_t)0; + } +} + + +/** + * Checks if the sync queue has one or more expired timers. + * + * @returns true / false. + * + * @param pVM The cross context VM structure. + * @param enmClock The queue. + */ +DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock) +{ + const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire; + return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock); +} + + +/** + * Checks for expired timers in all the queues. + * + * @returns true / false. + * @param pVM The cross context VM structure. + */ +DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM) +{ + /* + * Combine the time calculation for the first two since we're not on EMT + * TMVirtualSyncGet only permits EMT. + */ + uint64_t u64Now = TMVirtualGetNoCheck(pVM); + if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now) + return true; + u64Now = pVM->tm.s.fVirtualSyncTicking + ? u64Now - pVM->tm.s.offVirtualSync + : pVM->tm.s.u64VirtualSync; + if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now) + return true; + + /* + * The remaining timers. + */ + if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL)) + return true; + if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC)) + return true; + return false; +} + + +/** + * Schedule timer callback. + * + * @param pTimer Timer handle. + * @param pvUser Pointer to the VM. + * @thread Timer thread. + * + * @remark We cannot do the scheduling and queues running from a timer handler + * since it's not executing in EMT, and even if it was it would be async + * and we wouldn't know the state of the affairs. + * So, we'll just raise the timer FF and force any REM execution to exit. + */ +static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/) +{ + PVM pVM = (PVM)pvUser; + PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; + NOREF(pTimer); + + AssertCompile(TMCLOCK_MAX == 4); + STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback); + +#ifdef DEBUG_Sander /* very annoying, keep it private. */ + if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)) + Log(("tmR3TimerCallback: timer event still pending!!\n")); +#endif + if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER) + && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */ + || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX + || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX + || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX + || tmR3AnyExpiredTimers(pVM) + ) + && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER) + && !pVM->tm.s.fRunningQueues + ) + { + Log5(("TM(%u): FF: 0 -> 1\n", __LINE__)); + VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); + VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE); + STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF); + } +} + + +/** + * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified + * non-empty timer queue. + * + * @param pVM The cross context VM structure. + * @param pQueue The queue to run. + * @param pTimer The head timer. Caller already check that this is + * not NULL. + */ +static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) +{ + VM_ASSERT_EMT(pVM); /** @todo relax this */ + + /* + * Run timers. + * + * We check the clock once and run all timers which are ACTIVE + * and have an expire time less or equal to the time we read. + * + * N.B. A generic unlink must be applied since other threads + * are allowed to mess with any active timer at any time. + * + * However, we only allow EMT to handle EXPIRED_PENDING + * timers, thus enabling the timer handler function to + * arm the timer again. + */ +/** @todo the above 'however' is outdated. */ + const uint64_t u64Now = tmClock(pVM, pQueue->enmClock); + while (pTimer->u64Expire <= u64Now) + { + PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer); + PPDMCRITSECT pCritSect = pTimer->pCritSect; + if (pCritSect) + { + STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking); + PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); + STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking); + } + Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n", + pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName)); + bool fRc; + TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc); + if (fRc) + { + Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */ + + /* unlink */ + const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer); + if (pPrev) + tmTimerSetNext(pQueue, pPrev, pNext); + else + { + tmTimerQueueSetHead(pQueue, pQueue, pNext); + pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX; + } + if (pNext) + tmTimerSetPrev(pQueue, pNext, pPrev); + pTimer->idxNext = UINT32_MAX; + pTimer->idxPrev = UINT32_MAX; + + /* fire */ + TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER); + STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer); + switch (pTimer->enmType) + { + case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break; + default: + AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName)); + break; + } + STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer); + + /* change the state if it wasn't changed already in the handler. */ + TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc); + Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState))); + } + if (pCritSect) + PDMCritSectLeave(pVM, pCritSect); + + /* Advance? */ + pTimer = pNext; + if (!pTimer) + break; + } /* run loop */ +} + + +/** + * Service one regular timer queue. + * + * @param pVM The cross context VM structure. + * @param pQueue The queue. + */ +static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue) +{ + Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC); + + /* + * Only one thread should be "doing" the queue. + */ + if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false)) + { + STAM_PROFILE_START(&pQueue->StatDo, s); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + + if (pQueue->idxSchedule != UINT32_MAX) + tmTimerQueueSchedule(pVM, pQueue, pQueue); + + PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue); + if (pHead) + tmR3TimerQueueRun(pVM, pQueue, pHead); + + PDMCritSectLeave(pVM, &pQueue->TimerLock); + STAM_PROFILE_STOP(&pQueue->StatDo, s); + ASMAtomicWriteBool(&pQueue->fBeingProcessed, false); + } +} + + +/** + * Schedules and runs any pending times in the timer queue for the + * synchronous virtual clock. + * + * This scheduling is a bit different from the other queues as it need + * to implement the special requirements of the timer synchronous virtual + * clock, thus this 2nd queue run function. + * + * @param pVM The cross context VM structure. + * + * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no + * longer important. + */ +static void tmR3TimerQueueRunVirtualSync(PVM pVM) +{ + PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC]; + VM_ASSERT_EMT(pVM); + Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock)); + + /* + * Any timers? + */ + PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue); + if (RT_UNLIKELY(!pNext)) + { + Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking); + return; + } + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun); + + /* + * Calculate the time frame for which we will dispatch timers. + * + * We use a time frame ranging from the current sync time (which is most likely the + * same as the head timer) and some configurable period (100000ns) up towards the + * current virtual time. This period might also need to be restricted by the catch-up + * rate so frequent calls to this function won't accelerate the time too much, however + * this will be implemented at a later point if necessary. + * + * Without this frame we would 1) having to run timers much more frequently + * and 2) lag behind at a steady rate. + */ + const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM); + uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp; + uint64_t u64Now; + if (!pVM->tm.s.fVirtualSyncTicking) + { + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready); + u64Now = pVM->tm.s.u64VirtualSync; + Assert(u64Now <= pNext->u64Expire); + } + else + { + /* Calc 'now'. */ + bool fStopCatchup = false; + bool fUpdateStuff = false; + uint64_t off = pVM->tm.s.offVirtualSync; + if (pVM->tm.s.fVirtualSyncCatchUp) + { + uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev; + if (RT_LIKELY(!