/* $Id: tstAudioMixBuffer.cpp $ */ /** @file * Audio testcase - Mixing buffer. */ /* * Copyright (C) 2014-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include "../AudioMixBuffer.h" #include "../AudioHlp.h" #define _USE_MATH_DEFINES #include /* sin, M_PI */ /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifdef RT_LITTLE_ENDIAN bool const g_fLittleEndian = true; #else bool const g_fLittleEndian = false; #endif static void tstBasics(RTTEST hTest) { RTTestSub(hTest, "Basics"); const PDMAUDIOPCMPROPS Cfg441StereoS16 = PDMAUDIOPCMPROPS_INITIALIZER( /* a_cb: */ 2, /* a_fSigned: */ true, /* a_cChannels: */ 2, /* a_uHz: */ 44100, /* a_fSwapEndian: */ false ); const PDMAUDIOPCMPROPS Cfg441StereoU16 = PDMAUDIOPCMPROPS_INITIALIZER( /* a_cb: */ 2, /* a_fSigned: */ false, /* a_cChannels: */ 2, /* a_uHz: */ 44100, /* a_fSwapEndian: */ false ); const PDMAUDIOPCMPROPS Cfg441StereoU32 = PDMAUDIOPCMPROPS_INITIALIZER( /* a_cb: */ 4, /* a_fSigned: */ false, /* a_cChannels: */ 2, /* a_uHz: */ 44100, /* a_fSwapEndian: */ false ); RTTESTI_CHECK(PDMAudioPropsGetBitrate(&Cfg441StereoS16) == 44100*4*8); RTTESTI_CHECK(PDMAudioPropsGetBitrate(&Cfg441StereoU16) == 44100*4*8); RTTESTI_CHECK(PDMAudioPropsGetBitrate(&Cfg441StereoU32) == 44100*8*8); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&Cfg441StereoS16)); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&Cfg441StereoU16)); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&Cfg441StereoU32)); RTTESTI_CHECK_MSG(PDMAUDIOPCMPROPS_F2B(&Cfg441StereoS16, 1) == 4, ("got %x, expected 4\n", PDMAUDIOPCMPROPS_F2B(&Cfg441StereoS16, 1))); RTTESTI_CHECK_MSG(PDMAUDIOPCMPROPS_F2B(&Cfg441StereoU16, 1) == 4, ("got %x, expected 4\n", PDMAUDIOPCMPROPS_F2B(&Cfg441StereoU16, 1))); RTTESTI_CHECK_MSG(PDMAUDIOPCMPROPS_F2B(&Cfg441StereoU32, 1) == 8, ("got %x, expected 4\n", PDMAUDIOPCMPROPS_F2B(&Cfg441StereoU32, 1))); RTTESTI_CHECK_MSG(PDMAudioPropsBytesPerFrame(&Cfg441StereoS16) == 4, ("got %x, expected 4\n", PDMAudioPropsBytesPerFrame(&Cfg441StereoS16))); RTTESTI_CHECK_MSG(PDMAudioPropsBytesPerFrame(&Cfg441StereoU16) == 4, ("got %x, expected 4\n", PDMAudioPropsBytesPerFrame(&Cfg441StereoU16))); RTTESTI_CHECK_MSG(PDMAudioPropsBytesPerFrame(&Cfg441StereoU32) == 8, ("got %x, expected 4\n", PDMAudioPropsBytesPerFrame(&Cfg441StereoU32))); uint32_t u32; for (uint32_t i = 0; i < 256; i += 8) { RTTESTI_CHECK(PDMAudioPropsIsSizeAligned(&Cfg441StereoU32, i) == true); for (uint32_t j = 1; j < 8; j++) RTTESTI_CHECK(PDMAudioPropsIsSizeAligned(&Cfg441StereoU32, i + j) == false); for (uint32_t j = 0; j < 8; j++) RTTESTI_CHECK(PDMAudioPropsFloorBytesToFrame(&Cfg441StereoU32, i + j) == i); } for (uint32_t i = 0; i < 4096; i += 4) { RTTESTI_CHECK(PDMAudioPropsIsSizeAligned(&Cfg441StereoS16, i) == true); for (uint32_t j = 1; j < 4; j++) RTTESTI_CHECK(PDMAudioPropsIsSizeAligned(&Cfg441StereoS16, i + j) == false); for (uint32_t j = 0; j < 4; j++) RTTESTI_CHECK(PDMAudioPropsFloorBytesToFrame(&Cfg441StereoS16, i + j) == i); } RTTESTI_CHECK_MSG((u32 = PDMAudioPropsFramesToBytes(&Cfg441StereoS16, 44100)) == 44100 * 2 * 2, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsFramesToBytes(&Cfg441StereoS16, 2)) == 2 * 2 * 2, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsFramesToBytes(&Cfg441StereoS16, 1)) == 4, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsFramesToBytes(&Cfg441StereoU16, 1)) == 4, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsFramesToBytes(&Cfg441StereoU32, 1)) == 8, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsBytesToFrames(&Cfg441StereoS16, 4)) == 1, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsBytesToFrames(&Cfg441StereoU16, 4)) == 1, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsBytesToFrames(&Cfg441StereoU32, 8)) == 1, ("cb=%RU32\n", u32)); uint64_t u64; RTTESTI_CHECK_MSG((u64 = PDMAudioPropsBytesToNano(&Cfg441StereoS16, 44100 * 2 * 2)) == RT_NS_1SEC, ("ns=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsBytesToMicro(&Cfg441StereoS16, 44100 * 2 * 2)) == RT_US_1SEC, ("us=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsBytesToMilli(&Cfg441StereoS16, 44100 * 2 * 2)) == RT_MS_1SEC, ("ms=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToNano(&Cfg441StereoS16, 44100)) == RT_NS_1SEC, ("ns=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToNano(&Cfg441StereoS16, 