/* $Id: DevXHCI.cpp $ */ /** @file * DevXHCI - eXtensible Host Controller Interface for USB. */ /* * Copyright (C) 2012-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /** @page pg_dev_xhci xHCI - eXtensible Host Controller Interface Emulation. * * This component implements an xHCI USB controller. * * The xHCI device is significantly different from the EHCI and OHCI * controllers in that it is not timer driven. A worker thread is responsible * for transferring data between xHCI and VUSB. * * Since there can be dozens or even hundreds of USB devices, and because USB * transfers must share the same bus, only one worker thread is created (per * host controller). * * * The xHCI operational model is heavily based around a producer/consumer * model utilizing rings -- Command, Event, and Transfer rings. The Event ring * is only written by the xHC and is read-only for the HCD (Host Controller * Driver). The Command/Transfer rings are only written by the HCD and are * read-only for the xHC. * * The rings contain TRBs (Transfer Request Blocks). The TRBs represent not * only data transfers but also commands and status information. Each type of * ring only produces/consumes specific TRB types. * * When processing a ring, the xHC simply keeps advancing an internal pointer. * For the Command/Transfer rings, the HCD uses Link TRBs to manage the ring * storage in a fairly arbitrary manner. Since the HCD cannot write to the * Event ring, the Event Ring Segment Table (ERST) is used to manage the ring * storage instead. * * The Cycle bit is used to manage the ring buffer full/empty condition. The * Producer and Consumer both have their own Cycle State (PCS/CCS). The Cycle * bit of each TRB determines who owns it. The consumer only processes TRBs * whose Cycle bit matches the CCS. HCD software typically toggles the Cycle * bit on each pass through the ring. The Link TRB can be used to toggle the * CCS accordingly. * * Multiple Transfer TRBs can be chained together (via the Chain bit) into a * single Transfer Descriptor (TD). This provides a convenient capability for * the HCD to turn a URB into a single TD regardless of how the URB is laid * out in physical memory. If a transfer encounters an error or is terminated * by a short packet, the entire TD (i.e. chain of TRBs) is retired. * * Note that the xHC detects and handles short packets on its own. Backends * are always asked not to consider a short packet to be an error condition. * * Command and Event TRBs cannot be chained, thus an ED (Event Descriptor) * or a Command Descriptor (CD) always consists of a single TRB. * * There is one Command ring per xHC, one Event ring per interrupter (one or * more), and a potentially very large number of Transfer rings. There is a * 1:1 mapping between Transfer Rings and USB pipes, hence each USB device * uses 1-31 Transfer rings (at least one for the default control endpoint, * up to 31 if all IN/OUT endpoints are used). USB 3.0 devices may also use * up to 64K streams per endpoint, each with its Transfer ring, massively * increasing the potential number of Transfer rings in use. * * When building a Transfer ring, it's possible to queue up a large number * of TDs and as soon as the oldest ones are retired, queue up new TDs. The * Transfer ring might thus never be empty. * * For tracking ring buffer position, the TRDP and TREP fields in an endpoint * context are used. The TRDP is the 'TR Dequeue Pointer', i.e. the position * of the next TRB to be completed. This field is visible by the HCD when the * endpoint isn't running. It reflects TRBs completely processed by the xHC * and hence no longer owned by the xHC. * * The TREP field is the 'TR Enqueue Pointer' and tracks the position of the * next TRB to start processing (submit). This is purely internal to the * xHC. The TREP can potentially get far ahead of the TRDP, but only in the * part of the ring owned by the xHC (i.e. with matching DCS bit). * * Unlike most other xHCI data structures, transfer TRBs may describe memory * buffers with no alignment restrictions (both starting position and size). * In addition, there is no relationship between TRB boundaries and USB * packet boundaries. * * * Typically an event would be generated via the IOC bit (Interrupt On * Completion) when the last TRB of a TD is completed. However, multiple IOC * bits may be set per TD. This may be required when a TD equal or larger * than 16MB is used, since transfer events utilize a 24-bit length field. * * There is also the option of using Transfer Event TRBs to report TRB * completion. Transfer Event TRBs may be freely intermixed with transfer * TRBs. Note that an event TRB will produce an event reporting the size of * data transferred since the last event TRB or since the beginning of a TD. * The xHC submits URBs such that they either comprise the entire TD or end * at a Transfer Event TRB, thus there is no need to track the EDTLA * separately. * * Transfer errors always generate events, irrespective of IOC settings. The * xHC has always the option to generate events at implementation-specific * points so that the HCD does not fall too far behind. * * Control transfers use special TDs. A Setup Stage TD consists of only a * single Setup Stage TRB (there's no Chain bit). The optional Data Stage * TD consists of a Data Stage TRB chained to zero or more Normal TRBs * and/or Event Data TRBs. The Status Stage TD then consists of a Status * Stage TRB optionally chained to an Event Data TRB. The HCD is responsible * for building the TDs correctly. * * For isochronous transfers, only the first TRB of a TD is actually an * isochronous TRB. If the TD is chained, it will contain Normal TRBs (and * possibly Event Data TRBs). * * * Isochronous transfers require multiple TDs/URBs to be in flight at a * time. This complicates dealing with non-data TRBs (such as link or event * data TRBs). These TRBs cannot be completed while a previous TRB is still * in flight. They are completed either: a) when submitting URBs and there * are no in-flight URBs, or b) just prior to completing an URB. * * This approach works because URBs must be completed strictly in-order. The * TRDP and TREP determine whether there are in-flight TRBs (TREP equals * TRDP if and only if there are no in-flight TRBs). * * When submitting TRBs and there is in-flight traffic, non-data TRBs must * be examined and skipped over. Link TRBs need to be taken into account. * * Unfortunately, certain HCDs (looking at you, Microsoft!) violate the xHCI * specification and make assumptions about how far ahead of the TRDP the * xHC can get. We have to artificially limit the number of in-flight TDs * for this reason. * * Non-isochronous TRBs do not require this treatment for correct function * but are likely to benefit performance-wise from the pipelining. * * With high-speed and faster transfers, there is an added complication for * endpoints with more than one transfer per frame, i.e. short intervals. At * least some host USB stacks require URBs to cover an entire frame, which * means we may have to glue together several TDs into a single URB. * * * A buggy or malicious guest can create a transfer or command ring that * loops in on itself (in the simplest case using a sequence of one or more * link TRBs where the last TRB points to the beginning of the sequence). * Such a loop would effectively hang the processing thread. Since we cannot * easily detect a generic loop, and because even non-looped TRB/command * rings might contain extremely large number of items, we limit the number * of entries that we are willing to process at once. If the limit is * crossed, the xHC reports a host controller error and shuts itself down * until it's reset. * * Note that for TRB lists, both URB submission and completion must protect * against loops because the lists in guest memory are not guaranteed to stay * unchanged between submitting and completing URBs. * * The event ring is not susceptible to loops because the xHC is the producer, * not consumer. The event ring can run out of space but that is not a fatal * problem. * * * The interrupt logic uses an internal IPE (Interrupt Pending Enable) bit * which controls whether the register-visible IP (Interrupt Pending) bit * can be set. The IPE bit is set when a non-blocking event (BEI bit clear) * is enqueued. The IPE bit is cleared when the event ring is initialized or * transitions to empty (i.e. ERDP == EREP). When IPE transtitions to set, * it will set IP unless the EHB (Event Handler Busy) bit is set or IMODC * (Interrupt Moderation Counter) is non-zero. When IMODC counts down to * zero, it sets the IP bit if IPE is set and EHB is not. Setting the IP bit * triggers interrupt delivery. Note that clearing the IPE bit does not * change the IP bit state. * * Interrupt delivery depends on whether MSI/MSI-X is in use or not. With MSI, * an interrupter's IP (Interrupt Pending) bit is cleared as soon as the MSI * message is written; with classic PCI interrupt delivery, the HCD must clear * the IP bit. However, the EHB (Event Handler Busy) bit is always set, which * causes further interrupts to be blocked on the interrupter until the HCD * processes pending events and clears the EHB bit. * * Note that clearing the EHB bit may immediately trigger an interrupt if * additional event TRBs were queued up while the HCD was processing previous * ones. * * * Each enabled USB device has a corresponding slot ID, a doorbell, as well as * a device context which can be accessed through the DCBAA (Device Context * Base Address Array). Valid slot IDs are in the 1-255 range; the first entry * (i.e. index 0) in the DCBAA may optionally point to the Scratchpad Buffer * Array, while doorbell 0 is associated with the Command Ring. * * While 255 valid slot IDs is an xHCI architectural limit, existing xHC * implementations usually set a considerably lower limit, such as 32. See * the XHCI_NDS constant. * * It would be tempting to use the DCBAA to determine which slots are free. * Unfortunately the xHC is not allowed to access DCBAA entries which map to * disabled slots (see section 6.1). A parallel aSlotState array is hence used * to internally track the slot state and find available slots. Once a slot * is enabled, the slot context entry in the DCBAA is used to track the * slot state. * * * Unlike OHCI/UHCI/EHCI, the xHC much more closely tracks USB device state. * HCDs are not allowed to issue SET_ADDRESS requests at all and must use * the Address Device xHCI command instead. * * HCDs can use SET_CONFIGURATION and SET_INTERFACE requests normally, but * must inform the xHC of the changes via Configure Endpoint and Evaluate * Context commands. Similarly there are Reset Endpoint and Stop Endpoint * commands to manage endpoint state. * * A corollary of the above is that unlike OHCI/UHCI/EHCI, with xHCI there * are very clear rules and a straightforward protocol for managing * ownership of structures in physical memory. During normal operation, the * xHC owns all device context memory and the HCD must explicitly ask the xHC * to relinquish the ownership. * * The xHCI architecture offers an interesting feature in that it reserves * opaque fields for xHCI use in certain data structures (slot and endpoint * contexts) and gives the xHC an option to request scratchpad buffers that * a HCD must provide. The xHC may use the opaque storage and/or scratchpad * buffers for saving internal state. * * For implementation reasons, the xHCI device creates two root hubs on the * VUSB level; one for USB2 devices (USB 1.x and 2.0), one for USB3. The * behavior of USB2 vs. USB3 ports is different, and a device can only be * attached to either one or the other hub. However, there is a single array * of ports to avoid overly complicating the code, given that port numbering * is linear and encompasses both USB2 and USB3 ports. * * * The default emulated device is an Intel 7-Series xHC aka Panther Point. * This was Intel's first xHC and is widely supported. It is also possible * to select an Intel 8-Series xHC aka Lynx Point; this is only useful for * debugging and requires the 'other' set of Windows 7 drivers. * * For Windows XP guest support, it is possible to emulate a Renesas * (formerly NEC) uPD720201 xHC. It would be possible to emulate the earlier * NEC chips but those a) only support xHCI 0.96, and b) their drivers * require a reboot during installation. Renesas' drivers also support * Windows Vista and 7. * * * NB: Endpoints are addressed differently in xHCI and USB. In USB, * endpoint addresses are 8-bit values with the low four bits identifying * the endpoint number and the high bit indicating the direction (0=OUT, * 1=IN); see e.g. 9.3.4 in USB 2.0 spec. In xHCI, endpoint addresses are * used as DCIs (Device Context Index) and for that reason, they're * compressed into 5 bits where the lowest bit(!) indicates direction (again * 1=IN) and bits 1-4 designate the endpoint number. Endpoint 0 is somewhat * special and uses DCI 1. See 4.8.1 in xHCI spec. * * * NB: A variable named iPort is a zero-based index into the port array. * On the other hand, a variable named uPort is a one-based port number! * The implementation (obviously) uses zero-based indexing, but USB ports * are numbered starting with 1. The same is true of xHCI slot numbering. * The macros IDX_TO_ID() and ID_TO_IDX(a) should be used to convert between * the two numbering conventions to make the intent clear. * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_XHCI #include #include #include #include #include #include #ifdef IN_RING3 # include # include #endif #include #ifdef VBOX_IN_EXTPACK_R3 # include #endif #ifndef VBOX_IN_EXTPACK # include "VBoxDD.h" #endif /********************************************************************************************************************************* * (Most of the) Defined Constants, Macros and Structures * *********************************************************************************************************************************/ /* Optional error injection support via DBGF. */ //#define XHCI_ERROR_INJECTION /** The saved state version. */ #define XHCI_SAVED_STATE_VERSION 1 /** Convert a zero-based index to a 1-based ID. */ #define IDX_TO_ID(a) (a + 1) /** Convert a 1-based ID to a zero-based index. */ #define ID_TO_IDX(a) (a - 1) /** PCI device related constants. */ #define XHCI_PCI_MSI_CAP_OFS 0x80 /** Number of LUNs/root hubs. One each for USB2/USB3. */ #define XHCI_NUM_LUNS 2 /** @name The following two constants were determined experimentally. * They determine the maximum number of TDs allowed to be in flight. * NB: For isochronous TDs, the number *must* be limited because * Windows 8+ violates the xHCI specification and does not keep * the transfer rings consistent. * @{ */ //#define XHCI_MAX_ISOC_IN_FLIGHT 3 /* Scarlett needs 3; was 12 */ #define XHCI_MAX_ISOC_IN_FLIGHT 12 #define XHCI_MAX_BULK_IN_FLIGHT 8 /** @} */ /** @name Implementation limit on the number of TRBs and commands * the xHC is willing to process at once. A larger number is taken * to indicate a broken or malicious guest, and causes a HC error. * @{ */ #define XHCI_MAX_NUM_CMDS 128 #define XHCI_MAX_NUM_TRBS 1024 /** @} */ /** Implementation TD size limit. Prevents EDTLA wrap-around. */ #define XHCI_MAX_TD_SIZE (16 * _1M - 1) /** Special value to prevent further queuing. */ #define XHCI_NO_QUEUING_IN_FLIGHT (XHCI_MAX_BULK_IN_FLIGHT * 2) /* Structural Parameters #1 (HCSPARAMS1) values. */ /** Maximum allowed Number of Downstream Ports on the root hub. Careful * when changing -- other structures may need adjusting! */ #define XHCI_NDP_MAX 32 /** Default number of USB 2.0 ports. * * @note AppleUSBXHCI does not handle more than 15 ports. At least OS X * 10.8.2 crashes if we report more than 15 ports! Hence the default * is 8 USB2 + 6 USB3 ports for a total of 14 so that OS X is happy. */ #define XHCI_NDP_20_DEFAULT 8 /** Default number of USB 3.0 ports. */ #define XHCI_NDP_30_DEFAULT 6 /** Number of interrupters. */ #define XHCI_NINTR 8 /** Mask for interrupter indexing. */ #define XHCI_INTR_MASK (XHCI_NINTR - 1) /* The following is only true if XHCI_NINTR is a (non-zero) power of two. */ AssertCompile((XHCI_NINTR & XHCI_INTR_MASK) == 0); /** Number of Device Slots. Determines the number of doorbell * registers and device slots, among other things. */ #define XHCI_NDS 32 /* Enforce xHCI architectural limits on HCSPARAMS1. */ AssertCompile(XHCI_NDP_MAX < 255 && XHCI_NINTR < 1024 && XHCI_NDS < 255); AssertCompile(XHCI_NDP_20_DEFAULT + XHCI_NDP_30_DEFAULT <= XHCI_NDP_MAX); AssertCompile(XHCI_NDP_MAX <= XHCI_NDS); /* Structural Parameters #2 (HCSPARAMS2) values. */ /** Isochronous Scheduling Threshold. */ #define XHCI_IST (RT_BIT(3) | 1) /* One frame. */ /** Max number of Event Ring Segment Table entries as a power of two. */ #define XHCI_ERSTMAX_LOG2 5 /** Max number of Event Ring Segment Table entries. */ #define XHCI_ERSTMAX RT_BIT(XHCI_ERSTMAX_LOG2) /* Enforce xHCI architectural limits on HCSPARAMS2. */ AssertCompile(XHCI_ERSTMAX_LOG2 < 16); /** Size of the xHCI memory-mapped I/O region. */ #define XHCI_MMIO_SIZE _64K /** Size of the capability part of the MMIO region. */ #define XHCI_CAPS_REG_SIZE 0x80 /** Offset of the port registers in operational register space. */ #define XHCI_PORT_REG_OFFSET 0x400 /** Offset of xHCI extended capabilities in MMIO region. */ #define XHCI_XECP_OFFSET 0x1000 /** Offset of the run-time registers in MMIO region. */ #define XHCI_RTREG_OFFSET 0x2000 /** Offset of the doorbell registers in MMIO region. */ #define XHCI_DOORBELL_OFFSET 0x3000 /** Size of the extended capability area. */ #define XHCI_EXT_CAP_SIZE 1024 /* Make sure we can identify MMIO register accesses properly. */ AssertCompile(XHCI_DOORBELL_OFFSET > XHCI_RTREG_OFFSET); AssertCompile(XHCI_XECP_OFFSET > XHCI_PORT_REG_OFFSET + XHCI_CAPS_REG_SIZE); AssertCompile(XHCI_RTREG_OFFSET > XHCI_XECP_OFFSET + XHCI_EXT_CAP_SIZE); /** Maximum size of a single extended capability. */ #define MAX_XCAP_SIZE 256 /** @name xHCI Extended capability types. * @{ */ #define XHCI_XCP_USB_LEGACY 1 /**< USB legacy support. */ #define XHCI_XCP_PROTOCOL 2 /**< Protocols supported by ports. */ #define XHCI_XCP_EXT_PM 3 /**< Extended power management (non-PCI). */ #define XHCI_XCP_IOVIRT 4 /**< Hardware xHCI virtualization support. */ #define XHCI_XCP_MSI 5 /**< Message interrupts (non-PCI). */ #define XHCI_XCP_LOCAL_MEM 6 /**< Local memory (for debug support). */ #define XHCI_XCP_USB_DEBUG 10 /**< USB debug capability. */ #define XHCI_XCP_EXT_MSI 17 /**< MSI-X (non-PCI). */ /** @} */ /* xHCI Register Bits. */ /** @name Capability Parameters (HCCPARAMS) bits * @{ */ #define XHCI_HCC_AC64 RT_BIT(0) /**< RO */ #define XHCI_HCC_BNC RT_BIT(1) /**< RO */ #define XHCI_HCC_CSZ RT_BIT(2) /**< RO */ #define XHCI_HCC_PPC RT_BIT(3) /**< RO */ #define XHCI_HCC_PIND RT_BIT(4) /**< RO */ #define XHCI_HCC_LHRC RT_BIT(5) /**< RO */ #define XHCI_HCC_LTC RT_BIT(6) /**< RO */ #define XHCI_HCC_NSS RT_BIT(7) /**< RO */ #define XHCI_HCC_MAXPSA_MASK (RT_BIT(12)|RT_BIT(13)|RT_BIT(14)| RT_BIT(15)) /**< RO */ #define XHCI_HCC_MAXPSA_SHIFT 12 #define XHCI_HCC_XECP_MASK 0xFFFF0000 /**< RO */ #define XHCI_HCC_XECP_SHIFT 16 /** @} */ /** @name Command Register (USBCMD) bits * @{ */ #define XHCI_CMD_RS RT_BIT(0) /**< RW - Run/Stop */ #define XHCI_CMD_HCRST RT_BIT(1) /**< RW - Host Controller Reset */ #define XHCI_CMD_INTE RT_BIT(2) /**< RW - Interrupter Enable */ #define XHCI_CMD_HSEE RT_BIT(3) /**< RW - Host System Error Enable */ #define XHCI_CMD_LCRST RT_BIT(7) /**< RW - Light HC Reset */ #define XHCI_CMD_CSS RT_BIT(8) /**< RW - Controller Save State */ #define XHCI_CMD_CRS RT_BIT(9) /**< RW - Controller Restore State */ #define XHCI_CMD_EWE RT_BIT(10) /**< RW - Enable Wrap Event */ #define XHCI_CMD_EU3S RT_BIT(11) /**< RW - Enable U3 MFINDEX Stop */ #define XHCI_CMD_MASK ( XHCI_CMD_RS | XHCI_CMD_HCRST | XHCI_CMD_INTE | XHCI_CMD_HSEE | XHCI_CMD_LCRST \ | XHCI_CMD_CSS | XHCI_CMD_CRS | XHCI_CMD_EWE | XHCI_CMD_EU3S) /** @} */ /** @name Status Register (USBSTS) bits * @{ */ #define XHCI_STATUS_HCH RT_BIT(0) /**< RO - HC Halted */ #define XHCI_STATUS_HSE RT_BIT(2) /**< RW1C - Host System Error */ #define XHCI_STATUS_EINT RT_BIT(3) /**< RW1C - Event Interrupt */ #define XHCI_STATUS_PCD RT_BIT(4) /**< RW1C - Port Change Detect */ #define XHCI_STATUS_SSS RT_BIT(8) /**< RO - Save State Status */ #define XHCI_STATUS_RSS RT_BIT(9) /**< RO - Resture State Status */ #define XHCI_STATUS_SRE RT_BIT(10) /**< RW1C - Save/Restore Error */ #define XHCI_STATUS_CNR RT_BIT(11) /**< RO - Controller Not Ready */ #define XHCI_STATUS_HCE RT_BIT(12) /**< RO - Host Controller Error */ #define XHCI_STATUS_WRMASK (XHCI_STATUS_HSE | XHCI_STATUS_EINT | XHCI_STATUS_PCD | XHCI_STATUS_SRE) /** @} */ /** @name Default xHCI speed definitions (7.2.2.1.1) * @{ */ #define XHCI_SPD_FULL 1 #define XHCI_SPD_LOW 2 #define XHCI_SPD_HIGH 3 #define XHCI_SPD_SUPER 4 /** @} */ /** @name Port Status and Control Register bits (PORTSCUSB2/PORTSCUSB3) * @{ */ #define XHCI_PORT_CCS RT_BIT(0) /**< ROS - Current Connection Status */ #define XHCI_PORT_PED RT_BIT(1) /**< RW1S - Port Enabled/Disabled */ #define XHCI_PORT_OCA RT_BIT(3) /**< RO - Over-current Active */ #define XHCI_PORT_PR RT_BIT(4) /**< RW1S - Port Reset */ #define XHCI_PORT_PLS_MASK (RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8)) /**< RWS */ #define XHCI_PORT_PLS_SHIFT 5 #define XHCI_PORT_PP RT_BIT(9) /**< RWS - Port Power */ #define XHCI_PORT_SPD_MASK (RT_BIT(10) | RT_BIT(11) | RT_BIT(12) | RT_BIT(13)) /**< ROS */ #define XHCI_PORT_SPD_SHIFT 10 #define XHCI_PORT_LWS RT_BIT(16) /**< RW - Link State Write Strobe */ #define XHCI_PORT_CSC RT_BIT(17) /**< RW1CS - Connect Status Change */ #define XHCI_PORT_PEC RT_BIT(18) /**< RW1CS - Port Enabled/Disabled Change */ #define XHCI_PORT_WRC RT_BIT(19) /**< RW1CS - Warm Port Reset Change */ #define XHCI_PORT_OCC RT_BIT(20) /**< RW1CS - Over-current Change */ #define XHCI_PORT_PRC RT_BIT(21) /**< RW1CS - Port Reset Change */ #define XHCI_PORT_PLC RT_BIT(22) /**< RW1CS - Port Link State Change */ #define XHCI_PORT_CEC RT_BIT(23) /**< RW1CS - Port Config Error Change */ #define XHCI_PORT_CAS RT_BIT(24) /**< RO - Cold Attach Status */ #define XHCI_PORT_WCE RT_BIT(25) /**< RWS - Wake on Connect Enable */ #define XHCI_PORT_WDE RT_BIT(26) /**< RWS - Wake on Disconnect Enable */ #define XHCI_PORT_WOE RT_BIT(27) /**< RWS - Wake on Over-current Enable */ #define XHCI_PORT_DR RT_BIT(30) /**< RO - Device (Not) Removable */ #define XHCI_PORT_WPR RT_BIT(31) /**< RW1S - Warm Port Reset */ #define XHCI_PORT_RESERVED (RT_BIT(2) | RT_BIT(14) | RT_BIT(15) | RT_BIT(28) | RT_BIT(29)) #define XHCI_PORT_WAKE_MASK (XHCI_PORT_WCE|XHCI_PORT_WDE|XHCI_PORT_WOE) #define XHCI_PORT_CHANGE_MASK (XHCI_PORT_CSC|XHCI_PORT_PEC|XHCI_PORT_WRC|XHCI_PORT_OCC|XHCI_PORT_PRC|XHCI_PORT_PLC|XHCI_PORT_CEC) #define XHCI_PORT_CTL_RW_MASK (XHCI_PORT_PP|XHCI_PORT_LWS) #define XHCI_PORT_CTL_W1_MASK (XHCI_PORT_PED|XHCI_PORT_PR|XHCI_PORT_WPR) #define XHCI_PORT_RO_MASK (XHCI_PORT_CCS|XHCI_PORT_OCA|XHCI_PORT_SPD_MASK|XHCI_PORT_CAS|XHCI_PORT_DR) /** @} */ /** @name Port Link State values * @{ */ #define XHCI_PLS_U0 0 /**< U0 State. */ #define XHCI_PLS_U1 1 /**< U1 State. */ #define XHCI_PLS_U2 2 /**< U2 State. */ #define XHCI_PLS_U3 3 /**< U3 State (Suspended). */ #define XHCI_PLS_DISABLED 4 /**< Disabled. */ #define XHCI_PLS_RXDETECT 5 /**< RxDetect. */ #define XHCI_PLS_INACTIVE 6 /**< Inactive. */ #define XHCI_PLS_POLLING 7 /**< Polling. */ #define XHCI_PLS_RECOVERY 8 /**< Recovery. */ #define XHCI_PLS_HOTRST 9 /**< Hot Reset. */ #define XHCI_PLS_CMPLMODE 10 /**< Compliance Mode. */ #define XHCI_PLS_TSTMODE 11 /**< Test Mode. */ /* Values 12-14 are reserved. */ #define XHCI_PLS_RESUME 15 /**< Resume. */ /** @} */ /** @name Command Ring Control Register (CRCR) bits * @{ */ #define XHCI_CRCR_RCS RT_BIT(0) /**< RW - Ring Cycle State */ #define XHCI_CRCR_CS RT_BIT(1) /**< RW1S - Command Stop */ #define XHCI_CRCR_CA RT_BIT(2) /**< RW1S - Command Abort */ #define XHCI_CRCR_CRR RT_BIT(3) /**< RO - Command Ring Running */ #define XHCI_CRCR_RD_MASK UINT64_C(0xFFFFFFFFFFFFFFF8) /* Mask off bits always read as zero. */ #define XHCI_CRCR_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0) #define XHCI_CRCR_UPD_MASK (XHCI_CRCR_ADDR_MASK | XHCI_CRCR_RCS) /** @} */ /** @name Interrupter Management Register (IMAN) bits * @{ */ #define XHCI_IMAN_IP RT_BIT(0) /**< RW1C - Interrupt Pending */ #define XHCI_IMAN_IE RT_BIT(1) /**< RW - Interrupt Enable */ #define XHCI_IMAN_VALID_MASK (XHCI_IMAN_IP | XHCI_IMAN_IE) /** @} */ /** @name Interrupter Moderation Register (IMOD) bits * @{ */ #define XHCI_IMOD_IMODC_MASK 0xFFFF0000 /**< RW */ #define XHCI_IMOD_IMODC_SHIFT 16 #define XHCI_IMOD_IMODI_MASK 0x0000FFFF /**< RW */ /** @} */ /** @name Event Ring Segment Table Size Register (ERSTSZ) bits * @{ */ #define XHCI_ERSTSZ_MASK 0x0000FFFF /**< RW */ /** @} */ /** @name Event Ring Segment Table Base Address Register (ERSTBA) bits * @{ */ #define XHCI_ERST_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0) /** @} */ /** For reasons that are not obvious, NEC/Renesas xHCs only require 16-bit * alignment for the ERST base. This is not in line with the xHCI spec * (which requires 64-bit alignment) but is clearly documented by NEC. */ #define NEC_ERST_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0) /** Firmware revision reported in NEC/Renesas mode. Value chosen based on * OS X driver check (OS X supports these chips since they're commonly * found in ExpressCards). */ #define NEC_FW_REV 0x3028 /** @name Event Ring Deqeue Pointer Register (ERDP) bits * @{ */ #define XHCI_ERDP_DESI_MASK 0x00000007 /**< RW - Dequeue ERST Segment Index */ #define XHCI_ERDP_EHB RT_BIT(3) /**< RW1C - Event Handler Busy */ #define XHCI_ERDP_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0) /**< RW - ERDP address mask */ /** @} */ /** @name Device Context Base Address Array (DCBAA) definitions * @{ */ #define XHCI_DCBAA_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFC0) /**< Applies to DCBAAP and its entries. */ /** @} */ /** @name Doorbell Register bits * @{ */ #define XHCI_DB_TGT_MASK 0x000000FF /**< DB Target mask. */ #define XHCI_DB_STRMID_SHIFT 16 /**< DB Stream ID shift. */ #define XHCI_DB_STRMID_MASK 0xFFFF0000 /**< DB Stream ID mask. */ /** @} */ /** Address mask for device/endpoint/input contexts. */ #define XHCI_CTX_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0) /** @name TRB Completion Codes * @{ */ #define XHCI_TCC_INVALID 0 /**< CC field not updated. */ #define XHCI_TCC_SUCCESS 1 /**< Successful TRB completion. */ #define XHCI_TCC_DATA_BUF_ERR 2 /**< Overrun/underrun. */ #define XHCI_TCC_BABBLE 3 /**< Babble detected. */ #define XHCI_TCC_USB_XACT_ERR 4 /**< USB transaction error. */ #define XHCI_TCC_TRB_ERR 5 /**< TRB error detected. */ #define XHCI_TCC_STALL 6 /**< USB Stall detected. */ #define XHCI_TCC_RSRC_ERR 7 /**< Inadequate xHC resources. */ #define XHCI_TCC_BWIDTH_ERR 8 /**< Unable to allocate bandwidth. */ #define XHCI_TCC_NO_SLOTS 9 /**< MaxSlots (NDS) exceeded. */ #define XHCI_TCC_INV_STRM_TYP 10 /**< Invalid stream context type. */ #define XHCI_TCC_SLOT_NOT_ENB 11 /**< Slot not enabled. */ #define XHCI_TCC_EP_NOT_ENB 12 /**< Endpoint not enabled. */ #define XHCI_TCC_SHORT_PKT 13 /**< Short packet detected. */ #define XHCI_TCC_RING_UNDERRUN 14 /**< Transfer ring underrun. */ #define XHCI_TCC_RING_OVERRUN 15 /**< Transfer ring overrun. */ #define XHCI_TCC_VF_RING_FULL 16 /**< VF event ring full. */ #define XHCI_TCC_PARM_ERR 17 /**< Invalid context parameter. */ #define XHCI_TCC_BWIDTH_OVER 18 /**< Isoc bandwidth overrun. */ #define XHCI_TCC_CTX_STATE_ERR 19 /**< Transition from illegal context state. */ #define XHCI_TCC_NO_PING 20 /**< No ping response in time. */ #define XHCI_TCC_EVT_RING_FULL 21 /**< Event Ring full. */ #define XHCI_TCC_DEVICE_COMPAT 22 /**< Incompatible device detected. */ #define XHCI_TCC_MISS_SVC 23 /**< Missed isoc service. */ #define XHCI_TCC_CMDR_STOPPED 24 /**< Command ring stopped. */ #define XHCI_TCC_CMD_ABORTED 25 /**< Command aborted. */ #define XHCI_TCC_STOPPED 26 /**< Endpoint stopped. */ #define XHCI_TCC_STP_INV_LEN 27 /**< EP stopped, invalid transfer length. */ /* 28 Reserved. */ #define XHCI_TCC_MAX_EXIT_LAT 29 /**< Max exit latency too large. */ /* 30 Reserved. */ #define XHCI_TCC_ISOC_OVERRUN 31 /**< Isochronous buffer overrun. */ #define XHCI_TCC_EVT_LOST 32 /**< Event lost due to overrun. */ #define XHCI_TCC_ERR_OTHER 33 /**< Implementation specific error. */ #define XHCI_TCC_INV_STRM_ID 34 /**< Invalid stream ID. */ #define XHCI_TCC_SEC_BWIDTH_ERR 35 /**< Secondary bandwidth error. */ #define XHCI_TCC_SPLIT_ERR 36 /**< Split transaction error. */ /** @} */ #if defined(IN_RING3) && defined(LOG_ENABLED) /** Human-readable completion code descriptions for debugging. */ static const char * const g_apszCmplCodes[] = { "CC field not updated", "Successful TRB completion", "Overrun/underrun", "Babble detected", /* 0-3 */ "USB transaction error", "TRB error detected", "USB Stall detected", "Inadequate xHC resources", /* 4-7 */ "Unable to allocate bandwidth", "MaxSlots (NDS) exceeded", "Invalid stream context type", "Slot not enabled", /* 8-11 */ "Endpoint not enabled", "Short packet detected", "Transfer ring underrun", "Transfer ring overrun", /* 12-15 */ "VF event ring full", "Invalid context param", "Isoc bandwidth overrun", "Transition from illegal ctx state", /* 16-19 */ "No ping response in time", "Event Ring full", "Incompatible device detected", "Missed isoc service", /* 20-23 */ "Command ring stopped", "Command aborted", "Endpoint stopped", "EP stopped, invalid transfer length", /* 24-27 */ "Reserved", "Max exit latency too large", "Reserved", "Isochronous buffer overrun", /* 28-31 */ "Event lost due to overrun", "Implementation specific error", "Invalid stream ID", "Secondary bandwidth error", /* 32-35 */ "Split transaction error" /* 36 */ }; #endif /* TRBs marked as 'TRB' are only valid in the transfer ring. TRBs marked * as 'Command' are only valid in the command ring. TRBs marked as 'Event' * are the only ones generated in the event ring. The Link TRB is valid * in both the transfer and command rings. */ /** @name TRB Types * @{ */ #define XHCI_TRB_INVALID 0 /**< Reserved/unused TRB type. */ #define XHCI_TRB_NORMAL 1 /**< Normal TRB. */ #define XHCI_TRB_SETUP_STG 2 /**< Setup Stage TRB. */ #define XHCI_TRB_DATA_STG 3 /**< Data Stage TRB. */ #define XHCI_TRB_STATUS_STG 4 /**< Status Stage TRB. */ #define XHCI_TRB_ISOCH 5 /**< Isochronous TRB. */ #define XHCI_TRB_LINK 6 /**< Link. */ #define XHCI_TRB_EVT_DATA 7 /**< Event Data TRB. */ #define XHCI_TRB_NOOP_XFER 8 /**< No-op transfer TRB. */ #define XHCI_TRB_ENB_SLOT 9 /**< Enable Slot Command. */ #define XHCI_TRB_DIS_SLOT 10 /**< Disable Slot Command. */ #define XHCI_TRB_ADDR_DEV 11 /**< Address Device Command. */ #define XHCI_TRB_CFG_EP 12 /**< Configure Endpoint Command. */ #define XHCI_TRB_EVAL_CTX 13 /**< Evaluate Context Command. */ #define XHCI_TRB_RESET_EP 14 /**< Reset Endpoint Command. */ #define XHCI_TRB_STOP_EP 15 /**< Stop Endpoint Command. */ #define XHCI_TRB_SET_DEQ_PTR 16 /**< Set TR Dequeue Pointer Command. */ #define XHCI_TRB_RESET_DEV 17 /**< Reset Device Command. */ #define XHCI_TRB_FORCE_EVT 18 /**< Force Event Command. */ #define XHCI_TRB_NEG_BWIDTH 19 /**< Negotiate Bandwidth Command. */ #define XHCI_TRB_SET_LTV 20 /**< Set Latency Tolerate Value Command. */ #define XHCI_TRB_GET_PORT_BW 21 /**< Get Port Bandwidth Command. */ #define XHCI_TRB_FORCE_HDR 22 /**< Force Header Command. */ #define XHCI_TRB_NOOP_CMD 23 /**< No-op Command. */ /* 24-31 Reserved. */ #define XHCI_TRB_XFER 32 /**< Transfer Event. */ #define XHCI_TRB_CMD_CMPL 33 /**< Command Completion Event. */ #define XHCI_TRB_PORT_SC 34 /**< Port Status Change Event. */ #define XHCI_TRB_BW_REQ 35 /**< Bandwidth Request Event. */ #define XHCI_TRB_DBELL 36 /**< Doorbell Event. */ #define XHCI_TRB_HC_EVT 37 /**< Host Controller Event. */ #define XHCI_TRB_DEV_NOTIFY 38 /**< Device Notification Event. */ #define XHCI_TRB_MFIDX_WRAP 39 /**< MFINDEX Wrap Event. */ /* 40-47 Reserved. */ #define NEC_TRB_CMD_CMPL 48 /**< Command Completion Event, NEC specific. */ #define NEC_TRB_GET_FW_VER 49 /**< Get Firmware Version Command, NEC specific. */ #define NEC_TRB_AUTHENTICATE 50 /**< Authenticate Command, NEC specific. */ /** @} */ #if defined(IN_RING3) && defined(LOG_ENABLED) /** Human-readable TRB names for debugging. */ static const char * const g_apszTrbNames[] = { "Reserved/unused TRB!!", "Normal