(u64Delta >> 32))) + { + uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100); + if (off > u64Sub + offSyncGivenUp) + { + off -= u64Sub; + Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub)); + } + else + { + STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); + fStopCatchup = true; + off = offSyncGivenUp; + } + fUpdateStuff = true; + } + } + u64Now = u64VirtualNow - off; + + /* Adjust against last returned time. */ + uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync); + if (u64Last > u64Now) + { + u64Now = u64Last + 1; + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast); + } + + /* Check if stopped by expired timer. */ + uint64_t const u64Expire = pNext->u64Expire; + if (u64Now >= u64Expire) + { + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop); + u64Now = u64Expire; + ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); + Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp)); + } + else + { + ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); + if (fUpdateStuff) + { + ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off); + ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow); + ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); + if (fStopCatchup) + { + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); + Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow)); + } + } + } + } + + /* calc end of frame. */ + uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack; + if (u64Max > u64VirtualNow - offSyncGivenUp) + u64Max = u64VirtualNow - offSyncGivenUp; + + /* assert sanity */ + Assert(u64Now <= u64VirtualNow - offSyncGivenUp); + Assert(u64Max <= u64VirtualNow - offSyncGivenUp); + Assert(u64Now <= u64Max); + Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp); + + /* + * Process the expired timers moving the clock along as we progress. + */ +#ifdef VBOX_STRICT + uint64_t u64Prev = u64Now; NOREF(u64Prev); +#endif + while (pNext && pNext->u64Expire <= u64Max) + { + /* Advance */ + PTMTIMER pTimer = pNext; + pNext = tmTimerGetNext(pQueue, pTimer); + + /* Take the associated lock. */ + PPDMCRITSECT pCritSect = pTimer->pCritSect; + if (pCritSect) + { + STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking); + PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); + STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking); + } + + Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n", + pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName)); + + /* Advance the clock - don't permit timers to be out of order or armed + in the 'past'. */ +#ifdef VBOX_STRICT + AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName)); + u64Prev = pTimer->u64Expire; +#endif + ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); + + /* Unlink it, change the state and do the callout. */ + tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer); + TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER); + STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer); + switch (pTimer->enmType) + { + case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break; + case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break; + default: + AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName)); + break; + } + STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer); + + /* Change the state if it wasn't changed already in the handler. + Reset the Hz hint too since this is the same as TMTimerStop. */ + bool fRc; + TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc); + if (fRc && pTimer->uHzHint) + { + if (pTimer->uHzHint >= pQueue->uMaxHzHint) + ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16)); + pTimer->uHzHint = 0; + } + Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState))); + + /* Leave the associated lock. */ + if (pCritSect) + PDMCritSectLeave(pVM, pCritSect); + } /* run loop */ + + + /* + * Restart the clock if it was stopped to serve any timers, + * and start/adjust catch-up if necessary. + */ + if ( !pVM->tm.s.fVirtualSyncTicking + && pVM->tm.s.cVirtualTicking) + { + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart); + + /* calc the slack we've handed out. */ + const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM); + Assert(u64VirtualNow2 >= u64VirtualNow); + AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now)); + const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now; + STAM_STATS({ + if (offSlack) + { + PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack; + p->cPeriods++; + p->cTicks += offSlack; + if (p->cTicksMax < offSlack) p->cTicksMax = offSlack; + if (p->cTicksMin > offSlack) p->cTicksMin = offSlack; + } + }); + + /* Let the time run a little bit while we were busy running timers(?). */ + uint64_t u64Elapsed; +#define MAX_ELAPSED 30000U /* ns */ + if (offSlack > MAX_ELAPSED) + u64Elapsed = 0; + else + { + u64Elapsed = u64VirtualNow2 - u64VirtualNow; + if (u64Elapsed > MAX_ELAPSED) + u64Elapsed = MAX_ELAPSED; + u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0; + } +#undef MAX_ELAPSED + + /* Calc the current offset. */ + uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed; + Assert(!(offNew & RT_BIT_64(63))); + uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp; + Assert(!(offLag & RT_BIT_64(63))); + + /* + * Deal with starting, adjusting and stopping catchup. + */ + if (pVM->tm.s.fVirtualSyncCatchUp) + { + if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold) + { + /* stop */ + STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); + Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag)); + } + else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) + { + /* adjust */ + unsigned i = 0; + while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) + && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start) + i++; + if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage) + { + STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]); + ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage); + Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); + } + pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2; + } + else + { + /* give up */ + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp); + STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); + ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); + Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); + LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew)); + } + } + else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start) + { + if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) + { + /* start */ + STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c); + unsigned i = 0; + while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) + && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start) + i++; + STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]); + ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true); + Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); + } + else + { + /* don't bother */ + STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting); + ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); + Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag)); + LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew)); + } + } + + /* + * Update the offset and restart the clock. + */ + Assert(!