1)) == 22675, ("ns=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToNano(&Cfg441StereoS16, 31)) == 702947, ("ns=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToNano(&Cfg441StereoS16, 255)) == 5782312, ("ns=%RU64\n", u64)); //RTTESTI_CHECK_MSG((u64 = DrvAudioHlpFramesToMicro(&Cfg441StereoS16, 44100)) == RT_US_1SEC, // ("us=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToMilli(&Cfg441StereoS16, 44100)) == RT_MS_1SEC, ("ms=%RU64\n", u64)); RTTESTI_CHECK_MSG((u64 = PDMAudioPropsFramesToMilli(&Cfg441StereoS16, 255)) == 5, ("ms=%RU64\n", u64)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsNanoToFrames(&Cfg441StereoS16, RT_NS_1SEC)) == 44100, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsNanoToFrames(&Cfg441StereoS16, 215876)) == 10, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsMilliToFrames(&Cfg441StereoS16, RT_MS_1SEC)) == 44100, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsMilliToFrames(&Cfg441StereoU32, 6)) == 265, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsNanoToBytes(&Cfg441StereoS16, RT_NS_1SEC)) == 44100*2*2, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsNanoToBytes(&Cfg441StereoS16, 702947)) == 31*2*2, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsMilliToBytes(&Cfg441StereoS16, RT_MS_1SEC)) == 44100*2*2, ("cb=%RU32\n", u32)); RTTESTI_CHECK_MSG((u32 = PDMAudioPropsMilliToBytes(&Cfg441StereoS16, 5)) == 884, ("cb=%RU32\n", u32)); /* DrvAudioHlpClearBuf: */ uint8_t *pbPage; int rc = RTTestGuardedAlloc(hTest, HOST_PAGE_SIZE, 0, false /*fHead*/, (void **)&pbPage); RTTESTI_CHECK_RC_OK_RETV(rc); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoS16, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE / 4); RTTESTI_CHECK(ASMMemIsZero(pbPage, HOST_PAGE_SIZE)); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoU16, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE / 4); for (uint32_t off = 0; off < HOST_PAGE_SIZE; off += 2) RTTESTI_CHECK_MSG(pbPage[off] == 0 && pbPage[off + 1] == 0x80, ("off=%#x: %#x %x\n", off, pbPage[off], pbPage[off + 1])); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoU32, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE / 8); for (uint32_t off = 0; off < HOST_PAGE_SIZE; off += 4) RTTESTI_CHECK(pbPage[off] == 0 && pbPage[off + 1] == 0 && pbPage[off + 2] == 0 && pbPage[off + 3] == 0x80); RTTestDisableAssertions(hTest); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoS16, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE); /* should adjust down the frame count. */ RTTESTI_CHECK(ASMMemIsZero(pbPage, HOST_PAGE_SIZE)); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoU16, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE); /* should adjust down the frame count. */ for (uint32_t off = 0; off < HOST_PAGE_SIZE; off += 2) RTTESTI_CHECK_MSG(pbPage[off] == 0 && pbPage[off + 1] == 0x80, ("off=%#x: %#x %x\n", off, pbPage[off], pbPage[off + 1])); memset(pbPage, 0x42, HOST_PAGE_SIZE); PDMAudioPropsClearBuffer(&Cfg441StereoU32, pbPage, HOST_PAGE_SIZE, HOST_PAGE_SIZE); /* should adjust down the frame count. */ for (uint32_t off = 0; off < HOST_PAGE_SIZE; off += 4) RTTESTI_CHECK(pbPage[off] == 0 && pbPage[off + 1] == 0 && pbPage[off + 2] == 0 && pbPage[off + 3] == 0x80); RTTestRestoreAssertions(hTest); RTTestGuardedFree(hTest, pbPage); } static void tstSimple(RTTEST hTest) { RTTestSub(hTest, "Simple"); /* 44100Hz, 2 Channels, S16 */ PDMAUDIOPCMPROPS config = PDMAUDIOPCMPROPS_INITIALIZER( 2, /* Bytes */ true, /* Signed */ 2, /* Channels */ 44100, /* Hz */ false /* Swap Endian */ ); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&config)); uint32_t cBufSize = _1K; /* * General stuff. */ AUDIOMIXBUF mb; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInit(&mb, "Single", &config, cBufSize)); RTTESTI_CHECK(AudioMixBufSize(&mb) == cBufSize); RTTESTI_CHECK(AUDIOMIXBUF_B2F(&mb, AudioMixBufSizeBytes(&mb)) == cBufSize); RTTESTI_CHECK(AUDIOMIXBUF_F2B(&mb, AudioMixBufSize(&mb)) == AudioMixBufSizeBytes(&mb)); RTTESTI_CHECK(AudioMixBufFree(&mb) == cBufSize); RTTESTI_CHECK(AUDIOMIXBUF_F2B(&mb, AudioMixBufFree(&mb)) == AudioMixBufFreeBytes(&mb)); AUDIOMIXBUFWRITESTATE WriteState; RTTESTI_CHECK_RC(AudioMixBufInitWriteState(&mb, &WriteState, &config), VINF_SUCCESS); AUDIOMIXBUFPEEKSTATE