TRB", "Setup Stage TRB", "Data Stage TRB", /* 0-3 */ "Status Stage TRB", "Isochronous TRB", "Link", "Event Data TRB", /* 4-7 */ "No-op transfer TRB", "Enable Slot", "Disable Slot", "Address Device", /* 8-11 */ "Configure Endpoint", "Evaluate Context", "Reset Endpoint", "Stop Endpoint", /* 12-15 */ "Set TR Dequeue Pointer", "Reset Device", "Force Event", "Negotiate Bandwidth", /* 16-19 */ "Set Latency Tolerate Value", "Get Port Bandwidth", "Force Header", "No-op", /* 20-23 */ "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", /* 24-31 */ "Transfer", "Command Completion", "Port Status Change", "BW Request", /* 32-35 */ "Doorbell", "Host Controller", "Device Notification", "MFINDEX Wrap", /* 36-39 */ "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", "UNDEF", /* 40-47 */ "NEC FW Version Completion", "NEC Get FW Version", "NEC Authenticate" /* 48-50 */ }; #endif /** Generic TRB template. */ typedef struct sXHCI_TRB_G { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_G; AssertCompile(sizeof(XHCI_TRB_G) == 0x10); /** Generic transfer TRB template. */ typedef struct sXHCI_TRB_GX { uint32_t resvd0; uint32_t resvd1; uint32_t xfr_len : 17; /**< Transfer length. */ uint32_t resvd2 : 5; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t isp : 1; /**< Interrupt on Short Packet. */ uint32_t ns : 1; /**< No Snoop. */ uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t idt : 1; /**< Immediate Data. */ uint32_t resvd3 : 3; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_GX; AssertCompile(sizeof(XHCI_TRB_GX) == 0x10); /* -= Transfer TRB types =- */ /** Normal Transfer TRB. */ typedef struct sXHCI_TRB_NORM { uint64_t data_ptr; /**< Pointer or data. */ uint32_t xfr_len : 17; /**< Transfer length. */ uint32_t td_size : 5; /**< Remaining packets. */ uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t isp : 1; /**< Interrupt on Short Packet. */ uint32_t ns : 1; /**< No Snoop. */ uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t idt : 1; /**< Immediate Data. */ uint32_t resvd0 : 2; uint32_t bei : 1; /**< Block Event Interrupt. */ uint32_t type : 6; /**< TRB Type. */ uint32_t resvd1 : 16; } XHCI_TRB_NORM; AssertCompile(sizeof(XHCI_TRB_NORM) == 0x10); /** Control Transfer - Setup Stage TRB. */ typedef struct sXHCI_TRB_CTSP { uint8_t bmRequestType; /**< See the USB spec. */ uint8_t bRequest; uint16_t wValue; uint16_t wIndex; uint16_t wLength; uint32_t xfr_len : 17; /**< Transfer length (8). */ uint32_t resvd0 : 5; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 4; uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t idt : 1; /**< Immediate Data. */ uint32_t resvd2 : 2; uint32_t bei : 1; /**< Block Event Interrupt. */ uint32_t type : 6; /**< TRB Type. */ uint32_t trt : 2; /**< Transfer Type. */ uint32_t resvd3 : 14; } XHCI_TRB_CTSP; AssertCompile(sizeof(XHCI_TRB_CTSP) == 0x10); /** Control Transfer - Data Stage TRB. */ typedef struct sXHCI_TRB_CTDT { uint64_t data_ptr; /**< Pointer or data. */ uint32_t xfr_len : 17; /**< Transfer length. */ uint32_t td_size : 5; /**< Remaining packets. */ uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t isp : 1; /**< Interrupt on Short Packet. */ uint32_t ns : 1; /**< No Snoop. */ uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t idt : 1; /**< Immediate Data. */ uint32_t resvd0 : 3; uint32_t type : 6; /**< TRB Type. */ uint32_t dir : 1; /**< Direction (1=IN). */ uint32_t resvd1 : 15; } XHCI_TRB_CTDT; AssertCompile(sizeof(XHCI_TRB_CTDT) == 0x10); /** Control Transfer - Status Stage TRB. */ typedef struct sXHCI_TRB_CTSS { uint64_t resvd0; uint32_t resvd1 : 22; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t resvd2 : 2; uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t resvd3 : 4; uint32_t type : 6; /**< TRB Type. */ uint32_t dir : 1; /**< Direction (1=IN). */ uint32_t resvd4 : 15; } XHCI_TRB_CTSS; AssertCompile(sizeof(XHCI_TRB_CTSS) == 0x10); /** Isochronous Transfer TRB. */ typedef struct sXHCI_TRB_ISOC { uint64_t data_ptr; /**< Pointer or data. */ uint32_t xfr_len : 17; /**< Transfer length. */ uint32_t td_size : 5; /**< Remaining packets. */ uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t isp : 1; /**< Interrupt on Short Packet. */ uint32_t ns : 1; /**< No Snoop. */ uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t idt : 1; /**< Immediate Data. */ uint32_t tbc : 2; /**< Transfer Burst Count. */ uint32_t bei : 1; /**< Block Event Interrupt. */ uint32_t type : 6; /**< TRB Type. */ uint32_t tlbpc : 4; /**< Transfer Last Burst Packet Count. */ uint32_t frm_id : 11; /**< Frame ID. */ uint32_t sia : 1; /**< Start Isoch ASAP. */ } XHCI_TRB_ISOC; AssertCompile(sizeof(XHCI_TRB_ISOC) == 0x10); /* Number of bits in the frame ID. */ #define XHCI_FRAME_ID_BITS 11 /** No Op Transfer TRB. */ typedef struct sXHCI_TRB_NOPT { uint64_t resvd0; uint32_t resvd1 : 22; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next TRB. */ uint32_t resvd2 : 2; uint32_t ch : 1; /**< Chain bit. */ uint32_t ioc : 1; /**< Interrupt On Completion. */ uint32_t resvd3 : 4; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_NOPT; AssertCompile(sizeof(XHCI_TRB_NOPT) == 0x10); /* -= Event TRB types =- */ /** Transfer Event TRB. */ typedef struct sXHCI_TRB_TE { uint64_t trb_ptr; /**< TRB pointer. */ uint32_t xfr_len : 24; /**< Transfer length. */ uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd0 : 1; uint32_t ed : 1; /**< Event Data flag. */ uint32_t resvd1 : 7; uint32_t type : 6; /**< TRB Type. */ uint32_t ep_id : 5; /**< Endpoint ID. */ uint32_t resvd2 : 3; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_TE; AssertCompile(sizeof(XHCI_TRB_TE) == 0x10); /** Command Completion Event TRB. */ typedef struct sXHCI_TRB_CCE { uint64_t trb_ptr; /**< Command TRB pointer. */ uint32_t resvd0 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t vf_id : 8; /**< Virtual Function ID. */ uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_CCE; AssertCompile(sizeof(XHCI_TRB_CCE) == 0x10); /** Port Staus Change Event TRB. */ typedef struct sXHCI_TRB_PSCE { uint32_t resvd0 : 24; uint32_t port_id : 8; /**< Port ID. */ uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_PSCE; AssertCompile(sizeof(XHCI_TRB_PSCE) == 0x10); /** Bandwidth Request Event TRB. */ typedef struct sXHCI_TRB_BRE { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_BRE; AssertCompile(sizeof(XHCI_TRB_BRE) == 0x10); /** Doorbell Event TRB. */ typedef struct sXHCI_TRB_DBE { uint32_t reason : 5; /**< DB Reason/target. */ uint32_t resvd0 : 27; uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t vf_id : 8; /**< Virtual Function ID. */ uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_DBE; AssertCompile(sizeof(XHCI_TRB_DBE) == 0x10); /** Host Controller Event TRB. */ typedef struct sXHCI_TRB_HCE { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_HCE; AssertCompile(sizeof(XHCI_TRB_HCE) == 0x10); /** Device Notification Event TRB. */ typedef struct sXHCI_TRB_DNE { uint32_t resvd0 : 4; uint32_t dn_type : 4; /**< Device Notification Type. */ uint32_t dnd_lo : 5; /**< Device Notification Data Lo. */ uint32_t dnd_hi; /**< Device Notification Data Hi. */ uint32_t resvd1 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd2 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd3 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_DNE; AssertCompile(sizeof(XHCI_TRB_DNE) == 0x10); /** MFINDEX Wrap Event TRB. */ typedef struct sXHCI_TRB_MWE { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2 : 24; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_MWE; AssertCompile(sizeof(XHCI_TRB_MWE) == 0x10); /** NEC Specific Command Completion Event TRB. */ typedef struct sXHCI_TRB_NCE { uint64_t trb_ptr; /**< Command TRB pointer. */ uint32_t word1 : 16; /**< First result word. */ uint32_t resvd0 : 8; uint32_t cc : 8; /**< Completion Code. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t word2 : 16; /**< Second result word. */ } XHCI_TRB_NCE; AssertCompile(sizeof(XHCI_TRB_NCE) == 0x10); /* -= Command TRB types =- */ /** No Op Command TRB. */ typedef struct sXHCI_TRB_NOPC { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_NOPC; AssertCompile(sizeof(XHCI_TRB_NOPC) == 0x10); /** Enable Slot Command TRB. */ typedef struct sXHCI_TRB_ESL { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 16; } XHCI_TRB_ESL; AssertCompile(sizeof(XHCI_TRB_ESL) == 0x10); /** Disable Slot Command TRB. */ typedef struct sXHCI_TRB_DSL { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_DSL; AssertCompile(sizeof(XHCI_TRB_DSL) == 0x10); /** Address Device Command TRB. */ typedef struct sXHCI_TRB_ADR { uint64_t ctx_ptr; /**< Input Context pointer. */ uint32_t resvd0; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 8; uint32_t bsr : 1; /**< Block Set Address Request. */ uint32_t type : 6; /**< TRB Type. */ uint32_t resvd2 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_ADR; AssertCompile(sizeof(XHCI_TRB_ADR) == 0x10); /** Configure Endpoint Command TRB. */ typedef struct sXHCI_TRB_CFG { uint64_t ctx_ptr; /**< Input Context pointer. */ uint32_t resvd0; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 8; uint32_t dc : 1; /**< Deconfigure. */ uint32_t type : 6; /**< TRB Type. */ uint32_t resvd2 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_CFG; AssertCompile(sizeof(XHCI_TRB_CFG) == 0x10); /** Evaluate Context Command TRB. */ typedef struct sXHCI_TRB_EVC { uint64_t ctx_ptr; /**< Input Context pointer. */ uint32_t resvd0; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd2 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_EVC; AssertCompile(sizeof(XHCI_TRB_EVC) == 0x10); /** Reset Endpoint Command TRB. */ typedef struct sXHCI_TRB_RSE { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 8; uint32_t tsp : 1; /**< Transfer State Preserve. */ uint32_t type : 6; /**< TRB Type. */ uint32_t ep_id : 5; /**< Endpoint ID. */ uint32_t resvd4 : 3; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_RSE; AssertCompile(sizeof(XHCI_TRB_RSE) == 0x10); /** Stop Endpoint Command TRB. */ typedef struct sXHCI_TRB_STP { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t ep_id : 5; /**< Endpoint ID. */ uint32_t resvd4 : 2; uint32_t sp : 1; /**< Suspend. */ uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_STP; AssertCompile(sizeof(XHCI_TRB_STP) == 0x10); /** Set TR Dequeue Pointer Command TRB. */ typedef struct sXHCI_TRB_STDP { #if 0 uint64_t dcs : 1; /**< Dequeue Cycle State. */ uint64_t sct : 3; /**< Stream Context Type. */ uint64_t tr_dqp : 60; /**< New TR Dequeue Pointer (63:4). */ #else uint64_t tr_dqp; #endif uint16_t resvd0; uint16_t strm_id; /**< Stream ID. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t ep_id : 5; /**< Endpoint ID. */ uint32_t resvd2 : 3; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_STDP; AssertCompile(sizeof(XHCI_TRB_STDP) == 0x10); /** Reset Device Command TRB. */ typedef struct sXHCI_TRB_RSD { uint32_t resvd0; uint32_t resvd1; uint32_t resvd2; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd3 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd4 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_RSD; AssertCompile(sizeof(XHCI_TRB_RSD) == 0x10); /** Get Port Bandwidth Command TRB. */ typedef struct sXHCI_TRB_GPBW { uint64_t pbctx_ptr; /**< Port Bandwidth Context pointer. */ uint32_t resvd0; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t spd : 4; /**< Dev Speed. */ uint32_t resvd2 : 4; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_GPBW; AssertCompile(sizeof(XHCI_TRB_GPBW) == 0x10); /** Force Header Command TRB. */ typedef struct sXHCI_TRB_FHD { uint32_t pkt_typ : 5; /**< Packet Type. */ uint32_t hdr_lo : 27; /**< Header Info Lo. */ uint32_t hdr_mid; /**< Header Info Mid. */ uint32_t hdr_hi; /**< Header Info Hi. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd0 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd1 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_FHD; AssertCompile(sizeof(XHCI_TRB_FHD) == 0x10); /** NEC Specific Authenticate Command TRB. */ typedef struct sXHCI_TRB_NAC { uint64_t cookie; /**< Cookie to munge. */ uint32_t resvd0; uint32_t cycle : 1; /**< Cycle bit. */ uint32_t resvd1 : 9; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd2 : 8; uint32_t slot_id : 8; /**< Slot ID. */ } XHCI_TRB_NAC; AssertCompile(sizeof(XHCI_TRB_NAC) == 0x10); /* -= Other TRB types =- */ /** Link TRB. */ typedef struct sXHCI_TRB_LNK { uint64_t rseg_ptr; /**< Ring Segment Pointer. */ uint32_t resvd0 : 22; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t toggle : 1; /**< Toggle Cycle flag. */ uint32_t resvd1 : 2; uint32_t chain : 1; /**< Chain flag. */ uint32_t ioc : 1; /**< Interrupt On Completion flag. */ uint32_t resvd2 : 4; uint32_t type : 6; /**< TRB Type. */ uint32_t resvd3 : 16; } XHCI_TRB_LNK; AssertCompile(sizeof(XHCI_TRB_LNK) == 0x10); /** Event Data TRB. */ typedef struct sXHCI_TRB_EVTD { uint64_t evt_data; /**< Event Data. */ uint32_t resvd0 : 22; uint32_t int_tgt : 10; /**< Interrupter target. */ uint32_t cycle : 1; /**< Cycle bit. */ uint32_t ent : 1; /**< Evaluate Next Target flag. */ uint32_t resvd1 : 2; uint32_t chain : 1; /**< Chain flag. */ uint32_t ioc : 1; /**< Interrupt On Completion flag. */ uint32_t resvd2 : 3; uint32_t bei : 1; /**< Block Event Interrupt flag. */ uint32_t type : 6; /**< TRB Type. */ uint32_t resvd3 : 16; } XHCI_TRB_EVTD; AssertCompile(sizeof(XHCI_TRB_EVTD) == 0x10); /* -= Union TRB types for the three rings =- */ typedef union sXHCI_XFER_TRB { XHCI_TRB_NORM norm; XHCI_TRB_CTSP setup; XHCI_TRB_CTDT data; XHCI_TRB_CTSS status; XHCI_TRB_ISOC isoc; XHCI_TRB_EVTD evtd; XHCI_TRB_NOPT nop; XHCI_TRB_LNK link; XHCI_TRB_GX gen; } XHCI_XFER_TRB; AssertCompile(sizeof(XHCI_XFER_TRB) == 0x10); typedef union sXHCI_COMMAND_TRB { XHCI_TRB_ESL esl; XHCI_TRB_DSL dsl; XHCI_TRB_ADR adr; XHCI_TRB_CFG cfg; XHCI_TRB_EVC evc; XHCI_TRB_RSE rse; XHCI_TRB_STP stp; XHCI_TRB_STDP stdp; XHCI_TRB_RSD rsd; XHCI_TRB_GPBW gpbw; XHCI_TRB_FHD fhd; XHCI_TRB_NAC nac; XHCI_TRB_NOPC nopc; XHCI_TRB_LNK link; XHCI_TRB_G gen; } XHCI_COMMAND_TRB; AssertCompile(sizeof(XHCI_COMMAND_TRB) == 0x10); typedef union sXHCI_EVENT_TRB { XHCI_TRB_TE te; XHCI_TRB_CCE cce; XHCI_TRB_PSCE psce; XHCI_TRB_BRE bre; XHCI_TRB_DBE dbe; XHCI_TRB_HCE hce; XHCI_TRB_DNE dne; XHCI_TRB_MWE mwe; XHCI_TRB_NCE nce; XHCI_TRB_G gen; } XHCI_EVENT_TRB; AssertCompile(sizeof(XHCI_EVENT_TRB) == 0x10); /* -=-=-= Contexts =-=-=- */ /** Slot Context. */ typedef struct sXHCI_SLOT_CTX { uint32_t route_str : 20; /**< Route String. */ uint32_t speed : 4; /**< Device speed. */ uint32_t resvd0 : 1; uint32_t mtt : 1; /**< Multi-TT flag. */ uint32_t hub : 1; /**< Hub flag. */ uint32_t ctx_ent : 5; /**< Context entries. */ uint32_t max_lat : 16; /**< Max exit latency in usec. */ uint32_t rh_port : 8; /**< Root hub port number (1-based). */ uint32_t n_ports : 8; /**< No. of ports for hubs. */ uint32_t tt_slot : 8; /**< TT hub slot ID. */ uint32_t tt_port : 8; /**< TT port number. */ uint32_t ttt : 2; /**< TT Think Time. */ uint32_t resvd1 : 4; uint32_t intr_tgt : 10; /**< Interrupter Target. */ uint32_t dev_addr : 8; /**< Device Address. */ uint32_t resvd2 : 19; uint32_t slot_state : 5; /**< Slot State. */ uint32_t opaque[4]; /**< For xHC (i.e. our own) use. */ } XHCI_SLOT_CTX; AssertCompile(sizeof(XHCI_SLOT_CTX) == 0x20); /** @name Slot Context states * @{ */ #define XHCI_SLTST_ENDIS 0 /**< Enabled/Disabled. */ #define XHCI_SLTST_DEFAULT 1 /**< Default. */ #define XHCI_SLTST_ADDRESSED 2 /**< Addressed. */ #define XHCI_SLTST_CONFIGURED 3 /**< Configured. */ /** @} */ #ifdef IN_RING3 /** Human-readable slot state descriptions for debugging. */ static const char * const g_apszSltStates[] = { "Enabled/Disabled", "Default", "Addressed", "Configured" /* 0-3 */ }; #endif /** Endpoint Context. */ typedef struct sXHCI_EP_CTX { uint32_t ep_state : 3; /**< Endpoint state. */ uint32_t resvd0 : 5; uint32_t mult : 2; /**< SS isoc burst count. */ uint32_t maxps : 5; /**< Max Primary Streams. */ uint32_t lsa : 1; /**< Linear Stream Array. */ uint32_t interval : 8; /**< USB request interval. */ uint32_t resvd1 : 8; uint32_t resvd2 : 1; uint32_t c_err : 2; /**< Error count. */ uint32_t ep_type : 3; /**< Endpoint type. */ uint32_t resvd3 : 1; uint32_t hid : 1; /**< Host Initiate Disable. */ uint32_t max_brs_sz : 8; /**< Max Burst Size. */ uint32_t max_pkt_sz : 16; /**< Max Packet Size. */ uint64_t trdp; /**< TR Dequeue Pointer. */ uint32_t avg_trb_len : 16; /**< Average TRB Length. */ uint32_t max_esit : 16; /**< Max EP Service Interval Time Payload. */ /**< The rest for xHC (i.e. our own) use. */ uint32_t last_frm : 16; /**< Last isochronous frame used (opaque). */ uint32_t ifc : 8; /**< isoch in-flight TD count (opaque). */ uint32_t last_cc : 8; /**< Last TRB completion code (opaque). */ uint64_t trep; /**< TR Enqueue Pointer (opaque). */ } XHCI_EP_CTX; AssertCompile(sizeof(XHCI_EP_CTX) == 0x20); /** @name Endpoint Context states * @{ */ #define XHCI_EPST_DISABLED 0 /**< Disabled. */ #define XHCI_EPST_RUNNING 1 /**< Running. */ #define XHCI_EPST_HALTED 2 /**< Halted. */ #define XHCI_EPST_STOPPED 3 /**< Not running/stopped. */ #define XHCI_EPST_ERROR 4 /**< Not running/error. */ /** @} */ /** @name Endpoint Type values * @{ */ #define XHCI_EPTYPE_INVALID 0 /**< Not valid. */ #define XHCI_EPTYPE_ISOCH_OUT 1 /**< Isochronous Out. */ #define XHCI_EPTYPE_BULK_OUT 2 /**< Bulk Out. */ #define XHCI_EPTYPE_INTR_OUT 3 /**< Interrupt Out. */ #define XHCI_EPTYPE_CONTROL 4 /**< Control Bidi. */ #define XHCI_EPTYPE_ISOCH_IN 5 /**< Isochronous In. */ #define XHCI_EPTYPE_BULK_IN 6 /**< Bulk In. */ #define XHCI_EPTYPE_INTR_IN 7 /**< Interrupt In. */ /** @} */ /* Pick out transfer type from endpoint. */ #define XHCI_EP_XTYPE(a) (a & 3) /* Endpoint transfer types. */ #define XHCI_XFTYPE_CONTROL 0 #define XHCI_XFTYPE_ISOCH XHCI_EPTYPE_ISOCH_OUT #define XHCI_XFTYPE_BULK XHCI_EPTYPE_BULK_OUT #define XHCI_XFTYPE_INTR XHCI_EPTYPE_INTR_OUT /* Transfer Ring Dequeue Pointer address mask. */ #define XHCI_TRDP_ADDR_MASK UINT64_C(0xFFFFFFFFFFFFFFF0) #define XHCI_TRDP_DCS_MASK RT_BIT(0) /* Dequeue Cycle State bit. */ #ifdef IN_RING3 /* Human-readable endpoint state descriptions for debugging. */ static const char * const g_apszEpStates[] = { "Disabled", "Running", "Halted", "Stopped", "Error" /* 0-4 */ }; /* Human-readable endpoint type descriptions for debugging. */ static const char * const g_apszEpTypes[] = { "Not Valid", "Isoch Out", "Bulk Out", "Interrupt Out", /* 0-3 */ "Control", "Isoch In", "Bulk In", "Interrupt In" /* 4-7 */ }; #endif /* IN_RING3 */ /* Input Control Context. */ typedef struct sXHCI_INPC_CTX { uint32_t drop_flags; /* Drop Context flags (2-31). */ uint32_t add_flags; /* Add Context flags (0-31). */ uint32_t resvd[6]; } XHCI_INPC_CTX; AssertCompile(sizeof(XHCI_INPC_CTX) == 0x20); /* Make sure all contexts are the same size. */ AssertCompile(sizeof(XHCI_EP_CTX) == sizeof(XHCI_SLOT_CTX)); AssertCompile(sizeof(XHCI_EP_CTX) == sizeof(XHCI_INPC_CTX)); /* -= Event Ring Segment Table =- */ /** Event Ring Segment Table Entry. */ typedef struct sXHCI_ERSTE { uint64_t addr; uint16_t size; uint16_t resvd0; uint32_t resvd1; } XHCI_ERSTE; AssertCompile(sizeof(XHCI_ERSTE) == 0x10); /* -=-= Internal data structures not defined by xHCI =-=- */ /** Device slot entry -- either slot context or endpoint context. */ typedef union sXHCI_DS_ENTRY { XHCI_SLOT_CTX sc; /**< Slot context. */ XHCI_EP_CTX ep; /**< Endpoint context. */ } XHCI_DS_ENTRY; /** Full device context (slot context + 31 endpoint contexts). */ typedef struct sXHCI_DEV_CTX { XHCI_DS_ENTRY entry[32]; } XHCI_DEV_CTX; AssertCompile(sizeof(XHCI_DEV_CTX) == 32 * sizeof(XHCI_EP_CTX)); AssertCompile(sizeof(XHCI_DEV_CTX) == 32 * sizeof(XHCI_SLOT_CTX)); /** Pointer to the xHCI device state. */ typedef struct XHCI *PXHCI; #ifndef VBOX_DEVICE_STRUCT_TESTCASE /** * The xHCI controller data associated with each URB. */ typedef struct VUSBURBHCIINT { /** The slot index. */ uint8_t uSlotID; /** Number of Tds in the array. */ uint32_t cTRB; } VUSBURBHCIINT; #endif /** * An xHCI root hub port, shared. */ typedef struct XHCIHUBPORT { /** PORTSC: Port status/control register (R/W). */ uint32_t portsc; /** PORTPM: Power management status/control register (R/W). */ uint32_t portpm; /** PORTLI: USB3 port link information (R/O). */ uint32_t portli; } XHCIHUBPORT; /** Pointer to a shared xHCI root hub port. */ typedef XHCIHUBPORT *PXHCIHUBPORT; /** * An xHCI root hub port, ring-3. */ typedef struct XHCIHUBPORTR3 { /** Flag whether there is a device attached to the port. */ bool fAttached; } XHCIHUBPORTR3; /** Pointer to a ring-3 xHCI root hub port. */ typedef XHCIHUBPORTR3 *PXHCIHUBPORTR3; /** * The xHCI root hub, ring-3 only. * * @implements PDMIBASE * @implements VUSBIROOTHUBPORT */ typedef struct XHCIROOTHUBR3 { /** Pointer to the parent xHC. */ R3PTRTYPE(struct XHCIR3 *) pXhciR3; /** Pointer to the base interface of the VUSB RootHub. */ R3PTRTYPE(PPDMIBASE) pIBase; /** Pointer to the connector interface of the VUSB RootHub. */ R3PTRTYPE(PVUSBIROOTHUBCONNECTOR) pIRhConn; /** The base interface exposed to the roothub driver. */ PDMIBASE IBase; /** The roothub port interface exposed to the roothub driver. */ VUSBIROOTHUBPORT IRhPort; /** The LED for this hub. */ PDMLED Led; /** Number of actually implemented ports. */ uint8_t cPortsImpl; /** Index of first port for this hub. */ uint8_t uPortBase; uint16_t Alignment0; /**< Force alignment. */ #if HC_ARCH_BITS == 64 uint32_t Alignment1; #endif } XHCIROOTHUBR3; /** Pointer to a xHCI root hub (ring-3 only). */ typedef XHCIROOTHUBR3 *PXHCIROOTHUBR3; /** * An xHCI interrupter. */ typedef struct sXHCIINTRPTR { /* Registers defined by xHCI. */ /** IMAN: Interrupt Management Register (R/W). */ uint32_t iman; /** IMOD: Interrupt Moderation Register (R/W). */ uint32_t imod; /** ERSTSZ: Event Ring Segment Table Size (R/W). */ uint32_t erstsz; /* Reserved/padding. */ uint32_t reserved; /** ERSTBA: Event Ring Segment Table Base Address (R/W). */ uint64_t erstba; /** ERDP: Event Ring Dequeue Pointer (R/W). */ uint64_t erdp; /* Interrupter lock. */ PDMCRITSECT lock; /* Internal xHCI non-register state. */ /** Internal Event Ring enqueue pointer. */ uint64_t erep; /** Internal ERDP re-write counter. */ uint32_t erdp_rewrites; /** This interrupter's index (for logging). */ uint32_t index; /** Internal index into Event Ring Segment Table. */ uint16_t erst_idx; /** Internal index into Event Ring Segment. */ uint16_t trb_count; /** Internal Event Ring Producer Cycle State. */ bool evtr_pcs; /** Internal Interrupt Pending Enable flag. */ bool ipe; } XHCIINTRPTR, *PXHCIINTRPTR; /** * xHCI device state. * @implements PDMILEDPORTS */ typedef struct XHCI { /** MFINDEX wraparound timer. */ TMTIMERHANDLE hWrapTimer; #ifdef XHCI_ERROR_INJECTION bool fDropIntrHw; bool fDropIntrIpe; bool fDropUrb; uint8_t Alignment00[1]; #else uint32_t Alignment00; /**< Force alignment. */ #endif /** Flag indicating a sleeping worker thread. */ volatile bool fWrkThreadSleeping; volatile bool afPadding[3]; /** The event semaphore the worker thread waits on. */ SUPSEMEVENT hEvtProcess; /** Bitmap for finished tasks (R3 -> Guest). */ volatile uint32_t u32TasksFinished; /** Bitmap for finished queued tasks (R3 -> Guest). */ volatile uint32_t u32QueuedTasksFinished; /** Bitmap for new queued tasks (Guest -> R3). */ volatile uint32_t u32TasksNew; /** Copy of XHCIR3::RootHub2::cPortsImpl. */ uint8_t cUsb2Ports; /** Copy of XHCIR3::RootHub3::cPortsImpl. */ uint8_t cUsb3Ports; /** Sum of cUsb2Ports and cUsb3Ports. */ uint8_t cTotalPorts; /** Explicit padding. */ uint8_t bPadding; /** Start of current frame. */ uint64_t SofTime; /** State of the individual ports. */ XHCIHUBPORT aPorts[XHCI_NDP_MAX]; /** Interrupters array. */ XHCIINTRPTR aInterrupters[XHCI_NINTR]; /** @name Host Controller Capability Registers * @{ */ /** CAPLENGTH: base + CAPLENGTH = operational register start (R/O). */ uint32_t cap_length; /** HCIVERSION: host controller interface version (R/O). */ uint32_t hci_version; /** HCSPARAMS: Structural parameters 1 (R/O). */ uint32_t hcs_params1; /** HCSPARAMS: Structural parameters 2 (R/O). */ uint32_t hcs_params2; /** HCSPARAMS: Structural parameters 3 (R/O). */ uint32_t hcs_params3; /** HCCPARAMS: Capability parameters (R/O). */ uint32_t hcc_params; /** DBOFF: Doorbell offset (R/O). */ uint32_t dbell_off; /** RTSOFF: Run-time register space offset (R/O). */ uint32_t rts_off; /** @} */ /** @name Host Controller Operational Registers * @{ */ /** USB command register - USBCMD (R/W). */ uint32_t cmd; /** USB status register - USBSTS (R/W).*/ uint32_t status; /** Device Control Notification register - DNCTRL (R/W). */ uint32_t dnctrl; /** Configure Register (R/W). */ uint32_t config; /** Command Ring Control Register - CRCR (R/W). */ uint64_t crcr; /** Device Context Base Address Array Pointer (R/W). */ uint64_t dcbaap; /** @} */ /** Extended Capabilities storage. */ uint8_t abExtCap[XHCI_EXT_CAP_SIZE]; /** Size of valid extended capabilities. */ uint32_t cbExtCap; uint32_t Alignment1; /**< Align cmdr_dqp. */ /** @name Internal xHCI non-register state * @{ */ /** Internal Command Ring dequeue pointer. */ uint64_t cmdr_dqp; /** Internal Command Ring Consumer Cycle State. */ bool cmdr_ccs; uint8_t aAlignment2[7]; /**< Force alignment. */ /** Internal Device Slot states. */ uint8_t aSlotState[XHCI_NDS]; /** Internal doorbell states. Each bit corresponds to an endpoint. */ uint32_t aBellsRung[XHCI_NDS]; /** @} */ /** @name Model specific configuration * @{ */ /** ERST address mask. */ uint64_t erst_addr_mask; /** @} */ /** The MMIO region. */ IOMMMIOHANDLE hMmio; /** Detected isochronous URBs completed with error. */ STAMCOUNTER StatErrorIsocUrbs; /** Detected isochronous packets (not URBs!) with error. */ STAMCOUNTER StatErrorIsocPkts; /** Event TRBs written to event ring(s). */ STAMCOUNTER StatEventsWritten; /** Event TRBs not written to event ring(s) due to HC being stopped. */ STAMCOUNTER StatEventsDropped; /** Requests to set the IP bit. */ STAMCOUNTER StatIntrsPending; /** Actual interrupt deliveries. */ STAMCOUNTER StatIntrsSet; /** Interrupts not raised because they were disabled. */ STAMCOUNTER StatIntrsNotSet; /** A pending interrupt was cleared. */ STAMCOUNTER StatIntrsCleared; /** Number of TRBs that formed a single control URB. */ STAMCOUNTER StatTRBsPerCtlUrb; /** Number of TRBs that formed a single data (bulk/interrupt) URB. */ STAMCOUNTER StatTRBsPerDtaUrb; /** Number of TRBs that formed a single isochronous URB. */ STAMCOUNTER StatTRBsPerIsoUrb; /** Size of a control URB in bytes. */ STAMCOUNTER StatUrbSizeCtrl; /** Size of a data URB in bytes. */ STAMCOUNTER StatUrbSizeData; /** Size of an isochronous URB in bytes. */ STAMCOUNTER StatUrbSizeIsoc; #ifdef VBOX_WITH_STATISTICS /** @name Register access counters. * @{ */ STAMCOUNTER StatRdCaps; STAMCOUNTER StatRdCmdRingCtlHi; STAMCOUNTER StatRdCmdRingCtlLo; STAMCOUNTER StatRdConfig; STAMCOUNTER StatRdDevCtxBaapHi; STAMCOUNTER StatRdDevCtxBaapLo; STAMCOUNTER StatRdDevNotifyCtrl; STAMCOUNTER StatRdDoorBell; STAMCOUNTER StatRdEvtRingDeqPtrHi; STAMCOUNTER StatRdEvtRingDeqPtrLo; STAMCOUNTER StatRdEvtRsTblBaseHi; STAMCOUNTER StatRdEvtRsTblBaseLo; STAMCOUNTER StatRdEvtRstblSize; STAMCOUNTER StatRdEvtRsvd; STAMCOUNTER StatRdIntrMgmt; STAMCOUNTER StatRdIntrMod; STAMCOUNTER StatRdMfIndex; STAMCOUNTER StatRdPageSize; STAMCOUNTER StatRdPortLinkInfo; STAMCOUNTER StatRdPortPowerMgmt; STAMCOUNTER StatRdPortRsvd; STAMCOUNTER StatRdPortStatusCtrl; STAMCOUNTER StatRdUsbCmd; STAMCOUNTER StatRdUsbSts; STAMCOUNTER StatRdUnknown; STAMCOUNTER StatWrCmdRingCtlHi; STAMCOUNTER StatWrCmdRingCtlLo; STAMCOUNTER StatWrConfig; STAMCOUNTER StatWrDevCtxBaapHi; STAMCOUNTER StatWrDevCtxBaapLo; STAMCOUNTER StatWrDevNotifyCtrl; STAMCOUNTER StatWrDoorBell0; STAMCOUNTER StatWrDoorBellN; STAMCOUNTER StatWrEvtRingDeqPtrHi; STAMCOUNTER StatWrEvtRingDeqPtrLo; STAMCOUNTER StatWrEvtRsTblBaseHi; STAMCOUNTER StatWrEvtRsTblBaseLo; STAMCOUNTER StatWrEvtRstblSize; STAMCOUNTER StatWrIntrMgmt; STAMCOUNTER StatWrIntrMod; STAMCOUNTER StatWrPortPowerMgmt; STAMCOUNTER StatWrPortStatusCtrl; STAMCOUNTER StatWrUsbCmd; STAMCOUNTER StatWrUsbSts; STAMCOUNTER StatWrUnknown; /** @} */ #endif } XHCI; /** * xHCI device state, ring-3 edition. * @implements PDMILEDPORTS */ typedef struct XHCIR3 { /** The async worker thread. */ R3PTRTYPE(PPDMTHREAD) pWorkerThread; /** The device instance. * @note This is only so interface functions can get their bearings. */ PPDMDEVINSR3 pDevIns; /** Status LUN: The base interface. */ PDMIBASE IBase; /** Status LUN: Leds interface. */ PDMILEDPORTS ILeds; /** Status LUN: Partner of ILeds. */ R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; /** USB 2.0 Root hub device. */ XHCIROOTHUBR3 RootHub2; /** USB 3.0 Root hub device. */ XHCIROOTHUBR3 RootHub3; /** State of the individual ports. */ XHCIHUBPORTR3 aPorts[XHCI_NDP_MAX]; /** Critsect to synchronize worker and I/O completion threads. */ RTCRITSECT CritSectThrd; } XHCIR3; /** Pointer to ring-3 xHCI device state. */ typedef XHCIR3 *PXHCIR3; /** * xHCI device data, ring-0 edition. */ typedef struct XHCIR0 { uint32_t uUnused; } XHCIR0; /** Pointer to ring-0 xHCI device data. */ typedef struct XHCIR0 *PXHCIR0; /** * xHCI device data, raw-mode edition. */ typedef struct XHCIRC { uint32_t uUnused; } XHCIRC; /** Pointer to raw-mode xHCI device data. */ typedef struct XHCIRC *PXHCIRC; /** @typedef XHCICC * The xHCI device data for the current context. */ typedef CTX_SUFF(XHCI) XHCICC; /** @typedef PXHCICC * Pointer to the xHCI device for the current context. */ typedef CTX_SUFF(PXHCI) PXHCICC; /* -=-= Local implementation details =-=- */ typedef enum sXHCI_JOB { XHCI_JOB_PROCESS_CMDRING, /**< Process the command ring. */ XHCI_JOB_DOORBELL, /**< A doorbell (other than DB0) was rung. */ XHCI_JOB_XFER_DONE, /**< Transfer completed, look for more work. */ XHCI_JOB_MAX } XHCI_JOB; /* -=-=- Local xHCI definitions -=-=- */ /** @name USB states. * @{ */ #define XHCI_USB_RESET 0x00 #define XHCI_USB_RESUME 0x40 #define XHCI_USB_OPERATIONAL 0x80 #define XHCI_USB_SUSPEND 0xc0 /** @} */ /* Primary interrupter (for readability). */ #define XHCI_PRIMARY_INTERRUPTER 0 /** @name Device Slot states. * @{ */ #define XHCI_DEVSLOT_EMPTY 0 #define XHCI_DEVSLOT_ENABLED 1 #define XHCI_DEVSLOT_DEFAULT 2 #define XHCI_DEVSLOT_ADDRESSED 3 #define XHCI_DEVSLOT_CONFIGURED 4 /** @} */ /** Get the pointer to a root hub corresponding to given port index. */ #define GET_PORT_PRH(a_pThisCC, a_uPort) \ ((a_uPort) >= (a_pThisCC)->RootHub2.cPortsImpl ? &(a_pThisCC)->RootHub3 : &(a_pThisCC)->RootHub2) #define GET_VUSB_PORT_FROM_XHCI_PORT(a_pRh, a_iPort) \ (((a_iPort) - (a_pRh)->uPortBase) + 1) #define GET_XHCI_PORT_FROM_VUSB_PORT(a_pRh, a_uPort) \ ((a_pRh)->uPortBase + (a_uPort) - 1) /** Check if port corresponding to index is USB3, using shared data. */ #define IS_USB3_PORT_IDX_SHR(a_pThis, a_uPort) ((a_uPort) >= (a_pThis)->cUsb2Ports) /** Check if port corresponding to index is USB3, using ring-3 data. */ #define IS_USB3_PORT_IDX_R3(a_pThisCC, a_uPort) ((a_uPort) >= (a_pThisCC)->RootHub2.cPortsImpl) /** Query the number of configured USB2 ports. */ #define XHCI_NDP_USB2(a_pThisCC) ((unsigned)(a_pThisCC)->RootHub2.cPortsImpl) /** Query the number of configured USB3 ports. */ #define XHCI_NDP_USB3(a_pThisCC) ((unsigned)(a_pThisCC)->RootHub3.cPortsImpl) /** Query the total number of configured ports. */ #define XHCI_NDP_CFG(a_pThis) ((unsigned)RT_MIN((a_pThis)->cTotalPorts, XHCI_NDP_MAX)) #ifndef VBOX_DEVICE_STRUCT_TESTCASE /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifdef IN_RING3 /** Build a Protocol extended capability. */ static uint32_t xhciR3BuildProtocolCaps(uint8_t *pbCap, uint32_t cbMax, int cPorts, int nPortOfs, int ver) { uint32_t *pu32Cap = (uint32_t *)pbCap; unsigned cPsi; Assert(nPortOfs + cPorts < 255); Assert(ver == 2 || ver == 3); cPsi = 0; /* Currently only implied port speed IDs. */ /* Make sure there's enough room. */ if (cPsi * 4 + 16 > cbMax) return 0; /* Header - includes (USB) specification version. */ *pu32Cap++ = (ver << 24) | (0 << 16) | XHCI_XCP_PROTOCOL; /* Specification - 'USB ' */ *pu32Cap++ = 0x20425355; /* Port offsets and counts. 1-based! */ *pu32Cap++ = (cPsi << 28) | (cPorts << 8) | (nPortOfs + 1); /* Reserved dword. */ *pu32Cap++ = 0; return (uint8_t *)pu32Cap - pbCap; } /** Add an extended capability and link it into the chain. */ static int xhciR3AddExtCap(PXHCI pThis, const uint8_t *pCap, uint32_t cbCap, uint32_t *puPrevOfs) { Assert(*puPrevOfs <= pThis->cbExtCap); Assert(!