(offNew & RT_BIT_64(63))); + ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew); + ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true); + } +} + + +/** + * Deals with stopped Virtual Sync clock. + * + * This is called by the forced action flag handling code in EM when it + * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they + * will block on the VirtualSyncLock until the pending timers has been executed + * and the clock restarted. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * + * @thread EMTs + */ +VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu) +{ + Log2(("TMR3VirtualSyncFF:\n")); + + /* + * The EMT doing the timers is diverted to them. + */ + if (pVCpu->idCpu == pVM->tm.s.idTimerCpu) + TMR3TimerQueuesDo(pVM); + /* + * The other EMTs will block on the virtual sync lock and the first owner + * will run the queue and thus restarting the clock. + * + * Note! This is very suboptimal code wrt to resuming execution when there + * are more than two Virtual CPUs, since they will all have to enter + * the critical section one by one. But it's a very simple solution + * which will have to do the job for now. + */ + else + { +/** @todo Optimize for SMP */ + STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a); + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); + if (pVM->tm.s.fVirtualSyncTicking) + { + STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */ + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + Log2(("TMR3VirtualSyncFF: ticking\n")); + } + else + { + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + + /* try run it. */ + PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); + if (pVM->tm.s.fVirtualSyncTicking) + Log2(("TMR3VirtualSyncFF: ticking (2)\n")); + else + { + ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true); + Log2(("TMR3VirtualSyncFF: running queue\n")); + + Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX); + tmR3TimerQueueRunVirtualSync(pVM); + if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */ + VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); + + ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false); + } + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */ + PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock); + } + } +} + + +/** + * Service the special virtual sync timer queue. + * + * @param pVM The cross context VM structure. + * @param pVCpuDst The destination VCpu. + */ +static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst) +{ + PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC]; + if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false)) + { + STAM_PROFILE_START(&pQueue->StatDo, s1); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); + ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true); + VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */ + + Assert(pQueue->idxSchedule == UINT32_MAX); + tmR3TimerQueueRunVirtualSync(pVM); + if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */ + VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); + + ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false); + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + PDMCritSectLeave(pVM, &pQueue->TimerLock); + STAM_PROFILE_STOP(&pQueue->StatDo, s1); + ASMAtomicWriteBool(&pQueue->fBeingProcessed, false); + } +} + + +/** + * Schedules and runs any pending timers. + * + * This is normally called from a forced action handler in EMT. + * + * @param pVM The cross context VM structure. + * + * @thread EMT (actually EMT0, but we fend off the others) + */ +VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM) +{ + /* + * Only the dedicated timer EMT should do stuff here. + * (fRunningQueues is only used as an indicator.) + */ + Assert(pVM->tm.s.idTimerCpu < pVM->cCpus); + PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; + if (VMMGetCpu(pVM) != pVCpuDst) + { + Assert(pVM->cCpus > 1); + return; + } + STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a); + Log2(("TMR3TimerQueuesDo:\n")); + Assert(!pVM->tm.s.fRunningQueues); + ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true); + + /* + * Process the queues. + */ + AssertCompile(TMCLOCK_MAX == 4); + + /* + * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) + */ + tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst); + + /* + * TMCLOCK_VIRTUAL + */ + tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]); + + /* + * TMCLOCK_TSC + */ + Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */ + + /* + * TMCLOCK_REAL + */ + tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]); + +#ifdef VBOX_STRICT + /* check that we didn't screw up. */ + tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo"); +#endif + + /* done */ + Log2(("TMR3TimerQueuesDo: returns void\n")); + ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false); + STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a); +} + + + +/** @name Saved state values + * @{ */ +#define TMTIMERSTATE_SAVED_PENDING_STOP 4 +#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7 +/** @} */ + + +/** + * Saves the state of a timer to a saved state. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param hTimer Timer to save. + * @param pSSM Save State Manager handle. + */ +VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM) +{ + VM_ASSERT_EMT(pVM); + TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ + LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM)); + + switch (pTimer->enmState) + { + case TMTIMERSTATE_STOPPED: + case TMTIMERSTATE_PENDING_STOP: + case TMTIMERSTATE_PENDING_STOP_SCHEDULE: + return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP); + + case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE: + case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE: + AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName)); + if (!RTThreadYield()) + RTThreadSleep(1); + RT_FALL_THRU(); + case TMTIMERSTATE_ACTIVE: + case TMTIMERSTATE_PENDING_SCHEDULE: + case TMTIMERSTATE_PENDING_RESCHEDULE: + SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE); + return SSMR3PutU64(pSSM, pTimer->u64Expire); + + case TMTIMERSTATE_EXPIRED_GET_UNLINK: + case TMTIMERSTATE_EXPIRED_DELIVER: + case TMTIMERSTATE_DESTROY: + case TMTIMERSTATE_FREE: + case TMTIMERSTATE_INVALID: + AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName)); + return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE); + } + + AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName)); + return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE); +} + + +/** + * Loads the state of a timer from a saved state. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param hTimer Handle of Timer to restore. + * @param pSSM Save State Manager handle. + */ +VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM) +{ + VM_ASSERT_EMT(pVM); + TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ + Assert(pSSM); + LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM)); + + /* + * Load the state and validate it. + */ + uint8_t u8State; + int rc = SSMR3GetU8(pSSM, &u8State); + if (RT_FAILURE(rc)) + return rc; + + /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ + if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1 + || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1) + u8State--; + + if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP + && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE) + { + AssertLogRelMsgFailed(("u8State=%d\n", u8State)); + return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE); + } + + /* Enter the critical sections to make TMTimerSet/Stop happy. */ + if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC) + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); + PPDMCRITSECT pCritSect = pTimer->pCritSect; + if (pCritSect) + PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); + + if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE) + { + /* + * Load the expire time. + */ + uint64_t u64Expire; + rc = SSMR3GetU64(pSSM, &u64Expire); + if (RT_FAILURE(rc)) + return rc; + + /* + * Set it. + */ + Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire)); + rc = TMTimerSet(pVM, hTimer, u64Expire); + } + else + { + /* + * Stop it. + */ + Log(("u8State=%d\n", u8State)); + rc = TMTimerStop(pVM, hTimer); + } + + if (pCritSect) + PDMCritSectLeave(pVM, pCritSect); + if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC) + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + + /* + * On failure set SSM status. + */ + if (RT_FAILURE(rc)) + rc = SSMR3HandleSetStatus(pSSM, rc); + return rc; +} + + +/** + * Skips the state of a timer in a given saved state. + * + * @returns VBox status. + * @param pSSM Save State Manager handle. + * @param pfActive Where to store whether the timer was active + * when the state was saved. + */ +VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive) +{ + Assert(pSSM); AssertPtr(pfActive); + LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive)); + + /* + * Load the state and validate it. + */ + uint8_t u8State; + int rc = SSMR3GetU8(pSSM, &u8State); + if (RT_FAILURE(rc)) + return rc; + + /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ + if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1 + || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1) + u8State--; + + if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP + && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE) + { + AssertLogRelMsgFailed(("u8State=%d\n", u8State)); + return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE); + } + + *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE); + if (*pfActive) + { + /* + * Load the expire time. + */ + uint64_t u64Expire; + rc = SSMR3GetU64(pSSM, &u64Expire); + } + + return rc; +} + + +/** + * Associates a critical section with a timer. + * + * The critical section will be entered prior to doing the timer call back, thus + * avoiding potential races between the timer thread and other threads trying to + * stop or adjust the timer expiration while it's being delivered. The timer + * thread will leave the critical section when the timer callback returns. + * + * In strict builds, ownership of the critical section will be asserted by + * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at + * runtime). + * + * @retval VINF_SUCCESS on success. + * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid + * (asserted). + * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic + * (asserted). + * @retval VERR_ALREADY_EXISTS if a critical section was already associated + * with the timer (asserted). + * @retval VERR_INVALID_STATE if the timer isn't stopped. + * + * @param pVM The cross context VM structure. + * @param hTimer The timer handle. + * @param pCritSect The critical section. The caller must make sure this + * is around for the life time of the timer. + * + * @thread Any, but the caller is responsible for making sure the timer is not + * active. + */ +VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect) +{ + TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ + AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER); + const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */ + AssertReturn(pszName, VERR_INVALID_PARAMETER); + AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS); + AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE); + AssertReturn( pTimer->enmType == TMTIMERTYPE_DEV + || pTimer->enmType == TMTIMERTYPE_DRV + || pTimer->enmType == TMTIMERTYPE_USB, + VERR_NOT_SUPPORTED); /* Not supported on internal timers, see tmRZTimerGetCritSect. */ + LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName)); + + pTimer->pCritSect = pCritSect; + return VINF_SUCCESS; +} + + +/** + * Get the real world UTC time adjusted for VM lag. + * + * @returns pTime. + * @param pVM The cross context VM structure. + * @param pTime Where to store the time. + */ +VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime) +{ + /* + * Get a stable set of VirtualSync parameters and calc the lag. + */ + uint64_t offVirtualSync; + uint64_t offVirtualSyncGivenUp; + do + { + offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync); + offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp); + } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync); + + Assert(offVirtualSync >= offVirtualSyncGivenUp); + uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp; + + /* + * Get current time and adjust for virtual sync lag and do time displacement. + */ + RTTimeNow(pTime); + RTTimeSpecSubNano(pTime, offLag); + RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC); + + /* + * Log details if the time changed radically (also triggers on first call). + */ + int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime)); + int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev; + if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2) + { + RTTIMESPEC NowAgain; + RTTimeNow(&NowAgain); + LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n", + RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain))); + if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0) + { + RTFILE hFile; + int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump, + RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE); + if (RT_SUCCESS(rc)) + { + char szMsg[256]; + size_t cch; + cch = RTStrPrintf(szMsg, sizeof(szMsg), + "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n", + RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)); + RTFileWrite(hFile, szMsg, cch, NULL); + RTFileClose(hFile); + } + } + } + + return pTime; +} + + +/** + * Pauses all clocks except TMCLOCK_REAL. + * + * @returns VBox status code, all errors are asserted. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @thread EMT corresponding to Pointer to the VMCPU. + */ +VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu) +{ + VMCPU_ASSERT_EMT(pVCpu); + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ + + /* + * The shared virtual clock (includes virtual sync which is tied to it). + */ + int rc = tmVirtualPauseLocked(pVM); + AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); + + /* + * Pause the TSC last since it is normally linked to the virtual + * sync clock, so the above code may actually stop both clocks. + */ + if (!pVM->tm.s.fTSCTiedToExecution) + { + rc = tmCpuTickPauseLocked(pVM, pVCpu); + AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); + } + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + /* + * Update cNsTotal and stats. + */ + Assert(!pVCpu->tm.s.fSuspended); + uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal; + uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted; + +# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS) + STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat); + int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat; + if (cNsOtherNewDelta > 0) + STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta); +# endif + + uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1); + pVCpu->tm.s.nsStartTotal = cNsTotalNew; + pVCpu->tm.s.fSuspended = true; + pVCpu->tm.s.cNsTotalStat = cNsTotalNew; + pVCpu->tm.s.cNsOtherStat = cNsOtherNew; + ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1); +#endif + + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + return VINF_SUCCESS; +} + + +/** + * Resumes all clocks except TMCLOCK_REAL. + * + * @returns VBox status code, all errors are asserted. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @thread EMT corresponding to Pointer to the VMCPU. + */ +VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu) +{ + VMCPU_ASSERT_EMT(pVCpu); + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + /* + * Set u64NsTsStartTotal. There is no need to back this out if either of + * the two calls below fail. + */ + uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1); + pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal; + pVCpu->tm.s.fSuspended = false; + ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1); +#endif + + /* + * Resume the TSC first since it is normally linked to the virtual sync + * clock, so it may actually not be resumed until we've executed the code + * below. + */ + if (!pVM->tm.s.fTSCTiedToExecution) + { + int rc = tmCpuTickResumeLocked(pVM, pVCpu); + AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); + } + + /* + * The shared virtual clock (includes virtual sync which is tied to it). + */ + int rc = tmVirtualResumeLocked(pVM); + + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + return rc; +} + + +/** + * Sets the warp drive percent of the virtual time. + * + * @returns VBox status code. + * @param pUVM The user mode VM structure. + * @param u32Percent The new percentage. 100 means normal operation. + */ +VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent) +{ + return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent); +} + + +/** + * EMT worker for TMR3SetWarpDrive. + * + * @returns VBox status code. + * @param pUVM The user mode VM handle. + * @param u32Percent See TMR3SetWarpDrive(). + * @internal + */ +static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent) +{ + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); + PVMCPU pVCpu = VMMGetCpu(pVM); + + /* + * Validate it. + */ + AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000, + ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent), + VERR_INVALID_PARAMETER); + +/** @todo This isn't a feature specific to virtual time, move the variables to + * TM level and make it affect TMR3UTCNow as well! */ + + PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ + + /* + * If the time is running we'll have to pause it before we can change + * the warp drive settings. + */ + bool fPaused = !!pVM->tm.s.cVirtualTicking; + if (fPaused) /** @todo this isn't really working, but wtf. */ + TMR3NotifySuspend(pVM, pVCpu); + + /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */ + pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent; + pVM->tm.s.fVirtualWarpDrive = u32Percent != 100; + LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n", + pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive)); + + if (fPaused) + TMR3NotifyResume(pVM, pVCpu); + + PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); + return VINF_SUCCESS; +} + + +/** + * Gets the current TMCLOCK_VIRTUAL time without checking + * timers or anything. + * + * @returns The timestamp. + * @param pUVM The user mode VM structure. + * + * @remarks See TMVirtualGetNoCheck. + */ +VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); + return TMVirtualGetNoCheck(pVM); +} + + +/** + * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking + * timers or anything. + * + * @returns The timestamp in milliseconds. + * @param pUVM The user mode VM structure. + * + * @remarks See TMVirtualGetNoCheck. + */ +VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); + return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM)); +} + + +/** + * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking + * timers or anything. + * + * @returns The timestamp in microseconds. + * @param pUVM The user mode VM structure. + * + * @remarks See TMVirtualGetNoCheck. + */ +VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); + return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM)); +} + + +/** + * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking + * timers or anything. + * + * @returns The timestamp in nanoseconds. + * @param pUVM The user mode VM structure. + * + * @remarks See TMVirtualGetNoCheck. + */ +VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); + return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM)); +} + + +/** + * Gets the current warp drive percent. + * + * @returns The warp drive percent. + * @param pUVM The user mode VM structure. + */ +VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); + return pVM->tm.s.u32VirtualWarpDrivePercentage; +} + + +#if 0 /* unused - needs a little updating after @bugref{9941}*/ +/** + * Gets the performance information for one virtual CPU as seen by the VMM. + * + * The returned times covers the period where the VM is running and will be + * reset when restoring a previous VM state (at least for the time being). + * + * @retval VINF_SUCCESS on success. + * @retval VERR_NOT_IMPLEMENTED if not compiled in. + * @retval VERR_INVALID_STATE if the VM handle is bad. + * @retval VERR_INVALID_CPU_ID if idCpu is out of range. + * + * @param pVM The cross context VM structure. + * @param idCpu The ID of the virtual CPU which times to get. + * @param pcNsTotal Where to store the total run time (nano seconds) of + * the CPU, i.e. the sum of the three other returns. + * Optional. + * @param pcNsExecuting Where to store the time (nano seconds) spent + * executing guest code. Optional. + * @param pcNsHalted Where to store the time (nano seconds) spent + * halted. Optional + * @param pcNsOther Where to store the time (nano seconds) spent + * preempted by the host scheduler, on virtualization + * overhead and on other tasks. + */ +VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting, + uint64_t *pcNsHalted, uint64_t *pcNsOther) +{ + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE); + AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + /* + * Get a stable result set. + * This should be way quicker than an EMT request. + */ + PVMCPU pVCpu = pVM->apCpusR3[idCpu]; + uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); + uint64_t cNsTotal = pVCpu->tm.s.cNsTotal; + uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting; + uint64_t cNsHalted = pVCpu->tm.s.cNsHalted; + uint64_t cNsOther = pVCpu->tm.s.cNsOther; + while ( (uTimesGen & 1) /* update in progress */ + || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)) + { + RTThreadYield(); + uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); + cNsTotal = pVCpu->tm.s.cNsTotal; + cNsExecuting = pVCpu->tm.s.cNsExecuting; + cNsHalted = pVCpu->tm.s.cNsHalted; + cNsOther = pVCpu->tm.s.cNsOther; + } + + /* + * Fill in the return values. + */ + if (pcNsTotal) + *pcNsTotal = cNsTotal; + if (pcNsExecuting) + *pcNsExecuting = cNsExecuting; + if (pcNsHalted) + *pcNsHalted = cNsHalted; + if (pcNsOther) + *pcNsOther = cNsOther; + + return VINF_SUCCESS; + +#else + return VERR_NOT_IMPLEMENTED; +#endif +} +#endif /* unused */ + + +/** + * Gets the performance information for one virtual CPU as seen by the VMM in + * percents. + * + * The returned times covers the period where the VM is running and will be + * reset when restoring a previous VM state (at least for the time being). + * + * @retval VINF_SUCCESS on success. + * @retval VERR_NOT_IMPLEMENTED if not compiled in. + * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad. + * @retval VERR_INVALID_CPU_ID if idCpu is out of range. + * + * @param pUVM The usermode VM structure. + * @param idCpu The ID of the virtual CPU which times to get. + * @param pcMsInterval Where to store the interval of the percentages in + * milliseconds. Optional. + * @param pcPctExecuting Where to return the percentage of time spent + * executing guest code. Optional. + * @param pcPctHalted Where to return the percentage of time spent halted. + * Optional + * @param pcPctOther Where to return the percentage of time spent + * preempted by the host scheduler, on virtualization + * overhead and on other tasks. + */ +VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting, + uint8_t *pcPctHalted, uint8_t *pcPctOther) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); + AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + TMCPULOADSTATE volatile *pState; + if (idCpu == VMCPUID_ALL) + pState = &pVM->tm.s.CpuLoad; + else + pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad; + + if (pcMsInterval) + *pcMsInterval = RT_MS_1SEC; + if (pcPctExecuting) + *pcPctExecuting = pState->cPctExecuting; + if (pcPctHalted) + *pcPctHalted = pState->cPctHalted; + if (pcPctOther) + *pcPctOther = pState->cPctOther; + + return VINF_SUCCESS; + +#else + RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther); + return VERR_NOT_IMPLEMENTED; +#endif +} + +#ifndef VBOX_WITHOUT_NS_ACCOUNTING + +/** + * Helper for tmR3CpuLoadTimer. + * + * @param pState The state to update. + * @param cNsTotal Total time. + * @param cNsExecuting Time executing. + * @param cNsHalted Time halted. + */ +DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted) +{ + /* Calc & update deltas */ + uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal; + uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting; + uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted; + + if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta) + { /* likely */ } + else + { + /* Just adjust the executing and halted values down to match the total delta. */ + uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta; + uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64; + cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted; + cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted; + /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */ + } + + pState->cNsPrevExecuting = cNsExecuting; + pState->cNsPrevHalted = cNsHalted; + pState->cNsPrevTotal = cNsTotal; + + /* Calc pcts. */ + uint8_t cPctExecuting, cPctHalted, cPctOther; + if (!cNsTotalDelta) + { + cPctExecuting = 0; + cPctHalted = 100; + cPctOther = 0; + } + else if (cNsTotalDelta < UINT64_MAX / 4) + { + cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta); + cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta); + cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta); + } + else + { + cPctExecuting = 0; + cPctHalted = 100; + cPctOther = 0; + } + + /* Update percentages: */ + size_t idxHistory = pState->idxHistory + 1; + if (idxHistory >= RT_ELEMENTS(pState->aHistory)) + idxHistory = 0; + + pState->cPctExecuting = cPctExecuting; + pState->cPctHalted = cPctHalted; + pState->cPctOther = cPctOther; + + pState->aHistory[idxHistory].cPctExecuting = cPctExecuting; + pState->aHistory[idxHistory].cPctHalted = cPctHalted; + pState->aHistory[idxHistory].cPctOther = cPctOther; + + pState->idxHistory = (uint16_t)idxHistory; + if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory)) + pState->cHistoryEntries++; +} + + +/** + * @callback_method_impl{FNTMTIMERINT, + * Timer callback that calculates the CPU load since the last + * time it was called.} + */ +static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser) +{ + /* + * Re-arm the timer first. + */ + int rc = TMTimerSetMillies(pVM, hTimer, 1000); + AssertLogRelRC(rc); + NOREF(pvUser); + + /* + * Update the values for each CPU. + */ + uint64_t cNsTotalAll = 0; + uint64_t cNsExecutingAll = 0; + uint64_t cNsHaltedAll = 0; + for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++) + { + PVMCPU pVCpu = pVM->apCpusR3[iCpu]; + + /* Try get a stable data set. */ + uint32_t cTries = 3; + uint64_t nsNow = RTTimeNanoTS(); + uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); + bool fSuspended = pVCpu->tm.s.fSuspended; + uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal; + uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting; + uint64_t cNsHalted = pVCpu->tm.s.cNsHalted; + while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */ + || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))) + { + if (!--cTries) + break; + ASMNopPause(); + nsNow = RTTimeNanoTS(); + uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); + fSuspended = pVCpu->tm.s.fSuspended; + nsStartTotal = pVCpu->tm.s.nsStartTotal; + cNsExecuting = pVCpu->tm.s.cNsExecuting; + cNsHalted = pVCpu->tm.s.cNsHalted; + } + + /* Totals */ + uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal; + cNsTotalAll += cNsTotal; + cNsExecutingAll += cNsExecuting; + cNsHaltedAll += cNsHalted; + + /* Calc the PCTs and update the state. */ + tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted); + + /* Tell the VCpu to update the other and total stat members. */ + ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true); + } + + /* + * Update the value for all the CPUs. + */ + tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll); + +} + +#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */ + + +/** + * @callback_method_impl{PFNVMMEMTRENDEZVOUS, + * Worker for TMR3CpuTickParavirtEnable} + */ +static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData) +{ + AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData); + Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */ + Assert(tmR3HasFixedTSC(pVM)); + + if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET) + { + /* + * The return value of TMCpuTickGet() and the guest's TSC value for each + * CPU must remain constant across the TM TSC mode-switch. Thus we have + * the following equation (new/old signifies the new/old tsc modes): + * uNewTsc = uOldTsc + * + * Where (see tmCpuTickGetInternal): + * uOldTsc = uRawOldTsc - offTscRawSrcOld + * uNewTsc = uRawNewTsc - offTscRawSrcNew + * + * Solve it for offTscRawSrcNew without replacing uOldTsc: + * uRawNewTsc - offTscRawSrcNew = uOldTsc + * => -offTscRawSrcNew = uOldTsc - uRawNewTsc + * => offTscRawSrcNew = uRawNewTsc - uOldTsc + */ + uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM); + uint64_t uRawNewTsc = SUPReadTsc(); + uint32_t cCpus = pVM->cCpus; + for (uint32_t i = 0; i < cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc; + pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc; + Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */ + } + + LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode), + tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET))); + pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET; + } + return VINF_SUCCESS; +} + + +/** + * Notify TM that the guest has enabled usage of a paravirtualized TSC. + * + * This may perform a EMT rendezvous and change the TSC virtualization mode. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM) +{ + int rc = VINF_SUCCESS; + if (pVM->tm.s.fTSCModeSwitchAllowed) + rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL); + else + LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n", + tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET))); + pVM->tm.s.fParavirtTscEnabled = true; + return rc; +} + + +/** + * @callback_method_impl{PFNVMMEMTRENDEZVOUS, + * Worker for TMR3CpuTickParavirtDisable} + */ +static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData) +{ + AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); + RT_NOREF1(pvData); + + if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET + && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode) + { + /* + * See tmR3CpuTickParavirtEnable for an explanation of the conversion math. + */ + uint64_t uRawOldTsc = SUPReadTsc(); + uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM); + uint32_t cCpus = pVM->cCpus; + for (uint32_t i = 0; i < cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc; + pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc; + Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */ + + /* Update the last-seen tick here as we havent't been updating it (as we don't + need it) while in pure TSC-offsetting mode. */ + pVCpu->tm.s.u64TSCLastSeen = uOldTsc; + } + + LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode), + tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode))); + pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode; + } + return VINF_SUCCESS; +} + + +/** + * Notify TM that the guest has disabled usage of a paravirtualized TSC. + * + * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will + * perform an EMT rendezvous to revert those changes. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM) +{ + int rc = VINF_SUCCESS; + if (pVM->tm.s.fTSCModeSwitchAllowed) + rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL); + pVM->tm.s.fParavirtTscEnabled = false; + return rc; +} + + +/** + * Check whether the guest can be presented a fixed rate & monotonic TSC. + * + * @returns true if TSC is stable, false otherwise. + * @param pVM The cross context VM structure. + * @param fWithParavirtEnabled Whether it's fixed & monotonic when + * paravirt. TSC is enabled or not. + * + * @remarks Must be called only after TMR3InitFinalize(). + */ +VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled) +{ + /** @todo figure out what exactly we want here later. */ + NOREF(fWithParavirtEnabled); + PSUPGLOBALINFOPAGE pGip; + return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */ + && ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */ + || (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */ +} + + +/** + * Gets the 5 char clock name for the info tables. + * + * @returns The name. + * @param enmClock The clock. + */ +DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock) +{ + switch (enmClock) + { + case TMCLOCK_REAL: return "Real "; + case TMCLOCK_VIRTUAL: return "Virt "; + case TMCLOCK_VIRTUAL_SYNC: return "VrSy "; + case TMCLOCK_TSC: return "TSC "; + default: return "Bad "; + } +} + + +/** + * Display all timers. + * + * @param pVM The cross context VM structure. + * @param pHlp The info helpers. + * @param pszArgs Arguments, ignored. + */ +static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) +{ + NOREF(pszArgs); + pHlp->pfnPrintf(pHlp, + "Timers (pVM=%p)\n" + "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n", + pVM, + sizeof(RTR3PTR) * 2, "pTimerR3 ", + sizeof(int32_t) * 2, "offNext ", + sizeof(int32_t) * 2, "offPrev ", + sizeof(int32_t) * 2, "offSched ", + "Time", + "Expire", + "HzHint", + "State"); + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock); + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++) + { + PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; + TMTIMERSTATE enmState = pTimer->enmState; + if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID) + pHlp->pfnPrintf(pHlp, + "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n", + pTimer, + pTimer->idxNext, + pTimer->idxPrev, + pTimer->idxScheduleNext, + pszClock, + TMTimerGet(pVM, pTimer->hSelf), + pTimer->u64Expire, + pTimer->uHzHint, + tmTimerState(enmState), + pTimer->szName); + } + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + } +} + + +/** + * Display all active timers. + * + * @param pVM The cross context VM structure. + * @param pHlp The info helpers. + * @param pszArgs Arguments, ignored. + */ +static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) +{ + NOREF(pszArgs); + pHlp->pfnPrintf(pHlp, + "Active Timers (pVM=%p)\n" + "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n", + pVM, + sizeof(RTR3PTR) * 2, "pTimerR3 ", + sizeof(int32_t) * 2, "offNext ", + sizeof(int32_t) * 2, "offPrev ", + sizeof(int32_t) * 2, "offSched ", + "Time", + "Expire", + "HzHint", + "State"); + for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) + { + PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; + const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock); + PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); + PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); + + for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue); + pTimer; + pTimer = tmTimerGetNext(pQueue, pTimer)) + { + pHlp->pfnPrintf(pHlp, + "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n", + pTimer, + pTimer->idxNext, + pTimer->idxPrev, + pTimer->idxScheduleNext, + pszClock, + TMTimerGet(pVM, pTimer->hSelf), + pTimer->u64Expire, + pTimer->uHzHint, + tmTimerState(pTimer->enmState), + pTimer->szName); + } + + PDMCritSectLeave(pVM, &pQueue->TimerLock); + PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); + } +} + + +/** + * Display all clocks. + * + * @param pVM The cross context VM structure. + * @param pHlp The info helpers. + * @param pszArgs Arguments, ignored. + */ +static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) +{ + NOREF(pszArgs); + + /* + * Read the times first to avoid more than necessary time variation. + */ + const uint64_t u64Virtual = TMVirtualGet(pVM); + const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM); + const uint64_t u64Real = TMRealGet(pVM); + + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + uint64_t u64TSC = TMCpuTickGet(pVCpu); + + /* + * TSC + */ + pHlp->pfnPrintf(pHlp, + "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized", + u64TSC, u64TSC, TMCpuTicksPerSecond(pVM), + pVCpu->tm.s.fTSCTicking ? "ticking" : "paused"); + if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) + { + pHlp->pfnPrintf(pHlp, " - real tsc offset"); + if (pVCpu->tm.s.offTSCRawSrc) + pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc); + } + else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) + pHlp->pfnPrintf(pHlp, " - native