PeekState; RTTESTI_CHECK_RC(AudioMixBufInitPeekState(&mb, &PeekState, &config), VINF_SUCCESS); /* * A few writes (used to be the weird absolute writes). */ uint32_t cFramesRead = 0, cFramesWritten = 0, cFramesWrittenAbs = 0; int16_t aFrames16[2] = { 0xAA, 0xBB }; int32_t aFrames32[2] = { 0xCC, 0xDD }; RTTESTI_CHECK(AudioMixBufUsed(&mb) == 0); AudioMixBufWrite(&mb, &WriteState, &aFrames16, sizeof(aFrames16), 0 /*offDstFrame*/, cBufSize / 4, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == 1 /* Frames */); RTTESTI_CHECK(AudioMixBufUsed(&mb) == 0); AudioMixBufCommit(&mb, cFramesWritten); RTTESTI_CHECK(AudioMixBufUsed(&mb) == 1); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 0); RTTESTI_CHECK(AudioMixBufWritePos(&mb) == 1); AudioMixBufWrite(&mb, &WriteState, &aFrames32, sizeof(aFrames32), 0 /*offDstFrame*/, cBufSize / 4, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == 2 /* Frames */); AudioMixBufCommit(&mb, cFramesWritten); RTTESTI_CHECK(AudioMixBufUsed(&mb) == 3); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 0); RTTESTI_CHECK(AudioMixBufWritePos(&mb) == 3); /* Pretend we read the frames.*/ AudioMixBufAdvance(&mb, 3); RTTESTI_CHECK(AudioMixBufUsed(&mb) == 0); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 3); RTTESTI_CHECK(AudioMixBufWritePos(&mb) == 3); /* Fill up the buffer completely and check wraps. */ uint32_t cbSamples = PDMAudioPropsFramesToBytes(&config, cBufSize); uint16_t *paSamples = (uint16_t *)RTMemAlloc(cbSamples); RTTESTI_CHECK_RETV(paSamples); AudioMixBufWrite(&mb, &WriteState, paSamples, cbSamples, 0 /*offDstFrame*/, cBufSize, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == cBufSize); AudioMixBufCommit(&mb, cFramesWritten); RTTESTI_CHECK(AudioMixBufUsed(&mb) == cBufSize); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 3); RTTESTI_CHECK(AudioMixBufWritePos(&mb) == 3); RTMemFree(paSamples); cbSamples = 0; /* * Writes and reads (used to be circular). */ AudioMixBufDrop(&mb); cFramesWrittenAbs = AudioMixBufUsed(&mb); uint32_t cToWrite = AudioMixBufSize(&mb) - cFramesWrittenAbs - 1; /* -1 as padding plus -2 frames for above. */ for (uint32_t i = 0; i < cToWrite; i++) { AudioMixBufWrite(&mb, &WriteState, &aFrames16[0], sizeof(aFrames16), 0 /*offDstFrame*/, 1, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == 1); AudioMixBufCommit(&mb, cFramesWritten); } RTTESTI_CHECK(!AudioMixBufIsEmpty(&mb)); RTTESTI_CHECK(AudioMixBufFree(&mb) == 1); RTTESTI_CHECK(AudioMixBufFreeBytes(&mb) == AUDIOMIXBUF_F2B(&mb, 1U)); RTTESTI_CHECK(AudioMixBufUsed(&mb) == cToWrite + cFramesWrittenAbs /* + last absolute write */); AudioMixBufWrite(&mb, &WriteState, &aFrames16[0], sizeof(aFrames16), 0 /*offDstFrame*/, 1, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == 1); AudioMixBufCommit(&mb, cFramesWritten); RTTESTI_CHECK(AudioMixBufFree(&mb) == 0); RTTESTI_CHECK(AudioMixBufFreeBytes(&mb) == AUDIOMIXBUF_F2B(&mb, 0U)); RTTESTI_CHECK(AudioMixBufUsed(&mb) == cBufSize); /* Reads. */ RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 0); uint32_t cbRead; uint16_t aFrames16Buf[RT_ELEMENTS(aFrames16)]; uint32_t cToRead = AudioMixBufSize(&mb) - cFramesWrittenAbs - 1; for (uint32_t i = 0; i < cToRead; i++) { AudioMixBufPeek(&mb, 0 /*offSrcFrame*/, 1, &cFramesRead, &PeekState, aFrames16Buf, sizeof(aFrames16Buf), &cbRead); RTTESTI_CHECK(cFramesRead == 1); RTTESTI_CHECK(cbRead == sizeof(aFrames16Buf)); AudioMixBufAdvance(&mb, cFramesRead); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == i + 1); } RTTESTI_CHECK(!AudioMixBufIsEmpty(&mb)); RTTESTI_CHECK(AudioMixBufFree(&mb) == AudioMixBufSize(&mb) - cFramesWrittenAbs - 1); RTTESTI_CHECK(AudioMixBufFreeBytes(&mb) == AUDIOMIXBUF_F2B(&mb, cBufSize - cFramesWrittenAbs - 1)); RTTESTI_CHECK(AudioMixBufUsed(&mb) == cBufSize - cToRead); AudioMixBufPeek(&mb, 0 /*offSrcFrame*/, 1, &cFramesRead, &PeekState, aFrames16Buf, sizeof(aFrames16Buf), &cbRead); RTTESTI_CHECK(cFramesRead == 1); RTTESTI_CHECK(cbRead == sizeof(aFrames16Buf)); AudioMixBufAdvance(&mb, cFramesRead); RTTESTI_CHECK(AudioMixBufFree(&mb) == cBufSize - cFramesWrittenAbs); RTTESTI_CHECK(AudioMixBufFreeBytes(&mb) == AUDIOMIXBUF_F2B(&mb, cBufSize - cFramesWrittenAbs)); RTTESTI_CHECK(AudioMixBufUsed(&mb) == cFramesWrittenAbs); RTTESTI_CHECK(AudioMixBufReadPos(&mb) == 0); AudioMixBufTerm(&mb); } /** @name