(cbCap & 3)); /* Check that the extended capability is sane. */ if (cbCap == 0) return VERR_BUFFER_UNDERFLOW; if (pThis->cbExtCap + cbCap > XHCI_EXT_CAP_SIZE) return VERR_BUFFER_OVERFLOW; if (cbCap > 255 * 4) /* Size must fit into 8-bit dword count. */ return VERR_BUFFER_OVERFLOW; /* Copy over the capability data and update offsets. */ memcpy(pThis->abExtCap + pThis->cbExtCap, pCap, cbCap); pThis->abExtCap[*puPrevOfs + 1] = cbCap >> 2; pThis->abExtCap[pThis->cbExtCap + 1] = 0; *puPrevOfs = pThis->cbExtCap; pThis->cbExtCap += cbCap; return VINF_SUCCESS; } /** Build the xHCI Extended Capabilities region. */ static int xhciR3BuildExtCaps(PXHCI pThis, PXHCICC pThisCC) { int rc; uint8_t abXcp[MAX_XCAP_SIZE]; uint32_t cbXcp; uint32_t uPrevOfs = 0; Assert(XHCI_NDP_USB2(pThisCC)); Assert(XHCI_NDP_USB3(pThisCC)); /* Most of the extended capabilities are optional or not relevant for PCI * implementations. However, the Supported Protocol caps are required. */ cbXcp = xhciR3BuildProtocolCaps(abXcp, sizeof(abXcp), XHCI_NDP_USB2(pThisCC), 0, 2); rc = xhciR3AddExtCap(pThis, abXcp, cbXcp, &uPrevOfs); AssertReturn(RT_SUCCESS(rc), rc); cbXcp = xhciR3BuildProtocolCaps(abXcp, sizeof(abXcp), XHCI_NDP_USB3(pThisCC), XHCI_NDP_USB2(pThisCC), 3); rc = xhciR3AddExtCap(pThis, abXcp, cbXcp, &uPrevOfs); AssertReturn(RT_SUCCESS(rc), rc); return VINF_SUCCESS; } /** * Select an unused device address. Note that this may fail in the unlikely * case where all possible addresses are exhausted. */ static uint8_t xhciR3SelectNewAddress(PXHCI pThis, uint8_t uSlotID) { RT_NOREF(pThis, uSlotID); /* * Since there is a 1:1 mapping between USB devices and device slots, we * should be able to assign a USB address which equals slot ID to any USB * device. However, the address selection algorithm could be completely * different (it is not defined by the xHCI spec). */ return uSlotID; } /** * Read the address of a device context for a slot from the DCBAA. * * @returns Given slot's device context base address. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uSlotID Slot ID to get the context address of. */ static uint64_t xhciR3FetchDevCtxAddr(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID) { uint64_t uCtxAddr; RTGCPHYS GCPhysDCBAAE; Assert(uSlotID > 0); Assert(uSlotID < XHCI_NDS); /* Fetch the address of the output slot context from the DCBAA. */ GCPhysDCBAAE = pThis->dcbaap + uSlotID * sizeof(uint64_t); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysDCBAAE, &uCtxAddr, sizeof(uCtxAddr)); LogFlowFunc(("Slot ID %u, device context @ %RGp\n", uSlotID, uCtxAddr)); Assert(uCtxAddr); return uCtxAddr & XHCI_CTX_ADDR_MASK; } /** * Fetch a device's slot or endpoint context from memory. * * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param uSlotID Slot ID to access. * @param uDCI Device Context Index. * @param pCtx Pointer to storage for the context. */ static int xhciR3FetchDevCtx(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, void *pCtx) { RTGCPHYS GCPhysCtx; GCPhysCtx = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); LogFlowFunc(("Reading device context @ %RGp, DCI %u\n", GCPhysCtx, uDCI)); GCPhysCtx += uDCI * sizeof(XHCI_SLOT_CTX); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysCtx, pCtx, sizeof(XHCI_SLOT_CTX)); return VINF_SUCCESS; } /** * Fetch a device's slot and endpoint contexts from guest memory. * * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param uSlotID Slot ID to access. * @param uDCI Endpoint Device Context Index. * @param pSlot Pointer to storage for the slot context. * @param pEp Pointer to storage for the endpoint context. */ static int xhciR3FetchCtxAndEp(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, XHCI_SLOT_CTX *pSlot, XHCI_EP_CTX *pEp) { AssertPtr(pSlot); AssertPtr(pEp); Assert(uDCI); /* Can't be 0 -- that's the device context. */ /* Load the slot context. */ xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, 0, pSlot); /// @todo sanity check the slot context here? Assert(pSlot->ctx_ent >= uDCI); /* Load the endpoint context. */ xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, uDCI, pEp); /// @todo sanity check the endpoint context here? return VINF_SUCCESS; } /** * Update an endpoint context in guest memory. * * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param uSlotID Slot ID to access. * @param uDCI Endpoint Device Context Index. * @param pEp Pointer to storage of the endpoint context. */ static int xhciR3WriteBackEp(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, XHCI_EP_CTX *pEp) { RTGCPHYS GCPhysCtx; AssertPtr(pEp); Assert(uDCI); /* Can't be 0 -- that's the device context. */ /// @todo sanity check the endpoint context here? /* Find the physical address. */ GCPhysCtx = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); LogFlowFunc(("Writing device context @ %RGp, DCI %u\n", GCPhysCtx, uDCI)); GCPhysCtx += uDCI * sizeof(XHCI_SLOT_CTX); /* Write the updated context. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysCtx, pEp, sizeof(XHCI_EP_CTX)); return VINF_SUCCESS; } /** * Modify an endpoint context such that it enters the running state. * * @param pEpCtx Pointer to the endpoint context. */ static void xhciR3EnableEP(XHCI_EP_CTX *pEpCtx) { LogFlow(("Enabling EP, TRDP @ %RGp, DCS=%u\n", pEpCtx->trdp & XHCI_TRDP_ADDR_MASK, pEpCtx->trdp & XHCI_TRDP_DCS_MASK)); pEpCtx->ep_state = XHCI_EPST_RUNNING; pEpCtx->trep = pEpCtx->trdp; } #endif /* IN_RING3 */ #define MFIND_PERIOD_NS (UINT64_C(2048) * 1000000) /** * Set up the MFINDEX wrap timer. */ static void xhciSetWrapTimer(PPDMDEVINS pDevIns, PXHCI pThis) { uint64_t u64Now; uint64_t u64LastWrap; uint64_t u64Expire; int rc; /* Try to avoid drift. */ u64Now = PDMDevHlpTimerGet(pDevIns, pThis->hWrapTimer); // u64LastWrap = u64Now - (u64Now % (0x3FFF * 125000)); u64LastWrap = u64Now / MFIND_PERIOD_NS * MFIND_PERIOD_NS; /* The MFINDEX counter wraps around every 2048 milliseconds. */ u64Expire = u64LastWrap + (uint64_t)2048 * 1000000; rc = PDMDevHlpTimerSet(pDevIns, pThis->hWrapTimer, u64Expire); AssertRC(rc); } /** * Determine whether MSI/MSI-X is enabled for this PCI device. * * This influences interrupt handling in xHCI. NB: There should be a PCIDevXxx * function for this. */ static bool xhciIsMSIEnabled(PPDMPCIDEV pDevIns) { uint16_t uMsgCtl; uMsgCtl = PDMPciDevGetWord(pDevIns, XHCI_PCI_MSI_CAP_OFS + VBOX_MSI_CAP_MESSAGE_CONTROL); return !!(uMsgCtl & VBOX_PCI_MSI_FLAGS_ENABLE); } /** * Get the worker thread going -- there's something to do. */ static void xhciKickWorker(PPDMDEVINS pDevIns, PXHCI pThis, XHCI_JOB enmJob, uint32_t uWorkDesc) { RT_NOREF(enmJob, uWorkDesc); /* Tell the worker thread there's something to do. */ if (ASMAtomicReadBool(&pThis->fWrkThreadSleeping)) { LogFlowFunc(("Signal event semaphore\n")); int rc = PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtProcess); AssertRC(rc); } } /** * Fetch the current ERST entry from guest memory. */ static void xhciFetchErstEntry(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip) { RTGCPHYS GCPhysErste; XHCI_ERSTE entry; Assert(ip->erst_idx < ip->erstsz); GCPhysErste = ip->erstba + ip->erst_idx * sizeof(XHCI_ERSTE); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysErste, &entry, sizeof(entry)); /* * 6.5 claims values in 16-4096 range are valid, but does not say what * happens for values outside of that range... */ Assert((pThis->status & XHCI_STATUS_HCH) || (entry.size >= 16 && entry.size <= 4096)); /* Cache the entry data internally. */ ip->erep = entry.addr & pThis->erst_addr_mask; ip->trb_count = entry.size; Log(("Fetched ERST Entry at %RGp: %u entries at %RGp\n", GCPhysErste, ip->trb_count, ip->erep)); } /** * Set the interrupter's IP and EHB bits and trigger an interrupt if required. * * @param pDevIns The PDM device instance. * @param pThis Pointer to the xHCI state. * @param ip Pointer to the interrupter structure. * */ static void xhciSetIntr(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip) { Assert(pThis && ip); LogFlowFunc(("old IP: %u\n", !!(ip->iman & XHCI_IMAN_IP))); if (!(ip->iman & XHCI_IMAN_IP)) { /// @todo assert that we own the interrupter lock ASMAtomicOrU32(&pThis->status, XHCI_STATUS_EINT); ASMAtomicOrU64(&ip->erdp, XHCI_ERDP_EHB); ASMAtomicOrU32(&ip->iman, XHCI_IMAN_IP); if ((ip->iman & XHCI_IMAN_IE) && (pThis->cmd & XHCI_CMD_INTE)) { #ifdef XHCI_ERROR_INJECTION if (pThis->fDropIntrHw) { pThis->fDropIntrHw = false; ASMAtomicAndU32(&ip->iman, ~XHCI_IMAN_IP); } else #endif { Log2(("Triggering interrupt on interrupter %u\n", ip->index)); PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_HIGH); STAM_COUNTER_INC(&pThis->StatIntrsSet); } } else { Log2(("Not triggering interrupt on interrupter %u (interrupts disabled)\n", ip->index)); STAM_COUNTER_INC(&pThis->StatIntrsNotSet); } /* If MSI/MSI-X is in use, the IP bit is immediately cleared again. */ if (xhciIsMSIEnabled(pDevIns->apPciDevs[0])) ASMAtomicAndU32(&ip->iman, ~XHCI_IMAN_IP); } } #ifdef IN_RING3 /** * Set the interrupter's IPE bit. If this causes a 0->1 transition, an * interrupt may be triggered. * * @param pDevIns The PDM device instance. * @param pThis Pointer to the xHCI state. * @param ip Pointer to the interrupter structure. */ static void xhciR3SetIntrPending(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip) { uint16_t imodc = (ip->imod >> XHCI_IMOD_IMODC_SHIFT) & XHCI_IMOD_IMODC_MASK; Assert(pThis && ip); LogFlowFunc(("old IPE: %u, IMODC: %u, EREP: %RGp, EHB: %u\n", ip->ipe, imodc, (RTGCPHYS)ip->erep, !!(ip->erdp & XHCI_ERDP_EHB))); STAM_COUNTER_INC(&pThis->StatIntrsPending); if (!ip->ipe) { #ifdef XHCI_ERROR_INJECTION if (pThis->fDropIntrIpe) { pThis->fDropIntrIpe = false; } else #endif { ip->ipe = true; if (!(ip->erdp & XHCI_ERDP_EHB) && (imodc == 0)) xhciSetIntr(pDevIns, pThis, ip); } } } /** * Check if there is space available for writing at least two events on the * event ring. See 4.9.4 for the state machine (right hand side of diagram). * If there's only room for one event, the Event Ring Full TRB will need to * be written out, hence the ring is considered full. * * @returns True if space is available, false otherwise. * @param pDevIns The PDM device instance. * @param pThis Pointer to the xHCI state. * @param pIntr Pointer to the interrupter structure. */ static bool xhciR3IsEvtRingFull(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR pIntr) { uint64_t next_ptr; uint64_t erdp = pIntr->erdp & XHCI_ERDP_ADDR_MASK; if (pIntr->trb_count > 1) { /* Check the current segment. */ next_ptr = pIntr->erep + sizeof(XHCI_EVENT_TRB); } else { uint16_t erst_idx; XHCI_ERSTE entry; RTGCPHYS GCPhysErste; /* Need to check the next segment. */ erst_idx = pIntr->erst_idx + 1; if (erst_idx == pIntr->erstsz) erst_idx = 0; GCPhysErste = pIntr->erstba + erst_idx * sizeof(XHCI_ERSTE); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysErste, &entry, sizeof(entry)); next_ptr = entry.addr & pThis->erst_addr_mask; } /// @todo We'll have to remember somewhere that the ring is full return erdp == next_ptr; } /** * Write an event to the given Event Ring. This implements a good chunk of * the event ring state machine in section 4.9.4 of the xHCI spec. * * @returns VBox status code. Error if event could not be enqueued. * @param pDevIns The PDM device instance. * @param pThis Pointer to the xHCI state. * @param pEvent Pointer to the Event TRB to be enqueued. * @param iIntr Index of the interrupter to write to. * @param fBlockInt Set if interrupt should be blocked (BEI bit). */ static int xhciR3WriteEvent(PPDMDEVINS pDevIns, PXHCI pThis, XHCI_EVENT_TRB *pEvent, unsigned iIntr, bool fBlockInt) { PXHCIINTRPTR pIntr; int rc = VINF_SUCCESS; LogFlowFunc(("Interrupter: %u\n", iIntr)); /* If the HC isn't running, events can not be generated. However, * especially port change events can be triggered at any time. We just * drop them here -- it's often not an error condition. */ if (pThis->cmd & XHCI_CMD_RS) { STAM_COUNTER_INC(&pThis->StatEventsWritten); Assert(iIntr < XHCI_NINTR); /* Supplied by guest, potentially invalid. */ pIntr = &pThis->aInterrupters[iIntr & XHCI_INTR_MASK]; /* * If the interrupter/event ring isn't in a sane state, just * give up and report Host Controller Error (HCE). */ // pIntr->erst_idx int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &pIntr->lock, VERR_IGNORED); /* R3 only, no rcBusy. */ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pIntr->lock, rcLock); /* eventually, most call chains ignore the status. */ if (xhciR3IsEvtRingFull(pDevIns, pThis, pIntr)) { LogRel(("xHCI: Event ring full!\n")); } /* Set the TRB's Cycle bit as appropriate. */ pEvent->gen.cycle = pIntr->evtr_pcs; /* Write out the TRB and advance the EREP. */ /// @todo This either has to be atomic from the guest's POV or the cycle bit needs to be toggled last!! PDMDevHlpPCIPhysWriteMeta(pDevIns, pIntr->erep, pEvent, sizeof(*pEvent)); pIntr->erep += sizeof(*pEvent); --pIntr->trb_count; /* Advance to the next ERST entry if necessary. */ if (pIntr->trb_count == 0) { ++pIntr->erst_idx; /* If necessary, roll over back to the beginning. */ if (pIntr->erst_idx == pIntr->erstsz) { pIntr->erst_idx = 0; pIntr->evtr_pcs = !pIntr->evtr_pcs; } xhciFetchErstEntry(pDevIns, pThis, pIntr); } /* Set the IPE bit unless interrupts are blocked. */ if (!fBlockInt) xhciR3SetIntrPending(pDevIns, pThis, pIntr); PDMDevHlpCritSectLeave(pDevIns, &pIntr->lock); } else { STAM_COUNTER_INC(&pThis->StatEventsDropped); Log(("Event dropped because HC is not running.\n")); } return rc; } /** * Post a port change TRB to an Event Ring. */ static int xhciR3GenPortChgEvent(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uPort) { XHCI_EVENT_TRB ed; /* Event Descriptor */ LogFlowFunc(("Port ID: %u\n", uPort)); /* * Devices can be "physically" attached/detached regardless of whether * the HC is running or not, but the port status change events can only * be generated when R/S is set; xhciR3WriteEvent() takes care of that. */ RT_ZERO(ed); ed.psce.cc = XHCI_TCC_SUCCESS; ed.psce.port_id = uPort; ed.psce.type = XHCI_TRB_PORT_SC; return xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false); } /** * Post a command completion TRB to an Event Ring. */ static int xhciR3PostCmdCompletion(PPDMDEVINS pDevIns, PXHCI pThis, unsigned cc, unsigned uSlotID) { XHCI_EVENT_TRB ed; /* Event Descriptor */ LogFlowFunc(("Cmd @ %RGp, Completion Code: %u (%s), Slot ID: %u\n", (RTGCPHYS)pThis->cmdr_dqp, cc, cc < RT_ELEMENTS(g_apszCmplCodes) ? g_apszCmplCodes[cc] : "WHAT?!!", uSlotID)); /* The Command Ring dequeue pointer still holds the address of the current * command TRB. It is written to the completion event TRB as the command * TRB pointer. */ RT_ZERO(ed); ed.cce.trb_ptr = pThis->cmdr_dqp; ed.cce.cc = cc; ed.cce.type = XHCI_TRB_CMD_CMPL; ed.cce.slot_id = uSlotID; return xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false); } /** * Post a transfer event TRB to an Event Ring. */ static int xhciR3PostXferEvent(PPDMDEVINS pDevIns, PXHCI pThis, unsigned uIntTgt, unsigned uXferLen, unsigned cc, unsigned uSlotID, unsigned uEpDCI, uint64_t uEvtData, bool fBlockInt, bool fEvent) { XHCI_EVENT_TRB ed; /* Event Descriptor */ LogFlowFunc(("Xfer @ %RGp, Completion Code: %u (%s), Slot ID=%u DCI=%u Target=%u EvtData=%RX64 XfrLen=%u BEI=%u ED=%u\n", (RTGCPHYS)pThis->cmdr_dqp, cc, cc < RT_ELEMENTS(g_apszCmplCodes) ? g_apszCmplCodes[cc] : "WHAT?!!", uSlotID, uEpDCI, uIntTgt, uEvtData, uXferLen, fBlockInt, fEvent)); /* A transfer event may be either generated by TRB completion (in case * fEvent=false) or by a special transfer event TRB (fEvent=true). In * either case, interrupts may be suppressed. */ RT_ZERO(ed); ed.te.trb_ptr = uEvtData; ed.te.xfr_len = uXferLen; ed.te.cc = cc; ed.te.ed = fEvent; ed.te.type = XHCI_TRB_XFER; ed.te.ep_id = uEpDCI; ed.te.slot_id = uSlotID; return xhciR3WriteEvent(pDevIns, pThis, &ed, uIntTgt, fBlockInt); /* Sets the cycle bit, too. */ } static int xhciR3FindRhDevBySlot(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, PXHCIROOTHUBR3 *ppRh, uint32_t *puPort) { XHCI_SLOT_CTX slot_ctx; PXHCIROOTHUBR3 pRh; unsigned iPort; int rc; /// @todo Do any of these need to be release assertions? Assert(uSlotID <= RT_ELEMENTS(pThis->aSlotState)); Assert(pThis->aSlotState[ID_TO_IDX(uSlotID)] > XHCI_DEVSLOT_EMPTY); /* Load the slot context. */ xhciR3FetchDevCtx(pDevIns, pThis, uSlotID, 0, &slot_ctx); /* The port ID is stored in the slot context. */ iPort = ID_TO_IDX(slot_ctx.rh_port); if (iPort < XHCI_NDP_CFG(pThis)) { /* Find the corresponding root hub. */ pRh = GET_PORT_PRH(pThisCC, iPort); Assert(pRh); /* And the device; if the device was ripped out fAttached will be false. */ if (pThisCC->aPorts[iPort].fAttached) { /* Provide the information the caller asked for. */ if (ppRh) *ppRh = pRh; if (puPort) *puPort = GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort); rc = VINF_SUCCESS; } else { LogFunc(("No device attached (port index %u)!\n", iPort)); rc = VERR_VUSB_DEVICE_NOT_ATTACHED; } } else { LogFunc(("Port out of range (index %u)!\n", iPort)); rc = VERR_INVALID_PARAMETER; } return rc; } static void xhciR3EndlessTrbError(PPDMDEVINS pDevIns, PXHCI pThis) { /* Clear the R/S bit and indicate controller error. */ ASMAtomicAndU32(&pThis->cmd, ~XHCI_CMD_RS); ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCE); /* Ensure that XHCI_STATUS_HCH gets set by the worker thread. */ xhciKickWorker(pDevIns, pThis, XHCI_JOB_XFER_DONE, 0); LogRelMax(10, ("xHCI: Attempted to process too many TRBs, stopping xHC!\n")); } /** * TRB walker callback prototype. * * @returns true if walking should continue. * @returns false if walking should be terminated. * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param pXferTRB Pointer to the transfer TRB to handle. * @param GCPhysXfrTRB Physical address of the TRB. * @param pvContext User-defined walk context. * @remarks We don't need to use DECLCALLBACKPTR here, since all users are in * the same source file, but having the functions marked with * DECLCALLBACK helps readability. */ typedef DECLCALLBACKPTR(bool, PFNTRBWALKCB,(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext)); /** * Walk a chain of TRBs which comprise a single TD. * * This is something we need to do potentially more than once when submitting a * URB and then often again when completing the URB. Note that the walker does * not update the endpoint state (TRDP/TREP/DCS) so that it can be re-run * multiple times. * * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param uTRP Initial TR pointer and DCS. * @param pfnCbk Callback routine. * @param pvContext User-defined walk context. * @param pTREP Pointer to storage for final TR Enqueue Pointer/DCS. */ static int xhciR3WalkXferTrbChain(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uTRP, PFNTRBWALKCB pfnCbk, void *pvContext, uint64_t *pTREP) { RTGCPHYS GCPhysXfrTRB; uint64_t uTREP; XHCI_XFER_TRB XferTRB; bool fContinue = true; bool dcs; int rc = VINF_SUCCESS; unsigned cTrbs = 0; AssertPtr(pvContext); AssertPtr(pTREP); Assert(uTRP); /* Find the transfer TRB address and the DCS. */ GCPhysXfrTRB = uTRP & XHCI_TRDP_ADDR_MASK; dcs = !!(uTRP & XHCI_TRDP_DCS_MASK); /* MSC upgrades bool to signed something when comparing with a uint8_t:1. */ LogFlowFunc(("Walking Transfer Ring, TREP:%RGp DCS=%u\n", GCPhysXfrTRB, dcs)); do { /* Fetch the transfer TRB. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &XferTRB, sizeof(XferTRB)); if ((bool)XferTRB.gen.cycle == dcs) { Log2(("Walking TRB@%RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, XferTRB.gen.type, XferTRB.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[XferTRB.gen.type] : "WHAT?!!", XferTRB.gen.xfr_len, XferTRB.gen.ent, XferTRB.gen.isp, XferTRB.gen.ns, XferTRB.gen.ch, XferTRB.gen.ioc, XferTRB.gen.idt)); /* DCS matches, the TRB is ours to process. */ switch (XferTRB.gen.type) { case XHCI_TRB_LINK: Log2(("Link intra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", XferTRB.link.rseg_ptr, XferTRB.link.ioc, XferTRB.link.toggle, XferTRB.link.chain)); Assert(XferTRB.link.chain); /* Do not update the actual TRDP/TREP and DCS yet, just the temporary images. */ GCPhysXfrTRB = XferTRB.link.rseg_ptr & XHCI_TRDP_ADDR_MASK; if (XferTRB.link.toggle) dcs = !dcs; Assert(!XferTRB.link.ioc); /// @todo Needs to be reported. break; case XHCI_TRB_NORMAL: case XHCI_TRB_ISOCH: case XHCI_TRB_SETUP_STG: case XHCI_TRB_DATA_STG: case XHCI_TRB_STATUS_STG: case XHCI_TRB_EVT_DATA: fContinue = pfnCbk(pDevIns, pThis, &XferTRB, GCPhysXfrTRB, pvContext); GCPhysXfrTRB += sizeof(XferTRB); break; default: /* NB: No-op TRBs are not allowed within TDs (4.11.7). */ Log(("Bad TRB type %u found within TD!!\n", XferTRB.gen.type)); fContinue = false; /// @todo Stop EP etc.? } } else { /* We don't have a complete TD. Interesting times. */ Log2(("DCS mismatch, no more TRBs available.\n")); fContinue = false; rc = VERR_TRY_AGAIN; } /* Kill the xHC if the TRB list has no end in sight. */ if (++cTrbs > XHCI_MAX_NUM_TRBS) { /* Stop the xHC with an error. */ xhciR3EndlessTrbError(pDevIns, pThis); /* Get out of the loop. */ fContinue = false; rc = VERR_NOT_SUPPORTED; /* No good error code really... */ } } while (fContinue); /* Inform caller of the new TR Enqueue Pointer/DCS (not necessarily changed). */ Assert(!(GCPhysXfrTRB & ~XHCI_TRDP_ADDR_MASK)); uTREP = GCPhysXfrTRB | (unsigned)dcs; Log2(("Final TRP after walk: %RGp\n", uTREP)); *pTREP = uTREP; return rc; } /** Context for probing TD size. */ typedef struct { uint32_t uXferLen; uint32_t cTRB; uint32_t uXfrLenLastED; uint32_t cTRBLastED; } XHCI_CTX_XFER_PROBE; /** Context for submitting 'out' TDs. */ typedef struct { PVUSBURB pUrb; uint32_t uXferPos; unsigned cTRB; } XHCI_CTX_XFER_SUBMIT; /** Context for completing TDs. */ typedef struct { PVUSBURB pUrb; uint32_t uXferPos; uint32_t uXferLeft; unsigned cTRB; uint32_t uEDTLA : 24; uint32_t uLastCC : 8; uint8_t uSlotID; uint8_t uEpDCI; bool fMaxCount; } XHCI_CTX_XFER_COMPLETE; /** Context for building isochronous URBs. */ typedef struct { PVUSBURB pUrb; unsigned iPkt; uint32_t offCur; uint64_t uInitTREP; bool fSubmitFailed; } XHCI_CTX_ISOCH; /** * @callback_method_impl{PFNTRBWALKCB, * Probe a TD and figure out how big it is so that a URB can be allocated to back it.} */ static DECLCALLBACK(bool) xhciR3WalkDataTRBsProbe(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext) { RT_NOREF(pDevIns, pThis, GCPhysXfrTRB); XHCI_CTX_XFER_PROBE *pCtx = (XHCI_CTX_XFER_PROBE *)pvContext; pCtx->cTRB++; /* Only consider TRBs which transfer data. */ switch (pXferTRB->gen.type) { case XHCI_TRB_NORMAL: case XHCI_TRB_ISOCH: case XHCI_TRB_SETUP_STG: case XHCI_TRB_DATA_STG: case XHCI_TRB_STATUS_STG: pCtx->uXferLen += pXferTRB->norm.xfr_len; if (RT_UNLIKELY(pCtx->uXferLen > XHCI_MAX_TD_SIZE)) { /* NB: We let the TD size get a bit past the max so that we don't lose anything, * but the EDTLA will wrap around. */ LogRelMax(10, ("xHCI: TD size (%u) too big, not continuing!\n", pCtx->uXferLen)); return false; } break; case XHCI_TRB_EVT_DATA: /* Remember where the last seen Event Data TRB was. */ pCtx->cTRBLastED = pCtx->cTRB; pCtx->uXfrLenLastED = pCtx->uXferLen; break; default: /* Could be a link TRB, too. */ break; } return pXferTRB->gen.ch; } /** * @callback_method_impl{PFNTRBWALKCB, * Copy data from a TD (TRB chain) into the corresponding TD. OUT direction only.} */ static DECLCALLBACK(bool) xhciR3WalkDataTRBsSubmit(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext) { RT_NOREF(pThis, GCPhysXfrTRB); XHCI_CTX_XFER_SUBMIT *pCtx = (XHCI_CTX_XFER_SUBMIT *)pvContext; uint32_t uXferLen = pXferTRB->norm.xfr_len; /* Only consider TRBs which transfer data. */ switch (pXferTRB->gen.type) { case XHCI_TRB_NORMAL: case XHCI_TRB_ISOCH: case XHCI_TRB_SETUP_STG: case XHCI_TRB_DATA_STG: case XHCI_TRB_STATUS_STG: /* NB: Transfer length may be zero! */ /// @todo explain/verify abuse of various TRB types here (data stage mapped to normal etc.). if (uXferLen) { /* Sanity check for broken guests (TRBs may have changed since probing). */ if (pCtx->uXferPos + uXferLen <= pCtx->pUrb->cbData) { /* Data might be immediate or elsewhere in memory. */ if (pXferTRB->norm.idt) { /* If an immediate data TRB claims there's more than 8 bytes, we have a problem. */ if (uXferLen > 8) { LogRelMax(10, ("xHCI: Immediate data TRB length %u bytes, ignoring!\n", uXferLen)); return false; /* Stop walking the chain immediately. */ } Assert(uXferLen >= 1 && uXferLen <= 8); Log2(("Copying %u bytes to URB offset %u (immediate data)\n", uXferLen, pCtx->uXferPos)); memcpy(pCtx->pUrb->abData + pCtx->uXferPos, pXferTRB, uXferLen); } else { PDMDevHlpPCIPhysReadUser(pDevIns, pXferTRB->norm.data_ptr, pCtx->pUrb->abData + pCtx->uXferPos, uXferLen); Log2(("Copying %u bytes to URB offset %u (from %RGp)\n", uXferLen, pCtx->uXferPos, pXferTRB->norm.data_ptr)); } pCtx->uXferPos += uXferLen; } else { LogRelMax(10, ("xHCI: Attempted to submit too much data, ignoring!\n")); return false; /* Stop walking the chain immediately. */ } } break; default: /* Could be an event or status stage TRB, too. */ break; } pCtx->cTRB++; /// @todo Maybe have to make certain that the number of probed TRBs matches? Potentially /// by the time TRBs get submitted, there might be more of them available if the TD was /// initially not fully written by HCD. return pXferTRB->gen.ch; } /** * Perform URB completion processing. * * Figure out how much data was really transferred, post events if required, and * for IN transfers, copy data from the URB. * * @callback_method_impl{PFNTRBWALKCB} */ static DECLCALLBACK(bool) xhciR3WalkDataTRBsComplete(PPDMDEVINS pDevIns, PXHCI pThis, const XHCI_XFER_TRB *pXferTRB, RTGCPHYS GCPhysXfrTRB, void *pvContext) { XHCI_CTX_XFER_COMPLETE *pCtx = (XHCI_CTX_XFER_COMPLETE *)pvContext; int rc; unsigned uXferLen; unsigned uResidue; uint8_t cc; bool fKeepGoing = true; switch (pXferTRB->gen.type) { case XHCI_TRB_NORMAL: case XHCI_TRB_ISOCH: case XHCI_TRB_SETUP_STG: case XHCI_TRB_DATA_STG: /// @todo document abuse; esp. check BEI bit case XHCI_TRB_STATUS_STG: /* Assume successful transfer. */ uXferLen = pXferTRB->norm.xfr_len; cc = XHCI_TCC_SUCCESS; /* If there was a short packet, handle it accordingly. */ if (pCtx->uXferLeft < uXferLen) { /* The completion code is set regardless of IOC/ISP. It may be * reported later via an Event Data TRB (4.10.1.1) */ uXferLen = pCtx->uXferLeft; cc = XHCI_TCC_SHORT_PKT; } if (pCtx->pUrb->enmDir == VUSBDIRECTION_IN) { Assert(!pXferTRB->norm.idt); /* NB: Transfer length may be zero! */ if (uXferLen) { if (uXferLen <= pCtx->uXferLeft) { Log2(("Writing %u bytes to %RGp from URB offset %u (TRB@%RGp)\n", uXferLen, pXferTRB->norm.data_ptr, pCtx->uXferPos, GCPhysXfrTRB)); PDMDevHlpPCIPhysWriteUser(pDevIns, pXferTRB->norm.data_ptr, pCtx->pUrb->abData + pCtx->uXferPos, uXferLen); } else { LogRelMax(10, ("xHCI: Attempted to read too much data, ignoring!\n")); } } } /* Update position within TD. */ pCtx->uXferLeft -= uXferLen; pCtx->uXferPos += uXferLen; Log2(("Current uXferLeft=%u, uXferPos=%u (length was %u)\n", pCtx->uXferLeft, pCtx->uXferPos, uXferLen)); /* Keep track of the EDTLA and last completion status. */ pCtx->uEDTLA += uXferLen; /* May wrap around! */ pCtx->uLastCC = cc; /* Report events as required. */ uResidue = pXferTRB->norm.xfr_len - uXferLen; if (pXferTRB->norm.ioc || (pXferTRB->norm.isp && uResidue)) { rc = xhciR3PostXferEvent(pDevIns, pThis, pXferTRB->norm.int_tgt, uResidue, cc, pCtx->uSlotID, pCtx->uEpDCI, GCPhysXfrTRB, pXferTRB->norm.bei, false); } break; case XHCI_TRB_EVT_DATA: if (pXferTRB->evtd.ioc) { rc = xhciR3PostXferEvent(pDevIns, pThis, pXferTRB->evtd.int_tgt, pCtx->uEDTLA, pCtx->uLastCC, pCtx->uSlotID, pCtx->uEpDCI, pXferTRB->evtd.evt_data, pXferTRB->evtd.bei, true); } /* Clear the EDTLA. */ pCtx->uEDTLA = 0; break; default: AssertMsgFailed(("%#x\n", pXferTRB->gen.type)); break; } pCtx->cTRB--; /* For TD fragments, enforce the maximum count, but only as long as the transfer * is successful. In case of error we have to complete the entire TD! */ if (!pCtx->cTRB && pCtx->fMaxCount && pCtx->uLastCC == XHCI_TCC_SUCCESS) { Log2(("Stopping at the end of TD Fragment.\n")); fKeepGoing = false; } /* NB: We currently do not enforce that the number of TRBs can't change between * submission and completion. If we do, we'll have to store it somewhere for * isochronous URBs. */ return pXferTRB->gen.ch && fKeepGoing; } /** * Process (consume) non-data TRBs on a transfer ring. This function * completes TRBs which do not have any URB associated with them. Only * used with running endpoints. Usable regardless of whether there are * in-flight TRBs or not. Returns the next TRB and its address to the * caller. May modify the endpoint context! * * @param pDevIns The device instance. * @param pThis The xHCI device state. * @param uSlotID The slot corresponding to this USB device. * @param uEpDCI The DCI of this endpoint. * @param pEpCtx Endpoint context. May be modified. * @param pXfer Storage for returning the next TRB to caller. * @param pGCPhys Storage for returning the physical address of TRB. */ static int xhciR3ConsumeNonXferTRBs(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uEpDCI, XHCI_EP_CTX *pEpCtx, XHCI_XFER_TRB *pXfer, RTGCPHYS *pGCPhys) { XHCI_XFER_TRB xfer; RTGCPHYS GCPhysXfrTRB = 0; bool dcs; bool fInFlight; bool fContinue = true; int rc; unsigned cTrbs = 0; LogFlowFunc(("Slot ID: %u, EP DCI %u\n", uSlotID, uEpDCI)); Assert(uSlotID > 0); Assert(uSlotID <= XHCI_NDS); Assert(pEpCtx->ep_state == XHCI_EPST_RUNNING); do { /* Find the transfer TRB address. */ GCPhysXfrTRB = pEpCtx->trdp & XHCI_TRDP_ADDR_MASK; dcs = !!(pEpCtx->trdp & XHCI_TRDP_DCS_MASK); /* Determine whether there are any in-flight TRBs or not. This affects TREP * processing -- when nothing is in flight, we have to move both TREP and TRDP; * otherwise only the TRDP must be updated. */ fInFlight = pEpCtx->trep != pEpCtx->trdp; LogFlowFunc(("Skipping non-data TRBs, TREP:%RGp, TRDP:%RGp, in-flight: %RTbool\n", pEpCtx->trep, pEpCtx->trdp, fInFlight)); /* Fetch the transfer TRB. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &xfer, sizeof(xfer)); /* Make sure the Cycle State matches. */ if ((bool)xfer.gen.cycle == dcs) { Log2(("TRB @ %RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, xfer.gen.type, xfer.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[xfer.gen.type] : "WHAT?!!", xfer.gen.xfr_len, xfer.gen.ent, xfer.gen.isp, xfer.gen.ns, xfer.gen.ch, xfer.gen.ioc, xfer.gen.idt)); switch (xfer.gen.type) { case XHCI_TRB_LINK: Log2(("Link extra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", xfer.link.rseg_ptr, xfer.link.ioc, xfer.link.toggle, xfer.link.chain)); Assert(!xfer.link.chain); /* Set new TRDP but leave DCS bit alone... */ pEpCtx->trdp = (xfer.link.rseg_ptr & XHCI_TRDP_ADDR_MASK) | (pEpCtx->trdp & XHCI_TRDP_DCS_MASK); /* ...and flip the DCS bit if required. Then update the TREP. */ if (xfer.link.toggle) pEpCtx->trdp = (pEpCtx->trdp & ~XHCI_TRDP_DCS_MASK) | (pEpCtx->trdp ^ XHCI_TRDP_DCS_MASK); if (!fInFlight) pEpCtx->trep = pEpCtx->trdp; if (xfer.link.ioc) rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.link.int_tgt, 0, XHCI_TCC_SUCCESS, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); break; case XHCI_TRB_NOOP_XFER: Log2(("No op xfer: IOC=%u CH=%u ENT=%u\n", xfer.nop.ioc, xfer.nop.ch, xfer.nop.ent)); /* A no-op transfer TRB must not be part of a chain. See 4.11.7. */ Assert(!xfer.link.chain); /* Update enqueue/dequeue pointers. */ pEpCtx->trdp += sizeof(XHCI_XFER_TRB); if (!fInFlight) pEpCtx->trep += sizeof(XHCI_XFER_TRB); if (xfer.nop.ioc) rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.nop.int_tgt, 0, XHCI_TCC_SUCCESS, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); break; default: fContinue = false; break; } } else { LogFunc(("Transfer Ring empty\n")); fContinue = false; } /* Kill the xHC if the TRB list has no end in sight. */ /* NB: The limit here could perhaps be much lower because a sequence of Link * and No-op TRBs with no real work to be done would be highly suspect. */ if (++cTrbs > XHCI_MAX_NUM_TRBS) { /* Stop the xHC with an error. */ xhciR3EndlessTrbError(pDevIns, pThis); /* Get out of the loop. */ fContinue = false; rc = VERR_NOT_SUPPORTED; /* No good error code really... */ } } while (fContinue); /* The caller will need the next TRB. Hand it over. */ Assert(GCPhysXfrTRB); *pGCPhys = GCPhysXfrTRB; *pXfer = xfer; LogFlowFunc(("Final TREP:%RGp, TRDP:%RGp GCPhysXfrTRB:%RGp\n", pEpCtx->trep, pEpCtx->trdp, GCPhysXfrTRB)); return VINF_SUCCESS; } /** * Transfer completion callback routine. * * VUSB will call this when a transfer have been completed * in a one or another way. * * @param pInterface Pointer to XHCI::ROOTHUB::IRhPort. * @param pUrb Pointer to the URB in question. */ static DECLCALLBACK(void) xhciR3RhXferCompletion(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PPDMDEVINS pDevIns = pThisCC->pDevIns; PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); XHCI_SLOT_CTX slot_ctx; XHCI_EP_CTX ep_ctx; XHCI_XFER_TRB xfer; RTGCPHYS GCPhysXfrTRB; int rc; unsigned uResidue = 0; uint8_t uSlotID = pUrb->pHci->uSlotID; uint8_t cc = XHCI_TCC_SUCCESS; uint8_t uEpDCI; /* Check for URBs completed synchronously as part of xHCI command execution. * The URB will have zero cTRB as it's not associated with a TD. */ if (!pUrb->pHci->cTRB) { LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d cbData=%u status=%u\n", pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB, pUrb->cbData, pUrb->enmStatus)); LogFlow(("%s: xhciR3RhXferCompletion: Completing xHCI-generated request\n", pUrb->pszDesc)); return; } /* If the xHC isn't running, just drop the URB right here. */ if (pThis->status & XHCI_STATUS_HCH) { LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d cbData=%u status=%u\n", pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB, pUrb->cbData, pUrb->enmStatus)); LogFlow(("%s: xhciR3RhXferCompletion: xHC halted, skipping URB completion\n", pUrb->pszDesc)); return; } #ifdef XHCI_ERROR_INJECTION if (pThis->fDropUrb) { LogFlow(("%s: xhciR3RhXferCompletion: Error injection, dropping URB!