From f215e02bf85f68d3a6106c2a1f4f7f063f819064 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Thu, 11 Apr 2024 10:17:27 +0200 Subject: Adding upstream version 7.0.14-dfsg. Signed-off-by: Daniel Baumann --- src/VBox/VMM/VMMR3/VMM.cpp | 2582 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2582 insertions(+) create mode 100644 src/VBox/VMM/VMMR3/VMM.cpp (limited to 'src/VBox/VMM/VMMR3/VMM.cpp') diff --git a/src/VBox/VMM/VMMR3/VMM.cpp b/src/VBox/VMM/VMMR3/VMM.cpp new file mode 100644 index 00000000..e235184c --- /dev/null +++ b/src/VBox/VMM/VMMR3/VMM.cpp @@ -0,0 +1,2582 @@ +/* $Id: VMM.cpp $ */ +/** @file + * VMM - The Virtual Machine Monitor Core. + */ + +/* + * Copyright (C) 2006-2023 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see . + * + * SPDX-License-Identifier: GPL-3.0-only + */ + +//#define NO_SUPCALLR0VMM + +/** @page pg_vmm VMM - The Virtual Machine Monitor + * + * The VMM component is two things at the moment, it's a component doing a few + * management and routing tasks, and it's the whole virtual machine monitor + * thing. For hysterical reasons, it is not doing all the management that one + * would expect, this is instead done by @ref pg_vm. We'll address this + * misdesign eventually, maybe. + * + * VMM is made up of these components: + * - @subpage pg_cfgm + * - @subpage pg_cpum + * - @subpage pg_dbgf + * - @subpage pg_em + * - @subpage pg_gim + * - @subpage pg_gmm + * - @subpage pg_gvmm + * - @subpage pg_hm + * - @subpage pg_iem + * - @subpage pg_iom + * - @subpage pg_mm + * - @subpage pg_nem + * - @subpage pg_pdm + * - @subpage pg_pgm + * - @subpage pg_selm + * - @subpage pg_ssm + * - @subpage pg_stam + * - @subpage pg_tm + * - @subpage pg_trpm + * - @subpage pg_vm + * + * + * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw + * + * + * @section sec_vmmstate VMM State + * + * @image html VM_Statechart_Diagram.gif + * + * To be written. + * + * + * @subsection subsec_vmm_init VMM Initialization + * + * To be written. + * + * + * @subsection subsec_vmm_term VMM Termination + * + * To be written. + * + * + * @section sec_vmm_limits VMM Limits + * + * There are various resource limits imposed by the VMM and it's + * sub-components. We'll list some of them here. + * + * On 64-bit hosts: + * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES), + * can be increased up to 64K - 1. + * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and + * ROM pages. The limit is imposed by the 32-bit page ID used by GMM. + * - A VM can be assigned all the memory we can use (16TB), however, the + * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB). + * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). + * + * On 32-bit hosts: + * - Max 127 VMs. Imposed by GMM's per page structure. + * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and + * ROM pages. The limit is imposed by the 28-bit page ID used + * internally in GMM. It is also limited by PAE. + * - A VM can be assigned all the memory GMM can allocate, however, the + * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB). + * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). + * + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_VMM +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +# include +#endif +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "VMMInternal.h" +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The saved state version. */ +#define VMM_SAVED_STATE_VERSION 4 +/** The saved state version used by v3.0 and earlier. (Teleportation) */ +#define VMM_SAVED_STATE_VERSION_3_0 3 + +/** Macro for flushing the ring-0 logging. */ +#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \ + do { \ + size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \ + if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \ + || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \ + { /* likely? */ } \ + else \ + vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \ + } while (0) + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +static void vmmR3InitRegisterStats(PVM pVM); +static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM); +static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); +#if 0 /* pointless when timers doesn't run on EMT */ +static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser); +#endif +static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller, + uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser); +static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu); +static FNRTTHREAD vmmR3LogFlusher; +static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, + PRTLOGGER pDstLogger); +static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); + + + +/** + * Initializes the VMM. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(int) VMMR3Init(PVM pVM) +{ + LogFlow(("VMMR3Init\n")); + + /* + * Assert alignment, sizes and order. + */ + AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding)); + AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding)); + + /* + * Init basic VM VMM members. + */ + pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL; + pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; + pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; + pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; + pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; + pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI; + pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI; + pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT; + pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT; + pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS(); + +#if 0 /* pointless when timers doesn't run on EMT */ + /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms} + * The EMT yield interval. The EMT yielding is a hack we employ to play a + * bit nicer with the rest of the system (like for instance the GUI). + */ + int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies, + 23 /* Value arrived at after experimenting with the grub boot prompt. */); + AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc); +#endif + + /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true} + * Controls whether we employ per-cpu preemption timers to limit the time + * spent executing guest code. This option is not available on all + * platforms and we will silently ignore this setting then. If we are + * running in VT-x mode, we will use the VMX-preemption timer instead of + * this one when possible. + */ + PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM"); + int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true); + AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc); + + /* + * Initialize the VMM rendezvous semaphores. + */ + pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus); + if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered) + return VERR_NO_MEMORY; + for (VMCPUID i = 0; i < pVM->cCpus; i++) + pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); + AssertRCReturn(rc, rc); + } + rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne); + AssertRCReturn(rc, rc); + rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); + AssertRCReturn(rc, rc); + rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone); + AssertRCReturn(rc, rc); + rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller); + AssertRCReturn(rc, rc); + rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush); + AssertRCReturn(rc, rc); + rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop); + AssertRCReturn(rc, rc); + rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller); + AssertRCReturn(rc, rc); + rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller); + AssertRCReturn(rc, rc); + + /* + * Register the saved state data unit. + */ + rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR), + NULL, NULL, NULL, + NULL, vmmR3Save, NULL, + NULL, vmmR3Load, NULL); + if (RT_FAILURE(rc)) + return rc; + + /* + * Register the Ring-0 VM handle with the session for fast ioctl calls. + */ + bool const fDriverless = SUPR3IsDriverless(); + if (!fDriverless) + { + rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM)); + if (RT_FAILURE(rc)) + return rc; + } + +#ifdef VBOX_WITH_NMI + /* + * Allocate mapping for the host APIC. + */ + rc = MMR3HyperReserve(pVM, HOST_PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase); + AssertRC(rc); +#endif + if (RT_SUCCESS(rc)) + { + /* + * Start the log flusher thread. + */ + if (!fDriverless) + rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/, + RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk"); + if (RT_SUCCESS(rc)) + { + + /* + * Debug info and statistics. + */ + DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF); + vmmR3InitRegisterStats(pVM); + vmmInitFormatTypes(); + + return VINF_SUCCESS; + } + } + /** @todo Need failure cleanup? */ + + return rc; +} + + +/** + * VMMR3Init worker that register the statistics with STAM. + * + * @param pVM The cross context VM structure. + */ +static void vmmR3InitRegisterStats(PVM pVM) +{ + RT_NOREF_PV(pVM); + + /* Nothing to do here in driverless mode. */ + if (SUPR3IsDriverless()) + return; + + /* + * Statistics. + */ + STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns."); + STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns."); + + STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes"); + STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up."); + + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i); + STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i); + + STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i); + + PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger; + STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i); + STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i); + STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i); + STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i); + STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i); + STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i); + STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i); + STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i); + + pShared = &pVCpu->vmm.s.u.s.RelLogger; + STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i); + STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i); + STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i); + STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i); + STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i); + STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i); + STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i); + STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i); + } +} + + +/** + * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context per CPU structure. + * @thread EMT(pVCpu) + */ +static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu) +{ + return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL); +} + + +/** + * Initializes the R0 VMM. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM) +{ + int rc; + PVMCPU pVCpu = VMMGetCpu(pVM); + Assert(pVCpu && pVCpu->idCpu == 0); + + /* + * Nothing to do here in driverless mode. + */ + if (SUPR3IsDriverless()) + return VINF_SUCCESS; + + /* + * Make sure the ring-0 loggers are up to date. + */ + rc = VMMR3UpdateLoggers(pVM); + if (RT_FAILURE(rc)) + return rc; + + /* + * Call Ring-0 entry with init code. + */ +#ifdef NO_SUPCALLR0VMM + //rc = VERR_GENERAL_FAILURE; + rc = VINF_SUCCESS; +#else + rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL); +#endif + + /* + * Flush the logs & deal with assertions. + */ +#ifdef LOG_ENABLED + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); +#endif + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); + if (rc == VERR_VMM_RING0_ASSERTION) + rc = vmmR3HandleRing0Assert(pVM, pVCpu); + if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) + { + LogRel(("VMM: R0 init failed, rc=%Rra\n", rc)); + if (RT_SUCCESS(rc)) + rc = VERR_IPE_UNEXPECTED_INFO_STATUS; + } + + /* + * Log stuff we learned in ring-0. + */ + /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */ + if (pVM->vmm.s.fIsUsingContextHooks) + LogRel(("VMM: Enabled thread-context hooks\n")); + else + LogRel(("VMM: Thread-context hooks unavailable\n")); + + /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */ + if (pVM->vmm.s.fIsPreemptPendingApiTrusty) + LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n")); + else + LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n")); + if (pVM->vmm.s.fIsPreemptPossible) + LogRel(("VMM: Kernel preemption is possible\n")); + else + LogRel(("VMM: Kernel preemption is not possible it seems\n")); + + /* + * Send all EMTs to ring-0 to get their logger initialized. + */ + for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++) + rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]); + + return rc; +} + + +/** + * Called when an init phase completes. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param enmWhat Which init phase. + */ +VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) +{ + int rc = VINF_SUCCESS; + + switch (enmWhat) + { + case VMINITCOMPLETED_RING3: + { +#if 0 /* pointless when timers doesn't run on EMT */ + /* + * Create the EMT yield timer. + */ + rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0, + "EMT Yielder", &pVM->vmm.s.hYieldTimer); + AssertRCReturn(rc, rc); + + rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies); + AssertRCReturn(rc, rc); +#endif + break; + } + + case VMINITCOMPLETED_HM: + { + /* + * Disable the periodic preemption timers if we can use the + * VMX-preemption timer instead. + */ + if ( pVM->vmm.s.fUsePeriodicPreemptionTimers + && HMR3IsVmxPreemptionTimerUsed(pVM)) + pVM->vmm.s.fUsePeriodicPreemptionTimers = false; + LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers)); + + /* + * Last chance for GIM to update its CPUID leaves if it requires + * knowledge/information from HM initialization. + */ +/** @todo r=bird: This shouldn't be done from here, but rather from VM.cpp. There is no dependency on VMM here. */ + rc = GIMR3InitCompleted(pVM); + AssertRCReturn(rc, rc); + + /* + * CPUM's post-initialization (print CPUIDs). + */ + CPUMR3LogCpuIdAndMsrFeatures(pVM); + break; + } + + default: /* shuts up gcc */ + break; + } + + return rc; +} + + +/** + * Terminate the VMM bits. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(int) VMMR3Term(PVM pVM) +{ + PVMCPU pVCpu = VMMGetCpu(pVM); + Assert(pVCpu && pVCpu->idCpu == 0); + + /* + * Call Ring-0 entry with termination code. + */ + int rc = VINF_SUCCESS; + if (!SUPR3IsDriverless()) + { +#ifndef NO_SUPCALLR0VMM + rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL); +#endif + } + + /* + * Flush the logs & deal with assertions. + */ +#ifdef LOG_ENABLED + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); +#endif + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); + if (rc == VERR_VMM_RING0_ASSERTION) + rc = vmmR3HandleRing0Assert(pVM, pVCpu); + if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) + { + LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc)); + if (RT_SUCCESS(rc)) + rc = VERR_IPE_UNEXPECTED_INFO_STATUS; + } + + /* + * Do clean ups. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); + pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; + } + RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne); + pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; + RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); + pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; + RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone); + pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; + RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller); + pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; + RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush); + pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI; + RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop); + pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI; + RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); + pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT; + RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); + pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT; + + vmmTermFormatTypes(); + + /* + * Wait for the log flusher thread to complete. + */ + if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD) + { + int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL); + AssertLogRelRC(rc2); + if (RT_SUCCESS(rc2)) + pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD; + } + + return rc; +} + + +/** + * Applies relocations to data and code managed by this + * component. This function will be called at init and + * whenever the VMM need to relocate it self inside the GC. + * + * The VMM will need to apply relocations to the core code. + * + * @param pVM The cross context VM structure. + * @param offDelta The relocation delta. + */ +VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta) +{ + LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta)); + RT_NOREF(offDelta); + + /* + * Update the logger. + */ + VMMR3UpdateLoggers(pVM); +} + + +/** + * Worker for VMMR3UpdateLoggers. + */ +static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger) +{ + /* + * Get the group count. + */ + uint32_t uGroupsCrc32 = 0; + uint32_t cGroups = 0; + uint64_t fFlags = 0; + int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL); + Assert(rc == VERR_BUFFER_OVERFLOW); + + /* + * Allocate the request of the right size. + */ + uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]); + PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq); + if (pReq) + { + pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; + pReq->Hdr.cbReq = cbReq; + pReq->cGroups = cGroups; + rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups); + AssertRC(rc); + if (RT_SUCCESS(rc)) + { + /* + * The 64-bit value argument. + */ + uint64_t fExtraArg = fReleaseLogger; + + /* Only outputting to the parent VMM's logs? Enable ring-0 to flush directly. */ + uint32_t fDst = RTLogGetDestinations(pSrcLogger); + fDst &= ~(RTLOGDEST_DUMMY | RTLOGDEST_F_NO_DENY | RTLOGDEST_F_DELAY_FILE | RTLOGDEST_FIXED_FILE | RTLOGDEST_FIXED_DIR); + if ( (fDst & (RTLOGDEST_VMM | RTLOGDEST_VMM_REL)) + && !