Eight test samples represented in all basic formats. * @{ */ static uint8_t const g_au8TestSamples[8] = { 0x1, 0x11, 0x32, 0x7f, 0x80, 0x81, 0xbe, 0xff }; static int8_t const g_ai8TestSamples[8] = { -127, -111, -78, -1, 0, 1, 62, 127 }; static uint16_t const g_au16TestSamples[8] = { 0x100, 0x1100, 0x3200, 0x7f00, 0x8000, 0x8100, 0xbe00, 0xff00 }; static int16_t const g_ai16TestSamples[8] = { -32512, -28416, -19968, -256, 0, 256, 15872, 32512 }; static uint32_t const g_au32TestSamples[8] = { 0x1000000, 0x11000000, 0x32000000, 0x7f000000, 0x80000000, 0x81000000, 0xbe000000, 0xff000000 }; static int32_t const g_ai32TestSamples[8] = { -2130706432, -1862270976, -1308622848, -16777216, 0, 16777216, 1040187392, 2130706432 }; static int64_t const g_ai64TestSamples[8] = { -2130706432, -1862270976, -1308622848, -16777216, 0, 16777216, 1040187392, 2130706432 }; static struct { void const *apv[2]; uint32_t cb; } g_aTestSamples[] = { /* 0/0: */ { { NULL, NULL }, 0 }, /* 1/8: */ { { g_au8TestSamples, g_ai8TestSamples }, sizeof( g_au8TestSamples) }, /* 2/16: */ { { g_au16TestSamples, g_ai16TestSamples }, sizeof(g_au16TestSamples) }, /* 3/24: */ { { NULL, NULL }, 0 }, /* 4/32: */ { { g_au32TestSamples, g_ai32TestSamples }, sizeof(g_au32TestSamples) }, /* 5: */ { { NULL, NULL }, 0 }, /* 6: */ { { NULL, NULL }, 0 }, /* 7: */ { { NULL, NULL }, 0 }, /* 8:64 */ { { NULL, g_ai64TestSamples }, sizeof(g_ai64TestSamples) }, /* raw */ }; /** @} */ /** Fills a buffer with samples from an g_aTestSamples entry. */ static uint32_t tstFillBuf(PCPDMAUDIOPCMPROPS pCfg, void const *pvTestSamples, uint32_t iTestSample, uint8_t *pbBuf, uint32_t cFrames) { uint8_t const cTestSamples = RT_ELEMENTS(g_au8TestSamples); cFrames *= PDMAudioPropsChannels(pCfg); switch (PDMAudioPropsSampleSize(pCfg)) { case 1: { uint8_t const * const pau8TestSamples = (uint8_t const *)pvTestSamples; uint8_t *pu8Dst = (uint8_t *)pbBuf; while (cFrames-- > 0) { *pu8Dst++ = pau8TestSamples[iTestSample]; iTestSample = (iTestSample + 1) % cTestSamples; } break; } case 2: { uint16_t const * const pau16TestSamples = (uint16_t const *)pvTestSamples; uint16_t *pu16Dst = (uint16_t *)pbBuf; while (cFrames-- > 0) { *pu16Dst++ = pau16TestSamples[iTestSample]; iTestSample = (iTestSample + 1) % cTestSamples; } break; } case 4: { uint32_t const * const pau32TestSamples = (uint32_t const *)pvTestSamples; uint32_t *pu32Dst = (uint32_t *)pbBuf; while (cFrames-- > 0) { *pu32Dst++ = pau32TestSamples[iTestSample]; iTestSample = (iTestSample + 1) % cTestSamples; } break; } case 8: { uint64_t const * const pau64TestSamples = (uint64_t const *)pvTestSamples; uint64_t *pu64Dst = (uint64_t *)pbBuf; while (cFrames-- > 0) { *pu64Dst++ = pau64TestSamples[iTestSample]; iTestSample = (iTestSample + 1) % cTestSamples; } break; } default: AssertFailedBreak(); } return iTestSample; } static void tstConversion(RTTEST hTest, uint8_t cSrcBits, bool fSrcSigned, uint8_t cSrcChs, uint8_t cDstBits, bool fDstSigned, uint8_t cDstChs) { RTTestSubF(hTest, "Conv %uch %c%u to %uch %c%u", cSrcChs, fSrcSigned ? 'S' : 'U', cSrcBits, cDstChs, fDstSigned ? 'S' : 'U', cDstBits); PDMAUDIOPCMPROPS CfgSrc, CfgDst; PDMAudioPropsInitEx(&CfgSrc, cSrcBits / 8, fSrcSigned, cSrcChs, 44100, g_fLittleEndian, cSrcBits == 64 /*fRaw*/); PDMAudioPropsInitEx(&CfgDst, cDstBits / 8, fDstSigned, cDstChs, 44100, g_fLittleEndian, cDstBits == 64 /*fRaw*/); void const * const pvSrcTestSamples = g_aTestSamples[cSrcBits / 8].apv[fSrcSigned]; void const * const pvDstTestSamples = g_aTestSamples[cDstBits / 8].apv[fDstSigned]; uint32_t const cMixBufFrames = RTRandU32Ex(128, 16384); uint32_t const cIterations = RTRandU32Ex(256, 1536); uint32_t const cbSrcBuf = PDMAudioPropsFramesToBytes(&CfgSrc, cMixBufFrames + 64); uint8_t * const pbSrcBuf = (uint8_t *)RTMemAllocZ(cbSrcBuf); uint32_t const cbDstBuf = PDMAudioPropsFramesToBytes(&CfgDst, cMixBufFrames + 64); uint8_t * const pbDstBuf = (uint8_t *)RTMemAllocZ(cbDstBuf); uint8_t * const pbDstExpect = (uint8_t *)RTMemAllocZ(cbDstBuf); RTTESTI_CHECK_RETV(pbSrcBuf); RTTESTI_CHECK_RETV(pbDstBuf); RTTESTI_CHECK_RETV(pbDstExpect); AUDIOMIXBUF MixBuf; RTTESTI_CHECK_RC_RETV(AudioMixBufInit(&MixBuf, "FormatOutputConversion", &CfgSrc, cMixBufFrames), VINF_SUCCESS); AUDIOMIXBUFWRITESTATE