\n", pUrb->pszDesc)); pThis->fDropUrb = false; return; } #endif RTCritSectEnter(&pThisCC->CritSectThrd); /* Convert USB endpoint address to xHCI format. */ if (pUrb->EndPt) uEpDCI = pUrb->EndPt * 2 + (pUrb->enmDir == VUSBDIRECTION_IN ? 1 : 0); else uEpDCI = 1; /* EP 0 */ LogFlow(("%s: xhciR3RhXferCompletion: uSlotID=%u EP=%u cTRB=%d\n", pUrb->pszDesc, uSlotID, pUrb->EndPt, pUrb->pHci->cTRB)); LogFlow(("%s: xhciR3RhXferCompletion: EP DCI=%u, cbData=%u status=%u\n", pUrb->pszDesc, uEpDCI, pUrb->cbData, pUrb->enmStatus)); /* Load the slot/endpoint contexts from guest memory. */ xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uEpDCI, &slot_ctx, &ep_ctx); /* If the EP is disabled, we don't own it so we can't complete the URB. * Leave this EP alone and drop the URB. */ if (ep_ctx.ep_state != XHCI_EPST_RUNNING) { Log(("EP DCI %u not running (state %u), skipping URB completion\n", uEpDCI, ep_ctx.ep_state)); RTCritSectLeave(&pThisCC->CritSectThrd); return; } /* Now complete any non-transfer TRBs that might be on the transfer ring before * the TRB(s) corresponding to this URB. Preloads the TRB as a side effect. * Endpoint state now must be written back in case it was modified! */ xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx, &xfer, &GCPhysXfrTRB); /* Deal with failures which halt the EP first. */ if (RT_UNLIKELY(pUrb->enmStatus != VUSBSTATUS_OK)) { switch(pUrb->enmStatus) { case VUSBSTATUS_STALL: /* Halt the endpoint and inform the HCD. * NB: The TRDP is NOT advanced in case of error. */ ep_ctx.ep_state = XHCI_EPST_HALTED; cc = XHCI_TCC_STALL; rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); break; case VUSBSTATUS_DNR: /* Halt the endpoint and inform the HCD. * NB: The TRDP is NOT advanced in case of error. */ ep_ctx.ep_state = XHCI_EPST_HALTED; cc = XHCI_TCC_USB_XACT_ERR; rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); break; case VUSBSTATUS_CRC: /// @todo Separate status for canceling?! ep_ctx.ep_state = XHCI_EPST_HALTED; cc = XHCI_TCC_USB_XACT_ERR; rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); /* NB: The TRDP is *not* advanced and TREP is reset. */ ep_ctx.trep = ep_ctx.trdp; break; case VUSBSTATUS_DATA_OVERRUN: case VUSBSTATUS_DATA_UNDERRUN: /* Halt the endpoint and inform the HCD. * NB: The TRDP is NOT advanced in case of error. */ ep_ctx.ep_state = XHCI_EPST_HALTED; cc = XHCI_TCC_DATA_BUF_ERR; rc = xhciR3PostXferEvent(pDevIns, pThis, xfer.gen.int_tgt, uResidue, cc, uSlotID, uEpDCI, GCPhysXfrTRB, false, false); break; default: AssertMsgFailed(("Unexpected URB status %u\n", pUrb->enmStatus)); } if (pUrb->enmType == VUSBXFERTYPE_ISOC) STAM_COUNTER_INC(&pThis->StatErrorIsocUrbs); } else if (xfer.gen.type == XHCI_TRB_NORMAL) { XHCI_CTX_XFER_COMPLETE ctxComplete; uint64_t uTRDP; ctxComplete.pUrb = pUrb; ctxComplete.uXferPos = 0; ctxComplete.uXferLeft = pUrb->cbData; ctxComplete.cTRB = pUrb->pHci->cTRB; ctxComplete.uSlotID = uSlotID; ctxComplete.uEpDCI = uEpDCI; ctxComplete.uEDTLA = 0; // Always zero at the beginning of a new TD. ctxComplete.uLastCC = cc; ctxComplete.fMaxCount = ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT; xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP); ep_ctx.last_cc = ctxComplete.uLastCC; ep_ctx.trdp = uTRDP; if (ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT) ep_ctx.ifc -= XHCI_NO_QUEUING_IN_FLIGHT; /* TD fragment done, allow further queuing. */ else ep_ctx.ifc--; /* TD done, decrement in-flight counter. */ } else if (xfer.gen.type == XHCI_TRB_ISOCH) { XHCI_CTX_XFER_COMPLETE ctxComplete; uint64_t uTRDP; unsigned iPkt; ctxComplete.pUrb = pUrb; ctxComplete.uSlotID = uSlotID; ctxComplete.uEpDCI = uEpDCI; for (iPkt = 0; iPkt < pUrb->cIsocPkts; ++iPkt) { ctxComplete.uXferPos = pUrb->aIsocPkts[iPkt].off; ctxComplete.uXferLeft = pUrb->aIsocPkts[iPkt].cb; ctxComplete.cTRB = pUrb->pHci->cTRB; ctxComplete.uEDTLA = 0; // Zero at TD start. ctxComplete.uLastCC = cc; ctxComplete.fMaxCount = false; if (pUrb->aIsocPkts[iPkt].enmStatus != VUSBSTATUS_OK) STAM_COUNTER_INC(&pThis->StatErrorIsocPkts); xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP); ep_ctx.last_cc = ctxComplete.uLastCC; ep_ctx.trdp = uTRDP; xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx, &xfer, &GCPhysXfrTRB); } ep_ctx.ifc--; /* TD done, decrement in-flight counter. */ } else if (xfer.gen.type == XHCI_TRB_SETUP_STG || xfer.gen.type == XHCI_TRB_DATA_STG || xfer.gen.type == XHCI_TRB_STATUS_STG) { XHCI_CTX_XFER_COMPLETE ctxComplete; uint64_t uTRDP; ctxComplete.pUrb = pUrb; ctxComplete.uXferPos = 0; ctxComplete.uXferLeft = pUrb->cbData; ctxComplete.cTRB = pUrb->pHci->cTRB; ctxComplete.uSlotID = uSlotID; ctxComplete.uEpDCI = uEpDCI; ctxComplete.uEDTLA = 0; // Always zero at the beginning of a new TD. ctxComplete.uLastCC = cc; ctxComplete.fMaxCount = ep_ctx.ifc >= XHCI_NO_QUEUING_IN_FLIGHT; xhciR3WalkXferTrbChain(pDevIns, pThis, ep_ctx.trdp, xhciR3WalkDataTRBsComplete, &ctxComplete, &uTRDP); ep_ctx.last_cc = ctxComplete.uLastCC; ep_ctx.trdp = uTRDP; } else { AssertMsgFailed(("Unexpected TRB type %u\n", xfer.gen.type)); Log2(("TRB @ %RGp, type %u unexpected!\n", GCPhysXfrTRB, xfer.gen.type)); /* Advance the TRDP anyway so that the endpoint isn't completely stuck. */ ep_ctx.trdp += sizeof(XHCI_XFER_TRB); } /* Update the endpoint state. */ xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, &ep_ctx); RTCritSectLeave(&pThisCC->CritSectThrd); if (pUrb->enmStatus == VUSBSTATUS_OK) { /* Completion callback usually runs on a separate thread. Let the worker do more. */ Log2(("Ring bell for slot %u, DCI %u\n", uSlotID, uEpDCI)); ASMAtomicOrU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], 1 << uEpDCI); xhciKickWorker(pDevIns, pThis, XHCI_JOB_XFER_DONE, 0); } } /** * Handle transfer errors. * * VUSB calls this when a transfer attempt failed. This function will respond * indicating whether to retry or complete the URB with failure. * * @returns true if the URB should be retired. * @returns false if the URB should be re-tried. * @param pInterface Pointer to XHCI::ROOTHUB::IRhPort. * @param pUrb Pointer to the URB in question. */ static DECLCALLBACK(bool) xhciR3RhXferError(PVUSBIROOTHUBPORT pInterface, PVUSBURB pUrb) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PXHCI pThis = PDMDEVINS_2_DATA(pThisCC->pDevIns, PXHCI); bool fRetire = true; /* If the xHC isn't running, get out of here immediately. */ if (pThis->status & XHCI_STATUS_HCH) { Log(("xHC halted, skipping URB error handling\n")); return fRetire; } RTCritSectEnter(&pThisCC->CritSectThrd); Assert(pUrb->pHci->cTRB); /* xHCI-generated URBs should not fail! */ if (!pUrb->pHci->cTRB) { Log(("%s: Failing xHCI-generated request!\n", pUrb->pszDesc)); } else if (pUrb->enmStatus == VUSBSTATUS_STALL) { /* Don't retry on stall. */ Log2(("%s: xhciR3RhXferError: STALL, giving up.\n", pUrb->pszDesc)); } else if (pUrb->enmStatus == VUSBSTATUS_CRC) { /* Don't retry on CRC errors either. These indicate canceled URBs, among others. */ Log2(("%s: xhciR3RhXferError: CRC, giving up.\n", pUrb->pszDesc)); } else if (pUrb->enmStatus == VUSBSTATUS_DNR) { /* Don't retry on DNR errors. These indicate the device vanished. */ Log2(("%s: xhciR3RhXferError: DNR, giving up.\n", pUrb->pszDesc)); } else if (pUrb->enmStatus == VUSBSTATUS_DATA_OVERRUN) { /* Don't retry on OVERRUN errors. These indicate a fatal error. */ Log2(("%s: xhciR3RhXferError: OVERRUN, giving up.\n", pUrb->pszDesc)); } else if (pUrb->enmStatus == VUSBSTATUS_DATA_UNDERRUN) { /* Don't retry on UNDERRUN errors. These indicate a fatal error. */ Log2(("%s: xhciR3RhXferError: UNDERRUN, giving up.\n", pUrb->pszDesc)); } else { /// @todo AssertMsgFailed(("%#x\n", pUrb->enmStatus)); } RTCritSectLeave(&pThisCC->CritSectThrd); return fRetire; } /** * Queue a TD composed of normal TRBs, event data TRBs, and suchlike. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param pRh Root hub for the device. * @param GCPhysTRB Physical gues address of the TRB. * @param pTrb Pointer to the contents of the first TRB. * @param pEpCtx Pointer to the cached EP context. * @param uSlotID ID of the associated slot context. * @param uAddr The device address. * @param uEpDCI The DCI(!) of the endpoint. */ static int xhciR3QueueDataTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB, XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI) { RT_NOREF(GCPhysTRB); XHCI_CTX_XFER_PROBE ctxProbe; XHCI_CTX_XFER_SUBMIT ctxSubmit; uint64_t uTREP; bool fFragOnly = false; int rc; VUSBXFERTYPE enmType; VUSBDIRECTION enmDir; /* Discover how big this TD is. */ RT_ZERO(ctxProbe); rc = xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP); if (RT_SUCCESS(rc)) LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP)); else { LogFlowFunc(("Probing failed after %u TRBs, %u bytes total (last ED after %u TRBs and %u bytes), TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, ctxProbe.cTRBLastED, ctxProbe.uXfrLenLastED, uTREP)); if (rc == VERR_TRY_AGAIN && pTrb->gen.type == XHCI_TRB_NORMAL && ctxProbe.cTRBLastED) { /* The TD is incomplete, but we have at least one TD fragment. We can create a URB for * what we have but we can't safely queue any more because if any error occurs, the * TD needs to fail as a whole. * OS X Mavericks and Yosemite tend to trigger this case when reading from USB 3.0 * MSDs (transfers up to 1MB). */ fFragOnly = true; /* Because we currently do not maintain the EDTLA across URBs, we have to only submit * TD fragments up to where we last saw an Event Data TRB. If there was no Event Data * TRB, we'll just try waiting a bit longer for the TD to be complete or an Event Data * TRB to show up. The guest is extremely likely to do one or the other, since otherwise * it has no way to tell when the transfer completed. */ ctxProbe.cTRB = ctxProbe.cTRBLastED; ctxProbe.uXferLen = ctxProbe.uXfrLenLastED; } else return rc; } /* Determine the transfer kind based on endpoint type. */ switch (pEpCtx->ep_type) { case XHCI_EPTYPE_BULK_IN: case XHCI_EPTYPE_BULK_OUT: enmType = VUSBXFERTYPE_BULK; break; case XHCI_EPTYPE_INTR_IN: case XHCI_EPTYPE_INTR_OUT: enmType = VUSBXFERTYPE_INTR; break; case XHCI_EPTYPE_CONTROL: enmType = VUSBXFERTYPE_CTRL; break; case XHCI_EPTYPE_ISOCH_IN: case XHCI_EPTYPE_ISOCH_OUT: default: enmType = VUSBXFERTYPE_INVALID; AssertMsgFailed(("%#x\n", pEpCtx->ep_type)); } /* Determine the direction based on endpoint type. */ switch (pEpCtx->ep_type) { case XHCI_EPTYPE_BULK_IN: case XHCI_EPTYPE_INTR_IN: enmDir = VUSBDIRECTION_IN; break; case XHCI_EPTYPE_BULK_OUT: case XHCI_EPTYPE_INTR_OUT: enmDir = VUSBDIRECTION_OUT; break; default: enmDir = VUSBDIRECTION_INVALID; AssertMsgFailed(("%#x\n", pEpCtx->ep_type)); } /* Allocate and initialize a URB. */ PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, enmType, enmDir, ctxProbe.uXferLen, ctxProbe.cTRB, NULL); if (!pUrb) return VERR_OUT_OF_RESOURCES; /// @todo handle error! STAM_COUNTER_ADD(&pThis->StatTRBsPerDtaUrb, ctxProbe.cTRB); /* See 4.5.1 about xHCI vs. USB endpoint addressing. */ Assert(uEpDCI); pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */ pUrb->fShortNotOk = false; /* We detect short packets ourselves. */ pUrb->enmStatus = VUSBSTATUS_OK; /// @todo Cross check that the EP type corresponds to direction. Probably //should check when configuring device? pUrb->pHci->uSlotID = uSlotID; /* For OUT transfers, copy the TD data into the URB. */ if (pUrb->enmDir == VUSBDIRECTION_OUT) { ctxSubmit.pUrb = pUrb; ctxSubmit.uXferPos = 0; ctxSubmit.cTRB = 0; xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP); Assert(ctxProbe.cTRB == ctxSubmit.cTRB); ctxProbe.cTRB = ctxSubmit.cTRB; } /* If only completing a fragment, remember the TRB count and increase * the in-flight count past the limit so we won't queue any more. */ pUrb->pHci->cTRB = ctxProbe.cTRB; if (fFragOnly) /* Bit of a hack -- prevent further queuing. */ pEpCtx->ifc += XHCI_NO_QUEUING_IN_FLIGHT; else /* Increment the in-flight counter before queuing more. */ pEpCtx->ifc++; /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */ pEpCtx->trep = uTREP; xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx); /* * Submit the URB. */ STAM_COUNTER_ADD(&pThis->StatUrbSizeData, pUrb->cbData); Log(("%s: xhciR3QueueDataTD: Addr=%u, EndPt=%u, enmDir=%u cbData=%u\n", pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cbData)); RTCritSectLeave(&pThisCC->CritSectThrd); rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led); RTCritSectEnter(&pThisCC->CritSectThrd); if (RT_SUCCESS(rc)) return VINF_SUCCESS; /* Failure cleanup. Can happen if we're still resetting the device or out of resources, * or the user just ripped out the device. */ /// @todo Mark the EP as halted and inactive and write back the changes. return VERR_OUT_OF_RESOURCES; } /** * Queue an isochronous TD composed of isochronous and normal TRBs, event * data TRBs, and suchlike. This TD may either correspond to a single URB or * form one packet of an isochronous URB. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param pRh Root hub for the device. * @param GCPhysTRB Physical guest address of the TRB. * @param pTrb Pointer to the contents of the first TRB. * @param pEpCtx Pointer to the cached EP context. * @param uSlotID ID of the associated slot context. * @param uAddr The device address. * @param uEpDCI The DCI(!) of the endpoint. * @param pCtxIso Additional isochronous URB context. */ static int xhciR3QueueIsochTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB, XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI, XHCI_CTX_ISOCH *pCtxIso) { RT_NOREF(GCPhysTRB, pTrb); XHCI_CTX_XFER_PROBE ctxProbe; XHCI_CTX_XFER_SUBMIT ctxSubmit; uint64_t uTREP; PVUSBURB pUrb; unsigned cIsoPackets; uint32_t cbPktMax; /* Discover how big this TD is. */ RT_ZERO(ctxProbe); xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP); LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP)); /* See 4.5.1 about xHCI vs. USB endpoint addressing. */ Assert(uEpDCI); /* For isochronous transfers, there's a bit of extra work to do. The interval * is key and determines whether the TD will directly correspond to a URB or * if it will only form part of a larger URB. In any case, one TD equals one * 'packet' of an isochronous URB. */ switch (pEpCtx->interval) { case 0: /* Every 2^0 * 125us, i.e. 8 per frame. */ cIsoPackets = 8; break; case 1: /* Every 2^1 * 125us, i.e. 4 per frame. */ cIsoPackets = 4; break; case 2: /* Every 2^2 * 125us, i.e. 2 per frame. */ cIsoPackets = 2; break; case 3: /* Every 2^3 * 125us, i.e. 1 per frame. */ default:/* Or any larger interval (every n frames).*/ cIsoPackets = 1; break; } /* We do not know exactly how much data might be transferred until we * look at all TDs/packets that constitute the URB. However, we do know * the maximum possible size even without probing any TDs at all. * The actual size is expected to be the same or at most slightly smaller, * hence it makes sense to allocate the URB right away and copy data into * it as we go, rather than doing complicated probing first. * The Max Endpoint Service Interval Time (ESIT) Payload defines the * maximum number of bytes that can be transferred per interval (4.14.2). * Unfortunately Apple was lazy and their driver leaves the Max ESIT * Payload as zero, so we have to do the math ourselves. */ /* Calculate the maximum transfer size per (micro)frame. */ /// @todo This ought to be stored within the URB somewhere. cbPktMax = pEpCtx->max_pkt_sz * (pEpCtx->max_brs_sz + 1) * (pEpCtx->mult + 1); if (!pCtxIso->pUrb) { uint32_t cbUrbMax = cIsoPackets * cbPktMax; /* Validate endpoint type. */ AssertMsg(pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_IN || pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_OUT, ("%#x\n", pEpCtx->ep_type)); /* Allocate and initialize a new URB. */ pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, VUSBXFERTYPE_ISOC, (pEpCtx->ep_type == XHCI_EPTYPE_ISOCH_IN) ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT, cbUrbMax, ctxProbe.cTRB, NULL); if (!pUrb) return VERR_OUT_OF_RESOURCES; /// @todo handle error! STAM_COUNTER_ADD(&pThis->StatTRBsPerIsoUrb, ctxProbe.cTRB); LogFlowFunc(("Allocated URB with %u packets, %u bytes total (ESIT payload %u)\n", cIsoPackets, cbUrbMax, cbPktMax)); pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */ pUrb->fShortNotOk = false; /* We detect short packets ourselves. */ pUrb->enmStatus = VUSBSTATUS_OK; pUrb->cIsocPkts = cIsoPackets; pUrb->pHci->uSlotID = uSlotID; pUrb->pHci->cTRB = ctxProbe.cTRB; /* If TRB says so or if there are multiple packets per interval, don't even * bother with frame counting and schedule everything ASAP. */ if (pTrb->isoc.sia || cIsoPackets != 1) pUrb->uStartFrameDelta = 0; else { uint16_t uFrameDelta; uint32_t uPort; /* Abort the endpoint, i.e. cancel any outstanding URBs. This needs to be done after * writing back the EP state so that the completion callback can operate. */ if (RT_SUCCESS(xhciR3FindRhDevBySlot(pDevIns, pThis, pThisCC, uSlotID, NULL, &uPort))) { uFrameDelta = pRh->pIRhConn->pfnUpdateIsocFrameDelta(pRh->pIRhConn, uPort, uEpDCI / 2, uEpDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT, pTrb->isoc.frm_id, XHCI_FRAME_ID_BITS); pUrb->uStartFrameDelta = uFrameDelta; Log(("%s: Isoch frame delta set to %u\n", pUrb->pszDesc, uFrameDelta)); } else { Log(("%s: Failed to find device for slot! Setting frame delta to zero.\n", pUrb->pszDesc)); pUrb->uStartFrameDelta = 0; } } Log(("%s: Addr=%u, EndPt=%u, enmDir=%u cIsocPkts=%u cbData=%u FrmID=%u Isoch URB created\n", pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cIsocPkts, pUrb->cbData, pTrb->isoc.frm_id)); /* Set up the context for later use. */ pCtxIso->pUrb = pUrb; /* Save the current TREP in case we need to rewind. */ pCtxIso->uInitTREP = pEpCtx->trep; } else { Assert(cIsoPackets > 1); /* Grab the URB we initialized earlier. */ pUrb = pCtxIso->pUrb; } /* Set up the packet corresponding to this TD. */ pUrb->aIsocPkts[pCtxIso->iPkt].cb = RT_MIN(ctxProbe.uXferLen, cbPktMax); pUrb->aIsocPkts[pCtxIso->iPkt].off = pCtxIso->offCur; pUrb->aIsocPkts[pCtxIso->iPkt].enmStatus = VUSBSTATUS_NOT_ACCESSED; /* For OUT transfers, copy the TD data into the URB. */ if (pUrb->enmDir == VUSBDIRECTION_OUT) { ctxSubmit.pUrb = pUrb; ctxSubmit.uXferPos = pCtxIso->offCur; ctxSubmit.cTRB = 0; xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP); Assert(ctxProbe.cTRB == ctxSubmit.cTRB); } /* Done preparing this packet. */ Assert(pCtxIso->iPkt < 8); pCtxIso->iPkt++; pCtxIso->offCur += ctxProbe.uXferLen; Assert(pCtxIso->offCur <= pUrb->cbData); /* Increment the in-flight counter before queuing more. */ if (pCtxIso->iPkt == pUrb->cIsocPkts) pEpCtx->ifc++; /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */ pEpCtx->trep = uTREP; xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx); /* If the URB is complete, submit it. */ if (pCtxIso->iPkt == pUrb->cIsocPkts) { /* Change cbData to reflect how much data should be transferred. This can differ * from how much data was allocated for the URB. */ pUrb->cbData = pCtxIso->offCur; STAM_COUNTER_ADD(&pThis->StatUrbSizeIsoc, pUrb->cbData); Log(("%s: Addr=%u, EndPt=%u, enmDir=%u cIsocPkts=%u cbData=%u Isoch URB being submitted\n", pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cIsocPkts, pUrb->cbData)); RTCritSectLeave(&pThisCC->CritSectThrd); int rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led); RTCritSectEnter(&pThisCC->CritSectThrd); if (RT_FAILURE(rc)) { /* Failure cleanup. Can happen if we're still resetting the device or out of resources, * or the user just ripped out the device. */ pCtxIso->fSubmitFailed = true; /// @todo Mark the EP as halted and inactive and write back the changes. return VERR_OUT_OF_RESOURCES; } /* Clear the isochronous URB context. */ RT_ZERO(*pCtxIso); } return VINF_SUCCESS; } /** * Queue a control TD composed of setup/data/status stage TRBs, event data * TRBs, and suchlike. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param pRh Root hub for the device. * @param GCPhysTRB Physical guest address of th TRB. * @param pTrb Pointer to the contents of the first TRB. * @param pEpCtx Pointer to the cached EP context. * @param uSlotID ID of the associated slot context. * @param uAddr The device address. * @param uEpDCI The DCI(!) of the endpoint. */ static int xhciR3QueueControlTD(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, PXHCIROOTHUBR3 pRh, RTGCPHYS GCPhysTRB, XHCI_XFER_TRB *pTrb, XHCI_EP_CTX *pEpCtx, uint8_t uSlotID, uint8_t uAddr, uint8_t uEpDCI) { RT_NOREF(GCPhysTRB); XHCI_CTX_XFER_PROBE ctxProbe; XHCI_CTX_XFER_SUBMIT ctxSubmit; uint64_t uTREP; int rc; VUSBDIRECTION enmDir; /* Discover how big this TD is. */ RT_ZERO(ctxProbe); rc = xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsProbe, &ctxProbe, &uTREP); if (RT_SUCCESS(rc)) LogFlowFunc(("Probed %u TRBs, %u bytes total, TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, uTREP)); else { LogFlowFunc(("Probing failed after %u TRBs, %u bytes total (last ED after %u TRBs and %u bytes), TREP@%RX64\n", ctxProbe.cTRB, ctxProbe.uXferLen, ctxProbe.cTRBLastED, ctxProbe.uXfrLenLastED, uTREP)); return rc; } /* Determine the transfer direction. */ switch (pTrb->gen.type) { case XHCI_TRB_SETUP_STG: enmDir = VUSBDIRECTION_SETUP; /* For setup TRBs, there is always 8 bytes of immediate data. */ Assert(sizeof(VUSBSETUP) == 8); Assert(ctxProbe.uXferLen == 8); Log2(("bmRequestType:%02X bRequest:%02X wValue:%04X wIndex:%04X wLength:%04X\n", pTrb->setup.bmRequestType, pTrb->setup.bRequest, pTrb->setup.wValue, pTrb->setup.wIndex, pTrb->setup.wLength)); break; case XHCI_TRB_STATUS_STG: enmDir = pTrb->status.dir ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT; break; case XHCI_TRB_DATA_STG: enmDir = pTrb->data.dir ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT; break; default: AssertMsgFailed(("%#x\n", pTrb->gen.type)); /* Can't happen unless caller messed up. */ return VERR_INTERNAL_ERROR; } /* Allocate and initialize a URB. */ PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, uAddr, VUSB_DEVICE_PORT_INVALID, VUSBXFERTYPE_CTRL, enmDir, ctxProbe.uXferLen, ctxProbe.cTRB, NULL); if (!pUrb) return VERR_OUT_OF_RESOURCES; /// @todo handle error! STAM_COUNTER_ADD(&pThis->StatTRBsPerCtlUrb, ctxProbe.cTRB); /* See 4.5.1 about xHCI vs. USB endpoint addressing. */ Assert(uEpDCI); /* This had better be a control endpoint. */ AssertMsg(pEpCtx->ep_type == XHCI_EPTYPE_CONTROL, ("%#x\n", pEpCtx->ep_type)); pUrb->EndPt = uEpDCI / 2; /* DCI = EP * 2 + direction */ pUrb->fShortNotOk = false; /* We detect short packets ourselves. */ pUrb->enmStatus = VUSBSTATUS_OK; pUrb->pHci->uSlotID = uSlotID; /* For OUT/SETUP transfers, copy the TD data into the URB. */ if (pUrb->enmDir == VUSBDIRECTION_OUT || pUrb->enmDir == VUSBDIRECTION_SETUP) { ctxSubmit.pUrb = pUrb; ctxSubmit.uXferPos = 0; ctxSubmit.cTRB = 0; xhciR3WalkXferTrbChain(pDevIns, pThis, pEpCtx->trep, xhciR3WalkDataTRBsSubmit, &ctxSubmit, &uTREP); Assert(ctxProbe.cTRB == ctxSubmit.cTRB); ctxProbe.cTRB = ctxSubmit.cTRB; } pUrb->pHci->cTRB = ctxProbe.cTRB; /* Commit the updated TREP; submitting the URB may already invoke completion callbacks. */ pEpCtx->trep = uTREP; xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uEpDCI, pEpCtx); /* * Submit the URB. */ STAM_COUNTER_ADD(&pThis->StatUrbSizeCtrl, pUrb->cbData); Log(("%s: xhciR3QueueControlTD: Addr=%u, EndPt=%u, enmDir=%u cbData=%u\n", pUrb->pszDesc, pUrb->DstAddress, pUrb->EndPt, pUrb->enmDir, pUrb->cbData)); RTCritSectLeave(&pThisCC->CritSectThrd); rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led); RTCritSectEnter(&pThisCC->CritSectThrd); if (RT_SUCCESS(rc)) return VINF_SUCCESS; /* Failure cleanup. Can happen if we're still resetting the device or out of resources, * or the user just ripped out the device. */ /// @todo Mark the EP as halted and inactive and write back the changes. return VERR_OUT_OF_RESOURCES; } /** * Process a device context (transfer data). * * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param uSlotID Slot/doorbell which had been rung. * @param uDBVal Value written to the doorbell. */ static int xhciR3ProcessDevCtx(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, uint32_t uDBVal) { uint8_t uDBTarget = uDBVal & XHCI_DB_TGT_MASK; XHCI_CTX_ISOCH ctxIsoch = {0}; XHCI_SLOT_CTX slot_ctx; XHCI_EP_CTX ep_ctx; XHCI_XFER_TRB xfer; RTGCPHYS GCPhysXfrTRB; PXHCIROOTHUBR3 pRh; bool dcs; bool fContinue = true; int rc; unsigned cTrbs = 0; LogFlowFunc(("Slot ID: %u, DB target %u, DB stream ID %u\n", uSlotID, uDBTarget, (uDBVal & XHCI_DB_STRMID_MASK) >> XHCI_DB_STRMID_SHIFT)); Assert(uSlotID > 0); Assert(uSlotID <= XHCI_NDS); /// @todo report errors for bogus DB targets Assert(uDBTarget > 0); Assert(uDBTarget < 32); /// @todo Check for aborts and the like? /* Load the slot and endpoint contexts. */ xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uDBTarget, &slot_ctx, &ep_ctx); /// @todo sanity check the context in here? /* Select the root hub corresponding to the port. */ pRh = GET_PORT_PRH(pThisCC, ID_TO_IDX(slot_ctx.rh_port)); /* Stopped endpoints automatically transition to running state. */ if (RT_UNLIKELY(ep_ctx.ep_state == XHCI_EPST_STOPPED)) { Log(("EP DCI %u stopped -> running\n", uDBTarget)); ep_ctx.ep_state = XHCI_EPST_RUNNING; /* Update EP right here. Theoretically could be postponed, but we * must ensure that the EP does get written back even if there is * no other work to do. */ xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx); } /* If the EP isn't running, get outta here. */ if (RT_UNLIKELY(ep_ctx.ep_state != XHCI_EPST_RUNNING)) { Log2(("EP DCI %u not running (state %u), bail!\n", uDBTarget, ep_ctx.ep_state)); return VINF_SUCCESS; } /* Get any non-transfer TRBs out of the way. */ xhciR3ConsumeNonXferTRBs(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx, &xfer, &GCPhysXfrTRB); /// @todo This is inefficient. xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx); do { /* Fetch the contexts again and find the TRB address at enqueue point. */ xhciR3FetchCtxAndEp(pDevIns, pThis, uSlotID, uDBTarget, &slot_ctx, &ep_ctx); GCPhysXfrTRB = ep_ctx.trep & XHCI_TRDP_ADDR_MASK; dcs = !!(ep_ctx.trep & XHCI_TRDP_DCS_MASK); LogFlowFunc(("Processing Transfer Ring, TREP: %RGp\n", GCPhysXfrTRB)); /* Fetch the transfer TRB. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &xfer, sizeof(xfer)); /* Make sure the Cycle State matches. */ if ((bool)xfer.gen.cycle == dcs) { Log2(("TRB @ %RGp, type %u (%s) %u bytes ENT=%u ISP=%u NS=%u CH=%u IOC=%u IDT=%u\n", GCPhysXfrTRB, xfer.gen.type, xfer.gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[xfer.gen.type] : "WHAT?!!", xfer.gen.xfr_len, xfer.gen.ent, xfer.gen.isp, xfer.gen.ns, xfer.gen.ch, xfer.gen.ioc, xfer.gen.idt)); /* If there is an "in-flight" TRDP, check if we need to wait until the transfer completes. */ if ((ep_ctx.trdp & XHCI_TRDP_ADDR_MASK) != GCPhysXfrTRB) { switch (xfer.gen.type) { case XHCI_TRB_ISOCH: if (ep_ctx.ifc >= XHCI_MAX_ISOC_IN_FLIGHT) { Log(("%u isoch URBs in flight, backing off\n", ep_ctx.ifc)); fContinue = false; break; } RT_FALL_THRU(); case XHCI_TRB_LINK: Log2(("TRB OK, continuing @ %RX64\n", GCPhysXfrTRB)); break; case XHCI_TRB_NORMAL: if (XHCI_EP_XTYPE(ep_ctx.ep_type) != XHCI_XFTYPE_BULK) { Log2(("Normal TRB not bulk, not continuing @ %RX64\n", GCPhysXfrTRB)); fContinue = false; break; } if (ep_ctx.ifc >= XHCI_MAX_BULK_IN_FLIGHT) { Log(("%u normal URBs in flight, backing off\n", ep_ctx.ifc)); fContinue = false; break; } Log2(("Bulk TRB OK, continuing @ %RX64\n", GCPhysXfrTRB)); break; case XHCI_TRB_EVT_DATA: case XHCI_TRB_NOOP_XFER: Log2(("TRB not OK, not continuing @ %RX64\n", GCPhysXfrTRB)); fContinue = false; break; default: Log2(("Some other TRB (type %u), not continuing @ %RX64\n", xfer.gen.type, GCPhysXfrTRB)); fContinue = false; break; } } if (!fContinue) break; switch (xfer.gen.type) { case XHCI_TRB_NORMAL: Log(("Normal TRB: Ptr=%RGp IOC=%u CH=%u\n", xfer.norm.data_ptr, xfer.norm.ioc, xfer.norm.ch)); rc = xhciR3QueueDataTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID, slot_ctx.dev_addr, uDBTarget); break; case XHCI_TRB_SETUP_STG: Log(("Setup stage TRB: IOC=%u IDT=%u\n", xfer.setup.ioc, xfer.setup.idt)); rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID, slot_ctx.dev_addr, uDBTarget); break; case XHCI_TRB_DATA_STG: Log(("Data stage TRB: Ptr=%RGp IOC=%u CH=%u DIR=%u\n", xfer.data.data_ptr, xfer.data.ioc, xfer.data.ch, xfer.data.dir)); rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID, slot_ctx.dev_addr, uDBTarget); break; case XHCI_TRB_STATUS_STG: Log(("Status stage TRB: IOC=%u CH=%u DIR=%u\n", xfer.status.ioc, xfer.status.ch, xfer.status.dir)); rc = xhciR3QueueControlTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID, slot_ctx.dev_addr, uDBTarget); break; case XHCI_TRB_ISOCH: Log(("Isoch TRB: Ptr=%RGp IOC=%u CH=%u TLBPC=%u TBC=%u SIA=%u FrmID=%u\n", xfer.isoc.data_ptr, xfer.isoc.ioc, xfer.isoc.ch, xfer.isoc.tlbpc, xfer.isoc.tbc, xfer.isoc.sia, xfer.isoc.frm_id)); rc = xhciR3QueueIsochTD(pDevIns, pThis, pThisCC, pRh, GCPhysXfrTRB, &xfer, &ep_ctx, uSlotID, slot_ctx.dev_addr, uDBTarget, &ctxIsoch); break; case XHCI_TRB_LINK: Log2(("Link extra-TD: Ptr=%RGp IOC=%u TC=%u CH=%u\n", xfer.link.rseg_ptr, xfer.link.ioc, xfer.link.toggle, xfer.link.chain)); Assert(!xfer.link.chain); /* Set new TREP but leave DCS bit alone... */ ep_ctx.trep = (xfer.link.rseg_ptr & XHCI_TRDP_ADDR_MASK) | (ep_ctx.trep & XHCI_TRDP_DCS_MASK); /* ...and flip the DCS bit if required. Then update the TREP. */ if (xfer.link.toggle) ep_ctx.trep = (ep_ctx.trep & ~XHCI_TRDP_DCS_MASK) | (ep_ctx.trep ^ XHCI_TRDP_DCS_MASK); rc = xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx); break; case XHCI_TRB_NOOP_XFER: Log2(("No op xfer: IOC=%u CH=%u ENT=%u\n", xfer.nop.ioc, xfer.nop.ch, xfer.nop.ent)); /* A no-op transfer TRB must not be part of a chain. See 4.11.7. */ Assert(!xfer.link.chain); /* Update enqueue pointer (TRB was not yet completed). */ ep_ctx.trep += sizeof(XHCI_XFER_TRB); rc = xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx); break; default: Log(("Unsupported TRB!!\n")); rc = VERR_NOT_SUPPORTED; break; } /* If queuing failed, stop right here. */ if (RT_FAILURE(rc)) fContinue = false; } else { LogFunc(("Transfer Ring empty\n")); fContinue = false; /* If an isochronous ring is empty, this is an overrun/underrun. At this point * the ring will no longer be scheduled (until the doorbell is rung again) * but it remains in the Running state. This error is only reported if someone * rang the doorbell and there are no TDs available or in-flight. */ if ( (ep_ctx.trep == ep_ctx.trdp) /* Nothing in-flight? */ && (ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN || ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_OUT)) { /* There is no TRB associated with this error; the slot context * determines the interrupter. */ Log(("Isochronous ring %s, TRDP:%RGp\n", ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN ? "overrun" : "underrun", ep_ctx.trdp & XHCI_TRDP_ADDR_MASK)); rc = xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, 0, ep_ctx.ep_type == XHCI_EPTYPE_ISOCH_IN ? XHCI_TCC_RING_OVERRUN : XHCI_TCC_RING_UNDERRUN, uSlotID, uDBTarget, 0, false, false); } } /* Kill the xHC if the TRB list has no end in sight. */ if (++cTrbs > XHCI_MAX_NUM_TRBS) { /* Stop the xHC with an error. */ xhciR3EndlessTrbError(pDevIns, pThis); /* Get out of the loop. */ fContinue = false; rc = VERR_NOT_SUPPORTED; /* No good error code really... */ } } while (fContinue); /* It can unfortunately happen that for endpoints with more than one * transfer per USB frame, there won't be a complete multi-packet URB ready * when we go looking for it. If that happens, we'll "rewind" the TREP and * try again later. Since the URB construction is done under a lock, this * is safe as we won't be accessing the endpoint concurrently. */ if (ctxIsoch.pUrb) { Log(("Unfinished ISOC URB (%u packets out of %u)!