api"); + else + pHlp->pfnPrintf(pHlp, " - virtual clock"); + pHlp->pfnPrintf(pHlp, "\n"); + } + + /* + * virtual + */ + pHlp->pfnPrintf(pHlp, + " Virtual: %18RU64 (%#016RX64) %RU64Hz %s", + u64Virtual, u64Virtual, TMVirtualGetFreq(pVM), + pVM->tm.s.cVirtualTicking ? "ticking" : "paused"); + if (pVM->tm.s.fVirtualWarpDrive) + pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage); + pHlp->pfnPrintf(pHlp, "\n"); + + /* + * virtual sync + */ + pHlp->pfnPrintf(pHlp, + "VirtSync: %18RU64 (%#016RX64) %s%s", + u64VirtualSync, u64VirtualSync, + pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused", + pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : ""); + if (pVM->tm.s.offVirtualSync) + { + pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync); + if (pVM->tm.s.u32VirtualSyncCatchUpPercentage) + pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage); + } + pHlp->pfnPrintf(pHlp, "\n"); + + /* + * real + */ + pHlp->pfnPrintf(pHlp, + " Real: %18RU64 (%#016RX64) %RU64Hz\n", + u64Real, u64Real, TMRealGetFreq(pVM)); +} + + +/** + * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width. + */ +DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth) +{ + if (cchWidth != 100) + uPct = (size_t)(((double)uPct + 0.5) * ((double)cchWidth / 100.0)); + return uPct; +} + + +/** + * @callback_method_impl{FNDBGFINFOARGVINT} + */ +static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs) +{ + char szTmp[1024]; + + /* + * Parse arguments. + */ + PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad; + VMCPUID idCpu = 0; + bool fAllCpus = true; + bool fExpGraph = true; + uint32_t cchWidth = 80; + uint32_t cPeriods = RT_ELEMENTS(pState->aHistory); + uint32_t cRows = 60; + + static const RTGETOPTDEF s_aOptions[] = + { + { "all", 'a', RTGETOPT_REQ_NOTHING }, + { "cpu", 'c', RTGETOPT_REQ_UINT32 }, + { "periods", 'p', RTGETOPT_REQ_UINT32 }, + { "rows", 'r', RTGETOPT_REQ_UINT32 }, + { "uni", 'u', RTGETOPT_REQ_NOTHING }, + { "uniform", 'u', RTGETOPT_REQ_NOTHING }, + { "width", 'w', RTGETOPT_REQ_UINT32 }, + { "exp", 'x', RTGETOPT_REQ_NOTHING }, + { "exponential", 'x', RTGETOPT_REQ_NOTHING }, + }; + + RTGETOPTSTATE State; + int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/); + AssertRC(rc); + + RTGETOPTUNION ValueUnion; + while ((rc = RTGetOpt(&State, &ValueUnion)) != 0) + { + switch (rc) + { + case 'a': + pState = &pVM->apCpusR3[0]->tm.s.CpuLoad; + idCpu = 0; + fAllCpus = true; + break; + case 'c': + if (ValueUnion.u32 < pVM->cCpus) + { + pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad; + idCpu = ValueUnion.u32; + } + else + { + pState = &pVM->tm.s.CpuLoad; + idCpu = VMCPUID_ALL; + } + fAllCpus = false; + break; + case 'p': + cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory)); + break; + case 'r': + cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory)); + break; + case 'w': + cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32); + break; + case 'x': + fExpGraph = true; + break; + case 'u': + fExpGraph = false; + break; + case 'h': + pHlp->pfnPrintf(pHlp, + "Usage: cpuload [parameters]\n" + " all, -a\n" + " Show statistics for all CPUs. (default)\n" + " cpu=id, -c id\n" + " Show statistics for the specified CPU ID. Show combined stats if out of range.\n" + " periods=count, -p count\n" + " Number of periods to show. Default: all\n" + " rows=count, -r count\n" + " Number of rows in the graphs. Default: 60\n" + " width=count, -w count\n" + " Core graph width in characters. Default: 80\n" + " exp, exponential, -e\n" + " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n" + " rest into increasinly larger chunks. Default.\n" + " uniform, uni, -u\n" + " Combine periods into rows in a uniform manner for the whole graph.\n"); + return; + default: + pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State); + return; + } + } + + /* + * Do the job. + */ + for (;;) + { + uint32_t const cMaxPeriods = pState->cHistoryEntries; + if (cPeriods > cMaxPeriods) + cPeriods = cMaxPeriods; + if (cPeriods > 0) + { + if (fAllCpus) + { + if (idCpu > 0) + pHlp->pfnPrintf(pHlp, "\n"); + pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n" + " -------------------------------\n", idCpu); + } + + /* + * Figure number of periods per chunk. We can either do this in a linear + * fashion or a exponential fashion that compresses old history more. + */ + size_t cPerRowDecrement = 0; + size_t cPeriodsPerRow = 1; + if (cRows < cPeriods) + { + if (!fExpGraph) + cPeriodsPerRow = (cPeriods + cRows / 2) / cRows; + else + { + /* The last 30 seconds or half of the rows are 1:1, the other part + is in increasing period counts. Code is a little simple but seems + to do the job most of the time, which is all I have time now. */ + size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2); + size_t cRestRows = cRows - cPeriodsOneToOne; + size_t cRestPeriods = cPeriods - cPeriodsOneToOne; + + size_t cPeriodsInWindow = 0; + for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++) + cPeriodsInWindow += cPeriodsPerRow + 1; + + size_t iLower = 1; + while (cPeriodsInWindow < cRestPeriods) + { + cPeriodsPerRow++; + cPeriodsInWindow += cPeriodsPerRow; + cPeriodsInWindow -= iLower; + iLower++; + } + + cPerRowDecrement = 1; + } + } + + /* + * Do the work. + */ + size_t cPctExecuting = 0; + size_t cPctOther = 0; + size_t cPeriodsAccumulated = 0; + + size_t cRowsLeft = cRows; + size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory); + while (cPeriods-- > 0) + { + iHistory++; + if (iHistory >= RT_ELEMENTS(pState->aHistory)) + iHistory = 0; + + cPctExecuting += pState->aHistory[iHistory].cPctExecuting; + cPctOther += pState->aHistory[iHistory].cPctOther; + cPeriodsAccumulated += 1; + if ( cPeriodsAccumulated >= cPeriodsPerRow + || cPeriods < cRowsLeft) + { + /* + * Format and output the line. + */ + size_t offTmp = 0; + size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth); + while (i-- > 0) + szTmp[offTmp++] = '#'; + i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth); + while (i-- > 0) + szTmp[offTmp++] = 'O'; + szTmp[offTmp] = '\0'; + + cRowsLeft--; + pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp); + + /* Reset the state: */ + cPctExecuting = 0; + cPctOther = 0; + cPeriodsAccumulated = 0; + if (cPeriodsPerRow > cPerRowDecrement) + cPeriodsPerRow -= cPerRowDecrement; + } + } + pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu); + + } + else + pHlp->pfnPrintf(pHlp, "No load data.\n"); + + /* + * Next CPU if we're display all. + */ + if (!fAllCpus) + break; + idCpu++; + if (idCpu >= pVM->cCpus) + break; + pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad; + } + +} + + +/** + * Gets the descriptive TM TSC mode name given the enum value. + * + * @returns The name. + * @param enmMode The mode to name. + */ +static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode) +{ + switch (enmMode) + { + case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset"; + case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated"; + case TMTSCMODE_DYNAMIC: return "Dynamic"; + case TMTSCMODE_NATIVE_API: return "NativeApi"; + default: return "???"; + } +} + + +/** + * Gets the descriptive TM TSC mode name. + * + * @returns The name. + * @param pVM The cross context VM structure. + */ +static const char *tmR3GetTSCModeName(PVM pVM) +{ + Assert(pVM); + return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode); +} + -- cgit v1.2.3