WriteState; RTTESTI_CHECK_RC_RETV(AudioMixBufInitWriteState(&MixBuf, &WriteState, &CfgSrc), VINF_SUCCESS); AUDIOMIXBUFWRITESTATE WriteStateIgnZero = WriteState; RT_NOREF(WriteStateIgnZero); AUDIOMIXBUFPEEKSTATE PeekState; RTTESTI_CHECK_RC_RETV(AudioMixBufInitPeekState(&MixBuf, &PeekState, &CfgDst), VINF_SUCCESS); uint32_t iSrcTestSample = 0; uint32_t iDstTestSample = 0; //RTTestPrintf(hTest, RTTESTLVL_ALWAYS, "cIterations=%u\n", cIterations); for (uint32_t iIteration = 0; iIteration < cIterations; iIteration++) { /* Write some frames to the buffer. */ uint32_t const cSrcFramesToWrite = iIteration < 16 ? iIteration + 1 : AudioMixBufFree(&MixBuf) ? RTRandU32Ex(1, AudioMixBufFree(&MixBuf)) : 0; if (cSrcFramesToWrite > 0) { uint32_t const cbSrcToWrite = PDMAudioPropsFramesToBytes(&CfgSrc, cSrcFramesToWrite); uint32_t cFrames = RTRandU32(); switch (RTRandU32Ex(0, 3)) { default: iSrcTestSample = tstFillBuf(&CfgSrc, pvSrcTestSamples, iSrcTestSample, pbSrcBuf, cSrcFramesToWrite); AudioMixBufWrite(&MixBuf, &WriteState, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); break; case 1: /* zero & blend */ AudioMixBufSilence(&MixBuf, &WriteStateIgnZero, 0 /*offFrame*/, cSrcFramesToWrite); iSrcTestSample = tstFillBuf(&CfgSrc, pvSrcTestSamples, iSrcTestSample, pbSrcBuf, cSrcFramesToWrite); AudioMixBufBlend(&MixBuf, &WriteState, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); break; case 2: /* blend same equal data twice */ { AUDIOMIXBUFWRITESTATE WriteStateSame = WriteState; iSrcTestSample = tstFillBuf(&CfgSrc, pvSrcTestSamples, iSrcTestSample, pbSrcBuf, cSrcFramesToWrite); AudioMixBufWrite(&MixBuf, &WriteState, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); AudioMixBufBlend(&MixBuf, &WriteStateSame, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); break; } case 3: /* write & blend with zero */ { AUDIOMIXBUFWRITESTATE WriteStateSame = WriteState; iSrcTestSample = tstFillBuf(&CfgSrc, pvSrcTestSamples, iSrcTestSample, pbSrcBuf, cSrcFramesToWrite); AudioMixBufWrite(&MixBuf, &WriteState, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); PDMAudioPropsClearBuffer(&CfgSrc, pbSrcBuf, cbSrcToWrite, cSrcFramesToWrite); AudioMixBufBlend(&MixBuf, &WriteStateSame, pbSrcBuf, cbSrcToWrite, 0 /*offDstFrame*/, cSrcFramesToWrite, &cFrames); RTTESTI_CHECK(cFrames == cSrcFramesToWrite); break; } } AudioMixBufCommit(&MixBuf, cSrcFramesToWrite); } /* Read some frames back. */ uint32_t const cUsed = AudioMixBufUsed(&MixBuf); uint32_t const cDstFramesToRead = iIteration < 16 ? iIteration + 1 : iIteration + 5 >= cIterations ? cUsed : cUsed ? RTRandU32Ex(1, cUsed) : 0; if (cDstFramesToRead > 0) { uint32_t const cbDstToRead = PDMAudioPropsFramesToBytes(&CfgDst, cDstFramesToRead); uint32_t cbRead = RTRandU32(); uint32_t cFrames = RTRandU32(); RTRandBytes(pbDstBuf, cbDstToRead); AudioMixBufPeek(&MixBuf, 0 /*offSrcFrame*/, (iIteration & 3) != 2 ? cDstFramesToRead : cUsed, &cFrames, &PeekState, pbDstBuf, (iIteration & 3) != 3 ? cbDstToRead : cbDstBuf, &cbRead); RTTESTI_CHECK(cFrames == cDstFramesToRead); RTTESTI_CHECK(cbRead == cbDstToRead); AudioMixBufAdvance(&MixBuf, cFrames); /* Verify if we can. */ if (PDMAudioPropsChannels(&CfgSrc) == PDMAudioPropsChannels(&CfgDst)) { iDstTestSample = tstFillBuf(&CfgDst, pvDstTestSamples, iDstTestSample, pbDstExpect, cFrames); if (memcmp(pbDstExpect, pbDstBuf, cbRead) == 0) { /* likely */ } else { RTTestFailed(hTest, "mismatch: %.*Rhxs\n" "expected: %.*Rhxs\n" "iIteration=%u cDstFramesToRead=%u cbRead=%#x\n", RT_MIN(cbRead, 48), pbDstBuf, RT_MIN(cbRead, 48), pbDstExpect, iIteration, cDstFramesToRead, cbRead); break; } } } } AudioMixBufTerm(&MixBuf); RTMemFree(pbSrcBuf); RTMemFree(pbDstBuf); RTMemFree(pbDstExpect); } #if 0 /** @todo rewrite to non-parent/child setup */ static void tstDownsampling(RTTEST hTest, uint32_t uFromHz, uint32_t uToHz) { RTTestSubF(hTest, "Downsampling %u to %u Hz (S16)", uFromHz, uToHz); struct { int16_t l, r; } aSrcFrames[4096], aDstFrames[4096]; /* Parent (destination) buffer is xxxHz 2ch S16 */ uint32_t const cFramesParent = RTRandU32Ex(16, RT_ELEMENTS(aDstFrames)); PDMAUDIOPCMPROPS const CfgDst = PDMAUDIOPCMPROPS_INITIALIZER(2 /*cbSample*/, true /*fSigned*/, 2 /*ch*/, uToHz, false /*fSwap*/); RTTESTI_CHECK(AudioHlpPcmPropsAreValid(&CfgDst)); AUDIOMIXBUF