\n", ctxIsoch.iPkt, ctxIsoch.pUrb->cIsocPkts)); /* If submitting failed, the URB is already freed. */ if (!ctxIsoch.fSubmitFailed) VUSBIRhFreeUrb(pRh->pIRhConn, ctxIsoch.pUrb); ep_ctx.trep = ctxIsoch.uInitTREP; xhciR3WriteBackEp(pDevIns, pThis, uSlotID, uDBTarget, &ep_ctx); } return VINF_SUCCESS; } /** * A worker routine for Address Device command. Builds a URB containing * a SET_ADDRESS requests and (synchronously) submits it to VUSB, then * follows up with a status stage URB. * * @returns true on success. * @returns false on failure to submit. * @param pThisCC The xHCI device state, ring-3 edition. * @param uSlotID Slot ID to assign address to. * @param uDevAddr New device address. * @param iPort The xHCI root hub port index. */ static bool xhciR3IssueSetAddress(PXHCICC pThisCC, uint8_t uSlotID, uint8_t uDevAddr, unsigned iPort) { PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, iPort); Assert(uSlotID); LogFlowFunc(("Slot %u port idx %u: new address is %u\n", uSlotID, iPort, uDevAddr)); /* For USB3 devices, force the port number. This simulates the fact that USB3 uses directed (unicast) traffic. */ if (!IS_USB3_PORT_IDX_R3(pThisCC, iPort)) iPort = VUSB_DEVICE_PORT_INVALID; else iPort = GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort); /* Allocate and initialize a URB. NB: Zero cTds indicates a URB not submitted by guest. */ PVUSBURB pUrb = VUSBIRhNewUrb(pRh->pIRhConn, 0 /* address */, iPort, VUSBXFERTYPE_CTRL, VUSBDIRECTION_SETUP, sizeof(VUSBSETUP), 0 /* cTds */, NULL); if (!pUrb) return false; pUrb->EndPt = 0; pUrb->fShortNotOk = true; pUrb->enmStatus = VUSBSTATUS_OK; pUrb->pHci->uSlotID = uSlotID; pUrb->pHci->cTRB = 0; /* Build the request. */ PVUSBSETUP pSetup = (PVUSBSETUP)pUrb->abData; pSetup->bmRequestType = VUSB_DIR_TO_DEVICE | VUSB_REQ_STANDARD | VUSB_TO_DEVICE; pSetup->bRequest = VUSB_REQ_SET_ADDRESS; pSetup->wValue = uDevAddr; pSetup->wIndex = 0; pSetup->wLength = 0; /* NB: We assume the address assignment is a synchronous operation. */ /* Submit the setup URB. */ Log(("%s: xhciSetAddress setup: cbData=%u\n", pUrb->pszDesc, pUrb->cbData)); RTCritSectLeave(&pThisCC->CritSectThrd); int rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led); RTCritSectEnter(&pThisCC->CritSectThrd); if (RT_FAILURE(rc)) { Log(("xhciSetAddress: setup stage failed pUrb=%p!!\n", pUrb)); return false; } /* To complete the SET_ADDRESS request, the status stage must succeed. */ pUrb = VUSBIRhNewUrb(pRh->pIRhConn, 0 /* address */, iPort, VUSBXFERTYPE_CTRL, VUSBDIRECTION_IN, 0 /* cbData */, 0 /* cTds */, NULL); if (!pUrb) return false; pUrb->EndPt = 0; pUrb->fShortNotOk = true; pUrb->enmStatus = VUSBSTATUS_OK; pUrb->pHci->uSlotID = uSlotID; pUrb->pHci->cTRB = 0; /* Submit the setup URB. */ Log(("%s: xhciSetAddress status: cbData=%u\n", pUrb->pszDesc, pUrb->cbData)); RTCritSectLeave(&pThisCC->CritSectThrd); rc = VUSBIRhSubmitUrb(pRh->pIRhConn, pUrb, &pRh->Led); RTCritSectEnter(&pThisCC->CritSectThrd); if (RT_FAILURE(rc)) { Log(("xhciSetAddress: status stage failed pUrb=%p!!\n", pUrb)); return false; } Log(("xhciSetAddress: set address succeeded\n")); return true; } /** * Address a device. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param uInpCtxAddr Address of the input context. * @param uSlotID Slot ID to assign address to. * @param fBSR Block Set address Request flag. */ static unsigned xhciR3AddressDevice(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint64_t uInpCtxAddr, uint8_t uSlotID, bool fBSR) { RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK; RTGCPHYS GCPhysInpSlot; RTGCPHYS GCPhysOutSlot; XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */ XHCI_SLOT_CTX inp_slot_ctx; /* Input Slot Context (ICI=1). */ XHCI_EP_CTX ep_ctx; /* Endpoint Context (ICI=2+). */ XHCI_SLOT_CTX out_slot_ctx; /* Output Slot Context. */ uint8_t dev_addr; unsigned cc = XHCI_TCC_SUCCESS; Assert(GCPhysInpCtx); Assert(uSlotID); LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx)); /* Determine the address of the output slot context. */ GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); /* Fetch the output slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx)); /// @todo Check for valid context (6.2.2.1, 6.2.3.1) /* See 4.6.5 */ do { /* Parameter validation depends on whether the BSR flag is set or not. */ if (fBSR) { /* Check that the output slot context state is in Enabled state. */ if (out_slot_ctx.slot_state >= XHCI_SLTST_DEFAULT) { Log(("Output slot context state (%u) wrong (BSR)!\n", out_slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } dev_addr = 0; } else { /* Check that the output slot context state is in Enabled or Default state. */ if (out_slot_ctx.slot_state > XHCI_SLTST_DEFAULT) { Log(("Output slot context state (%u) wrong (no-BSR)!\n", out_slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } dev_addr = xhciR3SelectNewAddress(pThis, uSlotID); } /* Fetch the input control context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc)); Assert(icc.add_flags == (RT_BIT(0) | RT_BIT(1))); /* Should have been already checked. */ Assert(!icc.drop_flags); /* Calculate the address of the input slot context (ICI=1/DCI=0). */ GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX); /* Read the input slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &inp_slot_ctx, sizeof(inp_slot_ctx)); /* If BSR isn't set, issue the actual SET_ADDRESS request. */ if (!fBSR) { unsigned iPort; /* We have to dig out the port number/index to determine which virtual root hub to use. */ iPort = ID_TO_IDX(inp_slot_ctx.rh_port); if (iPort >= XHCI_NDP_CFG(pThis)) { Log(("Port out of range (index %u)!\n", iPort)); cc = XHCI_TCC_USB_XACT_ERR; break; } if (!xhciR3IssueSetAddress(pThisCC, uSlotID, dev_addr, iPort)) { Log(("SET_ADDRESS failed!\n")); cc = XHCI_TCC_USB_XACT_ERR; break; } } /* Copy the slot context with appropriate modifications. */ out_slot_ctx = inp_slot_ctx; if (fBSR) out_slot_ctx.slot_state = XHCI_SLTST_DEFAULT; else out_slot_ctx.slot_state = XHCI_SLTST_ADDRESSED; out_slot_ctx.dev_addr = dev_addr; PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx)); /* Point at the EP0 contexts. */ GCPhysInpSlot += sizeof(inp_slot_ctx); GCPhysOutSlot += sizeof(out_slot_ctx); /* Copy EP0 context with appropriate modifications. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &ep_ctx, sizeof(ep_ctx)); xhciR3EnableEP(&ep_ctx); PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &ep_ctx, sizeof(ep_ctx)); } while (0); return cc; } /** * Reset a halted endpoint. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uSlotID Slot ID to work with. * @param uDCI DCI of the endpoint to reset. * @param fTSP The Transfer State Preserve flag. */ static unsigned xhciR3ResetEndpoint(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, bool fTSP) { RT_NOREF(fTSP); RTGCPHYS GCPhysSlot; RTGCPHYS GCPhysEndp; XHCI_SLOT_CTX slot_ctx; XHCI_EP_CTX endp_ctx; unsigned cc = XHCI_TCC_SUCCESS; Assert(uSlotID); /* Determine the addresses of the contexts. */ GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX); /* Fetch the slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx)); /* See 4.6.8 */ do { /* Check that the slot context state is Default, Addressed, or Configured. */ if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT) { Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Fetch the endpoint context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); /* Check that the endpoint context state is Halted. */ if (endp_ctx.ep_state != XHCI_EPST_HALTED) { Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Transition EP state. */ endp_ctx.ep_state = XHCI_EPST_STOPPED; /// @todo What can we do with the TSP flag? /// @todo Anything to do WRT enabling the corresponding doorbell register? /* Write back the updated endpoint context. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); } while (0); return cc; } /** * Stop a running endpoint. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis The xHCI device state, shared edition. * @param pThisCC The xHCI device state, ring-3 edition. * @param uSlotID Slot ID to work with. * @param uDCI DCI of the endpoint to stop. * @param fTSP The Suspend flag. */ static unsigned xhciR3StopEndpoint(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, uint8_t uSlotID, uint8_t uDCI, bool fTSP) { RT_NOREF(fTSP); RTGCPHYS GCPhysSlot; RTGCPHYS GCPhysEndp; XHCI_SLOT_CTX slot_ctx; XHCI_EP_CTX endp_ctx; unsigned cc = XHCI_TCC_SUCCESS; Assert(uSlotID); /* Determine the addresses of the contexts. */ GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX); /* Fetch the slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx)); /* See 4.6.9 */ do { /* Check that the slot context state is Default, Addressed, or Configured. */ if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT) { Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* The doorbell could be ringing; stop it if so. */ if (pThis->aBellsRung[ID_TO_IDX(uSlotID)] & (1 << uDCI)) { Log(("Unring bell for slot ID %u, DCI %u\n", uSlotID, uDCI)); ASMAtomicAndU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], ~(1 << uDCI)); } /* Fetch the endpoint context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); /* Check that the endpoint context state is Running. */ if (endp_ctx.ep_state != XHCI_EPST_RUNNING) { Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Transition EP state. */ endp_ctx.ep_state = XHCI_EPST_STOPPED; /* Write back the updated endpoint context *now*, before actually canceling anyhing. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); /// @todo What can we do with the SP flag? PXHCIROOTHUBR3 pRh; uint32_t uPort; /* Abort the endpoint, i.e. cancel any outstanding URBs. This needs to be done after * writing back the EP state so that the completion callback can operate. */ if (RT_SUCCESS(xhciR3FindRhDevBySlot(pDevIns, pThis, pThisCC, uSlotID, &pRh, &uPort))) { /* Temporarily give up the lock so that the completion callbacks can run. */ RTCritSectLeave(&pThisCC->CritSectThrd); Log(("Aborting DCI %u -> ep=%u d=%u\n", uDCI, uDCI / 2, uDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT)); pRh->pIRhConn->pfnAbortEp(pRh->pIRhConn, uPort, uDCI / 2, uDCI & 1 ? VUSBDIRECTION_IN : VUSBDIRECTION_OUT); RTCritSectEnter(&pThisCC->CritSectThrd); } /// @todo The completion callbacks should do more work for canceled URBs. /* Once the completion callbacks had a chance to run, we have to adjust * the endpoint state. * NB: The guest may just ring the doorbell to continue and not execute * 'Set TRDP' after stopping the endpoint. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); bool fXferWasInProgress = endp_ctx.trep != endp_ctx.trdp; /* Reset the TREP, but the EDTLA should be left alone. */ endp_ctx.trep = endp_ctx.trdp; if (fXferWasInProgress) { /* Fetch the transfer TRB to see the length. */ RTGCPHYS GCPhysXfrTRB = endp_ctx.trdp & XHCI_TRDP_ADDR_MASK; XHCI_XFER_TRB XferTRB; PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysXfrTRB, &XferTRB, sizeof(XferTRB)); xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, XferTRB.gen.xfr_len, XHCI_TCC_STOPPED, uSlotID, uDCI, GCPhysXfrTRB, false, false); } else { /* We need to generate a Force Stopped Event or FSE. Note that FSEs were optional * in xHCI 0.96 but aren't in 1.0. */ xhciR3PostXferEvent(pDevIns, pThis, slot_ctx.intr_tgt, 0, XHCI_TCC_STP_INV_LEN, uSlotID, uDCI, endp_ctx.trdp & XHCI_TRDP_ADDR_MASK, false, false); } /* Write back the updated endpoint context again. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); } while (0); return cc; } /** * Set a new TR Dequeue Pointer for an endpoint. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uSlotID Slot ID to work with. * @param uDCI DCI of the endpoint to reset. * @param uTRDP The TRDP including DCS/ flag. */ static unsigned xhciR3SetTRDP(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID, uint8_t uDCI, uint64_t uTRDP) { RTGCPHYS GCPhysSlot; RTGCPHYS GCPhysEndp; XHCI_SLOT_CTX slot_ctx; XHCI_EP_CTX endp_ctx; unsigned cc = XHCI_TCC_SUCCESS; Assert(uSlotID); /* Determine the addresses of the contexts. */ GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); GCPhysEndp = GCPhysSlot + uDCI * sizeof(XHCI_EP_CTX); /* Fetch the slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx)); /* See 4.6.10 */ do { /* Check that the slot context state is Default, Addressed, or Configured. */ if (slot_ctx.slot_state < XHCI_SLTST_DEFAULT) { Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Fetch the endpoint context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); /* Check that the endpoint context state is Stopped or Error. */ if (endp_ctx.ep_state != XHCI_EPST_STOPPED && endp_ctx.ep_state != XHCI_EPST_ERROR) { Log(("Endpoint context state wrong (%u)!\n", endp_ctx.ep_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Update the TRDP/TREP and DCS. */ endp_ctx.trdp = uTRDP; endp_ctx.trep = uTRDP; /* Also clear the in-flight counter! */ endp_ctx.ifc = 0; /// @todo Handle streams /* Write back the updated endpoint context. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysEndp, &endp_ctx, sizeof(endp_ctx)); } while (0); return cc; } /** * Prepare for a device reset. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uSlotID Slot ID to work with. */ static unsigned xhciR3ResetDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uSlotID) { RTGCPHYS GCPhysSlot; XHCI_SLOT_CTX slot_ctx; XHCI_DEV_CTX dc; unsigned num_ctx; unsigned i; unsigned cc = XHCI_TCC_SUCCESS; Assert(uSlotID); /* Determine the address of the slot/device context. */ GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); /* Fetch the slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &slot_ctx, sizeof(slot_ctx)); /* See 4.6.11. */ do { /* Check that the slot context state is Addressed or Configured. */ if (slot_ctx.slot_state < XHCI_SLTST_ADDRESSED) { Log(("Slot context state wrong (%u)!\n", slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Read the entire Device Context. */ num_ctx = slot_ctx.ctx_ent + 1; /* Slot context plus EPs. */ Assert(num_ctx); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysSlot, &dc, num_ctx * sizeof(XHCI_SLOT_CTX)); /// @todo Abort any outstanding transfers! /* Set slot state to Default and reset the USB device address. */ dc.entry[0].sc.slot_state = XHCI_SLTST_DEFAULT; dc.entry[0].sc.dev_addr = 0; /* Disable all endpoints except for EP 0 (aka DCI 1). */ for (i = 2; i < num_ctx; ++i) dc.entry[i].ep.ep_state = XHCI_EPST_DISABLED; /* Write back the updated device context. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysSlot, &dc, num_ctx * sizeof(XHCI_SLOT_CTX)); } while (0); return cc; } /** * Configure a device (even though the relevant command is called 'Configure * Endpoint'. This includes adding/dropping endpoint contexts as directed by * the input control context bits. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uInpCtxAddr Address of the input context. * @param uSlotID Slot ID associated with the context. * @param fDC Deconfigure flag set (input context unused). */ static unsigned xhciR3ConfigureDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID, bool fDC) { RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK; RTGCPHYS GCPhysInpSlot; RTGCPHYS GCPhysOutSlot; RTGCPHYS GCPhysOutEndp; XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */ XHCI_SLOT_CTX out_slot_ctx; /* Slot context (DCI=0). */ XHCI_EP_CTX out_endp_ctx; /* Endpoint Context (DCI=1). */ unsigned cc = XHCI_TCC_SUCCESS; uint32_t uAddFlags; uint32_t uDropFlags; unsigned num_inp_ctx; unsigned num_out_ctx; XHCI_DEV_CTX dc_inp; XHCI_DEV_CTX dc_out; unsigned uDCI; Assert(uSlotID); LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx)); /* Determine the address of the output slot context. */ GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); Assert(GCPhysOutSlot); /* Fetch the output slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx)); /* See 4.6.6 */ do { /* Check that the output slot context state is Addressed, or Configured. */ if (out_slot_ctx.slot_state < XHCI_SLTST_ADDRESSED) { Log(("Output slot context state wrong (%u)!\n", out_slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Check for deconfiguration request. */ if (fDC) { if (out_slot_ctx.slot_state == XHCI_SLTST_CONFIGURED) { /* Disable all enabled endpoints. */ uDropFlags = 0xFFFFFFFC; /** @todo r=bird: Why do you set uDropFlags and uAddFlags in a code path that doesn't use * them? This is a _very_ difficult function to get the hang of the way it's written. * Stuff like this looks like there's a control flow flaw (as to the do-break-while-false * loop which doesn't do any clean up or logging at the end and seems only sever the very * dubious purpose of making sure ther's only one return statement). The insistance on * C-style variable declarations (top of function), makes checking state harder, which is * why it's discouraged. */ uAddFlags = 0; /* Start with EP1. */ GCPhysOutEndp = GCPhysOutSlot + sizeof(XHCI_SLOT_CTX) + sizeof(XHCI_EP_CTX); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutEndp, &out_endp_ctx, sizeof(out_endp_ctx)); out_endp_ctx.ep_state = XHCI_EPST_DISABLED; PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutEndp, &out_endp_ctx, sizeof(out_endp_ctx)); GCPhysOutEndp += sizeof(XHCI_EP_CTX); /* Point to the next EP context. */ /* Finally update the output slot context. */ out_slot_ctx.ctx_ent = 1; /* Only EP0 left. */ out_slot_ctx.slot_state = XHCI_SLTST_ADDRESSED; PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx)); LogFlow(("Setting Output Slot State to Addressed, Context Entries = %u\n", out_slot_ctx.ctx_ent)); } else /* NB: Attempts to deconfigure a slot in Addressed state are ignored. */ Log(("Ignoring attempt to deconfigure slot in Addressed state!\n")); break; } /* Fetch the input control context. */ Assert(GCPhysInpCtx); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc)); Assert(icc.add_flags || icc.drop_flags); /* Make sure there's something to do. */ uAddFlags = icc.add_flags; uDropFlags = icc.drop_flags; LogFlowFunc(("Add Flags=%08X, Drop Flags=%08X\n", uAddFlags, uDropFlags)); /* If and only if any 'add context' flag is set, fetch the corresponding * input device context. */ if (uAddFlags) { /* Calculate the address of the input slot context (ICI=1/DCI=0). */ GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX); /* Read the input Slot Context plus all Endpoint Contexts up to and * including the one with the highest 'add' bit set. */ num_inp_ctx = ASMBitLastSetU32(uAddFlags); Assert(num_inp_ctx); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY)); /// @todo Check that the highest set add flag isn't beyond input slot Context Entries /// @todo Check input slot context according to 6.2.2.2 /// @todo Check input EP contexts according to 6.2.3.2 } /** @todo r=bird: Looks like MSC is right that dc_inp can be used uninitalized. * * However, this function is so hard to read I'm leaving the exorcism of it to * the author and just zeroing it in the mean time. * */ else RT_ZERO(dc_inp); /* Read the output Slot Context plus all Endpoint Contexts up to and * including the one with the highest 'add' or 'drop' bit set. */ num_out_ctx = ASMBitLastSetU32(uAddFlags | uDropFlags); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY)); /* Drop contexts as directed by flags. */ for (uDCI = 2; uDCI < 32; ++uDCI) { if (!((1 << uDCI) & uDropFlags)) continue; Log2(("Dropping EP DCI %u\n", uDCI)); dc_out.entry[uDCI].ep.ep_state = XHCI_EPST_DISABLED; /// @todo Do we need to bother tracking resources/bandwidth? } /* Now add contexts as directed by flags. */ for (uDCI = 2; uDCI < 32; ++uDCI) { if (!((1 << uDCI) & uAddFlags)) continue; Assert(!fDC); /* Copy over EP context, set to running. */ Log2(("Adding EP DCI %u\n", uDCI)); dc_out.entry[uDCI].ep = dc_inp.entry[uDCI].ep; xhciR3EnableEP(&dc_out.entry[uDCI].ep); /// @todo Do we need to bother tracking resources/bandwidth? } /* Finally update the device context. */ if (fDC || dc_inp.entry[0].sc.ctx_ent == 1) { dc_out.entry[0].sc.slot_state = XHCI_SLTST_ADDRESSED; dc_out.entry[0].sc.ctx_ent = 1; LogFlow(("Setting Output Slot State to Addressed\n")); } else { uint32_t uKillFlags = uDropFlags & ~uAddFlags; /* Endpoints going away. */ /* At least one EP enabled. Update Context Entries and state. */ Assert(dc_inp.entry[0].sc.ctx_ent); dc_out.entry[0].sc.slot_state = XHCI_SLTST_CONFIGURED; if (ID_TO_IDX(ASMBitLastSetU32(uAddFlags)) > dc_out.entry[0].sc.ctx_ent) { /* Adding new endpoints. */ dc_out.entry[0].sc.ctx_ent = ID_TO_IDX(ASMBitLastSetU32(uAddFlags)); } else if (ID_TO_IDX(ASMBitLastSetU32(uKillFlags)) == dc_out.entry[0].sc.ctx_ent) { /* Removing the last endpoint, find the last non-disabled one. */ unsigned num_ctx_ent; Assert(dc_out.entry[0].sc.ctx_ent + 1u == num_out_ctx); for (num_ctx_ent = dc_out.entry[0].sc.ctx_ent; num_ctx_ent > 1; --num_ctx_ent) if (dc_out.entry[num_ctx_ent].ep.ep_state != XHCI_EPST_DISABLED) break; dc_out.entry[0].sc.ctx_ent = num_ctx_ent; /* Last valid index to be precise. */ } LogFlow(("Setting Output Slot State to Configured, Context Entries = %u\n", dc_out.entry[0].sc.ctx_ent)); } /* If there were no errors, write back the updated output context. */ LogFlow(("Success, updating Output Context @ %RGp\n", GCPhysOutSlot)); PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY)); } while (0); return cc; } /** * Evaluate an input context. This involves modifying device and endpoint * contexts as directed by the input control context add bits. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uInpCtxAddr Address of the input context. * @param uSlotID Slot ID associated with the context. */ static unsigned xhciR3EvalContext(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID) { RTGCPHYS GCPhysInpCtx = uInpCtxAddr & XHCI_CTX_ADDR_MASK; RTGCPHYS GCPhysInpSlot; RTGCPHYS GCPhysOutSlot; XHCI_INPC_CTX icc; /* Input Control Context (ICI=0). */ XHCI_SLOT_CTX out_slot_ctx; /* Slot context (DCI=0). */ unsigned cc = XHCI_TCC_SUCCESS; uint32_t uAddFlags; uint32_t uDropFlags; unsigned num_inp_ctx; unsigned num_out_ctx; XHCI_DEV_CTX dc_inp; XHCI_DEV_CTX dc_out; unsigned uDCI; Assert(GCPhysInpCtx); Assert(uSlotID); LogFlowFunc(("Slot ID %u, input control context @ %RGp\n", uSlotID, GCPhysInpCtx)); /* Determine the address of the output slot context. */ GCPhysOutSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); Assert(GCPhysOutSlot); /* Fetch the output slot context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &out_slot_ctx, sizeof(out_slot_ctx)); /* See 4.6.7 */ do { /* Check that the output slot context state is Default, Addressed, or Configured. */ if (out_slot_ctx.slot_state < XHCI_SLTST_DEFAULT) { Log(("Output slot context state wrong (%u)!\n", out_slot_ctx.slot_state)); cc = XHCI_TCC_CTX_STATE_ERR; break; } /* Fetch the input control context. */ PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpCtx, &icc, sizeof(icc)); uAddFlags = icc.add_flags; uDropFlags = icc.drop_flags; LogFlowFunc(("Add Flags=%08X, Drop Flags=%08X\n", uAddFlags, uDropFlags)); /* Drop flags "shall be cleared to 0" but also "do not apply" (4.6.7). Log & ignore. */ if (uDropFlags) Log(("Drop flags set (%X) for evaluating context!\n", uDropFlags)); /* If no add flags are set, nothing will be done but an error is not reported * according to the logic flow in 4.6.7. */ if (!uAddFlags) { Log(("Warning: no add flags set for evaluating context!\n")); break; } /* Calculate the address of the input slot context (ICI=1/DCI=0). */ GCPhysInpSlot = GCPhysInpCtx + sizeof(XHCI_INPC_CTX); /* Read the output Slot Context plus all Endpoint Contexts up to and * including the one with the highest 'add' bit set. */ num_inp_ctx = ASMBitLastSetU32(uAddFlags); Assert(num_inp_ctx); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY)); /* Read the output Slot Context plus all Endpoint Contexts up to and * including the one with the highest 'add' bit set. */ num_out_ctx = ASMBitLastSetU32(uAddFlags); PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY)); /// @todo Check input slot context according to 6.2.2.3 /// @todo Check input EP contexts according to 6.2.3.3 /// @todo Check that the highest set add flag isn't beyond input slot Context Entries /* Evaluate endpoint contexts as directed by add flags. */ /// @todo 6.2.3.3 suggests only the A1 bit matters? Anything besides A0/A1 is ignored?? for (uDCI = 1; uDCI < 32; ++uDCI) { if (!((1 << uDCI) & uAddFlags)) continue; /* Evaluate Max Packet Size. */ LogFunc(("DCI %u: Max Packet Size: %u -> %u\n", uDCI, dc_out.entry[uDCI].ep.max_pkt_sz, dc_inp.entry[uDCI].ep.max_pkt_sz)); dc_out.entry[uDCI].ep.max_pkt_sz = dc_inp.entry[uDCI].ep.max_pkt_sz; } /* Finally update the device context if directed to do so (A0 flag set). */ if (uAddFlags & RT_BIT(0)) { /* 6.2.2.3 - evaluate Interrupter Target and Max Exit Latency. */ Log(("Interrupter Target: %u -> %u\n", dc_out.entry[0].sc.intr_tgt, dc_inp.entry[0].sc.intr_tgt)); Log(("Max Exit Latency : %u -> %u\n", dc_out.entry[0].sc.max_lat, dc_inp.entry[0].sc.max_lat)); /// @todo Non-zero Max Exit Latency (see 4.6.7) dc_out.entry[0].sc.intr_tgt = dc_inp.entry[0].sc.intr_tgt; dc_out.entry[0].sc.max_lat = dc_inp.entry[0].sc.max_lat; } /* If there were no errors, write back the updated output context. */ LogFlow(("Success, updating Output Context @ %RGp\n", GCPhysOutSlot)); PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof(XHCI_DS_ENTRY)); } while (0); return cc; } /** * Query available port bandwidth. * * @returns TRB completion code. * @param pDevIns The device instance. * @param pThis Pointer to the xHCI state. * @param uDevSpd Speed of not yet attached devices. * @param uHubSlotID Hub Slot ID to query (unsupported). * @param uBwCtx Bandwidth context physical address. */ static unsigned xhciR3GetPortBandwidth(PPDMDEVINS pDevIns, PXHCI pThis, uint8_t uDevSpd, uint8_t uHubSlotID, uint64_t uBwCtx) { RT_NOREF(uHubSlotID); RTGCPHYS GCPhysBwCtx; unsigned cc = XHCI_TCC_SUCCESS; unsigned ctx_size; unsigned iPort; uint8_t bw_ctx[RT_ALIGN_32(XHCI_NDP_MAX + 1, 4)] = {0}; uint8_t dev_spd; uint8_t avail_bw; Assert(!uHubSlotID); Assert(uBwCtx); /* See 4.6.15. */ /* Hubs are not supported because guests will never see them. The * reported values are more or less dummy because we have no real * information about the bandwidth available on the host. The reported * values are optimistic, as if each port had its own separate Bus * Instance aka BI. */ GCPhysBwCtx = uBwCtx & XHCI_CTX_ADDR_MASK; /* Number of ports + 1, rounded up to DWORDs. */ ctx_size = RT_ALIGN_32(XHCI_NDP_CFG(pThis) + 1, 4); LogFlowFunc(("BW Context at %RGp, size %u\n", GCPhysBwCtx, ctx_size)); Assert(ctx_size <= sizeof(bw_ctx)); /* Go over all the ports. */ for (iPort = 0; iPort < XHCI_NDP_CFG(pThis); ++iPort) { /* Get the device speed from the port... */ dev_spd = (pThis->aPorts[iPort].portsc & XHCI_PORT_PLS_MASK) >> XHCI_PORT_PLS_SHIFT; /* ...and if nothing is attached, use the provided default. */ if (!dev_spd) dev_spd = uDevSpd; /* For USB3 ports, report 90% available for SS devices (see 6.2.6). */ if (IS_USB3_PORT_IDX_SHR(pThis, iPort)) avail_bw = dev_spd == XHCI_SPD_SUPER ? 90 : 0; else /* For USB2 ports, report 80% available for HS and 90% for FS/LS. */ switch (dev_spd) { case XHCI_SPD_HIGH: avail_bw = 80; break; case XHCI_SPD_FULL: case XHCI_SPD_LOW: avail_bw = 90; break; default: avail_bw = 0; } /* The first entry in the context is reserved. */ bw_ctx[iPort + 1] = avail_bw; } /* Write back the bandwidth context. */ PDMDevHlpPCIPhysWriteMeta(pDevIns, GCPhysBwCtx, &bw_ctx, ctx_size); return cc; } #define NEC_MAGIC ('x' | ('H' << 8) | ('C' << 16) | ('I' << 24)) /** * Take a 64-bit input, shake well, produce 32-bit token. This mechanism * prevents NEC/Renesas drivers from running on 3rd party hardware. Mirrors * code found in vendor's drivers. */ static uint32_t xhciR3NecAuthenticate(uint64_t cookie) { uint32_t cookie_lo = RT_LODWORD(cookie); uint32_t cookie_hi = RT_HIDWORD(cookie); uint32_t shift_cnt; uint32_t token; shift_cnt = (cookie_hi >> 8) & 31; token = ASMRotateRightU32(cookie_lo - NEC_MAGIC, shift_cnt); shift_cnt = cookie_hi & 31; token += ASMRotateLeftU32(cookie_lo + NEC_MAGIC, shift_cnt); shift_cnt = (cookie_lo >> 16) & 31; token -= ASMRotateLeftU32(cookie_hi ^ NEC_MAGIC, shift_cnt); return ~token; } /** * Process a single command TRB and post completion information. */ static int xhciR3ExecuteCommand(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC, XHCI_COMMAND_TRB *pCmd) { XHCI_EVENT_TRB ed; uint32_t token; unsigned slot; unsigned cc; int rc = VINF_SUCCESS; LogFlowFunc(("Executing command %u (%s) @ %RGp\n", pCmd->gen.type, pCmd->gen.type < RT_ELEMENTS(g_apszTrbNames) ? g_apszTrbNames[pCmd->gen.type] : "WHAT?!!", (RTGCPHYS)pThis->cmdr_dqp)); switch (pCmd->gen.type) { case XHCI_TRB_NOOP_CMD: /* No-op, slot ID is always zero. */ rc = xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, 0); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_LINK: /* Link; set the dequeue pointer. CH bit is ignored. */ Log(("Link: Ptr=%RGp IOC=%u TC=%u\n", pCmd->link.rseg_ptr, pCmd->link.ioc, pCmd->link.toggle)); if (pCmd->link.ioc) /* Command completion event is optional! */ rc = xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, 0); /* Update the dequeue pointer and flip DCS if required. */ pThis->cmdr_dqp = pCmd->link.rseg_ptr & XHCI_TRDP_ADDR_MASK; pThis->cmdr_ccs = pThis->cmdr_ccs ^ pCmd->link.toggle; break; case XHCI_TRB_ENB_SLOT: /* Look for an empty device slot. */ for (slot = 0; slot < RT_ELEMENTS(pThis->aSlotState); ++slot) { if (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY) { /* Found a slot - transition to enabled state. */ pThis->aSlotState[slot] = XHCI_DEVSLOT_ENABLED; break; } } Log(("Enable Slot: found slot ID %u\n", IDX_TO_ID(slot))); /* Post command completion event. */ if (slot == RT_ELEMENTS(pThis->aSlotState)) xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_NO_SLOTS, 0); else xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_SUCCESS, IDX_TO_ID(slot)); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_DIS_SLOT: /* Disable the given device slot. */ Log(("Disable Slot: slot ID %u\n", pCmd->dsl.slot_id)); cc = XHCI_TCC_SUCCESS; slot = ID_TO_IDX(pCmd->dsl.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else { /// @todo set slot state of assoc. context to disabled pThis->aSlotState[slot] = XHCI_DEVSLOT_EMPTY; } xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->dsl.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_ADDR_DEV: /* Address a device. */ Log(("Address Device: slot ID %u, BSR=%u\n", pCmd->adr.slot_id, pCmd->adr.bsr)); slot = ID_TO_IDX(pCmd->cfg.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3AddressDevice(pDevIns, pThis, pThisCC, pCmd->adr.ctx_ptr, pCmd->adr.slot_id, pCmd->adr.bsr); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->adr.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_CFG_EP: /* Configure endpoint. */ Log(("Configure endpoint: slot ID %u, DC=%u, Ctx @ %RGp\n", pCmd->cfg.slot_id, pCmd->cfg.dc, pCmd->cfg.ctx_ptr)); slot = ID_TO_IDX(pCmd->cfg.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3ConfigureDevice(pDevIns, pThis, pCmd->cfg.ctx_ptr, pCmd->cfg.slot_id, pCmd->cfg.dc); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->cfg.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_EVAL_CTX: /* Evaluate context. */ Log(("Evaluate context: slot ID %u, Ctx @ %RGp\n", pCmd->evc.slot_id, pCmd->evc.ctx_ptr)); slot = ID_TO_IDX(pCmd->evc.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3EvalContext(pDevIns, pThis, pCmd->evc.ctx_ptr, pCmd->evc.slot_id); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->evc.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_RESET_EP: /* Reset the given endpoint. */ Log(("Reset Endpoint: slot ID %u, EP ID %u, TSP=%u\n", pCmd->rse.slot_id, pCmd->rse.ep_id, pCmd->rse.tsp)); cc = XHCI_TCC_SUCCESS; slot = ID_TO_IDX(pCmd->rse.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3ResetEndpoint(pDevIns, pThis, pCmd->rse.slot_id, pCmd->rse.ep_id, pCmd->rse.tsp); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stp.