(fDst & ~(RTLOGDEST_VMM | RTLOGDEST_VMM_REL))) + fExtraArg |= (fDst & RTLOGDEST_VMM ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG : 0) + | (fDst & RTLOGDEST_VMM_REL ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL : 0); + + rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fExtraArg, &pReq->Hdr); + } + + RTMemFree(pReq); + } + else + rc = VERR_NO_MEMORY; + return rc; +} + + +/** + * Updates the settings for the RC and R0 loggers. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @thread EMT + */ +VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM) +{ + /* Nothing to do here if we're in driverless mode: */ + if (SUPR3IsDriverless()) + return VINF_SUCCESS; + + PVMCPU pVCpu = VMMGetCpu(pVM); + AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT); + + /* + * Each EMT has each own logger instance. + */ + /* Debug logging.*/ + int rcDebug = VINF_SUCCESS; +#ifdef LOG_ENABLED + PRTLOGGER const pDefault = RTLogDefaultInstance(); + if (pDefault) + rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/); +#else + RT_NOREF(pVM); +#endif + + /* Release logging. */ + int rcRelease = VINF_SUCCESS; + PRTLOGGER const pRelease = RTLogRelGetDefaultInstance(); + if (pRelease) + rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/); + + return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug; +} + + +/** + * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.} + */ +static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser) +{ + PVM const pVM = (PVM)pvUser; + RT_NOREF(hThreadSelf); + + /* Reset the flusher state before we start: */ + pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX; + + /* + * The work loop. + */ + for (;;) + { + /* + * Wait for work. + */ + int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL); + if (RT_SUCCESS(rc)) + { + /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */ + VMMLOGFLUSHERENTRY Item; + Item.u32 = pVM->vmm.s.LogFlusherItem.u32; + if ( Item.s.idCpu < pVM->cCpus + && Item.s.idxLogger < VMMLOGGER_IDX_MAX + && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT) + { + /* + * Verify the request. + */ + PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu]; + PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger]; + uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf; + if (cbToFlush > 0) + { + if (cbToFlush <= pShared->cbBuf) + { + char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3; + if (pchBufR3) + { + /* + * Do the flushing. + */ + PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR + ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance(); + if (pLogger) + { + char szBefore[128]; + RTStrPrintf(szBefore, sizeof(szBefore), + "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n", + Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, + pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped); + RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n"); + } + } + else + Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n", + Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush)); + } + else + Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n", + Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf)); + } + else + Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n", + Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush)); + + /* + * Mark the descriptor as flushed and set the request flag for same. + */ + pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true; + } + else + { + Assert(Item.s.idCpu == UINT16_MAX); + Assert(Item.s.idxLogger == UINT8_MAX); + Assert(Item.s.idxBuffer == UINT8_MAX); + } + } + /* + * Interrupted can happen, just ignore it. + */ + else if (rc == VERR_INTERRUPTED) + { /* ignore*/ } + /* + * The ring-0 termination code will set the shutdown flag and wake us + * up, and we should return with object destroyed. In case there is + * some kind of race, we might also get sempahore destroyed. + */ + else if ( rc == VERR_OBJECT_DESTROYED + || rc == VERR_SEM_DESTROYED + || rc == VERR_INVALID_HANDLE) + { + LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc)); + return VINF_SUCCESS; + } + /* + * There shouldn't be any other errors... + */ + else + { + LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc)); + AssertRC(rc); + RTThreadSleep(1); + } + } +} + + +/** + * Helper for VMM_FLUSH_R0_LOG that does the flushing. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling + * EMT. + * @param pShared The shared logger data. + * @param idxBuf The buffer to flush. + * @param pDstLogger The destination IPRT logger. + */ +static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger) +{ + uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf; + const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n"; + const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n"; + +#if VMMLOGGER_BUFFER_COUNT > 1 + /* + * When we have more than one log buffer, the flusher thread may still be + * working on the previous buffer when we get here. + */ + char szBefore[64]; + if (pShared->cFlushing > 0) + { + STAM_REL_PROFILE_START(&pShared->StatRaces, a); + uint64_t const nsStart = RTTimeNanoTS(); + + /* A no-op, but it takes the lock and the hope is that we end up waiting + on the flusher to finish up. */ + RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL); + if (pShared->cFlushing != 0) + { + RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL); + + /* If no luck, go to ring-0 and to proper waiting. */ + if (pShared->cFlushing != 0) + { + STAM_REL_COUNTER_INC(&pShared->StatRacesToR0); + SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL); + } + } + + RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n", + pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart); + pszBefore = szBefore; + STAM_REL_PROFILE_STOP(&pShared->StatRaces, a); + } +#else + RT_NOREF(pVM, pVCpu); +#endif + + RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter); + pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true; +} + + +/** + * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output. + * + * @returns Pointer to the buffer. + * @param pVM The cross context VM structure. + */ +VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM) +{ + return pVM->vmm.s.szRing0AssertMsg1; +} + + +/** + * Returns the VMCPU of the specified virtual CPU. + * + * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid. + * + * @param pUVM The user mode VM handle. + * @param idCpu The ID of the virtual CPU. + */ +VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu) +{ + UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL); + AssertReturn(idCpu < pUVM->cCpus, NULL); + VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL); + return pUVM->pVM->apCpusR3[idCpu]; +} + + +/** + * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output. + * + * @returns Pointer to the buffer. + * @param pVM The cross context VM structure. + */ +VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM) +{ + return pVM->vmm.s.szRing0AssertMsg2; +} + + +/** + * Execute state save operation. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pSSM SSM operation handle. + */ +static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM) +{ + LogFlow(("vmmR3Save:\n")); + + /* + * Save the started/stopped state of all CPUs except 0 as it will always + * be running. This avoids breaking the saved state version. :-) + */ + for (VMCPUID i = 1; i < pVM->cCpus; i++) + SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i]))); + + return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */ +} + + +/** + * Execute state load operation. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pSSM SSM operation handle. + * @param uVersion Data layout version. + * @param uPass The data pass. + */ +static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) +{ + LogFlow(("vmmR3Load:\n")); + Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); + + /* + * Validate version. + */ + if ( uVersion != VMM_SAVED_STATE_VERSION + && uVersion != VMM_SAVED_STATE_VERSION_3_0) + { + AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion)); + return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; + } + + if (uVersion <= VMM_SAVED_STATE_VERSION_3_0) + { + /* Ignore the stack bottom, stack pointer and stack bits. */ + RTRCPTR RCPtrIgnored; + SSMR3GetRCPtr(pSSM, &RCPtrIgnored); + SSMR3GetRCPtr(pSSM, &RCPtrIgnored); +#ifdef RT_OS_DARWIN + if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0) + && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0) + && SSMR3HandleRevision(pSSM) >= 48858 + && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86") + || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") ) + ) + SSMR3Skip(pSSM, 16384); + else + SSMR3Skip(pSSM, 8192); +#else + SSMR3Skip(pSSM, 8192); +#endif + } + + /* + * Restore the VMCPU states. VCPU 0 is always started. + */ + VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED); + for (VMCPUID i = 1; i < pVM->cCpus; i++) + { + bool fStarted; + int rc = SSMR3GetBool(pSSM, &fStarted); + if (RT_FAILURE(rc)) + return rc; + VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED); + } + + /* terminator */ + uint32_t u32; + int rc = SSMR3GetU32(pSSM, &u32); + if (RT_FAILURE(rc)) + return rc; + if (u32 != UINT32_MAX) + { + AssertMsgFailed(("u32=%#x\n", u32)); + return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; + } + return VINF_SUCCESS; +} + + +/** + * Suspends the CPU yielder. + * + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM) +{ +#if 0 /* pointless when timers doesn't run on EMT */ + VMCPU_ASSERT_EMT(pVM->apCpusR3[0]); + if (!pVM->vmm.s.cYieldResumeMillies) + { + uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer); + uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer); + if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0) + pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; + else + pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now); + TMTimerStop(pVM, pVM->vmm.s.hYieldTimer); + } + pVM->vmm.s.u64LastYield = RTTimeNanoTS(); +#else + RT_NOREF(pVM); +#endif +} + + +/** + * Stops the CPU yielder. + * + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM) +{ +#if 0 /* pointless when timers doesn't run on EMT */ + if (!pVM->vmm.s.cYieldResumeMillies) + TMTimerStop(pVM, pVM->vmm.s.hYieldTimer); + pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; + pVM->vmm.s.u64LastYield = RTTimeNanoTS(); +#else + RT_NOREF(pVM); +#endif +} + + +/** + * Resumes the CPU yielder when it has been a suspended or stopped. + * + * @param pVM The cross context VM structure. + */ +VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM) +{ +#if 0 /* pointless when timers doesn't run on EMT */ + if (pVM->vmm.s.cYieldResumeMillies) + { + TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies); + pVM->vmm.s.cYieldResumeMillies = 0; + } +#else + RT_NOREF(pVM); +#endif +} + + +#if 0 /* pointless when timers doesn't run on EMT */ +/** + * @callback_method_impl{FNTMTIMERINT, EMT yielder} + * + * @todo This is a UNI core/thread thing, really... Should be reconsidered. + */ +static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser) +{ + NOREF(pvUser); + + /* + * This really needs some careful tuning. While we shouldn't be too greedy since + * that'll cause the rest of the system to stop up, we shouldn't be too nice either + * because that'll cause us to stop up. + * + * The current logic is to use the default interval when there is no lag worth + * mentioning, but when we start accumulating lag we don't bother yielding at all. + * + * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL + * so the lag is up to date.) + */ + const uint64_t u64Lag = TMVirtualSyncGetLag(pVM); + if ( u64Lag < 50000000 /* 50ms */ + || ( u64Lag < 1000000000 /* 1s */ + && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */) + ) + { + uint64_t u64Elapsed = RTTimeNanoTS(); + pVM->vmm.s.u64LastYield = u64Elapsed; + + RTThreadYield(); + +#ifdef LOG_ENABLED + u64Elapsed = RTTimeNanoTS() - u64Elapsed; + Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed)); +#endif + } + TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies); +} +#endif + + +/** + * Executes guest code (Intel VT-x and AMD-V). + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu) +{ + Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu))); + + int rc; + do + { +#ifdef NO_SUPCALLR0VMM + rc = VERR_GENERAL_FAILURE; +#else + rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu); + if (RT_LIKELY(rc == VINF_SUCCESS)) + rc = pVCpu->vmm.s.iLastGZRc; +#endif + } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); + +#if 0 /** @todo triggers too often */ + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3)); +#endif + + /* + * Flush the logs + */ +#ifdef LOG_ENABLED + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); +#endif + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); + if (rc != VERR_VMM_RING0_ASSERTION) + { + Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu))); + return rc; + } + return vmmR3HandleRing0Assert(pVM, pVCpu); +} + + +/** + * Perform one of the fast I/O control VMMR0 operation. + * + * @returns VBox strict status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @param enmOperation The operation to perform. + */ +VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation) +{ + VBOXSTRICTRC rcStrict; + do + { +#ifdef NO_SUPCALLR0VMM + rcStrict = VERR_GENERAL_FAILURE; +#else + rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + rcStrict = pVCpu->vmm.s.iLastGZRc; +#endif + } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER); + + /* + * Flush the logs + */ +#ifdef LOG_ENABLED + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); +#endif + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); + if (rcStrict != VERR_VMM_RING0_ASSERTION) + return rcStrict; + return vmmR3HandleRing0Assert(pVM, pVCpu); +} + + +/** + * VCPU worker for VMMR3SendStartupIpi. + * + * @param pVM The cross context VM structure. + * @param idCpu Virtual CPU to perform SIPI on. + * @param uVector The SIPI vector. + */ +static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector) +{ + PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); + VMCPU_ASSERT_EMT(pVCpu); + + /* + * In the INIT state, the target CPU is only responsive to an SIPI. + * This is also true for when when the CPU is in VMX non-root mode. + * + * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)". + * See Intel spec. 26.6.2 "Activity State". + */ + if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI) + return VINF_SUCCESS; + + PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (CPUMIsGuestInVmxRootMode(pCtx)) + { + /* If the CPU is in VMX non-root mode we must cause a VM-exit. */ + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector)); + + /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */ + return VINF_SUCCESS; + } +#endif + + pCtx->cs.Sel = uVector << 8; + pCtx->cs.ValidSel = uVector << 8; + pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; + pCtx->cs.u64Base = uVector << 12; + pCtx->cs.u32Limit = UINT32_C(0x0000ffff); + pCtx->rip = 0; + + Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector)); + +# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */ + EMSetState(pVCpu, EMSTATE_HALTED); + return VINF_EM_RESCHEDULE; +# else /* And if we go the VMCPU::enmState way it can stay here. */ + VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED); + VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED); + return VINF_SUCCESS; +# endif +} + + +/** + * VCPU worker for VMMR3SendInitIpi. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param idCpu Virtual CPU to perform SIPI on. + */ +static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu) +{ + PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); + VMCPU_ASSERT_EMT(pVCpu); + + Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu)); + + /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in + * wait-for-SIPI state. Verify. */ + + /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */)); +#endif + + /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT + * IPI (e.g. SVM_EXIT_INIT). */ + + PGMR3ResetCpu(pVM, pVCpu); + PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */ + APICR3InitIpi(pVCpu); + TRPMR3ResetCpu(pVCpu); + CPUMR3ResetCpu(pVM, pVCpu); + EMR3ResetCpu(pVCpu); + HMR3ResetCpu(pVCpu); + NEMR3ResetCpu(pVCpu, true /*fInitIpi*/); + + /* This will trickle up on the target EMT. */ + return VINF_EM_WAIT_SIPI; +} + + +/** + * Sends a Startup IPI to the virtual CPU by setting CS:EIP into + * vector-dependent state and unhalting processor. + * + * @param pVM The cross context VM structure. + * @param idCpu Virtual CPU to perform SIPI on. + * @param uVector SIPI vector. + */ +VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector) +{ + AssertReturnVoid(idCpu < pVM->cCpus); + + int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector); + AssertRC(rc); +} + + +/** + * Sends init IPI to the virtual CPU. + * + * @param pVM The cross context VM structure. + * @param idCpu Virtual CPU to perform int IPI on. + */ +VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu) +{ + AssertReturnVoid(idCpu < pVM->cCpus); + + int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu); + AssertRC(rc); +} + + +/** + * Registers the guest memory range that can be used for patching. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pPatchMem Patch memory range. + * @param cbPatchMem Size of the memory range. + */ +VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) +{ + VM_ASSERT_EMT(pVM); + if (HMIsEnabled(pVM)) + return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem); + + return VERR_NOT_SUPPORTED; +} + + +/** + * Deregisters the guest memory range that can be used for patching. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pPatchMem Patch memory range. + * @param cbPatchMem Size of the memory range. + */ +VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) +{ + if (HMIsEnabled(pVM)) + return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem); + + return VINF_SUCCESS; +} + + +/** + * Common recursion handler for the other EMTs. + * + * @returns Strict VBox status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param rcStrict Current status code to be combined with the one + * from this recursion and returned. + */ +static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict) +{ + int rc2; + + /* + * We wait here while the initiator of this recursion reconfigures + * everything. The last EMT to get in signals the initiator. + */ + if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus) + { + rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); + AssertLogRelRC(rc2); + } + + rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc2); + + /* + * Do the normal rendezvous processing. + */ + VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags, + pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser); + + /* + * Wait for the initiator to restore everything. + */ + rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc2); + + /* + * Last thread out of here signals the initiator. + */ + if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus) + { + rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); + AssertLogRelRC(rc2); + } + + /* + * Merge status codes and return. + */ + AssertRC(VBOXSTRICTRC_VAL(rcStrict2)); + if ( rcStrict2 != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rcStrict2)) + rcStrict = rcStrict2; + return rcStrict; +} + + +/** + * Count returns and have the last non-caller EMT wake up the caller. + * + * @returns VBox strict informational status code for EM scheduling. No failures + * will be returned here, those are for the caller only. + * + * @param pVM The cross context VM structure. + * @param rcStrict The current accumulated recursive status code, + * to be merged with i32RendezvousStatus and + * returned. + */ +DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict) +{ + VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus); + + uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned); + if (cReturned == pVM->cCpus - 1U) + { + int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller); + AssertLogRelRC(rc); + } + + /* + * Merge the status codes, ignoring error statuses in this code path. + */ + AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS + || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST), + ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), + VERR_IPE_UNEXPECTED_INFO_STATUS); + + if (RT_SUCCESS(rcStrict2)) + { + if ( rcStrict2 != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rcStrict2)) + rcStrict = rcStrict2; + } + return rcStrict; +} + + +/** + * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF. + * + * @returns VBox strict informational status code for EM scheduling. No failures + * will be returned here, those are for the caller only. When + * fIsCaller is set, VINF_SUCCESS is always returned. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or + * not. + * @param fFlags The flags. + * @param pfnRendezvous The callback. + * @param pvUser The user argument for the callback. + */ +static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller, + uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) +{ + int rc; + VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS; + + /* + * Enter, the last EMT triggers the next callback phase. + */ + uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered); + if (cEntered != pVM->cCpus) + { + if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) + { + /* Wait for our turn. */ + for (;;) + { + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); + } + } + else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) + { + /* Wait for the last EMT to arrive and wake everyone up. */ + rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + Assert(!pVM->vmm.s.fRendezvousRecursion); + } + else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) + { + /* Wait for our turn. */ + for (;;) + { + rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); + } + } + else + { + Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE); + + /* + * The execute once is handled specially to optimize the code flow. + * + * The last EMT to arrive will perform the callback and the other + * EMTs will wait on the Done/DoneCaller semaphores (instead of + * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback + * returns, that EMT will initiate the normal return sequence. + */ + if (!fIsCaller) + { + for (;;) + { + rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); + } + + return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion); + } + return VINF_SUCCESS; + } + } + else + { + /* + * All EMTs are waiting, clear the FF and take action according to the + * execution method. + */ + VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS); + + if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) + { + /* Wake up everyone. */ + rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); + AssertLogRelRC(rc); + } + else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) + { + /* Figure out who to wake up and wake it up. If it's ourself, then + it's easy otherwise wait for our turn. */ + VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + ? 