Parent; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInit(&Parent, "ParentDownsampling", &CfgDst, cFramesParent)); /* Child (source) buffer is yyykHz 2ch S16 */ PDMAUDIOPCMPROPS const CfgSrc = PDMAUDIOPCMPROPS_INITIALIZER(2 /*cbSample*/, true /*fSigned*/, 2 /*ch*/, uFromHz, false /*fSwap*/); RTTESTI_CHECK(AudioHlpPcmPropsAreValid(&CfgSrc)); uint32_t const cFramesChild = RTRandU32Ex(32, RT_ELEMENTS(aSrcFrames)); AUDIOMIXBUF Child; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInit(&Child, "ChildDownsampling", &CfgSrc, cFramesChild)); RTTESTI_CHECK_RC_OK_RETV(AudioMixBufLinkTo(&Child, &Parent)); /* * Test parameters. */ uint32_t const cMaxSrcFrames = RT_MIN(cFramesParent * uFromHz / uToHz - 1, cFramesChild); uint32_t const cIterations = RTRandU32Ex(4, 128); RTTestErrContext(hTest, "cFramesParent=%RU32 cFramesChild=%RU32 cMaxSrcFrames=%RU32 cIterations=%RU32", cFramesParent, cFramesChild, cMaxSrcFrames, cIterations); RTTestPrintf(hTest, RTTESTLVL_DEBUG, "cFramesParent=%RU32 cFramesChild=%RU32 cMaxSrcFrames=%RU32 cIterations=%RU32\n", cFramesParent, cFramesChild, cMaxSrcFrames, cIterations); /* * We generate a simple "A" sine wave as input. */ uint32_t iSrcFrame = 0; uint32_t iDstFrame = 0; double rdFixed = 2.0 * M_PI * 440.0 /* A */ / PDMAudioPropsHz(&CfgSrc); /* Fixed sin() input. */ for (uint32_t i = 0; i < cIterations; i++) { RTTestPrintf(hTest, RTTESTLVL_DEBUG, "i=%RU32\n", i); /* * Generate source frames and write them. */ uint32_t const cSrcFrames = i < cIterations / 2 ? RTRandU32Ex(2, cMaxSrcFrames) & ~(uint32_t)1 : RTRandU32Ex(1, cMaxSrcFrames - 1) | 1; for (uint32_t j = 0; j < cSrcFrames; j++, iSrcFrame++) aSrcFrames[j].r = aSrcFrames[j].l = 32760 /*Amplitude*/ * sin(rdFixed * iSrcFrame); uint32_t cSrcFramesWritten = UINT32_MAX / 2; RTTESTI_CHECK_RC_OK_BREAK(AudioMixBufWriteAt(&Child, 0, &aSrcFrames, cSrcFrames * sizeof(aSrcFrames[0]), &cSrcFramesWritten)); RTTESTI_CHECK_MSG_BREAK(cSrcFrames == cSrcFramesWritten, ("cSrcFrames=%RU32 vs cSrcFramesWritten=%RU32\n", cSrcFrames, cSrcFramesWritten)); /* * Mix them. */ uint32_t cSrcFramesMixed = UINT32_MAX / 2; RTTESTI_CHECK_RC_OK_BREAK(AudioMixBufMixToParent(&Child, cSrcFramesWritten, &cSrcFramesMixed)); RTTESTI_CHECK_MSG(AudioMixBufUsed(&Child) == 0, ("%RU32\n", AudioMixBufUsed(&Child))); RTTESTI_CHECK_MSG_BREAK(cSrcFramesWritten == cSrcFramesMixed, ("cSrcFramesWritten=%RU32 cSrcFramesMixed=%RU32\n", cSrcFramesWritten, cSrcFramesMixed)); RTTESTI_CHECK_MSG_BREAK(AudioMixBufUsed(&Child) == 0, ("%RU32\n", AudioMixBufUsed(&Child))); /* * Read out the parent buffer. */ uint32_t cDstFrames = AudioMixBufUsed(&Parent); while (cDstFrames > 0) { uint32_t cFramesRead = UINT32_MAX / 2; RTTESTI_CHECK_RC_OK_BREAK(AudioMixBufAcquireReadBlock(&Parent, aDstFrames, sizeof(aDstFrames), &cFramesRead)); RTTESTI_CHECK_MSG(cFramesRead > 0 && cFramesRead <= cDstFrames, ("cFramesRead=%RU32 cDstFrames=%RU32\n", cFramesRead, cDstFrames)); AudioMixBufReleaseReadBlock(&Parent, cFramesRead); AudioMixBufFinish(&Parent, cFramesRead); iDstFrame += cFramesRead; cDstFrames -= cFramesRead; RTTESTI_CHECK(AudioMixBufUsed(&Parent) == cDstFrames); } } RTTESTI_CHECK(AudioMixBufUsed(&Parent) == 0); RTTESTI_CHECK(AudioMixBufLive(&Child) == 0); uint32_t const cDstMinExpect = (uint64_t)iSrcFrame * uToHz / uFromHz; uint32_t const cDstMaxExpect = ((uint64_t)iSrcFrame * uToHz + uFromHz - 1) / uFromHz; RTTESTI_CHECK_MSG(iDstFrame == cDstMinExpect || iDstFrame == cDstMaxExpect, ("iSrcFrame=%#x -> %#x,%#x; iDstFrame=%#x\n", iSrcFrame, cDstMinExpect, cDstMaxExpect, iDstFrame)); AudioMixBufDestroy(&Parent); AudioMixBufDestroy(&Child); } #endif static void tstNewPeek(RTTEST hTest, uint32_t uFromHz, uint32_t uToHz) { RTTestSubF(hTest, "New peek %u to %u Hz (S16)", uFromHz, uToHz); struct { int16_t l, r; } aSrcFrames[4096], aDstFrames[4096]; /* Mix buffer is uFromHz 2ch S16 */ uint32_t const cFrames = RTRandU32Ex(16, RT_ELEMENTS(aSrcFrames)); PDMAUDIOPCMPROPS const CfgSrc = PDMAUDIOPCMPROPS_INITIALIZER(2 /*cbSample*/, true /*fSigned*/, 2 /*ch*/, uFromHz, false /*fSwap*/); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&CfgSrc)); AUDIOMIXBUF MixBuf; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInit(&MixBuf, "NewPeekMixBuf", &CfgSrc, cFrames)); /* Write state (source). */ AUDIOMIXBUFWRITESTATE