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_STOP_EP: /* Stop the given endpoint. */ Log(("Stop Endpoint: slot ID %u, EP ID %u, SP=%u\n", pCmd->stp.slot_id, pCmd->stp.ep_id, pCmd->stp.sp)); cc = XHCI_TCC_SUCCESS; slot = ID_TO_IDX(pCmd->stp.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3StopEndpoint(pDevIns, pThis, pThisCC, pCmd->stp.slot_id, pCmd->stp.ep_id, pCmd->stp.sp); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stp.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_SET_DEQ_PTR: /* Set TR Dequeue Pointer. */ Log(("Set TRDP: slot ID %u, EP ID %u, TRDP=%RX64\n", pCmd->stdp.slot_id, pCmd->stdp.ep_id, pCmd->stdp.tr_dqp)); cc = XHCI_TCC_SUCCESS; slot = ID_TO_IDX(pCmd->stdp.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3SetTRDP(pDevIns, pThis, pCmd->stdp.slot_id, pCmd->stdp.ep_id, pCmd->stdp.tr_dqp); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->stdp.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_RESET_DEV: /* Reset a device. */ Log(("Reset Device: slot ID %u\n", pCmd->rsd.slot_id)); cc = XHCI_TCC_SUCCESS; slot = ID_TO_IDX(pCmd->rsd.slot_id); if ((slot >= RT_ELEMENTS(pThis->aSlotState)) || (pThis->aSlotState[slot] == XHCI_DEVSLOT_EMPTY)) cc = XHCI_TCC_SLOT_NOT_ENB; else cc = xhciR3ResetDevice(pDevIns, pThis, pCmd->rsd.slot_id); xhciR3PostCmdCompletion(pDevIns, pThis, cc, pCmd->rsd.slot_id); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case XHCI_TRB_GET_PORT_BW: /* Get port bandwidth. */ Log(("Get Port Bandwidth: Dev Speed %u, Hub Slot ID %u, Context=%RX64\n", pCmd->gpbw.spd, pCmd->gpbw.slot_id, pCmd->gpbw.pbctx_ptr)); cc = XHCI_TCC_SUCCESS; if (pCmd->gpbw.slot_id) cc = XHCI_TCC_PARM_ERR; /* Potential undefined behavior, see 4.6.15. */ else cc = xhciR3GetPortBandwidth(pDevIns, pThis, pCmd->gpbw.spd, pCmd->gpbw.slot_id, pCmd->gpbw.pbctx_ptr); xhciR3PostCmdCompletion(pDevIns, pThis, cc, 0); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case NEC_TRB_GET_FW_VER: /* Get NEC firmware version. */ Log(("Get NEC firmware version\n")); cc = XHCI_TCC_SUCCESS; RT_ZERO(ed); ed.nce.word1 = NEC_FW_REV; ed.nce.trb_ptr = pThis->cmdr_dqp; ed.nce.cc = cc; ed.nce.type = NEC_TRB_CMD_CMPL; xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; case NEC_TRB_AUTHENTICATE: /* NEC authentication. */ Log(("NEC authentication, cookie %RX64\n", pCmd->nac.cookie)); cc = XHCI_TCC_SUCCESS; token = xhciR3NecAuthenticate(pCmd->nac.cookie); RT_ZERO(ed); ed.nce.word1 = RT_LOWORD(token); ed.nce.word2 = RT_HIWORD(token); ed.nce.trb_ptr = pThis->cmdr_dqp; ed.nce.cc = cc; ed.nce.type = NEC_TRB_CMD_CMPL; xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; default: Log(("Unsupported command!\n")); pThis->cmdr_dqp += sizeof(XHCI_COMMAND_TRB); break; } return rc; } /** * Stop the Command Ring. */ static int xhciR3StopCommandRing(PPDMDEVINS pDevIns, PXHCI pThis) { LogFlowFunc(("Command Ring stopping\n")); Assert(pThis->crcr & (XHCI_CRCR_CA | XHCI_CRCR_CS)); Assert(pThis->crcr & XHCI_CRCR_CRR); ASMAtomicAndU64(&pThis->crcr, ~(XHCI_CRCR_CRR | XHCI_CRCR_CA | XHCI_CRCR_CS)); return xhciR3PostCmdCompletion(pDevIns, pThis, XHCI_TCC_CMDR_STOPPED, 0); } /** * Process the xHCI command ring. */ static int xhciR3ProcessCommandRing(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC) { RTGCPHYS GCPhysCmdTRB; XHCI_COMMAND_TRB cmd; /* Command Descriptor */ unsigned cCmds; Assert(pThis->crcr & XHCI_CRCR_CRR); LogFlowFunc(("Processing commands...\n")); for (cCmds = 0;; cCmds++) { /* First check if the xHC is running at all. */ if (!(pThis->cmd & XHCI_CMD_RS)) { /* Note that this will call xhciR3PostCmdCompletion() which will * end up doing nothing because R/S is clear. */ xhciR3StopCommandRing(pDevIns, pThis); break; } /* Check if Command Ring was stopped in the meantime. */ if (pThis->crcr & (XHCI_CRCR_CS | XHCI_CRCR_CA)) { /* NB: We currently do not abort commands. If we did, we would * abort the currently running command and complete it with * the XHCI_TCC_CMD_ABORTED status. */ xhciR3StopCommandRing(pDevIns, pThis); break; } /* Fetch the command TRB. */ GCPhysCmdTRB = pThis->cmdr_dqp; PDMDevHlpPCIPhysReadMeta(pDevIns, GCPhysCmdTRB, &cmd, sizeof(cmd)); /* Make sure the Cycle State matches. */ if ((bool)cmd.gen.cycle == pThis->cmdr_ccs) xhciR3ExecuteCommand(pDevIns, pThis, pThisCC, &cmd); else { Log(("Command Ring empty\n")); break; } /* Check if we're being fed suspiciously many commands. */ if (cCmds > XHCI_MAX_NUM_CMDS) { /* Clear the R/S bit and any command ring running bits. * Note that the caller (xhciR3WorkerLoop) will set XHCI_STATUS_HCH. */ ASMAtomicAndU32(&pThis->cmd, ~XHCI_CMD_RS); ASMAtomicAndU64(&pThis->crcr, ~(XHCI_CRCR_CRR | XHCI_CRCR_CA | XHCI_CRCR_CS)); ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCE); LogRelMax(10, ("xHCI: Attempted to execute too many commands, stopping xHC!\n")); break; } } return VINF_SUCCESS; } /** * The xHCI asynchronous worker thread. * * @returns VBox status code. * @param pDevIns The xHCI device instance. * @param pThread The worker thread. */ static DECLCALLBACK(int) xhciR3WorkerLoop(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); int rc; LogFlow(("xHCI entering worker thread loop.\n")); if (pThread->enmState == PDMTHREADSTATE_INITIALIZING) return VINF_SUCCESS; while (pThread->enmState == PDMTHREADSTATE_RUNNING) { uint32_t u32Tasks = 0; uint8_t uSlotID; ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, true); u32Tasks = ASMAtomicXchgU32(&pThis->u32TasksNew, 0); if (!u32Tasks) { Assert(ASMAtomicReadBool(&pThis->fWrkThreadSleeping)); rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtProcess, RT_INDEFINITE_WAIT); AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc); if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING)) break; LogFlowFunc(("Woken up with rc=%Rrc\n", rc)); u32Tasks = ASMAtomicXchgU32(&pThis->u32TasksNew, 0); } RTCritSectEnter(&pThisCC->CritSectThrd); if (pThis->crcr & XHCI_CRCR_CRR) xhciR3ProcessCommandRing(pDevIns, pThis, pThisCC); /* Run down the list of doorbells that are ringing. */ for (uSlotID = 1; uSlotID < XHCI_NDS; ++uSlotID) { if (pThis->aSlotState[ID_TO_IDX(uSlotID)] >= XHCI_DEVSLOT_ENABLED) { while (pThis->aBellsRung[ID_TO_IDX(uSlotID)]) { uint8_t bit; uint32_t uDBVal = 0; for (bit = 0; bit < 32; ++bit) if (pThis->aBellsRung[ID_TO_IDX(uSlotID)] & (1 << bit)) { uDBVal = bit; break; } Log2(("Stop ringing bell for slot %u, DCI %u\n", uSlotID, uDBVal)); ASMAtomicAndU32(&pThis->aBellsRung[ID_TO_IDX(uSlotID)], ~(1 << uDBVal)); xhciR3ProcessDevCtx(pDevIns, pThis, pThisCC, uSlotID, uDBVal); } } } /* If the R/S bit is no longer set, halt the xHC. */ if (!(pThis->cmd & XHCI_CMD_RS)) { Log(("R/S clear, halting the xHC.\n")); ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCH); } RTCritSectLeave(&pThisCC->CritSectThrd); ASMAtomicWriteBool(&pThis->fWrkThreadSleeping, false); } /* While running */ LogFlow(("xHCI worker thread exiting.\n")); return VINF_SUCCESS; } /** * Unblock the worker thread so it can respond to a state change. * * @returns VBox status code. * @param pDevIns The xHCI device instance. * @param pThread The worker thread. */ static DECLCALLBACK(int) xhciR3WorkerWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread) { NOREF(pThread); PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtProcess); } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) xhciR3RhQueryInterface(PPDMIBASE pInterface, const char *pszIID) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pRh->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, VUSBIROOTHUBPORT, &pRh->IRhPort); return NULL; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) xhciR3QueryStatusInterface(PPDMIBASE pInterface, const char *pszIID) { PXHCIR3 pThisCC = RT_FROM_MEMBER(pInterface, XHCIR3, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThisCC->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThisCC->ILeds); return NULL; } /** * Gets the pointer to the status LED of a unit. * * @returns VBox status code. * @param pInterface Pointer to the interface structure containing the called function pointer. * @param iLUN The unit which status LED we desire. * @param ppLed Where to store the LED pointer. */ static DECLCALLBACK(int) xhciR3QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { PXHCICC pThisCC = RT_FROM_MEMBER(pInterface, XHCIR3, ILeds); if (iLUN < XHCI_NUM_LUNS) { *ppLed = iLUN ? &pThisCC->RootHub3.Led : &pThisCC->RootHub2.Led; Assert((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * Get the number of ports available in the hub. * * @returns The number of ports available. * @param pInterface Pointer to this structure. * @param pAvailable Bitmap indicating the available ports. Set bit == available port. */ static DECLCALLBACK(unsigned) xhciR3RhGetAvailablePorts(PVUSBIROOTHUBPORT pInterface, PVUSBPORTBITMAP pAvailable) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PPDMDEVINS pDevIns = pThisCC->pDevIns; unsigned iPort; unsigned cPorts = 0; LogFlow(("xhciR3RhGetAvailablePorts\n")); memset(pAvailable, 0, sizeof(*pAvailable)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); for (iPort = pRh->uPortBase; iPort < (unsigned)pRh->uPortBase + pRh->cPortsImpl; iPort++) { Assert(iPort < XHCI_NDP_CFG(PDMDEVINS_2_DATA(pDevIns, PXHCI))); if (!pThisCC->aPorts[iPort].fAttached) { cPorts++; ASMBitSet(pAvailable, IDX_TO_ID(iPort - pRh->uPortBase)); } } PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return cPorts; } /** * Get the supported USB versions for USB2 hubs. * * @returns The mask of supported USB versions. * @param pInterface Pointer to this structure. */ static DECLCALLBACK(uint32_t) xhciR3RhGetUSBVersions2(PVUSBIROOTHUBPORT pInterface) { RT_NOREF(pInterface); return VUSB_STDVER_11 | VUSB_STDVER_20; } /** * Get the supported USB versions for USB2 hubs. * * @returns The mask of supported USB versions. * @param pInterface Pointer to this structure. */ static DECLCALLBACK(uint32_t) xhciR3RhGetUSBVersions3(PVUSBIROOTHUBPORT pInterface) { RT_NOREF(pInterface); return VUSB_STDVER_30; } /** * Start sending SOF tokens across the USB bus, lists are processed in the * next frame. */ static void xhciR3BusStart(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC) { unsigned iPort; pThisCC->RootHub2.pIRhConn->pfnPowerOn(pThisCC->RootHub2.pIRhConn); pThisCC->RootHub3.pIRhConn->pfnPowerOn(pThisCC->RootHub3.pIRhConn); // xhciR3BumpFrameNumber(pThis); Log(("xHCI: Bus started\n")); Assert(pThis->status & XHCI_STATUS_HCH); ASMAtomicAndU32(&pThis->status, ~XHCI_STATUS_HCH); /* HCH gates PSCEG (4.19.2). When clearing HCH, re-evaluate port changes. */ for (iPort = 0; iPort < XHCI_NDP_CFG(pThis); ++iPort) { if (pThis->aPorts[iPort].portsc & XHCI_PORT_CHANGE_MASK) xhciR3GenPortChgEvent(pDevIns, pThis, IDX_TO_ID(iPort)); } /// @todo record the starting time? // pThis->SofTime = TMTimerGet(pThis->CTX_SUFF(pEndOfFrameTimer)) - pThis->cTicksPerFrame; } /** * Stop sending SOF tokens on the bus and processing the data. */ static void xhciR3BusStop(PPDMDEVINS pDevIns, PXHCI pThis, PXHCICC pThisCC) { LogFlow(("xhciR3BusStop\n")); /* Stop the controller and Command Ring. */ pThis->cmd &= ~XHCI_CMD_RS; pThis->crcr |= XHCI_CRCR_CS; /* Power off the root hubs. */ pThisCC->RootHub2.pIRhConn->pfnPowerOff(pThisCC->RootHub2.pIRhConn); pThisCC->RootHub3.pIRhConn->pfnPowerOff(pThisCC->RootHub3.pIRhConn); /* The worker thread will halt the HC (set HCH) when done. */ xhciKickWorker(pDevIns, pThis, XHCI_JOB_PROCESS_CMDRING, 0); } /** * Power a port up or down */ static void xhciR3PortPower(PXHCI pThis, PXHCICC pThisCC, unsigned iPort, bool fPowerUp) { PXHCIHUBPORT pPort = &pThis->aPorts[iPort]; PXHCIHUBPORTR3 pPortR3 = &pThisCC->aPorts[iPort]; PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, iPort); bool fOldPPS = !!(pPort->portsc & XHCI_PORT_PP); LogFlow(("xhciR3PortPower (port %u) %s\n", IDX_TO_ID(iPort), fPowerUp ? "UP" : "DOWN")); if (fPowerUp) { /* Power up a port. */ if (pPortR3->fAttached) ASMAtomicOrU32(&pPort->portsc, XHCI_PORT_CCS); if (pPort->portsc & XHCI_PORT_CCS) ASMAtomicOrU32(&pPort->portsc, XHCI_PORT_PP); if (pPortR3->fAttached && !fOldPPS) VUSBIRhDevPowerOn(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort)); } else { /* Power down. */ ASMAtomicAndU32(&pPort->portsc, ~(XHCI_PORT_PP | XHCI_PORT_CCS)); if (pPortR3->fAttached && fOldPPS) VUSBIRhDevPowerOff(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort)); } } /** * Port reset done callback. * * @param pDevIns The device instance data. * @param iPort The XHCI port index of the port being resetted. */ static void xhciR3PortResetDone(PPDMDEVINS pDevIns, unsigned iPort) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); Log2(("xhciR3PortResetDone\n")); AssertReturnVoid(iPort < XHCI_NDP_CFG(pThis)); /* * Successful reset. */ Log2(("xhciR3PortResetDone: Reset completed.\n")); uint32_t fChangeMask = XHCI_PORT_PED | XHCI_PORT_PRC; /* For USB2 ports, transition the link state. */ if (!IS_USB3_PORT_IDX_SHR(pThis, iPort)) { pThis->aPorts[iPort].portsc &= ~XHCI_PORT_PLS_MASK; pThis->aPorts[iPort].portsc |= XHCI_PLS_U0 << XHCI_PORT_PLS_SHIFT; } else { if (pThis->aPorts[iPort].portsc & XHCI_PORT_WPR) fChangeMask |= XHCI_PORT_WRC; } ASMAtomicAndU32(&pThis->aPorts[iPort].portsc, ~(XHCI_PORT_PR | XHCI_PORT_WPR)); ASMAtomicOrU32(&pThis->aPorts[iPort].portsc, fChangeMask); /// @todo Set USBSTS.PCD and manage PSCEG correctly! /// @todo just guessing?! // ASMAtomicOrU32(&pThis->aPorts[iPort].portsc, XHCI_PORT_CSC | XHCI_PORT_PLC); /// @todo Is this the right place? xhciR3GenPortChgEvent(pDevIns, pThis, IDX_TO_ID(iPort)); } /** * Sets a flag in a port status register, but only if a device is connected; * if not, set ConnectStatusChange flag to force HCD to reevaluate connect status. * * @returns true if device was connected and the flag was cleared. */ static bool xhciR3RhPortSetIfConnected(PXHCI pThis, int iPort, uint32_t fValue) { /* * Writing a 0 has no effect */ if (fValue == 0) return false; /* * The port might be still/already disconnected. */ if (!(pThis->aPorts[iPort].portsc & XHCI_PORT_CCS)) return false; bool fRc = !(pThis->aPorts[iPort].portsc & fValue); /* Set the bit. */ ASMAtomicOrU32(&pThis->aPorts[iPort].portsc, fValue); return fRc; } /** Translate VUSB speed enum to xHCI definition. */ static unsigned xhciR3UsbSpd2XhciSpd(VUSBSPEED enmSpeed) { unsigned uSpd; switch (enmSpeed) { default: AssertMsgFailed(("%d\n", enmSpeed)); RT_FALL_THRU(); case VUSB_SPEED_LOW: uSpd = XHCI_SPD_LOW; break; case VUSB_SPEED_FULL: uSpd = XHCI_SPD_FULL; break; case VUSB_SPEED_HIGH: uSpd = XHCI_SPD_HIGH; break; case VUSB_SPEED_SUPER: uSpd = XHCI_SPD_SUPER; break; } return uSpd; } /** @interface_method_impl{VUSBIROOTHUBPORT,pfnAttach} */ static DECLCALLBACK(int) xhciR3RhAttach(PVUSBIROOTHUBPORT pInterface, unsigned uPort, VUSBSPEED enmSpeed) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PPDMDEVINS pDevIns = pThisCC->pDevIns; PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCIHUBPORT pPort; unsigned iPort; LogFlow(("xhciR3RhAttach: uPort=%u (iPort=%u)\n", uPort, ID_TO_IDX(uPort) + pRh->uPortBase)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); AssertRCReturn(rcLock, rcLock); /* * Validate and adjust input. */ Assert(uPort >= 1 && uPort <= pRh->cPortsImpl); iPort = ID_TO_IDX(uPort) + pRh->uPortBase; Assert(iPort < XHCI_NDP_CFG(pThis)); pPort = &pThis->aPorts[iPort]; Assert(!pThisCC->aPorts[iPort].fAttached); Assert(enmSpeed != VUSB_SPEED_UNKNOWN); /* * Attach it. */ ASMAtomicOrU32(&pPort->portsc, XHCI_PORT_CCS | XHCI_PORT_CSC); pThisCC->aPorts[iPort].fAttached = true; xhciR3PortPower(pThis, pThisCC, iPort, 1 /* power on */); /* USB3 ports automatically transition to Enabled state. */ if (IS_USB3_PORT_IDX_R3(pThisCC, iPort)) { Assert(enmSpeed == VUSB_SPEED_SUPER); pPort->portsc |= XHCI_PORT_PED; pPort->portsc &= ~XHCI_PORT_PLS_MASK; pPort->portsc |= XHCI_PLS_U0 << XHCI_PORT_PLS_SHIFT; pPort->portsc &= ~XHCI_PORT_SPD_MASK; pPort->portsc |= XHCI_SPD_SUPER << XHCI_PORT_SPD_SHIFT; VUSBIRhDevReset(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort), false, NULL /* sync */, NULL, PDMDevHlpGetVM(pDevIns)); } else { Assert(enmSpeed == VUSB_SPEED_LOW || enmSpeed == VUSB_SPEED_FULL || enmSpeed == VUSB_SPEED_HIGH); pPort->portsc &= ~XHCI_PORT_SPD_MASK; pPort->portsc |= xhciR3UsbSpd2XhciSpd(enmSpeed) << XHCI_PORT_SPD_SHIFT; } xhciR3GenPortChgEvent(pDevIns, pThis, IDX_TO_ID(iPort)); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return VINF_SUCCESS; } /** * A device is being detached from a port in the root hub. * * @param pInterface Pointer to this structure. * @param uPort The 1-based port number assigned to the device. */ static DECLCALLBACK(void) xhciR3RhDetach(PVUSBIROOTHUBPORT pInterface, unsigned uPort) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PPDMDEVINS pDevIns = pThisCC->pDevIns; PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCIHUBPORT pPort; unsigned iPort; LogFlow(("xhciR3RhDetach: uPort=%u iPort=%u\n", uPort, ID_TO_IDX(uPort) + pRh->uPortBase)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, pDevIns->pCritSectRoR3, rcLock); /* * Validate and adjust input. */ Assert(uPort >= 1 && uPort <= pRh->cPortsImpl); iPort = ID_TO_IDX(uPort) + pRh->uPortBase; Assert(iPort < XHCI_NDP_CFG(pThis)); pPort = &pThis->aPorts[iPort]; Assert(pThisCC->aPorts[iPort].fAttached); /* * Detach it. */ pThisCC->aPorts[iPort].fAttached = false; ASMAtomicAndU32(&pPort->portsc, ~(XHCI_PORT_CCS | XHCI_PORT_SPD_MASK | XHCI_PORT_PLS_MASK)); ASMAtomicOrU32(&pPort->portsc, XHCI_PORT_CSC); /* Link state goes to RxDetect. */ ASMAtomicOrU32(&pPort->portsc, XHCI_PLS_RXDETECT << XHCI_PORT_PLS_SHIFT); /* Disconnect clears the port enable bit. */ if (pPort->portsc & XHCI_PORT_PED) ASMAtomicAndU32(&pPort->portsc, ~XHCI_PORT_PED); xhciR3GenPortChgEvent(pDevIns, pThis, IDX_TO_ID(iPort)); PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); } /** * One of the root hub devices has completed its reset * operation. * * Currently, we don't think anything is required to be done here * so it's just a stub for forcing async resetting of the devices * during a root hub reset. * * @param pDev The root hub device. * @param rc The result of the operation. * @param uPort The port number of the device on the roothub being resetted. * @param pvUser Pointer to the controller. */ static DECLCALLBACK(void) xhciR3RhResetDoneOneDev(PVUSBIDEVICE pDev, uint32_t uPort, int rc, void *pvUser) { LogRel(("xHCI: Root hub-attached device reset completed with %Rrc\n", rc)); RT_NOREF(pDev, uPort, rc, pvUser); } /** * Does a software or hardware reset of the controller. * * This is called in response to setting HcCommandStatus.HCR, hardware reset, * and device construction. * * @param pThis The shared XHCI instance data * @param pThisCC The ring-3 XHCI instance data * @param fNewMode The new mode of operation. This is UsbSuspend if * it's a software reset, and UsbReset if it's a * hardware reset / cold boot. * @param fTrueReset Set if we can do a real reset of the devices * attached to the root hub. This is really a just a * hack for the non-working linux device reset. Linux * has this feature called 'logical disconnect' if * device reset fails which prevents us from doing * resets when the guest asks for it - the guest will * get confused when the device seems to be * reconnected everytime it tries to reset it. But if * we're at hardware reset time, we can allow a device * to be 'reconnected' without upsetting the guest. * * @remark This has nothing to do with software setting the * mode to UsbReset. */ static void xhciR3DoReset(PXHCI pThis, PXHCICC pThisCC, uint32_t fNewMode, bool fTrueReset) { LogFunc(("%s reset%s\n", fNewMode == XHCI_USB_RESET ? "Hardware" : "Software", fTrueReset ? " (really reset devices)" : "")); /* * Cancel all outstanding URBs. * * We can't, and won't, deal with URBs until we're moved out of the * suspend/reset state. Also, a real HC isn't going to send anything * any more when a reset has been signaled. */ pThisCC->RootHub2.pIRhConn->pfnCancelAllUrbs(pThisCC->RootHub2.pIRhConn); pThisCC->RootHub3.pIRhConn->pfnCancelAllUrbs(pThisCC->RootHub3.pIRhConn); /* * Reset the hardware registers. */ /** @todo other differences between hardware reset and VM reset? */ pThis->cmd = 0; pThis->status = XHCI_STATUS_HCH; pThis->dnctrl = 0; pThis->crcr = 0; pThis->dcbaap = 0; pThis->config = 0; /* * Reset the internal state. */ pThis->cmdr_dqp = 0; pThis->cmdr_ccs = 0; RT_ZERO(pThis->aSlotState); RT_ZERO(pThis->aBellsRung); /* Zap everything but the lock. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->aInterrupters); ++i) { pThis->aInterrupters[i].iman = 0; pThis->aInterrupters[i].imod = 0; pThis->aInterrupters[i].erstsz = 0; pThis->aInterrupters[i].erstba = 0; pThis->aInterrupters[i].erdp = 0; pThis->aInterrupters[i].erep = 0; pThis->aInterrupters[i].erst_idx = 0; pThis->aInterrupters[i].trb_count = 0; pThis->aInterrupters[i].evtr_pcs = false; pThis->aInterrupters[i].ipe = false; } if (fNewMode == XHCI_USB_RESET) { /* Only a hardware reset reinits the port registers. */ for (unsigned i = 0; i < XHCI_NDP_CFG(pThis); i++) { /* Need to preserve the speed of attached devices. */ pThis->aPorts[i].portsc &= XHCI_PORT_SPD_MASK; pThis->aPorts[i].portsc |= XHCI_PLS_RXDETECT << XHCI_PORT_PLS_SHIFT; /* If Port Power Control is not supported, ports are always powered on. */ if (!(pThis->hcc_params & XHCI_HCC_PPC)) pThis->aPorts[i].portsc |= XHCI_PORT_PP; } } /* * If this is a hardware reset, we will initialize the root hub too. * Software resets doesn't do this according to the specs. * (It's not possible to have a device connected at the time of the * device construction, so nothing to worry about there.) */ if (fNewMode == XHCI_USB_RESET) { pThisCC->RootHub2.pIRhConn->pfnReset(pThisCC->RootHub2.pIRhConn, fTrueReset); pThisCC->RootHub3.pIRhConn->pfnReset(pThisCC->RootHub3.pIRhConn, fTrueReset); /* * Reattach the devices. */ for (unsigned i = 0; i < XHCI_NDP_CFG(pThis); i++) { bool fAttached = pThisCC->aPorts[i].fAttached; PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, i); pThisCC->aPorts[i].fAttached = false; if (fAttached) { VUSBSPEED enmSpeed = VUSBIRhDevGetSpeed(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, i)); xhciR3RhAttach(&pRh->IRhPort, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, i), enmSpeed); } } } } /** * Reset the root hub. * * @returns VBox status code. * @param pInterface Pointer to this structure. * @param fTrueReset This is used to indicate whether we're at VM reset * time and can do real resets or if we're at any other * time where that isn't such a good idea. * @remark Do NOT call VUSBIDevReset on the root hub in an async fashion! * @thread EMT */ static DECLCALLBACK(int) xhciR3RhReset(PVUSBIROOTHUBPORT pInterface, bool fTrueReset) { PXHCIROOTHUBR3 pRh = RT_FROM_MEMBER(pInterface, XHCIROOTHUBR3, IRhPort); PXHCICC pThisCC = pRh->pXhciR3; PPDMDEVINS pDevIns = pThisCC->pDevIns; PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); Log(("xhciR3RhReset fTrueReset=%d\n", fTrueReset)); int const rcLock = PDMDevHlpCritSectEnter(pDevIns, pDevIns->pCritSectRoR3, VERR_IGNORED); AssertRCReturn(rcLock, rcLock); /* Soft reset first */ xhciR3DoReset(pThis, pThisCC, XHCI_USB_SUSPEND, false /* N/A */); /* * We're pretending to _reattach_ the devices without resetting them. * Except, during VM reset where we use the opportunity to do a proper * reset before the guest comes along and expects things. * * However, it's very very likely that we're not doing the right thing * here when end up here on request from the guest (USB Reset state). * The docs talk about root hub resetting, however what exact behaviour * in terms of root hub status and changed bits, and HC interrupts aren't * stated clearly. IF we get trouble and see the guest doing "USB Resets" * we will have to look into this. For the time being we stick with simple. */ for (unsigned iPort = pRh->uPortBase; iPort < XHCI_NDP_CFG(pThis); iPort++) { if (pThisCC->aPorts[iPort].fAttached) { ASMAtomicOrU32(&pThis->aPorts[iPort].portsc, XHCI_PORT_CCS | XHCI_PORT_CSC); if (fTrueReset) VUSBIRhDevReset(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort), fTrueReset, xhciR3RhResetDoneOneDev, pDevIns, PDMDevHlpGetVM(pDevIns)); } } PDMDevHlpCritSectLeave(pDevIns, pDevIns->pCritSectRoR3); return VINF_SUCCESS; } #endif /* IN_RING3 */ /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /* xHCI Operational Register access routines */ /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /** * Read the USBCMD register of the host controller. */ static VBOXSTRICTRC HcUsbcmd_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdUsbCmd); *pu32Value = pThis->cmd; return VINF_SUCCESS; } /** * Write to the USBCMD register of the host controller. */ static VBOXSTRICTRC HcUsbcmd_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { #ifdef IN_RING3 PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); #endif RT_NOREF(iReg); STAM_COUNTER_INC(&pThis->StatWrUsbCmd); #ifdef LOG_ENABLED Log(("HcUsbcmd_w old=%x new=%x\n", pThis->cmd, val)); if (val & XHCI_CMD_RS) Log((" XHCI_CMD_RS\n")); if (val & XHCI_CMD_HCRST) Log((" XHCI_CMD_HCRST\n")); if (val & XHCI_CMD_INTE ) Log((" XHCI_CMD_INTE\n")); if (val & XHCI_CMD_HSEE) Log((" XHCI_CMD_HSEE\n")); if (val & XHCI_CMD_LCRST) Log((" XHCI_CMD_LCRST\n")); if (val & XHCI_CMD_CSS) Log((" XHCI_CMD_CSS\n")); if (val & XHCI_CMD_CRS) Log((" XHCI_CMD_CRS\n")); if (val & XHCI_CMD_EWE) Log((" XHCI_CMD_EWE\n")); if (val & XHCI_CMD_EU3S) Log((" XHCI_CMD_EU3S\n")); #endif if (val & ~XHCI_CMD_MASK) Log(("Unknown USBCMD bits %#x are set!\n", val & ~XHCI_CMD_MASK)); uint32_t old_cmd = pThis->cmd; #ifdef IN_RING3 pThis->cmd = val; #endif if (val & XHCI_CMD_HCRST) { #ifdef IN_RING3 LogRel(("xHCI: Hardware reset\n")); xhciR3DoReset(pThis, pThisCC, XHCI_USB_RESET, true /* reset devices */); #else return VINF_IOM_R3_MMIO_WRITE; #endif } else if (val & XHCI_CMD_LCRST) { #ifdef IN_RING3 LogRel(("xHCI: Software reset\n")); xhciR3DoReset(pThis, pThisCC, XHCI_USB_SUSPEND, false /* N/A */); #else return VINF_IOM_R3_MMIO_WRITE; #endif } else if (pThis->status & XHCI_STATUS_HCE) { /* If HCE is set, don't restart the controller. Only a reset * will clear the HCE bit. */ Log(("xHCI: HCE bit set, ignoring USBCMD register changes!\n")); pThis->cmd = old_cmd; return VINF_SUCCESS; } else { /* See what changed and take action on that. First the R/S bit. */ uint32_t old_state = old_cmd & XHCI_CMD_RS; uint32_t new_state = val & XHCI_CMD_RS; if (old_state != new_state) { #ifdef IN_RING3 switch (new_state) { case XHCI_CMD_RS: LogRel(("xHCI: USB Operational\n")); xhciR3BusStart(pDevIns, pThis, pThisCC); break; case 0: xhciR3BusStop(pDevIns, pThis, pThisCC); LogRel(("xHCI: USB Suspended\n")); break; } #else return VINF_IOM_R3_MMIO_WRITE; #endif } /* Check EWE (Enable MFINDEX Wraparound Event) changes. */ old_state = old_cmd & XHCI_CMD_EWE; new_state = val & XHCI_CMD_EWE; if (old_state != new_state) { switch (new_state) { case XHCI_CMD_EWE: Log(("xHCI: MFINDEX Wrap timer started\n")); xhciSetWrapTimer(pDevIns, pThis); break; case 0: PDMDevHlpTimerStop(pDevIns, pThis->hWrapTimer); Log(("xHCI: MFINDEX Wrap timer stopped\n")); break; } } /* INTE transitions need to twiddle interrupts. */ old_state = old_cmd & XHCI_CMD_INTE; new_state = val & XHCI_CMD_INTE; if (old_state != new_state) { switch (new_state) { case XHCI_CMD_INTE: /* Check whether the event interrupt bit is set and trigger an interrupt. */ if (pThis->status & XHCI_STATUS_EINT) PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_HIGH); break; case 0: PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_LOW); break; } } /* We currently do nothing for state save/restore. If we did, the CSS/CRS command bits * would set the SSS/RSS status bits until the operation is done. The CSS/CRS bits are * never read as one. */ /// @todo 4.9.4 describes internal state that needs to be saved/restored: /// ERSTE, ERST Count, EREP, and TRB Count /// Command Ring Dequeue Pointer? if (val & XHCI_CMD_CSS) { Log(("xHCI: Save State requested\n")); val &= ~XHCI_CMD_CSS; } if (val & XHCI_CMD_CRS) { Log(("xHCI: Restore State requested\n")); val &= ~XHCI_CMD_CRS; } } #ifndef IN_RING3 pThis->cmd = val; #endif return VINF_SUCCESS; } #ifdef LOG_ENABLED static void HcUsbstsLogBits(uint32_t val) { if (val & XHCI_STATUS_HCH) Log((" XHCI_STATUS_HCH (HC Halted)\n")); if (val & XHCI_STATUS_HSE) Log((" XHCI_STATUS_HSE (Host System Error)\n")); if (val & XHCI_STATUS_EINT) Log((" XHCI_STATUS_EINT (Event Interrupt)\n")); if (val & XHCI_STATUS_PCD) Log((" XHCI_STATUS_PCD (Port Change Detect)\n")); if (val & XHCI_STATUS_SSS) Log((" XHCI_STATUS_SSS (Save State Status)\n")); if (val & XHCI_STATUS_RSS) Log((" XHCI_STATUS_RSS (Restore State Status)\n")); if (val & XHCI_STATUS_SRE) Log((" XHCI_STATUS_SRE (Save/Restore Error)\n")); if (val & XHCI_STATUS_CNR) Log((" XHCI_STATUS_CNR (Controller Not Ready)\n")); if (val & XHCI_STATUS_HCE) Log((" XHCI_STATUS_HCE (Host Controller Error)\n")); } #endif /** * Read the USBSTS register of the host controller. */ static VBOXSTRICTRC HcUsbsts_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { #ifdef LOG_ENABLED Log(("HcUsbsts_r current value %x\n", pThis->status)); HcUsbstsLogBits(pThis->status); #endif RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdUsbSts); *pu32Value = pThis->status; return VINF_SUCCESS; } /** * Write to the USBSTS register of the host controller. */ static VBOXSTRICTRC HcUsbsts_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { #ifdef LOG_ENABLED Log(("HcUsbsts_w current value %x; new %x\n", pThis->status, val)); HcUsbstsLogBits(val); #endif RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrUsbSts); if ( (val & ~XHCI_STATUS_WRMASK) && val != 0xffffffff /* Ignore clear-all-like requests. */) Log(("Unknown USBSTS bits %#x are set!\n", val & ~XHCI_STATUS_WRMASK)); /* Most bits are read-only. */ val &= XHCI_STATUS_WRMASK; /* "The Host Controller Driver may clear specific bits in this * register by writing '1' to bit positions to be cleared" */ ASMAtomicAndU32(&pThis->status, ~val); return VINF_SUCCESS; } /** * Read the PAGESIZE register of the host controller. */ static VBOXSTRICTRC HcPagesize_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis, iReg); STAM_COUNTER_INC(&pThis->StatRdPageSize); *pu32Value = 1; /* 2^(bit n + 12) -> 4K page size only. */ return VINF_SUCCESS; } /** * Read the DNCTRL (Device Notification Control) register. */ static VBOXSTRICTRC HcDevNotifyCtrl_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdDevNotifyCtrl); *pu32Value = pThis->dnctrl; return VINF_SUCCESS; } /** * Write the DNCTRL (Device Notification Control) register. */ static VBOXSTRICTRC HcDevNotifyCtrl_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrDevNotifyCtrl); pThis->dnctrl = val; return VINF_SUCCESS; } /** * Read the low dword of CRCR (Command Ring Control) register. */ static VBOXSTRICTRC HcCmdRingCtlLo_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdCmdRingCtlLo); *pu32Value = (uint32_t)(pThis->crcr & XHCI_CRCR_RD_MASK); return VINF_SUCCESS; } /** * Write the low dword of CRCR (Command Ring Control) register. */ static VBOXSTRICTRC HcCmdRingCtlLo_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(iReg); STAM_COUNTER_INC(&pThis->StatWrCmdRingCtlLo); /* NB: A dword write to the low half clears the high half. */ /* Sticky Abort/Stop bits - update register and kick the worker thread. */ if (val & (XHCI_CRCR_CA | XHCI_CRCR_CS)) { pThis->crcr |= val & (XHCI_CRCR_CA | XHCI_CRCR_CS); xhciKickWorker(pDevIns, pThis, XHCI_JOB_PROCESS_CMDRING, 0); } /* * If the command ring is not running, the internal dequeue pointer * and the cycle state is updated. Otherwise the update is ignored. */ if (!(pThis->crcr & XHCI_CRCR_CRR)) { pThis->crcr = (pThis->crcr & ~XHCI_CRCR_UPD_MASK) | (val & XHCI_CRCR_UPD_MASK); /// @todo cmdr_dqp: atomic? volatile? pThis->cmdr_dqp = pThis->crcr & XHCI_CRCR_ADDR_MASK; pThis->cmdr_ccs = pThis->crcr & XHCI_CRCR_RCS; } return VINF_SUCCESS; } /** * Read the high dword of CRCR (Command Ring Control) register. */ static VBOXSTRICTRC HcCmdRingCtlHi_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdCmdRingCtlHi); *pu32Value = pThis->crcr >> 32; return VINF_SUCCESS; } /** * Write the high dword of CRCR (Command Ring Control) register. */ static VBOXSTRICTRC HcCmdRingCtlHi_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrCmdRingCtlHi); if (!