0 + : pVM->cCpus - 1U; + if (pVCpu->idCpu != iFirst) + { + rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]); + AssertLogRelRC(rc); + for (;;) + { + rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); + } + } + } + /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */ + } + + + /* + * Do the callback and update the status if necessary. + */ + if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) + || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) ) + { + VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser); + if (rcStrict2 != VINF_SUCCESS) + { + AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS + || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST), + ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2))); + int32_t i32RendezvousStatus; + do + { + i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus); + if ( rcStrict2 == i32RendezvousStatus + || RT_FAILURE(i32RendezvousStatus) + || ( i32RendezvousStatus != VINF_SUCCESS + && rcStrict2 > i32RendezvousStatus)) + break; + } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus)); + } + } + + /* + * Increment the done counter and take action depending on whether we're + * the last to finish callback execution. + */ + uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone); + if ( cDone != pVM->cCpus + && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE) + { + /* Signal the next EMT? */ + if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) + { + rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne); + AssertLogRelRC(rc); + } + else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING) + { + Assert(cDone == pVCpu->idCpu + 1U); + rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]); + AssertLogRelRC(rc); + } + else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) + { + Assert(pVM->cCpus - cDone == pVCpu->idCpu); + rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]); + AssertLogRelRC(rc); + } + + /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */ + if (!fIsCaller) + { + for (;;) + { + rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); + } + } + } + else + { + /* Callback execution is all done, tell the rest to return. */ + rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone); + AssertLogRelRC(rc); + } + + if (!fIsCaller) + return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion); + return rcStrictRecursion; +} + + +/** + * Called in response to VM_FF_EMT_RENDEZVOUS. + * + * @returns VBox strict status code - EM scheduling. No errors will be returned + * here, nor will any non-EM scheduling status codes be returned. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * + * @thread EMT + */ +VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu) +{ + Assert(!pVCpu->vmm.s.fInRendezvous); + Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu)); + pVCpu->vmm.s.fInRendezvous = true; + VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags, + pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser); + pVCpu->vmm.s.fInRendezvous = false; + Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict))); + return VBOXSTRICTRC_TODO(rcStrict); +} + + +/** + * Helper for resetting an single wakeup event sempahore. + * + * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise. + * @param hEvt The event semaphore to reset. + */ +static int vmmR3HlpResetEvent(RTSEMEVENT hEvt) +{ + for (uint32_t cLoops = 0; ; cLoops++) + { + int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/); + if (rc != VINF_SUCCESS || cLoops > _4K) + return rc; + } +} + + +/** + * Worker for VMMR3EmtRendezvous that handles recursion. + * + * @returns VBox strict status code. This will be the first error, + * VINF_SUCCESS, or an EM scheduling status code. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the + * calling EMT. + * @param fFlags Flags indicating execution methods. See + * grp_VMMR3EmtRendezvous_fFlags. + * @param pfnRendezvous The callback. + * @param pvUser User argument for the callback. + * + * @thread EMT(pVCpu) + */ +static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags, + PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) +{ + Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions)); + AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK); + Assert(pVCpu->vmm.s.fInRendezvous); + + /* + * Save the current state. + */ + uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags; + uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone; + int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus; + PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous; + void * const pvParentUser = pVM->vmm.s.pvRendezvousUser; + + /* + * Check preconditions and save the current state. + */ + AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING + || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE + || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, + VERR_INTERNAL_ERROR); + AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2); + AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3); + + /* + * Reset the recursion prep and pop semaphores. + */ + int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush); + AssertLogRelRCReturn(rc, rc); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); + AssertLogRelRCReturn(rc, rc); + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); + AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); + AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + + /* + * Usher the other thread into the recursion routine. + */ + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0); + ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true); + + uint32_t cLeft = pVM->cCpus - (cParentDone + 1U); + if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) + while (cLeft-- > 0) + { + rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne); + AssertLogRelRC(rc); + } + else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING) + { + Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U)); + for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++) + { + rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]); + AssertLogRelRC(rc); + } + } + else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) + { + Assert(cLeft == pVCpu->idCpu); + for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--) + { + rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]); + AssertLogRelRC(rc); + } + } + else + AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, + VERR_INTERNAL_ERROR_4); + + rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone); + AssertLogRelRC(rc); + rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller); + AssertLogRelRC(rc); + + + /* + * Wait for the EMTs to wake up and get out of the parent rendezvous code. + */ + if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus) + { + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + } + + ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false); + + /* + * Clear the slate and setup the new rendezvous. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); + AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + } + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); + ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS); + ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous); + ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser); + ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags); + ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions); + + /* + * We're ready to go now, do normal rendezvous processing. + */ + rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush); + AssertLogRelRC(rc); + + VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser); + + /* + * The caller waits for the other EMTs to be done, return and waiting on the + * pop semaphore. + */ + for (;;) + { + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict); + } + + /* + * Get the return code and merge it with the above recursion status. + */ + VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus; + if ( rcStrict2 != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rcStrict2)) + rcStrict = rcStrict2; + + /* + * Restore the parent rendezvous state. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); + AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + } + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone); + ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus); + ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags); + ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser); + ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent); + + /* + * Usher the other EMTs back to their parent recursion routine, waiting + * for them to all get there before we return (makes sure they've been + * scheduled and are past the pop event sem, see below). + */ + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0); + rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop); + AssertLogRelRC(rc); + + if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus) + { + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + } + + /* + * We must reset the pop semaphore on the way out (doing the pop caller too, + * just in case). The parent may be another recursion. + */ + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc); + rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); + + ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions); + + Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n", + fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * EMT rendezvous. + * + * Gathers all the EMTs and execute some code on each of them, either in a one + * by one fashion or all at once. + * + * @returns VBox strict status code. This will be the first error, + * VINF_SUCCESS, or an EM scheduling status code. + * + * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that + * doesn't support it or if the recursion is too deep. + * + * @param pVM The cross context VM structure. + * @param fFlags Flags indicating execution methods. See + * grp_VMMR3EmtRendezvous_fFlags. The one-by-one, + * descending and ascending rendezvous types support + * recursion from inside @a pfnRendezvous. + * @param pfnRendezvous The callback. + * @param pvUser User argument for the callback. + * + * @thread Any. + */ +VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) +{ + /* + * Validate input. + */ + AssertReturn(pVM, VERR_INVALID_VM_HANDLE); + AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID + && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING + && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags)); + AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) + || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE + && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE), + ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK)); + + VBOXSTRICTRC rcStrict; + PVMCPU pVCpu = VMMGetCpu(pVM); + if (!pVCpu) + { + /* + * Forward the request to an EMT thread. + */ + Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags)); + if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY)) + rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser); + else + rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser); + Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict))); + } + else if ( pVM->cCpus == 1 + || ( pVM->enmVMState == VMSTATE_DESTROYING + && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) ) + { + /* + * Shortcut for the single EMT case. + * + * We also ends up here if EMT(0) (or others) tries to issue a rendezvous + * during vmR3Destroy after other emulation threads have started terminating. + */ + if (!pVCpu->vmm.s.fInRendezvous) + { + Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags)); + pVCpu->vmm.s.fInRendezvous = true; + pVM->vmm.s.fRendezvousFlags = fFlags; + rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); + pVCpu->vmm.s.fInRendezvous = false; + } + else + { + /* Recursion. Do the same checks as in the SMP case. */ + Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions)); + uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK; + AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous + || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING + || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE + || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE + , VERR_DEADLOCK); + + AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK); + pVM->vmm.s.cRendezvousRecursions++; + uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags; + pVM->vmm.s.fRendezvousFlags = fFlags; + + rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); + + pVM->vmm.s.fRendezvousFlags = fParentFlags; + pVM->vmm.s.cRendezvousRecursions--; + } + Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict))); + } + else + { + /* + * Spin lock. If busy, check for recursion, if not recursing wait for + * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF. + */ + int rc; + rcStrict = VINF_SUCCESS; + if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))) + { + /* Allow recursion in some cases. */ + if ( pVCpu->vmm.s.fInRendezvous + && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING + || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING + || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE + || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE + )) + return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser)); + + AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags), + VERR_DEADLOCK); + + Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu)); + while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)) + { + if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS)) + { + rc = VMMR3EmtRendezvousFF(pVM, pVCpu); + if ( rc != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rc)) + rcStrict = rc; + /** @todo Perhaps deal with termination here? */ + } + ASMNopPause(); + } + } + + Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu)); + Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS)); + Assert(!pVCpu->vmm.s.fInRendezvous); + pVCpu->vmm.s.fInRendezvous = true; + + /* + * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-) + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0); + AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); + } + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); + rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0); + ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); + ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS); + ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous); + ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser); + ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags); + + /* + * Set the FF and poke the other EMTs. + */ + VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS); + VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE); + + /* + * Do the same ourselves. + */ + VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser); + + /* + * The caller waits for the other EMTs to be done and return before doing + * the cleanup. This makes away with wakeup / reset races we would otherwise + * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller). + */ + for (;;) + { + rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT); + AssertLogRelRC(rc); + if (!pVM->vmm.s.fRendezvousRecursion) + break; + rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2); + } + + /* + * Get the return code and clean up a little bit. + */ + VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus; + ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous); + + ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0); + pVCpu->vmm.s.fInRendezvous = false; + + /* + * Merge rcStrict, rcStrict2 and rcStrict3. + */ + AssertRC(VBOXSTRICTRC_VAL(rcStrict)); + AssertRC(VBOXSTRICTRC_VAL(rcStrict2)); + if ( rcStrict2 != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rcStrict2)) + rcStrict = rcStrict2; + if ( rcStrict3 != VINF_SUCCESS + && ( rcStrict == VINF_SUCCESS + || rcStrict > rcStrict3)) + rcStrict = rcStrict3; + Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict))); + } + + AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS + || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST), + ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), + VERR_IPE_UNEXPECTED_INFO_STATUS); + return VBOXSTRICTRC_VAL(rcStrict); +} + + +/** + * Interface for vmR3SetHaltMethodU. + * + * @param pVCpu The cross context virtual CPU structure of the + * calling EMT. + * @param fMayHaltInRing0 The new state. + * @param cNsSpinBlockThreshold The spin-vs-blocking threashold. + * @thread EMT(pVCpu) + * + * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM + * component. + */ +VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold) +{ + LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold)); + pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0; + pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold; +} + + +/** + * Read from the ring 0 jump buffer stack. + * + * @returns VBox status code. + * + * @param pVM The cross context VM structure. + * @param idCpu The ID of the source CPU context (for the address). + * @param R0Addr Where to start reading. + * @param pvBuf Where to store the data we've read. + * @param cbRead The number of bytes to read. + */ +VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead) +{ + PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); + AssertReturn(pVCpu, VERR_INVALID_PARAMETER); + AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER); + + /* + * Hopefully we've got all the requested bits. If not supply what we + * can and zero the remaining stuff. + */ + RTHCUINTPTR off = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindSp; + if (off < pVCpu->vmm.s.AssertJmpBuf.cbStackValid) + { + size_t const cbValid = pVCpu->vmm.s.AssertJmpBuf.cbStackValid - off; + if (cbRead <= cbValid) + { + memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbRead); + return VINF_SUCCESS; + } + + memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbValid); + RT_BZERO((uint8_t *)pvBuf + cbValid, cbRead - cbValid); + } + else + RT_BZERO(pvBuf, cbRead); + + /* + * Supply the setjmp return RIP/EIP if requested. + */ + if ( pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr + && pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation < R0Addr + cbRead) + { + uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue; + size_t