WriteState; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInitWriteState(&MixBuf, &WriteState, &CfgSrc)); /* Peek state (destination) is uToHz 2ch S16 */ PDMAUDIOPCMPROPS const CfgDst = PDMAUDIOPCMPROPS_INITIALIZER(2 /*cbSample*/, true /*fSigned*/, 2 /*ch*/, uToHz, false /*fSwap*/); RTTESTI_CHECK(AudioHlpPcmPropsAreValidAndSupported(&CfgDst)); AUDIOMIXBUFPEEKSTATE PeekState; RTTESTI_CHECK_RC_OK_RETV(AudioMixBufInitPeekState(&MixBuf, &PeekState, &CfgDst)); /* * Test parameters. */ uint32_t const cMaxSrcFrames = RT_MIN(cFrames * uFromHz / uToHz - 1, cFrames); uint32_t const cIterations = RTRandU32Ex(64, 1024); RTTestErrContext(hTest, "cFrames=%RU32 cMaxSrcFrames=%RU32 cIterations=%RU32", cFrames, cMaxSrcFrames, cIterations); RTTestPrintf(hTest, RTTESTLVL_DEBUG, "cFrames=%RU32 cMaxSrcFrames=%RU32 cIterations=%RU32\n", cFrames, cMaxSrcFrames, cIterations); /* * We generate a simple "A" sine wave as input. */ uint32_t iSrcFrame = 0; uint32_t iDstFrame = 0; double rdFixed = 2.0 * M_PI * 440.0 /* A */ / PDMAudioPropsHz(&CfgSrc); /* Fixed sin() input. */ for (uint32_t i = 0; i < cIterations; i++) { RTTestPrintf(hTest, RTTESTLVL_DEBUG, "i=%RU32\n", i); /* * Generate source frames and write them. */ uint32_t const cSrcFrames = i < cIterations / 2 ? RTRandU32Ex(2, cMaxSrcFrames) & ~(uint32_t)1 : RTRandU32Ex(1, cMaxSrcFrames - 1) | 1; for (uint32_t j = 0; j < cSrcFrames; j++, iSrcFrame++) aSrcFrames[j].r = aSrcFrames[j].l = 32760 /*Amplitude*/ * sin(rdFixed * iSrcFrame); uint32_t cSrcFramesWritten = UINT32_MAX / 2; AudioMixBufWrite(&MixBuf, &WriteState, &aSrcFrames[0], cSrcFrames * sizeof(aSrcFrames[0]), 0 /*offDstFrame*/, cSrcFrames, &cSrcFramesWritten); RTTESTI_CHECK_MSG_BREAK(cSrcFrames == cSrcFramesWritten, ("cSrcFrames=%RU32 vs cSrcFramesWritten=%RU32 cLiveFrames=%RU32\n", cSrcFrames, cSrcFramesWritten, AudioMixBufUsed(&MixBuf))); AudioMixBufCommit(&MixBuf, cSrcFrames); /* * Read out all the frames using the peek function. */ uint32_t offSrcFrame = 0; while (offSrcFrame < cSrcFramesWritten) { uint32_t cSrcFramesToRead = cSrcFramesWritten - offSrcFrame; uint32_t cTmp = (uint64_t)cSrcFramesToRead * uToHz / uFromHz; if (cTmp + 32 >= RT_ELEMENTS(aDstFrames)) cSrcFramesToRead = ((uint64_t)RT_ELEMENTS(aDstFrames) - 32) * uFromHz / uToHz; /* kludge */ uint32_t cSrcFramesPeeked = UINT32_MAX / 4; uint32_t cbDstPeeked = UINT32_MAX / 2; RTRandBytes(aDstFrames, sizeof(aDstFrames)); AudioMixBufPeek(&MixBuf, offSrcFrame, cSrcFramesToRead, &cSrcFramesPeeked, &PeekState, aDstFrames, sizeof(aDstFrames), &cbDstPeeked); uint32_t cDstFramesPeeked = PDMAudioPropsBytesToFrames(&CfgDst, cbDstPeeked); RTTESTI_CHECK(cbDstPeeked > 0 || cSrcFramesPeeked > 0); if (uFromHz == uToHz) { for (uint32_t iDst = 0; iDst < cDstFramesPeeked; iDst++) if (memcmp(&aDstFrames[iDst], &aSrcFrames[offSrcFrame + iDst], sizeof(aSrcFrames[0])) != 0) RTTestFailed(hTest, "Frame #%u differs: %#x / %#x, expected %#x / %#x\n", iDstFrame + iDst, aDstFrames[iDst].l, aDstFrames[iDst].r, aSrcFrames[iDst + offSrcFrame].l, aSrcFrames[iDst + offSrcFrame].r); } offSrcFrame += cSrcFramesPeeked; iDstFrame += cDstFramesPeeked; } /* * Then advance. */ AudioMixBufAdvance(&MixBuf, cSrcFrames); RTTESTI_CHECK(AudioMixBufUsed(&MixBuf) == 0); } /** @todo this is a bit lax... */ uint32_t const cDstMinExpect = ((uint64_t)iSrcFrame * uToHz - uFromHz - 1) / uFromHz; uint32_t const cDstMaxExpect = ((uint64_t)iSrcFrame * uToHz + uFromHz - 1) / uFromHz; RTTESTI_CHECK_MSG(iDstFrame >= cDstMinExpect && iDstFrame <= cDstMaxExpect, ("iSrcFrame=%#x -> %#x..%#x; iDstFrame=%#x (delta %d)\n", iSrcFrame, cDstMinExpect, cDstMaxExpect, iDstFrame, (cDstMinExpect + cDstMaxExpect) / 2 - iDstFrame)); AudioMixBufTerm(&MixBuf); } /* Test volume control. */ static void tstVolume(RTTEST hTest) { RTTestSub(hTest, "Volume control (44.1kHz S16 2ch)"); uint32_t const cBufSize = 256; /* * Configure a mixbuf where we read and write 44.1kHz S16 2ch. */ PDMAUDIOPCMPROPS const Cfg = PDMAUDIOPCMPROPS_INITIALIZER( 2, /* Bytes */ true, /* Signed */ 2, /* Channels */ 44100, /* Hz */ false /* Swap Endian */ ); AUDIOMIXBUF MixBuf; RTTESTI_CHECK_RC_RETV(AudioMixBufInit(&MixBuf, "Volume", &Cfg, cBufSize), VINF_SUCCESS); AUDIOMIXBUFWRITESTATE WriteState; RTTESTI_CHECK_RC_RETV(AudioMixBufInitWriteState(&MixBuf, &WriteState, &Cfg), VINF_SUCCESS); AUDIOMIXBUFPEEKSTATE