(pThis->crcr & XHCI_CRCR_CRR)) { pThis->crcr = ((uint64_t)val << 32) | (uint32_t)pThis->crcr; pThis->cmdr_dqp = pThis->crcr & XHCI_CRCR_ADDR_MASK; } return VINF_SUCCESS; } /** * Read the low dword of the DCBAAP register. */ static VBOXSTRICTRC HcDevCtxBAAPLo_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdDevCtxBaapLo); *pu32Value = (uint32_t)pThis->dcbaap; return VINF_SUCCESS; } /** * Write the low dword of the DCBAAP register. */ static VBOXSTRICTRC HcDevCtxBAAPLo_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrDevCtxBaapLo); /* NB: A dword write to the low half clears the high half. */ /// @todo Should this mask off the reserved bits? pThis->dcbaap = val; return VINF_SUCCESS; } /** * Read the high dword of the DCBAAP register. */ static VBOXSTRICTRC HcDevCtxBAAPHi_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdDevCtxBaapHi); *pu32Value = pThis->dcbaap >> 32; return VINF_SUCCESS; } /** * Write the high dword of the DCBAAP register. */ static VBOXSTRICTRC HcDevCtxBAAPHi_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrDevCtxBaapHi); pThis->dcbaap = ((uint64_t)val << 32) | (uint32_t)pThis->dcbaap; return VINF_SUCCESS; } /** * Read the CONFIG register. */ static VBOXSTRICTRC HcConfig_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatRdConfig); *pu32Value = pThis->config; return VINF_SUCCESS; } /** * Write the CONFIG register. */ static VBOXSTRICTRC HcConfig_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t val) { RT_NOREF(pDevIns, iReg); STAM_COUNTER_INC(&pThis->StatWrConfig); /// @todo side effects? pThis->config = val; return VINF_SUCCESS; } /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /* xHCI Port Register access routines */ /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /** * Read the PORTSC register. */ static VBOXSTRICTRC HcPortStatusCtrl_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t *pu32Value) { PXHCIHUBPORT p = &pThis->aPorts[iPort]; RT_NOREF(pDevIns); STAM_COUNTER_INC(&pThis->StatRdPortStatusCtrl); Assert(!(pThis->hcc_params & XHCI_HCC_PPC)); if (p->portsc & XHCI_PORT_PR) { /// @todo Probably not needed? #ifdef IN_RING3 Log2(("HcPortStatusCtrl_r(): port %u: Impatient guest!\n", IDX_TO_ID(iPort))); RTThreadYield(); #else Log2(("HcPortStatusCtrl_r: yield -> VINF_IOM_R3_MMIO_READ\n")); return VINF_IOM_R3_MMIO_READ; #endif } /* The WPR bit is always read as zero. */ *pu32Value = p->portsc & ~XHCI_PORT_WPR; return VINF_SUCCESS; } /** * Write the PORTSC register. */ static VBOXSTRICTRC HcPortStatusCtrl_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t val) { PXHCIHUBPORT p = &pThis->aPorts[iPort]; #ifdef IN_RING3 PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); #endif STAM_COUNTER_INC(&pThis->StatWrPortStatusCtrl); /* If no register change results, we're done. */ if ( p->portsc == val && !(val & XHCI_PORT_CHANGE_MASK)) return VINF_SUCCESS; /* If port state is not changing (status bits are being cleared etc.), we can do it in any context. * This case occurs when the R/W control bits are not changing and the W1C bits are not being set. */ if ( (p->portsc & XHCI_PORT_CTL_RW_MASK) == (val & XHCI_PORT_CTL_RW_MASK) && !(val & XHCI_PORT_CTL_W1_MASK)) { Log(("HcPortStatusCtrl_w port %u (status only): old=%x new=%x\n", IDX_TO_ID(iPort), p->portsc, val)); if (val & XHCI_PORT_RESERVED) Log(("Reserved bits set %x!\n", val & XHCI_PORT_RESERVED)); /* A write to clear any of the change notification bits. */ if (val & XHCI_PORT_CHANGE_MASK) p->portsc &= ~(val & XHCI_PORT_CHANGE_MASK); /* Update the wake mask. */ p->portsc &= ~XHCI_PORT_WAKE_MASK; p->portsc |= val & XHCI_PORT_WAKE_MASK; /* There may still be differences between 'portsc' and 'val' in * the R/O bits; that does not count as a register change and is fine. * The RW1x control bits are not considered either since those only matter * if set in 'val'. Since the LWS bit was not set, the PLS bits should not * be compared. The port change bits may differ as well since the guest * could be clearing only some or none of them. */ AssertMsg(!(val & XHCI_PORT_CTL_W1_MASK), ("val=%X\n", val)); AssertMsg(!(val & XHCI_PORT_LWS), ("val=%X\n", val)); AssertMsg((val & ~(XHCI_PORT_RO_MASK|XHCI_PORT_CTL_W1_MASK|XHCI_PORT_PLS_MASK|XHCI_PORT_CHANGE_MASK)) == (p->portsc & ~(XHCI_PORT_RO_MASK|XHCI_PORT_CTL_W1_MASK|XHCI_PORT_PLS_MASK|XHCI_PORT_CHANGE_MASK)), ("val=%X vs. portsc=%X\n", val, p->portsc)); return VINF_SUCCESS; } /* Actual USB port state changes need to be done in R3. */ #ifdef IN_RING3 Log(("HcPortStatusCtrl_w port %u: old=%x new=%x\n", IDX_TO_ID(iPort), p->portsc, val)); Assert(!(pThis->hcc_params & XHCI_HCC_PPC)); Assert(p->portsc & XHCI_PORT_PP); if (val & XHCI_PORT_RESERVED) Log(("Reserved bits set %x!\n", val & XHCI_PORT_RESERVED)); /* A write to clear any of the change notification bits. */ if (val & XHCI_PORT_CHANGE_MASK) p->portsc &= ~(val & XHCI_PORT_CHANGE_MASK); /* Writing the Port Enable/Disable bit as 1 disables a port; it cannot be * enabled that way. Writing the bit as zero does does nothing. */ if ((val & XHCI_PORT_PED) && (p->portsc & XHCI_PORT_PED)) { p->portsc &= ~XHCI_PORT_PED; Log(("HcPortStatusCtrl_w(): port %u: DISABLE\n", IDX_TO_ID(iPort))); } if (!(val & XHCI_PORT_PP) && (p->portsc & XHCI_PORT_PP)) { p->portsc &= ~XHCI_PORT_PP; Log(("HcPortStatusCtrl_w(): port %u: POWER OFF\n", IDX_TO_ID(iPort))); } /* Warm Port Reset - USB3 only; see 4.19.5.1. */ if ((val & XHCI_PORT_WPR) && IS_USB3_PORT_IDX_SHR(pThis, iPort)) { Log(("HcPortStatusCtrl_w(): port %u: WARM RESET\n", IDX_TO_ID(iPort))); if (xhciR3RhPortSetIfConnected(pThis, iPort, XHCI_PORT_PR | XHCI_PORT_WPR)) { PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, iPort); VUSBIRhDevReset(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort), false /* don't reset on linux */, NULL /* sync */, NULL, PDMDevHlpGetVM(pDevIns)); xhciR3PortResetDone(pDevIns, iPort); } } if (val & XHCI_PORT_PR) { Log(("HcPortStatusCtrl_w(): port %u: RESET\n", IDX_TO_ID(iPort))); if (xhciR3RhPortSetIfConnected(pThis, iPort, XHCI_PORT_PR)) { PXHCIROOTHUBR3 pRh = GET_PORT_PRH(pThisCC, iPort); VUSBIRhDevReset(pRh->pIRhConn, GET_VUSB_PORT_FROM_XHCI_PORT(pRh, iPort), false /* don't reset on linux */, NULL /* sync */, NULL, PDMDevHlpGetVM(pDevIns)); xhciR3PortResetDone(pDevIns, iPort); } else if (p->portsc & XHCI_PORT_PR) { /* the guest is getting impatient. */ Log2(("HcPortStatusCtrl_w(): port %u: Impatient guest!\n", IDX_TO_ID(iPort))); RTThreadYield(); } } /// @todo Do some sanity checking on the new link state? /* Update the link state if requested. */ if (val & XHCI_PORT_LWS) { unsigned old_pls; unsigned new_pls; old_pls = (p->portsc & XHCI_PORT_PLS_MASK) >> XHCI_PORT_PLS_SHIFT; new_pls = (val & XHCI_PORT_PLS_MASK) >> XHCI_PORT_PLS_SHIFT; p->portsc &= ~XHCI_PORT_PLS_MASK; p->portsc |= new_pls << XHCI_PORT_PLS_SHIFT; Log2(("HcPortStatusCtrl_w(): port %u: Updating link state from %u to %u\n", IDX_TO_ID(iPort), old_pls, new_pls)); /* U3->U0 (USB3) and Resume->U0 transitions set the PLC flag. See 4.15.2.2 */ if (new_pls == XHCI_PLS_U0) if (old_pls == XHCI_PLS_U3 || old_pls == XHCI_PLS_RESUME) { p->portsc |= XHCI_PORT_PLC; xhciR3GenPortChgEvent(pDevIns, pThis, IDX_TO_ID(iPort)); } } /// @todo which other bits can we safely ignore? /* Update the wake mask. */ p->portsc &= ~XHCI_PORT_WAKE_MASK; p->portsc |= val & XHCI_PORT_WAKE_MASK; return VINF_SUCCESS; #else /* !IN_RING3 */ RT_NOREF(pDevIns); return VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } /** * Read the PORTPMSC register. */ static VBOXSTRICTRC HcPortPowerMgmt_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t *pu32Value) { PXHCIHUBPORT p = &pThis->aPorts[iPort]; RT_NOREF(pDevIns); STAM_COUNTER_INC(&pThis->StatRdPortPowerMgmt); *pu32Value = p->portpm; return VINF_SUCCESS; } /** * Write the PORTPMSC register. */ static VBOXSTRICTRC HcPortPowerMgmt_w(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t val) { PXHCIHUBPORT p = &pThis->aPorts[iPort]; RT_NOREF(pDevIns); STAM_COUNTER_INC(&pThis->StatWrPortPowerMgmt); /// @todo anything to do here? p->portpm = val; return VINF_SUCCESS; } /** * Read the PORTLI register. */ static VBOXSTRICTRC HcPortLinkInfo_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t *pu32Value) { PXHCIHUBPORT p = &pThis->aPorts[iPort]; RT_NOREF(pDevIns); STAM_COUNTER_INC(&pThis->StatRdPortLinkInfo); /* The link information is R/O; we probably can't get it at all. If we * do maintain it for USB3 ports, we also have to reset it (5.4.10). */ *pu32Value = p->portli; return VINF_SUCCESS; } /** * Read the reserved register. Linux likes to do this. */ static VBOXSTRICTRC HcPortRsvd_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iPort, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis, iPort); STAM_COUNTER_INC(&pThis->StatRdPortRsvd); *pu32Value = 0; return VINF_SUCCESS; } /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /* xHCI Interrupter Register access routines */ /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /** * Read the IMAN register. */ static VBOXSTRICTRC HcIntrMgmt_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdIntrMgmt); *pu32Value = ip->iman; return VINF_SUCCESS; } /** * Write the IMAN register. */ static VBOXSTRICTRC HcIntrMgmt_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { uint32_t uNew = val & XHCI_IMAN_VALID_MASK; STAM_COUNTER_INC(&pThis->StatWrIntrMgmt); if (val & ~XHCI_IMAN_VALID_MASK) Log(("Reserved bits set %x!\n", val & ~XHCI_IMAN_VALID_MASK)); /* If the Interrupt Pending (IP) bit is set, writing one clears it. * Note that when MSIs are enabled, the bit auto-clears almost immediately. */ if (val & ip->iman & XHCI_IMAN_IP) { Log2(("clearing interrupt on interrupter %u\n", ip->index)); PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_LOW); STAM_COUNTER_INC(&pThis->StatIntrsCleared); uNew &= ~XHCI_IMAN_IP; } else { /* Preserve the current IP bit. */ uNew = (uNew & ~XHCI_IMAN_IP) | (ip->iman & XHCI_IMAN_IP); } /* Trigger an interrupt if the IP bit is set and IE transitions from 0 to 1. */ if ( (uNew & XHCI_IMAN_IE) && !(ip->iman & XHCI_IMAN_IE) && (ip->iman & XHCI_IMAN_IP) && (pThis->cmd & XHCI_CMD_INTE)) PDMDevHlpPCISetIrq(pDevIns, 0, PDM_IRQ_LEVEL_HIGH); ip->iman = uNew; return VINF_SUCCESS; } /** * Read the IMOD register. */ static VBOXSTRICTRC HcIntrMod_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdIntrMod); *pu32Value = ip->imod; return VINF_SUCCESS; } /** * Write the IMOD register. */ static VBOXSTRICTRC HcIntrMod_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatWrIntrMod); /// @todo Does writing a zero to IMODC/IMODI potentially trigger /// an interrupt? ip->imod = val; return VINF_SUCCESS; } /** * Read the ERSTSZ register. */ static VBOXSTRICTRC HcEvtRSTblSize_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdEvtRstblSize); *pu32Value = ip->erstsz; return VINF_SUCCESS; } /** * Write the ERSTSZ register. */ static VBOXSTRICTRC HcEvtRSTblSize_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatWrEvtRstblSize); if (val & ~XHCI_ERSTSZ_MASK) Log(("Reserved bits set %x!\n", val & ~XHCI_ERSTSZ_MASK)); if (val > XHCI_ERSTMAX) Log(("ERSTSZ (%u) > ERSTMAX (%u)!\n", val, XHCI_ERSTMAX)); /* Enforce the maximum size. */ ip->erstsz = RT_MIN(val, XHCI_ERSTMAX); if (!ip->index && !ip->erstsz) /* Windows 8 does this temporarily. Thanks guys... */ Log(("ERSTSZ is zero for primary interrupter: undefined behavior!\n")); return VINF_SUCCESS; } /** * Read the reserved register. Linux likes to do this. */ static VBOXSTRICTRC HcEvtRsvd_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis, ip); STAM_COUNTER_INC(&pThis->StatRdEvtRsvd); *pu32Value = 0; return VINF_SUCCESS; } /** * Read the low dword of the ERSTBA register. */ static VBOXSTRICTRC HcEvtRSTblBaseLo_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdEvtRsTblBaseLo); *pu32Value = (uint32_t)ip->erstba; return VINF_SUCCESS; } /** * Write the low dword of the ERSTBA register. */ static VBOXSTRICTRC HcEvtRSTblBaseLo_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { STAM_COUNTER_INC(&pThis->StatWrEvtRsTblBaseLo); if (val & ~pThis->erst_addr_mask) Log(("Reserved bits set %x!\n", val & ~pThis->erst_addr_mask)); /* NB: A dword write to the low half clears the high half. */ ip->erstba = val & pThis->erst_addr_mask; /* Initialize the internal event ring state. */ ip->evtr_pcs = 1; ip->erst_idx = 0; ip->ipe = false; /* Fetch the first ERST entry now. Not later! That "sets the Event Ring * State Machine:EREP Advancement to the Start state" */ xhciFetchErstEntry(pDevIns, pThis, ip); return VINF_SUCCESS; } /** * Read the high dword of the ERSTBA register. */ static VBOXSTRICTRC HcEvtRSTblBaseHi_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdEvtRsTblBaseHi); *pu32Value = (uint32_t)(ip->erstba >> 32); return VINF_SUCCESS; } /** * Write the high dword of the ERSTBA register. */ static VBOXSTRICTRC HcEvtRSTblBaseHi_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { STAM_COUNTER_INC(&pThis->StatWrEvtRsTblBaseHi); /* Update the high dword while preserving the low one. */ ip->erstba = ((uint64_t)val << 32) | (uint32_t)ip->erstba; /* We shouldn't be doing this when AC64 is set. But High Sierra * ignores that because it "knows" the xHC handles 64-bit addressing, * so we're going to assume that OSes are not going to write junk into * ERSTBAH when they don't see AC64 set. */ xhciFetchErstEntry(pDevIns, pThis, ip); return VINF_SUCCESS; } /** * Read the low dword of the ERDP register. */ static VBOXSTRICTRC HcEvtRingDeqPtrLo_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pThis); STAM_COUNTER_INC(&pThis->StatRdEvtRingDeqPtrLo); /* Lock to avoid incomplete update being seen. */ int rc = PDMDevHlpCritSectEnter(pDevIns, &ip->lock, VINF_IOM_R3_MMIO_READ); if (rc != VINF_SUCCESS) return rc; *pu32Value = (uint32_t)ip->erdp; PDMDevHlpCritSectLeave(pDevIns, &ip->lock); return VINF_SUCCESS; } /** * Write the low dword of the ERDP register. */ static VBOXSTRICTRC HcEvtRingDeqPtrLo_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { uint64_t old_erdp; uint64_t new_erdp; STAM_COUNTER_INC(&pThis->StatWrEvtRingDeqPtrLo); /* NB: A dword write to the low half clears the high half. * The high dword should be ignored when AC64=0, but High Sierra * does not care what we report. Therefore a write to the low dword * handles all the control bits and a write to the high dword still * updates the ERDP address. On a 64-bit host, there must be a * back-to-back low dword + high dword access. We are going to boldly * assume that the guest will not place the event ring across the 4G * boundary (i.e. storing the bottom part in the firmware ROM). */ int rc = PDMDevHlpCritSectEnter(pDevIns, &ip->lock, VINF_IOM_R3_MMIO_WRITE); if (rc != VINF_SUCCESS) return rc; old_erdp = ip->erdp & XHCI_ERDP_ADDR_MASK; /* Remember old ERDP address. */ new_erdp = ip->erdp & XHCI_ERDP_EHB; /* Preserve EHB */ /* If the Event Handler Busy (EHB) bit is set, writing a one clears it. */ if (val & ip->erdp & XHCI_ERDP_EHB) { Log2(("clearing EHB on interrupter %p\n", ip)); new_erdp &= ~XHCI_ERDP_EHB; } /// @todo Check if this might inadvertently set EHB! new_erdp |= val & ~XHCI_ERDP_EHB; ip->erdp = new_erdp; /* Check if the ERDP changed. See workaround below. */ if (old_erdp != (new_erdp & XHCI_ERDP_ADDR_MASK)) ip->erdp_rewrites = 0; else ++ip->erdp_rewrites; LogFlowFunc(("ERDP: %RGp, EREP: %RGp\n", (RTGCPHYS)(ip->erdp & XHCI_ERDP_ADDR_MASK), (RTGCPHYS)ip->erep)); if ((ip->erdp & XHCI_ERDP_ADDR_MASK) == ip->erep) { Log2(("Event Ring empty, clearing IPE\n")); ip->ipe = false; } else if (ip->ipe && (val & XHCI_ERDP_EHB)) { /* EHB is being cleared but the ring isn't empty and IPE is still set. */ if (RT_UNLIKELY(old_erdp == (new_erdp & XHCI_ERDP_ADDR_MASK) && ip->erdp_rewrites > 2)) { /* If guest does not advance the ERDP, do not trigger an interrupt * again. Workaround for buggy xHCI initialization in Linux 4.6 which * enables interrupts before setting up internal driver state. That * leads to the guest IRQ handler not actually handling events and * infinitely re-triggering interrupts. However, only do this if the * guest has already written the same ERDP value a few times. The Intel * xHCI driver always writes the same ERDP twice and we must still * re-trigger interrupts in that case. * See @bugref{8546}. */ Log2(("Event Ring not empty, ERDP not advanced, not re-triggering interrupt!\n")); ip->ipe = false; } else { Log2(("Event Ring not empty, re-triggering interrupt\n")); xhciSetIntr(pDevIns, pThis, ip); } } PDMDevHlpCritSectLeave(pDevIns, &ip->lock); return VINF_SUCCESS; } /** * Read the high dword of the ERDP register. */ static VBOXSTRICTRC HcEvtRingDeqPtrHi_r(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis); STAM_COUNTER_INC(&pThis->StatRdEvtRingDeqPtrHi); *pu32Value = (uint32_t)(ip->erdp >> 32); return VINF_SUCCESS; } /** * Write the high dword of the ERDP register. */ static VBOXSTRICTRC HcEvtRingDeqPtrHi_w(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR ip, uint32_t val) { RT_NOREF(pThis); STAM_COUNTER_INC(&pThis->StatWrEvtRingDeqPtrHi); /* See HcEvtRingDeqPtrLo_w for semantics. */ int rc = PDMDevHlpCritSectEnter(pDevIns, &ip->lock, VINF_IOM_R3_MMIO_WRITE); if (rc != VINF_SUCCESS) return rc; /* Update the high dword while preserving the low one. */ ip->erdp = ((uint64_t)val << 32) | (uint32_t)ip->erdp; PDMDevHlpCritSectLeave(pDevIns, &ip->lock); return VINF_SUCCESS; } /** * xHCI register access routines. */ typedef struct { const char *pszName; VBOXSTRICTRC (*pfnRead )(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t *pu32Value); VBOXSTRICTRC (*pfnWrite)(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t iReg, uint32_t u32Value); } XHCIREGACC; /** * xHCI interrupter register access routines. */ typedef struct { const char *pszName; VBOXSTRICTRC (*pfnIntrRead )(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR pIntr, uint32_t *pu32Value); VBOXSTRICTRC (*pfnIntrWrite)(PPDMDEVINS pDevIns, PXHCI pThis, PXHCIINTRPTR pIntr, uint32_t u32Value); } XHCIINTRREGACC; /** * Operational registers descriptor table. */ static const XHCIREGACC g_aOpRegs[] = { {"USBCMD" , HcUsbcmd_r, HcUsbcmd_w }, {"USBSTS", HcUsbsts_r, HcUsbsts_w }, {"PAGESIZE", HcPagesize_r, NULL }, {"Unused", NULL, NULL }, {"Unused", NULL, NULL }, {"DNCTRL", HcDevNotifyCtrl_r, HcDevNotifyCtrl_w }, {"CRCRL", HcCmdRingCtlLo_r, HcCmdRingCtlLo_w }, {"CRCRH", HcCmdRingCtlHi_r, HcCmdRingCtlHi_w }, {"Unused", NULL, NULL }, {"Unused", NULL, NULL }, {"Unused", NULL, NULL }, {"Unused", NULL, NULL }, {"DCBAAPL", HcDevCtxBAAPLo_r, HcDevCtxBAAPLo_w }, {"DCBAAPH", HcDevCtxBAAPHi_r, HcDevCtxBAAPHi_w }, {"CONFIG", HcConfig_r, HcConfig_w } }; /** * Port registers descriptor table (for a single port). The number of ports * and their associated registers depends on the NDP value. */ static const XHCIREGACC g_aPortRegs[] = { /* */ {"PORTSC", HcPortStatusCtrl_r, HcPortStatusCtrl_w }, {"PORTPMSC", HcPortPowerMgmt_r, HcPortPowerMgmt_w }, {"PORTLI", HcPortLinkInfo_r, NULL }, {"Reserved", HcPortRsvd_r, NULL } }; AssertCompile(RT_ELEMENTS(g_aPortRegs) * sizeof(uint32_t) == 0x10); /** * Interrupter runtime registers descriptor table (for a single interrupter). * The number of interrupters depends on the XHCI_NINTR value. */ static const XHCIINTRREGACC g_aIntrRegs[] = { {"IMAN", HcIntrMgmt_r, HcIntrMgmt_w }, {"IMOD", HcIntrMod_r, HcIntrMod_w }, {"ERSTSZ", HcEvtRSTblSize_r, HcEvtRSTblSize_w }, {"Reserved", HcEvtRsvd_r, NULL }, {"ERSTBAL", HcEvtRSTblBaseLo_r, HcEvtRSTblBaseLo_w }, {"ERSTBAH", HcEvtRSTblBaseHi_r, HcEvtRSTblBaseHi_w }, {"ERDPL", HcEvtRingDeqPtrLo_r, HcEvtRingDeqPtrLo_w }, {"ERDPH", HcEvtRingDeqPtrHi_r, HcEvtRingDeqPtrHi_w } }; AssertCompile(RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t) == 0x20); /** * Read the MFINDEX register. */ static int HcMfIndex_r(PPDMDEVINS pDevIns, PXHCI pThis, uint32_t *pu32Value) { uint64_t uNanoTime; uint64_t uMfTime; STAM_COUNTER_INC(&pThis->StatRdMfIndex); /* MFINDEX increments once per micro-frame, i.e. 8 times per millisecond * or every 125us. The resolution is only 14 bits, meaning that MFINDEX * wraps around after it reaches 0x3FFF (16383) or every 2048 milliseconds. */ /// @todo MFINDEX should only be running when R/S is set. May not matter. uNanoTime = PDMDevHlpTimerGet(pDevIns, pThis->hWrapTimer); uMfTime = uNanoTime / 125000; *pu32Value = uMfTime & 0x3FFF; Log2(("MFINDEX read: %u\n", *pu32Value)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMMMIONEWREAD, Read a MMIO register.} * * @note We only accept 32-bit writes that are 32-bit aligned. */ static DECLCALLBACK(VBOXSTRICTRC) xhciMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); const uint32_t offReg = (uint32_t)off; uint32_t * const pu32 = (uint32_t *)pv; uint32_t iReg; RT_NOREF(pvUser); Log2(("xhciRead %RGp (offset %04X) size=%d\n", off, offReg, cb)); if (offReg < XHCI_CAPS_REG_SIZE) { switch (offReg) { case 0x0: /* CAPLENGTH + HCIVERSION */ *pu32 = (pThis->hci_version << 16) | pThis->cap_length; break; case 0x4: /* HCSPARAMS1 (structural) */ Log2(("HCSPARAMS1 read\n")); *pu32 = pThis->hcs_params1; break; case 0x8: /* HCSPARAMS2 (structural) */ Log2(("HCSPARAMS2 read\n")); *pu32 = pThis->hcs_params2; break; case 0xC: /* HCSPARAMS3 (structural) */ Log2(("HCSPARAMS3 read\n")); *pu32 = pThis->hcs_params3; break; case 0x10: /* HCCPARAMS1 (caps) */ Log2(("HCCPARAMS1 read\n")); *pu32 = pThis->hcc_params; break; case 0x14: /* DBOFF (doorbell offset) */ Log2(("DBOFF read\n")); *pu32 = pThis->dbell_off; break; case 0x18: /* RTSOFF (run-time register offset) */ Log2(("RTSOFF read\n")); *pu32 = pThis->rts_off; break; case 0x1C: /* HCCPARAMS2 (caps) */ Log2(("HCCPARAMS2 read\n")); *pu32 = 0; /* xHCI 1.1 only */ break; default: Log(("xHCI: Trying to read unknown capability register %u!\n", offReg)); STAM_COUNTER_INC(&pThis->StatRdUnknown); return VINF_IOM_MMIO_UNUSED_FF; } STAM_COUNTER_INC(&pThis->StatRdCaps); Log2(("xhciRead %RGp size=%d -> val=%x\n", off, cb, *pu32)); return VINF_SUCCESS; } /* * Validate the access (in case of IOM bugs or incorrect MMIO registration). */ AssertMsgReturn(cb == sizeof(uint32_t), ("IOM bug? %RGp LB %d\n", off, cb), VINF_IOM_MMIO_UNUSED_FF /* No idea what really would happen... */); /** r=bird: If you don't have an idea what would happen for non-dword reads, * then the flags passed to IOM when creating the MMIO region are doubtful, right? */ AssertMsgReturn(!(off & 0x3), ("IOM bug? %RGp LB %d\n", off, cb), VINF_IOM_MMIO_UNUSED_FF); /* * Validate the register and call the read operator. */ VBOXSTRICTRC rcStrict = VINF_IOM_MMIO_UNUSED_FF; if (offReg >= XHCI_DOORBELL_OFFSET) { /* The doorbell registers are effectively write-only and return 0 when read. */ iReg = (offReg - XHCI_DOORBELL_OFFSET) >> 2; if (iReg < XHCI_NDS) { STAM_COUNTER_INC(&pThis->StatRdDoorBell); *pu32 = 0; rcStrict = VINF_SUCCESS; Log2(("xhciRead: DBellReg (DB %u) %RGp size=%d -> val=%x (rc=%d)\n", iReg, off, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } else if (offReg >= XHCI_RTREG_OFFSET) { /* Run-time registers. */ Assert(offReg < XHCI_DOORBELL_OFFSET); /* The MFINDEX register would be interrupter -1... */ if (offReg < XHCI_RTREG_OFFSET + RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t)) { if (offReg == XHCI_RTREG_OFFSET) rcStrict = HcMfIndex_r(pDevIns, pThis, pu32); else { /* The silly Linux xHCI driver reads the reserved registers. */ STAM_COUNTER_INC(&pThis->StatRdUnknown); *pu32 = 0; rcStrict = VINF_SUCCESS; } } else { Assert((offReg - XHCI_RTREG_OFFSET) / (RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t)) > 0); const uint32_t iIntr = (offReg - XHCI_RTREG_OFFSET) / (RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t)) - 1; if (iIntr < XHCI_NINTR) { iReg = (offReg >> 2) & (RT_ELEMENTS(g_aIntrRegs) - 1); const XHCIINTRREGACC *pReg = &g_aIntrRegs[iReg]; if (pReg->pfnIntrRead) { PXHCIINTRPTR pIntr = &pThis->aInterrupters[iIntr]; rcStrict = pReg->pfnIntrRead(pDevIns, pThis, pIntr, pu32); Log2(("xhciRead: IntrReg (intr %u): %RGp (%s) size=%d -> val=%x (rc=%d)\n", iIntr, off, pReg->pszName, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } } } else if (offReg >= XHCI_XECP_OFFSET) { /* Extended Capability registers. */ Assert(offReg < XHCI_RTREG_OFFSET); uint32_t offXcp = offReg - XHCI_XECP_OFFSET; if (offXcp + cb <= RT_MIN(pThis->cbExtCap, sizeof(pThis->abExtCap))) /* can't trust cbExtCap in ring-0. */ { *pu32 = *(uint32_t *)&pThis->abExtCap[offXcp]; rcStrict = VINF_SUCCESS; } Log2(("xhciRead: ExtCapReg %RGp size=%d -> val=%x (rc=%d)\n", off, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } else { /* Operational registers (incl. port registers). */ Assert(offReg < XHCI_XECP_OFFSET); iReg = (offReg - XHCI_CAPS_REG_SIZE) >> 2; if (iReg < RT_ELEMENTS(g_aOpRegs)) { const XHCIREGACC *pReg = &g_aOpRegs[iReg]; if (pReg->pfnRead) { rcStrict = pReg->pfnRead(pDevIns, pThis, iReg, pu32); Log2(("xhciRead: OpReg %RGp (%s) size=%d -> val=%x (rc=%d)\n", off, pReg->pszName, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } else if (iReg >= (XHCI_PORT_REG_OFFSET >> 2)) { iReg -= (XHCI_PORT_REG_OFFSET >> 2); const uint32_t iPort = iReg / RT_ELEMENTS(g_aPortRegs); if (iPort < XHCI_NDP_CFG(pThis)) { iReg = (offReg >> 2) & (RT_ELEMENTS(g_aPortRegs) - 1); Assert(iReg < RT_ELEMENTS(g_aPortRegs)); const XHCIREGACC *pReg = &g_aPortRegs[iReg]; if (pReg->pfnRead) { rcStrict = pReg->pfnRead(pDevIns, pThis, iPort, pu32); Log2(("xhciRead: PortReg (port %u): %RGp (%s) size=%d -> val=%x (rc=%d)\n", IDX_TO_ID(iPort), off, pReg->pszName, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } } } if (rcStrict != VINF_IOM_MMIO_UNUSED_FF) { /* likely */ } else { STAM_COUNTER_INC(&pThis->StatRdUnknown); Log(("xHCI: Trying to read unimplemented register at offset %04X!\n", offReg)); } return rcStrict; } /** * @callback_method_impl{FNIOMMMIONEWWRITE, Write to a MMIO register.} * * @note We only accept 32-bit writes that are 32-bit aligned. */ static DECLCALLBACK(VBOXSTRICTRC) xhciMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); const uint32_t offReg = (uint32_t)off; uint32_t * const pu32 = (uint32_t *)pv; uint32_t iReg; RT_NOREF(pvUser); Log2(("xhciWrite %RGp (offset %04X) %x size=%d\n", off, offReg, *(uint32_t *)pv, cb)); if (offReg < XHCI_CAPS_REG_SIZE) { /* These are read-only */ Log(("xHCI: Trying to write to register %u!\n", offReg)); STAM_COUNTER_INC(&pThis->StatWrUnknown); return VINF_SUCCESS; } /* * Validate the access (in case of IOM bug or incorrect MMIO registration). */ AssertMsgReturn(cb == sizeof(uint32_t), ("IOM bug? %RGp LB %d\n", off, cb), VINF_SUCCESS); AssertMsgReturn(!(off & 0x3), ("IOM bug? %RGp LB %d\n", off, cb), VINF_SUCCESS); /* * Validate the register and call the write operator. */ VBOXSTRICTRC rcStrict = VINF_IOM_MMIO_UNUSED_FF; if (offReg >= XHCI_DOORBELL_OFFSET) { /* Let's spring into action... as long as the xHC is running. */ iReg = (offReg - XHCI_DOORBELL_OFFSET) >> 2; if ((pThis->cmd & XHCI_CMD_RS) && iReg < XHCI_NDS) { if (iReg == 0) { /* DB0 aka Command Ring. */ STAM_COUNTER_INC(&pThis->StatWrDoorBell0); if (*pu32 == 0) { /* Set the Command Ring state to Running if not already set. */ if (!(pThis->crcr & XHCI_CRCR_CRR)) { Log(("Command ring entered Running state\n")); ASMAtomicOrU64(&pThis->crcr, XHCI_CRCR_CRR); } xhciKickWorker(pDevIns, pThis, XHCI_JOB_PROCESS_CMDRING, 0); } else Log2(("Ignoring DB0 write with value %X!\n", *pu32)); } else { /* Device context doorbell. Do basic parameter checking to avoid * waking up the worker thread needlessly. */ STAM_COUNTER_INC(&pThis->StatWrDoorBellN); uint8_t uDBTarget = *pu32 & XHCI_DB_TGT_MASK; Assert(uDBTarget < 32); /// @todo Report an error? Or just ignore? if (uDBTarget < 32) { Log2(("Ring bell for slot %u, DCI %u\n", iReg, uDBTarget)); ASMAtomicOrU32(&pThis->aBellsRung[ID_TO_IDX(iReg)], 1 << uDBTarget); xhciKickWorker(pDevIns, pThis, XHCI_JOB_DOORBELL, *pu32); } else Log2(("Ignoring DB%u write with bad target %u!\n", iReg, uDBTarget)); } rcStrict = VINF_SUCCESS; Log2(("xhciWrite: DBellReg (DB %u) %RGp size=%d <- val=%x (rc=%d)\n", iReg, off, cb, *(uint32_t *)pv, VBOXSTRICTRC_VAL(rcStrict))); } } else if (offReg >= XHCI_RTREG_OFFSET) { /* Run-time registers. */ Assert(offReg < XHCI_DOORBELL_OFFSET); /* NB: The MFINDEX register is R/O. */ if (offReg >= XHCI_RTREG_OFFSET + (RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t))) { Assert((offReg - XHCI_RTREG_OFFSET) / (RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t)) > 0); const uint32_t iIntr = (offReg - XHCI_RTREG_OFFSET) / (RT_ELEMENTS(g_aIntrRegs) * sizeof(uint32_t)) - 1; if (iIntr < XHCI_NINTR) { iReg = (offReg >> 2) & (RT_ELEMENTS(g_aIntrRegs) - 1); const XHCIINTRREGACC *pReg = &g_aIntrRegs[iReg]; if (pReg->pfnIntrWrite) { PXHCIINTRPTR pIntr = &pThis->aInterrupters[iIntr]; rcStrict = pReg->pfnIntrWrite(pDevIns, pThis, pIntr, *pu32); Log2(("xhciWrite: IntrReg (intr %u): %RGp (%s) size=%d <- val=%x (rc=%d)\n", iIntr, off, pReg->pszName, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } } } else { /* Operational registers (incl. port registers). */ Assert(offReg < XHCI_RTREG_OFFSET); iReg = (offReg - pThis->cap_length) >> 2; if (iReg < RT_ELEMENTS(g_aOpRegs)) { const XHCIREGACC *pReg = &g_aOpRegs[iReg]; if (pReg->pfnWrite) { rcStrict = pReg->pfnWrite(pDevIns, pThis, iReg, *(uint32_t *)pv); Log2(("xhciWrite: OpReg %RGp (%s) size=%d <- val=%x (rc=%d)\n", off, pReg->pszName, cb, *(uint32_t *)pv, VBOXSTRICTRC_VAL(rcStrict))); } } else if (iReg >= (XHCI_PORT_REG_OFFSET >> 2)) { iReg -= (XHCI_PORT_REG_OFFSET >> 2); const uint32_t iPort = iReg / RT_ELEMENTS(g_aPortRegs); if (iPort < XHCI_NDP_CFG(pThis)) { iReg = (offReg >> 2) & (RT_ELEMENTS(g_aPortRegs) - 1); Assert(iReg < RT_ELEMENTS(g_aPortRegs)); const XHCIREGACC *pReg = &g_aPortRegs[iReg]; if (pReg->pfnWrite) { rcStrict = pReg->pfnWrite(pDevIns, pThis, iPort, *pu32); Log2(("xhciWrite: PortReg (port %u): %RGp (%s) size=%d <- val=%x (rc=%d)\n", IDX_TO_ID(iPort), off, pReg->pszName, cb, *pu32, VBOXSTRICTRC_VAL(rcStrict))); } } } } if (rcStrict != VINF_IOM_MMIO_UNUSED_FF) { /* likely */ } else { /* Ignore writes to unimplemented or read-only registers. */ STAM_COUNTER_INC(&pThis->StatWrUnknown); Log(("xHCI: Trying to write unimplemented or R/O register at offset %04X!\n", offReg)); rcStrict = VINF_SUCCESS; } return rcStrict; } #ifdef IN_RING3 /** * @callback_method_impl{FNTMTIMERDEV, * Provides periodic MFINDEX wrap events. See 4.14.2.