cbSrc = sizeof(pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue); + size_t offDst = 0; + if (R0Addr < pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation) + offDst = pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation - R0Addr; + else if (R0Addr > pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation) + { + size_t offSrc = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation; + Assert(offSrc < cbSrc); + pbSrc -= offSrc; + cbSrc -= offSrc; + } + if (cbSrc > cbRead - offDst) + cbSrc = cbRead - offDst; + memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc); + + //if (cbSrc == cbRead) + // rc = VINF_SUCCESS; + } + + return VINF_SUCCESS; +} + + +/** + * Used by the DBGF stack unwinder to initialize the register state. + * + * @param pUVM The user mode VM handle. + * @param idCpu The ID of the CPU being unwound. + * @param pState The unwind state to initialize. + */ +VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState) +{ + PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu); + AssertReturnVoid(pVCpu); + + /* + * This is all we really need here if we had proper unwind info (win64 only)... + */ + pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.AssertJmpBuf.UnwindBp; + pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindSp; + pState->uPc = pVCpu->vmm.s.AssertJmpBuf.UnwindPc; + + /* + * Locate the resume point on the stack. + */ +#ifdef RT_ARCH_AMD64 + /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-amd64.asm exactly. */ + uintptr_t off = 0; +# ifdef RT_OS_WINDOWS + off += 0xa0; /* XMM6 thru XMM15 */ +# endif + pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; +# ifdef RT_OS_WINDOWS + pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; +# endif + pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 8; + pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; + pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp; + +#elif defined(RT_ARCH_X86) + /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-x86.asm exactly. */ + uintptr_t off = 0; + pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 4; + pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 4; + pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 4; + pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 4; + pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + off += 4; + pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; + pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp; + +#elif defined(RT_ARCH_ARM64) + /** @todo PORTME: arm ring-0 */ + +#else +# error "Port me" +#endif +} + + +/** + * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param uOperation Operation to execute. + * @param u64Arg Constant argument. + * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for + * details. + */ +VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr) +{ + PVMCPU pVCpu = VMMGetCpu(pVM); + AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT); + return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr); +} + + +/** + * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context VM structure. + * @param enmOperation Operation to execute. + * @param u64Arg Constant argument. + * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for + * details. + */ +VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr) +{ + /* + * Call ring-0. + */ +#ifdef NO_SUPCALLR0VMM + int rc = VERR_GENERAL_FAILURE; +#else + int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr); +#endif + + /* + * Flush the logs and deal with ring-0 assertions. + */ +#ifdef LOG_ENABLED + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); +#endif + VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); + if (rc != VERR_VMM_RING0_ASSERTION) + { + AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc), + ("enmOperation=%u rc=%Rrc\n", enmOperation, rc), + VERR_IPE_UNEXPECTED_INFO_STATUS); + return rc; + } + return vmmR3HandleRing0Assert(pVM, pVCpu); +} + + +/** + * Logs a ring-0 assertion ASAP after returning to ring-3. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + */ +static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu) +{ + RT_NOREF(pVCpu); + LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1)); + LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2)); + return VERR_VMM_RING0_ASSERTION; +} + + +/** + * Displays the Force action Flags. + * + * @param pVM The cross context VM structure. + * @param pHlp The output helpers. + * @param pszArgs The additional arguments (ignored). + */ +static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) +{ + int c; + uint32_t f; + NOREF(pszArgs); + +#define PRINT_FLAG(prf,flag) do { \ + if (f & (prf##flag)) \ + { \ + static const char *s_psz = #flag; \ + if (!(c % 6)) \ + pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \ + else \ + pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ + c++; \ + f &= ~(prf##flag); \ + } \ + } while (0) + +#define PRINT_GROUP(prf,grp,sfx) do { \ + if (f & (prf##grp##sfx)) \ + { \ + static const char *s_psz = #grp; \ + if (!(c % 5)) \ + pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \ + else \ + pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ + c++; \ + } \ + } while (0) + + /* + * The global flags. + */ + const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions; + pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions); + + /* show the flag mnemonics */ + c = 0; + f = fGlobalForcedActions; + PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC); + PRINT_FLAG(VM_FF_,PDM_QUEUES); + PRINT_FLAG(VM_FF_,PDM_DMA); + PRINT_FLAG(VM_FF_,DBGF); + PRINT_FLAG(VM_FF_,REQUEST); + PRINT_FLAG(VM_FF_,CHECK_VM_STATE); + PRINT_FLAG(VM_FF_,RESET); + PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS); + PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES); + PRINT_FLAG(VM_FF_,PGM_NO_MEMORY); + PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING); + PRINT_FLAG(VM_FF_,DEBUG_SUSPEND); + if (f) + pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f); + else + pHlp->pfnPrintf(pHlp, "\n"); + + /* the groups */ + c = 0; + f = fGlobalForcedActions; + PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK); + PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK); + PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK); + PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); + PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK); + PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK); + PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK); + PRINT_GROUP(VM_FF_,ALL_REM,_MASK); + if (c) + pHlp->pfnPrintf(pHlp, "\n"); + + /* + * Per CPU flags. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + PVMCPU pVCpu = pVM->apCpusR3[i]; + const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions; + pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions); + + /* show the flag mnemonics */ + c = 0; + f = fLocalForcedActions; + PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC); + PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC); + PRINT_FLAG(VMCPU_FF_,TIMER); + PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI); + PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI); + PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT); + PRINT_FLAG(VMCPU_FF_,UNHALT); + PRINT_FLAG(VMCPU_FF_,IEM); + PRINT_FLAG(VMCPU_FF_,UPDATE_APIC); + PRINT_FLAG(VMCPU_FF_,DBGF); + PRINT_FLAG(VMCPU_FF_,REQUEST); + PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3); + PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3); + PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL); + PRINT_FLAG(VMCPU_FF_,TLB_FLUSH); + PRINT_FLAG(VMCPU_FF_,TO_R3); + PRINT_FLAG(VMCPU_FF_,IOM); + if (f) + pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f); + else + pHlp->pfnPrintf(pHlp, "\n"); + + /* the groups */ + c = 0; + f = fLocalForcedActions; + PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK); + PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK); + PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK); + PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); + PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK); + PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK); + PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK); + PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK); + PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK); + PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK); + if (c) + pHlp->pfnPrintf(pHlp, "\n"); + } + +#undef PRINT_FLAG +#undef PRINT_GROUP +} + -- cgit v1.2.3