PeekState; RTTESTI_CHECK_RC_RETV(AudioMixBufInitPeekState(&MixBuf, &PeekState, &Cfg), VINF_SUCCESS); /* * A few 16-bit signed test samples. */ static int16_t const s_aFrames16S[16] = { INT16_MIN, INT16_MIN + 1, -128, -64, -4, -1, 0, 1, 2, 255, 256, INT16_MAX / 2, INT16_MAX - 2, INT16_MAX - 1, INT16_MAX, 0, }; /* * 1) Full volume/0dB attenuation (255). */ PDMAUDIOVOLUME Vol = PDMAUDIOVOLUME_INITIALIZER_MAX; AudioMixBufSetVolume(&MixBuf, &Vol); /* Write all the test frames to the mixer buffer: */ uint32_t cFramesWritten; AudioMixBufWrite(&MixBuf, &WriteState, &s_aFrames16S[0], sizeof(s_aFrames16S), 0 /*offDstFrame*/, cBufSize, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == RT_ELEMENTS(s_aFrames16S) / 2); AudioMixBufCommit(&MixBuf, cFramesWritten); /* Read them back. We should get them back just like we wrote them. */ uint16_t au16Buf[cBufSize * 2]; uint32_t cFramesPeeked; uint32_t cbPeeked; AudioMixBufPeek(&MixBuf, 0 /*offSrcFrame*/, cFramesWritten, &cFramesPeeked, &PeekState, au16Buf, sizeof(au16Buf), &cbPeeked); RTTESTI_CHECK(cFramesPeeked == cFramesWritten); RTTESTI_CHECK(cbPeeked == PDMAudioPropsFramesToBytes(&Cfg, cFramesPeeked)); AudioMixBufAdvance(&MixBuf, cFramesPeeked); /* Check that at 0dB the frames came out unharmed. */ if (memcmp(au16Buf, s_aFrames16S, sizeof(s_aFrames16S)) != 0) RTTestFailed(hTest, "0dB test failed\n" "mismatch: %.*Rhxs\n" "expected: %.*Rhxs\n", sizeof(s_aFrames16S), au16Buf, sizeof(s_aFrames16S), s_aFrames16S); /* * 2) Half volume/-6dB attenuation (16 steps down). */ PDMAudioVolumeInitFromStereo(&Vol, false, 255 - 16, 255 - 16); AudioMixBufSetVolume(&MixBuf, &Vol); /* Write all the test frames to the mixer buffer: */ AudioMixBufWrite(&MixBuf, &WriteState, &s_aFrames16S[0], sizeof(s_aFrames16S), 0 /*offDstFrame*/, cBufSize, &cFramesWritten); RTTESTI_CHECK(cFramesWritten == RT_ELEMENTS(s_aFrames16S) / 2); AudioMixBufCommit(&MixBuf, cFramesWritten); /* Read them back. We should get them back just like we wrote them. */ AudioMixBufPeek(&MixBuf, 0 /*offSrcFrame*/, cFramesWritten, &cFramesPeeked, &PeekState, au16Buf, sizeof(au16Buf), &cbPeeked); RTTESTI_CHECK(cFramesPeeked == cFramesWritten); RTTESTI_CHECK(cbPeeked == PDMAudioPropsFramesToBytes(&Cfg, cFramesPeeked)); AudioMixBufAdvance(&MixBuf, cFramesPeeked); /* Check that at -6dB the sample values are halved. */ int16_t ai16Expect[sizeof(s_aFrames16S) / 2]; memcpy(ai16Expect, s_aFrames16S, sizeof(ai16Expect)); for (uintptr_t i = 0; i < RT_ELEMENTS(ai16Expect); i++) ai16Expect[i] >>= 1; /* /= 2 - not the same for signed numbers; */ if (memcmp(au16Buf, ai16Expect, sizeof(ai16Expect)) != 0) RTTestFailed(hTest, "-6dB test failed\n" "mismatch: %.*Rhxs\n" "expected: %.*Rhxs\n" "wrote: %.*Rhxs\n", sizeof(ai16Expect), au16Buf, sizeof(ai16Expect), ai16Expect, sizeof(s_aFrames16S), s_aFrames16S); AudioMixBufTerm(&MixBuf); } int main(int argc, char **argv) { RTR3InitExe(argc, &argv, 0); /* * Initialize IPRT and create the test. */ RTTEST hTest; int rc = RTTestInitAndCreate("tstAudioMixBuffer", &hTest); if (rc) return rc; RTTestBanner(hTest); tstBasics(hTest); tstSimple(hTest); /* Run tstConversion for all combinations we have test data. */ for (unsigned iSrc = 0; iSrc < RT_ELEMENTS(g_aTestSamples); iSrc++) { for (unsigned iSrcSigned = 0; iSrcSigned < RT_ELEMENTS(g_aTestSamples[0].apv); iSrcSigned++) if (g_aTestSamples[iSrc].apv[iSrcSigned]) for (unsigned cSrcChs = 1; cSrcChs <= 2; cSrcChs++) for (unsigned iDst = 0; iDst < RT_ELEMENTS(g_aTestSamples); iDst++) for (unsigned iDstSigned = 0; iDstSigned < RT_ELEMENTS(g_aTestSamples[0].apv); iDstSigned++) if (g_aTestSamples[iDst].apv[iDstSigned]) for (unsigned cDstChs = 1; cDstChs <= 2; cDstChs++) tstConversion(hTest, iSrc * 8, iSrcSigned == 1, cSrcChs, /*->*/ iDst * 8, iDstSigned == 1, cDstChs); } #if 0 /** @todo rewrite to non-parent/child setup */ tstDownsampling(hTest, 44100, 22050); tstDownsampling(hTest, 48000, 44100); tstDownsampling(hTest, 48000, 22050); tstDownsampling(hTest, 48000, 11000); #endif tstNewPeek(hTest, 48000, 48000); tstNewPeek(hTest, 48000, 11000); tstNewPeek(hTest, 48000, 44100); tstNewPeek(hTest, 44100, 22050); tstNewPeek(hTest, 44100, 11000); //tstNewPeek(hTest, 11000, 48000); //tstNewPeek(hTest, 22050, 44100); tstVolume(hTest); /* * Summary */ return RTTestSummaryAndDestroy(hTest); }