} */ static DECLCALLBACK(void) xhciR3WrapTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PXHCI pThis = (PXHCI)pvUser; XHCI_EVENT_TRB ed; LogFlow(("xhciR3WrapTimer:\n")); RT_NOREF(hTimer); /* * Post the MFINDEX Wrap event and rearm the timer. Only called * when the EWE bit is set in command register. */ RT_ZERO(ed); ed.mwe.cc = XHCI_TCC_SUCCESS; ed.mwe.type = XHCI_TRB_MFIDX_WRAP; xhciR3WriteEvent(pDevIns, pThis, &ed, XHCI_PRIMARY_INTERRUPTER, false); xhciSetWrapTimer(pDevIns, pThis); } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) xhciR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; uint32_t iPort; uint32_t iSlot; uint32_t iIntr; LogFlow(("xhciR3SaveExec: \n")); /* Save HC operational registers. */ pHlp->pfnSSMPutU32(pSSM, pThis->cmd); pHlp->pfnSSMPutU32(pSSM, pThis->status); pHlp->pfnSSMPutU32(pSSM, pThis->dnctrl); pHlp->pfnSSMPutU64(pSSM, pThis->crcr); pHlp->pfnSSMPutU64(pSSM, pThis->dcbaap); pHlp->pfnSSMPutU32(pSSM, pThis->config); /* Save HC non-register state. */ pHlp->pfnSSMPutU64(pSSM, pThis->cmdr_dqp); pHlp->pfnSSMPutBool(pSSM, pThis->cmdr_ccs); /* Save per-slot state. */ pHlp->pfnSSMPutU32(pSSM, XHCI_NDS); for (iSlot = 0; iSlot < XHCI_NDS; ++iSlot) { pHlp->pfnSSMPutU8 (pSSM, pThis->aSlotState[iSlot]); pHlp->pfnSSMPutU32(pSSM, pThis->aBellsRung[iSlot]); } /* Save root hub (port) state. */ pHlp->pfnSSMPutU32(pSSM, XHCI_NDP_CFG(pThis)); for (iPort = 0; iPort < XHCI_NDP_CFG(pThis); ++iPort) { pHlp->pfnSSMPutU32(pSSM, pThis->aPorts[iPort].portsc); pHlp->pfnSSMPutU32(pSSM, pThis->aPorts[iPort].portpm); } /* Save interrupter state. */ pHlp->pfnSSMPutU32(pSSM, XHCI_NINTR); for (iIntr = 0; iIntr < XHCI_NINTR; ++iIntr) { pHlp->pfnSSMPutU32(pSSM, pThis->aInterrupters[iIntr].iman); pHlp->pfnSSMPutU32(pSSM, pThis->aInterrupters[iIntr].imod); pHlp->pfnSSMPutU32(pSSM, pThis->aInterrupters[iIntr].erstsz); pHlp->pfnSSMPutU64(pSSM, pThis->aInterrupters[iIntr].erstba); pHlp->pfnSSMPutU64(pSSM, pThis->aInterrupters[iIntr].erdp); pHlp->pfnSSMPutU64(pSSM, pThis->aInterrupters[iIntr].erep); pHlp->pfnSSMPutU16(pSSM, pThis->aInterrupters[iIntr].erst_idx); pHlp->pfnSSMPutU16(pSSM, pThis->aInterrupters[iIntr].trb_count); pHlp->pfnSSMPutBool(pSSM, pThis->aInterrupters[iIntr].evtr_pcs); pHlp->pfnSSMPutBool(pSSM, pThis->aInterrupters[iIntr].ipe); } /* Terminator marker. */ pHlp->pfnSSMPutU32(pSSM, UINT32_MAX); /* If not continuing after save, force HC into non-running state to avoid trouble later. */ if (pHlp->pfnSSMHandleGetAfter(pSSM) != SSMAFTER_CONTINUE) pThis->cmd &= ~XHCI_CMD_RS; return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) xhciR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; int rc; uint32_t cPorts; uint32_t iPort; uint32_t cSlots; uint32_t iSlot; uint32_t cIntrs; uint32_t iIntr; uint64_t u64Dummy; uint32_t u32Dummy; uint16_t u16Dummy; uint8_t u8Dummy; bool fDummy; LogFlow(("xhciR3LoadExec:\n")); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); if (uVersion != XHCI_SAVED_STATE_VERSION) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; /* Load HC operational registers. */ pHlp->pfnSSMGetU32(pSSM, &pThis->cmd); pHlp->pfnSSMGetU32(pSSM, &pThis->status); pHlp->pfnSSMGetU32(pSSM, &pThis->dnctrl); pHlp->pfnSSMGetU64(pSSM, &pThis->crcr); pHlp->pfnSSMGetU64(pSSM, &pThis->dcbaap); pHlp->pfnSSMGetU32(pSSM, &pThis->config); /* Load HC non-register state. */ pHlp->pfnSSMGetU64(pSSM, &pThis->cmdr_dqp); pHlp->pfnSSMGetBool(pSSM, &pThis->cmdr_ccs); /* Load per-slot state. */ rc = pHlp->pfnSSMGetU32(pSSM, &cSlots); AssertRCReturn(rc, rc); if (cSlots > 256) /* Sanity check. */ return VERR_SSM_INVALID_STATE; for (iSlot = 0; iSlot < cSlots; ++iSlot) { /* Load only as many slots as we have; discard any extras. */ if (iSlot < XHCI_NDS) { pHlp->pfnSSMGetU8 (pSSM, &pThis->aSlotState[iSlot]); pHlp->pfnSSMGetU32(pSSM, &pThis->aBellsRung[iSlot]); } else { pHlp->pfnSSMGetU8 (pSSM, &u8Dummy); pHlp->pfnSSMGetU32(pSSM, &u32Dummy); } } /* Load root hub (port) state. */ rc = pHlp->pfnSSMGetU32(pSSM, &cPorts); AssertRCReturn(rc, rc); if (cPorts > 256) /* Sanity check. */ return VERR_SSM_INVALID_STATE; for (iPort = 0; iPort < cPorts; ++iPort) { /* Load only as many ports as we have; discard any extras. */ if (iPort < XHCI_NDP_CFG(pThis)) { pHlp->pfnSSMGetU32(pSSM, &pThis->aPorts[iPort].portsc); pHlp->pfnSSMGetU32(pSSM, &pThis->aPorts[iPort].portpm); } else { pHlp->pfnSSMGetU32(pSSM, &u32Dummy); pHlp->pfnSSMGetU32(pSSM, &u32Dummy); } } /* Load interrupter state. */ rc = pHlp->pfnSSMGetU32(pSSM, &cIntrs); AssertRCReturn(rc, rc); if (cIntrs > 256) /* Sanity check. */ return VERR_SSM_INVALID_STATE; for (iIntr = 0; iIntr < cIntrs; ++iIntr) { /* Load only as many interrupters as we have; discard any extras. */ if (iIntr < XHCI_NINTR) { pHlp->pfnSSMGetU32(pSSM, &pThis->aInterrupters[iIntr].iman); pHlp->pfnSSMGetU32(pSSM, &pThis->aInterrupters[iIntr].imod); pHlp->pfnSSMGetU32(pSSM, &pThis->aInterrupters[iIntr].erstsz); pHlp->pfnSSMGetU64(pSSM, &pThis->aInterrupters[iIntr].erstba); pHlp->pfnSSMGetU64(pSSM, &pThis->aInterrupters[iIntr].erdp); pHlp->pfnSSMGetU64(pSSM, &pThis->aInterrupters[iIntr].erep); pHlp->pfnSSMGetU16(pSSM, &pThis->aInterrupters[iIntr].erst_idx); pHlp->pfnSSMGetU16(pSSM, &pThis->aInterrupters[iIntr].trb_count); pHlp->pfnSSMGetBool(pSSM, &pThis->aInterrupters[iIntr].evtr_pcs); pHlp->pfnSSMGetBool(pSSM, &pThis->aInterrupters[iIntr].ipe); } else { pHlp->pfnSSMGetU32(pSSM, &u32Dummy); pHlp->pfnSSMGetU32(pSSM, &u32Dummy); pHlp->pfnSSMGetU32(pSSM, &u32Dummy); pHlp->pfnSSMGetU64(pSSM, &u64Dummy); pHlp->pfnSSMGetU64(pSSM, &u64Dummy); pHlp->pfnSSMGetU64(pSSM, &u64Dummy); pHlp->pfnSSMGetU16(pSSM, &u16Dummy); pHlp->pfnSSMGetU16(pSSM, &u16Dummy); pHlp->pfnSSMGetBool(pSSM, &fDummy); pHlp->pfnSSMGetBool(pSSM, &fDummy); } } /* Terminator marker. */ rc = pHlp->pfnSSMGetU32(pSSM, &u32Dummy); AssertRCReturn(rc, rc); AssertReturn(u32Dummy == UINT32_MAX, VERR_SSM_DATA_UNIT_FORMAT_CHANGED); return rc; } /* -=-=-=-=- DBGF -=-=-=-=- */ /** * @callback_method_impl{FNDBGFHANDLERDEV, Dumps xHCI state.} */ static DECLCALLBACK(void) xhciR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); RTGCPHYS GPAddr; bool fVerbose = false; unsigned i, j; uint64_t u64Val; /* Parse arguments. */ if (pszArgs) fVerbose = strstr(pszArgs, "verbose") != NULL; #ifdef XHCI_ERROR_INJECTION if (pszArgs && strstr(pszArgs, "dropintrhw")) { pHlp->pfnPrintf(pHlp, "Dropping the next interrupt (external)!\n"); pThis->fDropIntrHw = true; return; } if (pszArgs && strstr(pszArgs, "dropintrint")) { pHlp->pfnPrintf(pHlp, "Dropping the next interrupt (internal)!\n"); pThis->fDropIntrIpe = true; return; } if (pszArgs && strstr(pszArgs, "dropurb")) { pHlp->pfnPrintf(pHlp, "Dropping the next URB!\n"); pThis->fDropUrb = true; return; } #endif /* Show basic information. */ pHlp->pfnPrintf(pHlp, "%s#%d: PCI MMIO=%RGp IRQ=%u MSI=%s R0=%RTbool RC=%RTbool\n", pDevIns->pReg->szName, pDevIns->iInstance, PDMDevHlpMmioGetMappingAddress(pDevIns, pThis->hMmio), PCIDevGetInterruptLine(pDevIns->apPciDevs[0]), #ifdef VBOX_WITH_MSI_DEVICES xhciIsMSIEnabled(pDevIns->apPciDevs[0]) ? "on" : "off", #else "none", #endif pDevIns->fR0Enabled, pDevIns->fRCEnabled); /* Command register. */ pHlp->pfnPrintf(pHlp, "USBCMD: %X:", pThis->cmd); if (pThis->cmd & XHCI_CMD_EU3S) pHlp->pfnPrintf(pHlp, " EU3S" ); if (pThis->cmd & XHCI_CMD_EWE) pHlp->pfnPrintf(pHlp, " EWE" ); if (pThis->cmd & XHCI_CMD_CRS) pHlp->pfnPrintf(pHlp, " CRS" ); if (pThis->cmd & XHCI_CMD_CSS) pHlp->pfnPrintf(pHlp, " CSS" ); if (pThis->cmd & XHCI_CMD_LCRST) pHlp->pfnPrintf(pHlp, " LCRST" ); if (pThis->cmd & XHCI_CMD_HSEE) pHlp->pfnPrintf(pHlp, " HSEE" ); if (pThis->cmd & XHCI_CMD_INTE) pHlp->pfnPrintf(pHlp, " INTE" ); if (pThis->cmd & XHCI_CMD_HCRST) pHlp->pfnPrintf(pHlp, " HCRST" ); if (pThis->cmd & XHCI_CMD_RS) pHlp->pfnPrintf(pHlp, " RS" ); pHlp->pfnPrintf(pHlp, "\n"); /* Status register. */ pHlp->pfnPrintf(pHlp, "USBSTS: %X:", pThis->status); if (pThis->status & XHCI_STATUS_HCH) pHlp->pfnPrintf(pHlp, " HCH" ); if (pThis->status & XHCI_STATUS_HSE) pHlp->pfnPrintf(pHlp, " HSE" ); if (pThis->status & XHCI_STATUS_EINT) pHlp->pfnPrintf(pHlp, " EINT" ); if (pThis->status & XHCI_STATUS_PCD) pHlp->pfnPrintf(pHlp, " PCD" ); if (pThis->status & XHCI_STATUS_SSS) pHlp->pfnPrintf(pHlp, " SSS" ); if (pThis->status & XHCI_STATUS_RSS) pHlp->pfnPrintf(pHlp, " RSS" ); if (pThis->status & XHCI_STATUS_SRE) pHlp->pfnPrintf(pHlp, " SRE" ); if (pThis->status & XHCI_STATUS_CNR) pHlp->pfnPrintf(pHlp, " CNR" ); if (pThis->status & XHCI_STATUS_HCE) pHlp->pfnPrintf(pHlp, " HCE" ); pHlp->pfnPrintf(pHlp, "\n"); /* Device Notification Control and Configure registers. */ pHlp->pfnPrintf(pHlp, "DNCTRL: %X CONFIG: %X (%u slots)\n", pThis->dnctrl, pThis->config, pThis->config); /* Device Context Base Address Array. */ GPAddr = pThis->dcbaap & XHCI_DCBAA_ADDR_MASK; pHlp->pfnPrintf(pHlp, "DCBAA ptr: %RGp\n", GPAddr); /* The DCBAA must be valid in 'run' state. */ if (fVerbose && (pThis->cmd & XHCI_CMD_RS)) { PDMDevHlpPCIPhysRead(pDevIns, GPAddr, &u64Val, sizeof(u64Val)); pHlp->pfnPrintf(pHlp, " Scratchpad buffer: %RX64\n", u64Val); } /* Command Ring Control Register. */ pHlp->pfnPrintf(pHlp, "CRCR: %X:", pThis->crcr & ~XHCI_CRCR_ADDR_MASK); if (pThis->crcr & XHCI_CRCR_RCS) pHlp->pfnPrintf(pHlp, " RCS"); if (pThis->crcr & XHCI_CRCR_CS) pHlp->pfnPrintf(pHlp, " CS" ); if (pThis->crcr & XHCI_CRCR_CA) pHlp->pfnPrintf(pHlp, " CA" ); if (pThis->crcr & XHCI_CRCR_CRR) pHlp->pfnPrintf(pHlp, " CRR"); pHlp->pfnPrintf(pHlp, "\n"); GPAddr = pThis->crcr & XHCI_CRCR_ADDR_MASK; pHlp->pfnPrintf(pHlp, "CRCR ptr : %RGp\n", GPAddr); /* Interrupters. */ if (fVerbose) { for (i = 0; i < RT_ELEMENTS(pThis->aInterrupters); ++i) { if (pThis->aInterrupters[i].erstsz) { XHCIINTRPTR *ir = &pThis->aInterrupters[i]; pHlp->pfnPrintf(pHlp, "Interrupter %d (IPE=%u)\n", i, ir->ipe); /* The Interrupt Management Register. */ pHlp->pfnPrintf(pHlp, " IMAN : %X:", ir->iman); if (ir->iman & XHCI_IMAN_IP) pHlp->pfnPrintf(pHlp, " IP"); if (ir->iman & XHCI_IMAN_IE) pHlp->pfnPrintf(pHlp, " IE"); pHlp->pfnPrintf(pHlp, "\n"); /* The Interrupt Moderation Register. */ pHlp->pfnPrintf(pHlp, " IMOD : %X:", ir->imod); pHlp->pfnPrintf(pHlp, " IMODI=%u", ir->imod & XHCI_IMOD_IMODI_MASK); pHlp->pfnPrintf(pHlp, " IMODC=%u", (ir->imod & XHCI_IMOD_IMODC_MASK) >> XHCI_IMOD_IMODC_SHIFT); pHlp->pfnPrintf(pHlp, "\n"); pHlp->pfnPrintf(pHlp, " ERSTSZ: %X\n", ir->erstsz); pHlp->pfnPrintf(pHlp, " ERSTBA: %RGp\n", (RTGCPHYS)ir->erstba); pHlp->pfnPrintf(pHlp, " ERDP : %RGp:", (RTGCPHYS)ir->erdp); pHlp->pfnPrintf(pHlp, " EHB=%u", !!(ir->erdp & XHCI_ERDP_EHB)); pHlp->pfnPrintf(pHlp, " DESI=%u", ir->erdp & XHCI_ERDP_DESI_MASK); pHlp->pfnPrintf(pHlp, " ptr=%RGp", ir->erdp & XHCI_ERDP_ADDR_MASK); pHlp->pfnPrintf(pHlp, "\n"); pHlp->pfnPrintf(pHlp, " EREP : %RGp", ir->erep); pHlp->pfnPrintf(pHlp, " Free TRBs in seg=%u", ir->trb_count); pHlp->pfnPrintf(pHlp, "\n"); } } } /* Port control/status. */ for (i = 0; i < XHCI_NDP_CFG(pThis); ++i) { PXHCIHUBPORT p = &pThis->aPorts[i]; pHlp->pfnPrintf(pHlp, "Port %02u (USB%c): ", IDX_TO_ID(i), IS_USB3_PORT_IDX_SHR(pThis, i) ? '3' : '2'); /* Port Status register. */ pHlp->pfnPrintf(pHlp, "PORTSC: %8X:", p->portsc); if (p->portsc & XHCI_PORT_CCS) pHlp->pfnPrintf(pHlp, " CCS" ); if (p->portsc & XHCI_PORT_PED) pHlp->pfnPrintf(pHlp, " PED" ); if (p->portsc & XHCI_PORT_OCA) pHlp->pfnPrintf(pHlp, " OCA" ); if (p->portsc & XHCI_PORT_PR ) pHlp->pfnPrintf(pHlp, " PR" ); pHlp->pfnPrintf(pHlp, " PLS=%u", (p->portsc & XHCI_PORT_PLS_MASK) >> XHCI_PORT_PLS_SHIFT); if (p->portsc & XHCI_PORT_PP ) pHlp->pfnPrintf(pHlp, " PP" ); pHlp->pfnPrintf(pHlp, " SPD=%u", (p->portsc & XHCI_PORT_SPD_MASK) >> XHCI_PORT_SPD_SHIFT); if (p->portsc & XHCI_PORT_LWS) pHlp->pfnPrintf(pHlp, " LWS" ); if (p->portsc & XHCI_PORT_CSC) pHlp->pfnPrintf(pHlp, " CSC" ); if (p->portsc & XHCI_PORT_PEC) pHlp->pfnPrintf(pHlp, " PEC" ); if (p->portsc & XHCI_PORT_WRC) pHlp->pfnPrintf(pHlp, " WRC" ); if (p->portsc & XHCI_PORT_OCC) pHlp->pfnPrintf(pHlp, " OCC" ); if (p->portsc & XHCI_PORT_PRC) pHlp->pfnPrintf(pHlp, " PRC" ); if (p->portsc & XHCI_PORT_PLC) pHlp->pfnPrintf(pHlp, " PLC" ); if (p->portsc & XHCI_PORT_CEC) pHlp->pfnPrintf(pHlp, " CEC" ); if (p->portsc & XHCI_PORT_CAS) pHlp->pfnPrintf(pHlp, " CAS" ); if (p->portsc & XHCI_PORT_WCE) pHlp->pfnPrintf(pHlp, " WCE" ); if (p->portsc & XHCI_PORT_WDE) pHlp->pfnPrintf(pHlp, " WDE" ); if (p->portsc & XHCI_PORT_WOE) pHlp->pfnPrintf(pHlp, " WOE" ); if (p->portsc & XHCI_PORT_DR ) pHlp->pfnPrintf(pHlp, " DR" ); if (p->portsc & XHCI_PORT_WPR) pHlp->pfnPrintf(pHlp, " WPR" ); pHlp->pfnPrintf(pHlp, "\n"); } /* Device contexts. */ if (fVerbose && (pThis->cmd & XHCI_CMD_RS)) { for (i = 0; i < XHCI_NDS; ++i) { if (pThis->aSlotState[i] > XHCI_DEVSLOT_EMPTY) { RTGCPHYS GCPhysSlot; XHCI_DEV_CTX ctxDevice; XHCI_SLOT_CTX ctxSlot; const char *pcszDesc; uint8_t uSlotID = IDX_TO_ID(i); /* Find the slot address/ */ GCPhysSlot = xhciR3FetchDevCtxAddr(pDevIns, pThis, uSlotID); pHlp->pfnPrintf(pHlp, "Slot %d (device context @ %RGp)\n", uSlotID, GCPhysSlot); if (!GCPhysSlot) { pHlp->pfnPrintf(pHlp, "Bad context address, skipping!\n"); continue; } /* Just read in the whole lot and sort in which contexts are valid later. */ PDMDevHlpPCIPhysRead(pDevIns, GCPhysSlot, &ctxDevice, sizeof(ctxDevice)); ctxSlot = ctxDevice.entry[0].sc; pcszDesc = ctxSlot.slot_state < RT_ELEMENTS(g_apszSltStates) ? g_apszSltStates[ctxSlot.slot_state] : "BAD!!!"; pHlp->pfnPrintf(pHlp, " Speed:%u Entries:%u RhPort:%u", ctxSlot.speed, ctxSlot.ctx_ent, ctxSlot.rh_port); pHlp->pfnPrintf(pHlp, " Address:%u State:%s \n", ctxSlot.dev_addr, pcszDesc); /* Endpoint contexts. */ for (j = 1; j <= ctxSlot.ctx_ent; ++j) { XHCI_EP_CTX ctxEP = ctxDevice.entry[j].ep; /* Skip disabled endpoints -- they may be unused and do not * contain valid data in any case. */ if (ctxEP.ep_state == XHCI_EPST_DISABLED) continue; pcszDesc = ctxEP.ep_state < RT_ELEMENTS(g_apszEpStates) ? g_apszEpStates[ctxEP.ep_state] : "BAD!!!"; pHlp->pfnPrintf(pHlp, " Endpoint DCI %u State:%s", j, pcszDesc); pcszDesc = ctxEP.ep_type < RT_ELEMENTS(g_apszEpTypes) ? g_apszEpTypes[ctxEP.ep_type] : "BAD!!!"; pHlp->pfnPrintf(pHlp, " Type:%s\n",pcszDesc); pHlp->pfnPrintf(pHlp, " Mult:%u MaxPStreams:%u LSA:%u Interval:%u\n", ctxEP.mult, ctxEP.maxps, ctxEP.lsa, ctxEP.interval); pHlp->pfnPrintf(pHlp, " CErr:%u HID:%u MaxPS:%u MaxBS:%u", ctxEP.c_err, ctxEP.hid, ctxEP.max_pkt_sz, ctxEP.max_brs_sz); pHlp->pfnPrintf(pHlp, " AvgTRBLen:%u MaxESIT:%u", ctxEP.avg_trb_len, ctxEP.max_esit); pHlp->pfnPrintf(pHlp, " LastFrm:%u IFC:%u LastCC:%u\n", ctxEP.last_frm, ctxEP.ifc, ctxEP.last_cc); pHlp->pfnPrintf(pHlp, " TRDP:%RGp DCS:%u\n", (RTGCPHYS)(ctxEP.trdp & XHCI_TRDP_ADDR_MASK), ctxEP.trdp & XHCI_TRDP_DCS_MASK); pHlp->pfnPrintf(pHlp, " TREP:%RGp DCS:%u\n", (RTGCPHYS)(ctxEP.trep & XHCI_TRDP_ADDR_MASK), ctxEP.trep & XHCI_TRDP_DCS_MASK); } } } } } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) xhciR3Reset(PPDMDEVINS pDevIns) { PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); LogFlow(("xhciR3Reset:\n")); /* * There is no distinction between cold boot, warm reboot and software reboots, * all of these are treated as cold boots. We are also doing the initialization * job of a BIOS or SMM driver. * * Important: Don't confuse UsbReset with hardware reset. Hardware reset is * just one way of getting into the UsbReset state. */ /* Set the HC Halted bit now to prevent completion callbacks from running *(there is really no point when resetting). */ ASMAtomicOrU32(&pThis->status, XHCI_STATUS_HCH); xhciR3BusStop(pDevIns, pThis, pThisCC); xhciR3DoReset(pThis, pThisCC, XHCI_USB_RESET, true /* reset devices */); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) xhciR3Destruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); LogFlow(("xhciR3Destruct:\n")); /* * Destroy interrupter locks. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->aInterrupters); ++i) { if (PDMDevHlpCritSectIsInitialized(pDevIns, &pThis->aInterrupters[i].lock)) PDMDevHlpCritSectDelete(pDevIns, &pThis->aInterrupters[i].lock); } /* * Clean up the worker thread and associated machinery. */ if (pThis->hEvtProcess != NIL_SUPSEMEVENT) { PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtProcess); pThis->hEvtProcess = NIL_SUPSEMEVENT; } if (RTCritSectIsInitialized(&pThisCC->CritSectThrd)) RTCritSectDelete(&pThisCC->CritSectThrd); return VINF_SUCCESS; } /** * Worker for xhciR3Construct that registers a LUN (USB root hub). */ static int xhciR3RegisterHub(PPDMDEVINS pDevIns, PXHCIROOTHUBR3 pRh, int iLun, const char *pszDesc) { int rc = PDMDevHlpDriverAttach(pDevIns, iLun, &pRh->IBase, &pRh->pIBase, pszDesc); AssertMsgRCReturn(rc, ("Configuration error: Failed to attach root hub driver to LUN #%d! (%Rrc)\n", iLun, rc), rc); pRh->pIRhConn = PDMIBASE_QUERY_INTERFACE(pRh->pIBase, VUSBIROOTHUBCONNECTOR); AssertMsgReturn(pRh->pIRhConn, ("Configuration error: The driver doesn't provide the VUSBIROOTHUBCONNECTOR interface!\n"), VERR_PDM_MISSING_INTERFACE); /* Set URB parameters. */ rc = VUSBIRhSetUrbParams(pRh->pIRhConn, sizeof(VUSBURBHCIINT), 0); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("OHCI: Failed to set URB parameters")); return rc; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct,XHCI * constructor} */ static DECLCALLBACK(int) xhciR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); PXHCICC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PXHCICC); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; uint32_t cUsb2Ports; uint32_t cUsb3Ports; int rc; LogFlow(("xhciR3Construct:\n")); RT_NOREF(iInstance); /* * Initialize data so the destructor runs smoothly. */ pThis->hEvtProcess = NIL_SUPSEMEVENT; /* * Validate and read configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "USB2Ports|USB3Ports|ChipType", ""); /* Number of USB2 ports option. */ rc = pHlp->pfnCFGMQueryU32Def(pCfg, "USB2Ports", &cUsb2Ports, XHCI_NDP_20_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("xHCI configuration error: failed to read USB2Ports as integer")); if (cUsb2Ports == 0 || cUsb2Ports > XHCI_NDP_MAX) return PDMDevHlpVMSetError(pDevIns, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("xHCI configuration error: USB2Ports must be in range [%u,%u]"), 1, XHCI_NDP_MAX); /* Number of USB3 ports option. */ rc = pHlp->pfnCFGMQueryU32Def(pCfg, "USB3Ports", &cUsb3Ports, XHCI_NDP_30_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("xHCI configuration error: failed to read USB3Ports as integer")); if (cUsb3Ports == 0 || cUsb3Ports > XHCI_NDP_MAX) return PDMDevHlpVMSetError(pDevIns, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("xHCI configuration error: USB3Ports must be in range [%u,%u]"), 1, XHCI_NDP_MAX); /* Check that the total number of ports is within limits.*/ if (cUsb2Ports + cUsb3Ports > XHCI_NDP_MAX) return PDMDevHlpVMSetError(pDevIns, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("xHCI configuration error: USB2Ports + USB3Ports must be in range [%u,%u]"), 1, XHCI_NDP_MAX); /* Determine the model. */ char szChipType[16]; rc = pHlp->pfnCFGMQueryStringDef(pCfg, "ChipType", &szChipType[0], sizeof(szChipType), "PantherPoint"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_("xHCI configuration error: Querying \"ChipType\" as string failed")); /* * The default model is Panther Point (8086:1E31), Intel's first and most widely * supported xHCI implementation. For debugging, the Lynx Point (8086:8C31) model * can be selected. These two models work with the 7 Series and 8 Series Intel xHCI * drivers for Windows 7, respectively. There is no functional difference. * For Windows XP support, it's also possible to present a Renesas uPD720201 xHC; * this is an evolution of the original NEC xHCI chip. */ bool fChipLynxPoint = false; bool fChipRenesas = false; if (!strcmp(szChipType, "PantherPoint")) fChipLynxPoint = false; else if (!strcmp(szChipType, "LynxPoint")) fChipLynxPoint = true; else if (!strcmp(szChipType, "uPD720201")) fChipRenesas = true; else return PDMDevHlpVMSetError(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, RT_SRC_POS, N_("xHCI configuration error: The \"ChipType\" value \"%s\" is unsupported"), szChipType); LogFunc(("cUsb2Ports=%u cUsb3Ports=%u szChipType=%s (%d,%d) fR0Enabled=%d fRCEnabled=%d\n", cUsb2Ports, cUsb3Ports, szChipType, fChipLynxPoint, fChipRenesas, pDevIns->fR0Enabled, pDevIns->fRCEnabled)); /* Set up interrupter locks. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->aInterrupters); ++i) { rc = PDMDevHlpCritSectInit(pDevIns, &pThis->aInterrupters[i].lock, RT_SRC_POS, "xHCIIntr#%u", i); if (RT_FAILURE(rc)) return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("xHCI: Failed to create critical section for interrupter %u"), i); pThis->aInterrupters[i].index = i; /* Stash away index, mostly for logging/debugging. */ } /* * Init instance data. */ pThisCC->pDevIns = pDevIns; PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0]; if (fChipRenesas) { pThis->erst_addr_mask = NEC_ERST_ADDR_MASK; PCIDevSetVendorId(pPciDev, 0x1912); PCIDevSetDeviceId(pPciDev, 0x0014); PCIDevSetByte(pPciDev, VBOX_PCI_REVISION_ID, 0x02); } else { pThis->erst_addr_mask = XHCI_ERST_ADDR_MASK; PCIDevSetVendorId(pPciDev, 0x8086); if (fChipLynxPoint) PCIDevSetDeviceId(pPciDev, 0x8C31); /* Lynx Point / 8 Series */ else PCIDevSetDeviceId(pPciDev, 0x1E31); /* Panther Point / 7 Series */ } PCIDevSetClassProg(pPciDev, 0x30); /* xHCI */ PCIDevSetClassSub(pPciDev, 0x03); /* USB 3.0 */ PCIDevSetClassBase(pPciDev, 0x0C); PCIDevSetInterruptPin(pPciDev, 0x01); #ifdef VBOX_WITH_MSI_DEVICES PCIDevSetStatus(pPciDev, VBOX_PCI_STATUS_CAP_LIST); PCIDevSetCapabilityList(pPciDev, 0x80); #endif PDMPciDevSetByte(pPciDev, 0x60, 0x20); /* serial bus release number register; 0x20 = USB 2.0 */ /** @todo USBLEGSUP & USBLEGCTLSTS? Legacy interface for the BIOS (0xEECP+0 & 0xEECP+4) */ pThis->cTotalPorts = (uint8_t)(cUsb2Ports + cUsb3Ports); /* Set up the USB2 root hub interface. */ pThis->cUsb2Ports = (uint8_t)cUsb2Ports; pThisCC->RootHub2.pXhciR3 = pThisCC; pThisCC->RootHub2.cPortsImpl = cUsb2Ports; pThisCC->RootHub2.uPortBase = 0; pThisCC->RootHub2.IBase.pfnQueryInterface = xhciR3RhQueryInterface; pThisCC->RootHub2.IRhPort.pfnGetAvailablePorts = xhciR3RhGetAvailablePorts; pThisCC->RootHub2.IRhPort.pfnGetUSBVersions = xhciR3RhGetUSBVersions2; pThisCC->RootHub2.IRhPort.pfnAttach = xhciR3RhAttach; pThisCC->RootHub2.IRhPort.pfnDetach = xhciR3RhDetach; pThisCC->RootHub2.IRhPort.pfnReset = xhciR3RhReset; pThisCC->RootHub2.IRhPort.pfnXferCompletion = xhciR3RhXferCompletion; pThisCC->RootHub2.IRhPort.pfnXferError = xhciR3RhXferError; /* Now the USB3 root hub interface. */ pThis->cUsb3Ports = (uint8_t)cUsb3Ports; pThisCC->RootHub3.pXhciR3 = pThisCC; pThisCC->RootHub3.cPortsImpl = cUsb3Ports; pThisCC->RootHub3.uPortBase = XHCI_NDP_USB2(pThisCC); pThisCC->RootHub3.IBase.pfnQueryInterface = xhciR3RhQueryInterface; pThisCC->RootHub3.IRhPort.pfnGetAvailablePorts = xhciR3RhGetAvailablePorts; pThisCC->RootHub3.IRhPort.pfnGetUSBVersions = xhciR3RhGetUSBVersions3; pThisCC->RootHub3.IRhPort.pfnAttach = xhciR3RhAttach; pThisCC->RootHub3.IRhPort.pfnDetach = xhciR3RhDetach; pThisCC->RootHub3.IRhPort.pfnReset = xhciR3RhReset; pThisCC->RootHub3.IRhPort.pfnXferCompletion = xhciR3RhXferCompletion; pThisCC->RootHub3.IRhPort.pfnXferError = xhciR3RhXferError; /* USB LED */ pThisCC->RootHub2.Led.u32Magic = PDMLED_MAGIC; pThisCC->RootHub3.Led.u32Magic = PDMLED_MAGIC; pThisCC->IBase.pfnQueryInterface = xhciR3QueryStatusInterface; pThisCC->ILeds.pfnQueryStatusLed = xhciR3QueryStatusLed; /* Initialize the capability registers */ pThis->cap_length = XHCI_CAPS_REG_SIZE; pThis->hci_version = 0x100; /* Version 1.0 */ pThis->hcs_params1 = (XHCI_NDP_CFG(pThis) << 24) | (XHCI_NINTR << 8) | XHCI_NDS; pThis->hcs_params2 = (XHCI_ERSTMAX_LOG2 << 4) | XHCI_IST; pThis->hcs_params3 = (4 << 16) | 1; /* Matches Intel 7 Series xHCI. */ /* Note: The Intel 7 Series xHCI does not have port power control (XHCI_HCC_PPC). */ pThis->hcc_params = ((XHCI_XECP_OFFSET >> 2) << XHCI_HCC_XECP_SHIFT); /// @todo other fields pThis->dbell_off = XHCI_DOORBELL_OFFSET; pThis->rts_off = XHCI_RTREG_OFFSET; /* * Set up extended capabilities. */ rc = xhciR3BuildExtCaps(pThis, pThisCC); AssertRCReturn(rc, rc); /* * Register PCI device and I/O region. */ rc = PDMDevHlpPCIRegister(pDevIns, pPciDev); AssertRCReturn(rc, rc); #ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = XHCI_PCI_MSI_CAP_OFS; MsiReg.iMsiNextOffset = 0x00; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE (rc)) { PCIDevSetCapabilityList(pPciDev, 0x0); /* That's OK, we can work without MSI */ } #endif rc = PDMDevHlpPCIIORegionCreateMmio(pDevIns, 0, XHCI_MMIO_SIZE, PCI_ADDRESS_SPACE_MEM, xhciMmioWrite, xhciMmioRead, NULL, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_DWORD_ZEROED /*| IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_WRITE*/, "USB xHCI", &pThis->hMmio); AssertRCReturn(rc, rc); /* * Register the saved state data unit. */ rc = PDMDevHlpSSMRegisterEx(pDevIns, XHCI_SAVED_STATE_VERSION, sizeof(*pThis), NULL, NULL, NULL, NULL, NULL, xhciR3SaveExec, NULL, NULL, xhciR3LoadExec, NULL); AssertRCReturn(rc, rc); /* * Attach to the VBox USB RootHub Driver on LUN #0 (USB3 root hub). * NB: USB3 must come first so that emulated devices which support both USB2 * and USB3 are attached to the USB3 hub. */ rc = xhciR3RegisterHub(pDevIns, &pThisCC->RootHub3, 0, "RootHubUSB3"); AssertRCReturn(rc, rc); /* * Attach to the VBox USB RootHub Driver on LUN #1 (USB2 root hub). */ rc = xhciR3RegisterHub(pDevIns, &pThisCC->RootHub2, 1, "RootHubUSB2"); AssertRCReturn(rc, rc); /* * Attach the status LED (optional). */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThisCC->IBase, &pBase, "Status Port"); if (RT_SUCCESS(rc)) pThisCC->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); else if (rc != VERR_PDM_NO_ATTACHED_DRIVER) { AssertMsgFailed(("xHCI: Failed to attach to status driver. rc=%Rrc\n", rc)); return PDMDEV_SET_ERROR(pDevIns, rc, N_("xHCI cannot attach to status driver")); } /* * Create the MFINDEX wrap event timer. */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, xhciR3WrapTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "xHCI MFINDEX Wrap", &pThis->hWrapTimer); AssertRCReturn(rc, rc); /* * Set up the worker thread. */ rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtProcess); AssertLogRelRCReturn(rc, rc); rc = RTCritSectInit(&pThisCC->CritSectThrd); AssertLogRelRCReturn(rc, rc); rc = PDMDevHlpThreadCreate(pDevIns, &pThisCC->pWorkerThread, pThis, xhciR3WorkerLoop, xhciR3WorkerWakeUp, 0, RTTHREADTYPE_IO, "xHCI"); AssertLogRelRCReturn(rc, rc); /* * Do a hardware reset. */ xhciR3DoReset(pThis, pThisCC, XHCI_USB_RESET, false /* don't reset devices */); # ifdef VBOX_WITH_STATISTICS /* * Register statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatErrorIsocUrbs, STAMTYPE_COUNTER, "IsocUrbsErr", STAMUNIT_OCCURENCES, "Isoch URBs completed w/error."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatErrorIsocPkts, STAMTYPE_COUNTER, "IsocPktsErr", STAMUNIT_OCCURENCES, "Isoch packets completed w/error."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEventsWritten, STAMTYPE_COUNTER, "EventsWritten", STAMUNIT_OCCURENCES, "Event TRBs delivered."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEventsDropped, STAMTYPE_COUNTER, "EventsDropped", STAMUNIT_OCCURENCES, "Event TRBs dropped (HC stopped)."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntrsPending, STAMTYPE_COUNTER, "IntrsPending", STAMUNIT_OCCURENCES, "Requests to set the IP bit."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntrsSet, STAMTYPE_COUNTER, "IntrsSet", STAMUNIT_OCCURENCES, "Actual interrupts delivered."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntrsNotSet, STAMTYPE_COUNTER, "IntrsNotSet", STAMUNIT_OCCURENCES, "Interrupts not delivered/disabled."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntrsCleared, STAMTYPE_COUNTER, "IntrsCleared", STAMUNIT_OCCURENCES, "Interrupts cleared by guest."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTRBsPerCtlUrb, STAMTYPE_COUNTER, "UrbTrbsCtl", STAMUNIT_COUNT, "TRBs per one control URB."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTRBsPerDtaUrb, STAMTYPE_COUNTER, "UrbTrbsDta", STAMUNIT_COUNT, "TRBs per one data (bulk/intr) URB."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTRBsPerIsoUrb, STAMTYPE_COUNTER, "UrbTrbsIso", STAMUNIT_COUNT, "TRBs per one isochronous URB."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatUrbSizeCtrl, STAMTYPE_COUNTER, "UrbSizeCtl", STAMUNIT_COUNT, "Size of a control URB in bytes."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatUrbSizeData, STAMTYPE_COUNTER, "UrbSizeDta", STAMUNIT_COUNT, "Size of a data (bulk/intr) URB in bytes."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatUrbSizeIsoc, STAMTYPE_COUNTER, "UrbSizeIso", STAMUNIT_COUNT, "Size of an isochronous URB in bytes."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdCaps, STAMTYPE_COUNTER, "Regs/RdCaps", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdCmdRingCtlHi, STAMTYPE_COUNTER, "Regs/RdCmdRingCtlHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdCmdRingCtlLo, STAMTYPE_COUNTER, "Regs/RdCmdRingCtlLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdConfig, STAMTYPE_COUNTER, "Regs/RdConfig", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdDevCtxBaapHi, STAMTYPE_COUNTER, "Regs/RdDevCtxBaapHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdDevCtxBaapLo, STAMTYPE_COUNTER, "Regs/RdDevCtxBaapLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdDevNotifyCtrl, STAMTYPE_COUNTER, "Regs/RdDevNotifyCtrl", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdDoorBell, STAMTYPE_COUNTER, "Regs/RdDoorBell", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRingDeqPtrHi, STAMTYPE_COUNTER, "Regs/RdEvtRingDeqPtrHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRingDeqPtrLo, STAMTYPE_COUNTER, "Regs/RdEvtRingDeqPtrLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRsTblBaseHi, STAMTYPE_COUNTER, "Regs/RdEvtRsTblBaseHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRsTblBaseLo, STAMTYPE_COUNTER, "Regs/RdEvtRsTblBaseLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRstblSize, STAMTYPE_COUNTER, "Regs/RdEvtRstblSize", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdEvtRsvd, STAMTYPE_COUNTER, "Regs/RdEvtRsvd", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdIntrMgmt, STAMTYPE_COUNTER, "Regs/RdIntrMgmt", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdIntrMod, STAMTYPE_COUNTER, "Regs/RdIntrMod", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdMfIndex, STAMTYPE_COUNTER, "Regs/RdMfIndex", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdPageSize, STAMTYPE_COUNTER, "Regs/RdPageSize", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdPortLinkInfo, STAMTYPE_COUNTER, "Regs/RdPortLinkInfo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdPortPowerMgmt, STAMTYPE_COUNTER, "Regs/RdPortPowerMgmt", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdPortRsvd, STAMTYPE_COUNTER, "Regs/RdPortRsvd", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdPortStatusCtrl, STAMTYPE_COUNTER, "Regs/RdPortStatusCtrl", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdUsbCmd, STAMTYPE_COUNTER, "Regs/RdUsbCmd", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdUsbSts, STAMTYPE_COUNTER, "Regs/RdUsbSts", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRdUnknown, STAMTYPE_COUNTER, "Regs/RdUnknown", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrCmdRingCtlHi, STAMTYPE_COUNTER, "Regs/WrCmdRingCtlHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrCmdRingCtlLo, STAMTYPE_COUNTER, "Regs/WrCmdRingCtlLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrConfig, STAMTYPE_COUNTER, "Regs/WrConfig", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrDevCtxBaapHi, STAMTYPE_COUNTER, "Regs/WrDevCtxBaapHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrDevCtxBaapLo, STAMTYPE_COUNTER, "Regs/WrDevCtxBaapLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrDevNotifyCtrl, STAMTYPE_COUNTER, "Regs/WrDevNotifyCtrl", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrDoorBell0, STAMTYPE_COUNTER, "Regs/WrDoorBell0", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrDoorBellN, STAMTYPE_COUNTER, "Regs/WrDoorBellN", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrEvtRingDeqPtrHi, STAMTYPE_COUNTER, "Regs/WrEvtRingDeqPtrHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrEvtRingDeqPtrLo, STAMTYPE_COUNTER, "Regs/WrEvtRingDeqPtrLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrEvtRsTblBaseHi, STAMTYPE_COUNTER, "Regs/WrEvtRsTblBaseHi", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrEvtRsTblBaseLo, STAMTYPE_COUNTER, "Regs/WrEvtRsTblBaseLo", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrEvtRstblSize, STAMTYPE_COUNTER, "Regs/WrEvtRstblSize", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrIntrMgmt, STAMTYPE_COUNTER, "Regs/WrIntrMgmt", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrIntrMod, STAMTYPE_COUNTER, "Regs/WrIntrMod", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrPortPowerMgmt, STAMTYPE_COUNTER, "Regs/WrPortPowerMgmt", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrPortStatusCtrl, STAMTYPE_COUNTER, "Regs/WrPortStatusCtrl", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrUsbCmd, STAMTYPE_COUNTER, "Regs/WrUsbCmd", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrUsbSts, STAMTYPE_COUNTER, "Regs/WrUsbSts", STAMUNIT_COUNT, ""); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatWrUnknown, STAMTYPE_COUNTER, "Regs/WrUnknown", STAMUNIT_COUNT, ""); # endif /* VBOX_WITH_STATISTICS */ /* * Register debugger info callbacks. */ PDMDevHlpDBGFInfoRegister(pDevIns, "xhci", "xHCI registers.", xhciR3Info); return VINF_SUCCESS; } #else /* !IN_RING3 */ /** * @callback_method_impl{PDMDEVREGR0,pfnConstruct} */ static DECLCALLBACK(int) xhciRZConstruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PXHCI pThis = PDMDEVINS_2_DATA(pDevIns, PXHCI); int rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, xhciMmioWrite, xhciMmioRead, NULL /*pvUser*/); AssertRCReturn(rc, rc); return VINF_SUCCESS; } #endif /* !IN_RING3 */ /* Without this, g_DeviceXHCI won't be visible outside this module! */ extern "C" const PDMDEVREG g_DeviceXHCI; const PDMDEVREG g_DeviceXHCI = { /* .u32version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "usb-xhci", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_BUS_USB, /* .cMaxInstances = */ ~0U, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(XHCI), /* .cbInstanceCC = */ sizeof(XHCICC), /* .cbInstanceRC = */ sizeof(XHCIRC), /* .cMaxPciDevices = */ 1, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "xHCI USB controller.\n", #if defined(IN_RING3) # ifdef VBOX_IN_EXTPACK /* .pszRCMod = */ "VBoxEhciRC.rc", /* .pszR0Mod = */ "VBoxEhciR0.r0", # else /* .pszRCMod = */ "VBoxDDRC.rc", /* .pszR0Mod = */ "VBoxDDR0.r0", # endif /* .pfnConstruct = */ xhciR3Construct, /* .pfnDestruct = */ xhciR3Destruct, /* .pfnRelocate = */ NULL, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ xhciR3Reset, /* .pfnSuspend = */ NULL, /* .pfnResume = */ NULL, /* .pfnAttach = */ NULL, /* .pfnDetach = */ NULL, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ NULL, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ xhciRZConstruct, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ xhciRZConstruct, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */