/* $Id: asn1-ut-time-decode.cpp $ */ /** @file * IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include #include #include /** * Common code for UTCTime and GeneralizedTime converters that normalizes the * converted time and checks that the input values doesn't change. * * @returns IPRT status code. * @param pCursor The cursor to use when reporting an error. * @param pThis The time to normalize and check. * @param pszType The type name. * @param pszErrorTag The error tag. */ static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag) { int rc; if ( pThis->Time.u8Month > 0 && pThis->Time.u8Month <= 12 && pThis->Time.u8Hour < 24 && pThis->Time.u8Minute < 60 && pThis->Time.u8Second <= 60) { /* Work around clever rounding error in DER_CFDateToUTCTime() on OS X. This also supresses any attempt at feeding us leap seconds. If we pass 60 to the normalization code will move on to the next min/hour/day, which is wrong both for the OS X issue and for unwanted leap seconds. Leap seconds are not valid ASN.1 by the by according to the specs available to us. */ if (pThis->Time.u8Second < 60) { /* likely */ } else pThis->Time.u8Second = 59; /* Normalize and move on. */ RTTIME const TimeCopy = pThis->Time; if (RTTimeNormalize(&pThis->Time)) { if ( TimeCopy.u8MonthDay == pThis->Time.u8MonthDay && TimeCopy.u8Month == pThis->Time.u8Month && TimeCopy.i32Year == pThis->Time.i32Year && TimeCopy.u8Hour == pThis->Time.u8Hour && TimeCopy.u8Minute == pThis->Time.u8Minute && TimeCopy.u8Second == pThis->Time.u8Second) return VINF_SUCCESS; rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH, "%s: Normalized result not the same as %s: '%.*s' / %04u-%02u-%02uT%02u:%02u:%02u vs %04u-%02u-%02uT%02u:%02u:%02u", pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch, TimeCopy.i32Year, TimeCopy.u8Month, TimeCopy.u8MonthDay, TimeCopy.u8Hour, TimeCopy.u8Minute, TimeCopy.u8Second, pThis->Time.i32Year, pThis->Time.u8Month, pThis->Time.u8MonthDay, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second); } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR, "%s: RTTimeNormalize failed on %s: '%.*s'", pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT, "%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u", pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch, pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second); return rc; } /** * Converts the UTCTime string into an the RTTIME member of RTASN1TIME. * * @returns IPRT status code. * @param pCursor The cursor to use when reporting an error. * @param pThis The time to parse. * @param pszErrorTag The error tag. */ static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag) { /* * While the current spec says the seconds field is not optional, this * restriction was added later on. So, when parsing UTCTime we must deal * with it being absent. */ int rc; bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1; if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1) { const char *pachTime = pThis->Asn1Core.uData.pch; /* Basic encoding validation. */ if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */ && RT_C_IS_DIGIT(pachTime[1]) /* Y */ && RT_C_IS_DIGIT(pachTime[2]) /* M */ && RT_C_IS_DIGIT(pachTime[3]) /* M */ && RT_C_IS_DIGIT(pachTime[4]) /* D */ && RT_C_IS_DIGIT(pachTime[5]) /* D */ && RT_C_IS_DIGIT(pachTime[6]) /* H */ && RT_C_IS_DIGIT(pachTime[7]) /* H */ && RT_C_IS_DIGIT(pachTime[8]) /* M */ && RT_C_IS_DIGIT(pachTime[9]) /* M */ && ( !fHaveSeconds || ( RT_C_IS_DIGIT(pachTime[10]) /* S */ && RT_C_IS_DIGIT(pachTime[11]) /* S */ ) ) && pachTime[fHaveSeconds ? 12 : 10] == 'Z' ) { /* Basic conversion. */ pThis->Time.i32Year = (pachTime[0] - '0') * 10 + (pachTime[1] - '0'); pThis->Time.i32Year += pThis->Time.i32Year < 50 ? 2000 : 1900; pThis->Time.u8Month = (pachTime[2] - '0') * 10 + (pachTime[3] - '0'); pThis->Time.u8WeekDay = 0; pThis->Time.u16YearDay = 0; pThis->Time.u8MonthDay = (pachTime[4] - '0') * 10 + (pachTime[5] - '0'); pThis->Time.u8Hour = (pachTime[6] - '0') * 10 + (pachTime[7] - '0'); pThis->Time.u8Minute = (pachTime[8] - '0') * 10 + (pachTime[9] - '0'); if (fHaveSeconds) pThis->Time.u8Second = (pachTime[10] - '0') * 10 + (pachTime[11] - '0'); else pThis->Time.u8Second = 0; pThis->Time.u32Nanosecond = 0; pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC; pThis->Time.offUTC = 0; /* Check the convered data and normalize the time structure. */ rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag); if (RT_SUCCESS(rc)) return rc; } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pachTime); } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x", pszErrorTag, pThis->Asn1Core.cb); RT_ZERO(*pThis); return rc; } /** * Converts the fraction part of a generalized time into nanoseconds. * * @returns IPRT status code. * @param pCursor The cursor to use when reporting an error. * @param pchFraction Pointer to the start of the fraction (dot). * @param cchFraction The length of the fraction. * @param pThis The time object we're working on, * Time.u32Nanoseconds will be update. * @param pszErrorTag The error tag. */ static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction, PRTASN1TIME pThis, const char *pszErrorTag) { pThis->Time.u32Nanosecond = 0; /* * Check the dot. */ if (*pchFraction != '.') return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')", pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); pchFraction++; cchFraction--; if (!cchFraction) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: No digit following GeneralizedTime fraction dot: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core); /* * Do the conversion. */ char chLastDigit; uint32_t uMult = 100000000; do { char chDigit = chLastDigit = *pchFraction; if (!RT_C_IS_DIGIT(chDigit)) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Bad GeneralizedTime fraction digit: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0'); /* Advance */ cchFraction--; pchFraction++; uMult /= 10; } while (cchFraction > 0 && uMult > 0); /* * Lazy bird: For now, we don't permit higher resolution than we can * internally represent. Deal with this if it ever becomes an issue. */ if (cchFraction > 0) return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Bad GeneralizedTime fraction too long: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); if (chLastDigit == '0') return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch); return VINF_SUCCESS; } /** * Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME. * * @returns IPRT status code. * @param pCursor The cursor to use when reporting an error. * @param pThis The time to parse. * @param pszErrorTag The error tag. */ static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag) { int rc; if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1) { const char *pachTime = pThis->Asn1Core.uData.pch; /* Basic encoding validation. */ if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */ && RT_C_IS_DIGIT(pachTime[1]) /* Y */ && RT_C_IS_DIGIT(pachTime[2]) /* Y */ && RT_C_IS_DIGIT(pachTime[3]) /* Y */ && RT_C_IS_DIGIT(pachTime[4]) /* M */ && RT_C_IS_DIGIT(pachTime[5]) /* M */ && RT_C_IS_DIGIT(pachTime[6]) /* D */ && RT_C_IS_DIGIT(pachTime[7]) /* D */ && RT_C_IS_DIGIT(pachTime[8]) /* H */ && RT_C_IS_DIGIT(pachTime[9]) /* H */ && RT_C_IS_DIGIT(pachTime[10]) /* M */ && RT_C_IS_DIGIT(pachTime[11]) /* M */ && RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */ && RT_C_IS_DIGIT(pachTime[13]) /* S */ && pachTime[pThis->Asn1Core.cb - 1] == 'Z' ) { /* Basic conversion. */ pThis->Time.i32Year = 1000 * (pachTime[0] - '0') + 100 * (pachTime[1] - '0') + 10 * (pachTime[2] - '0') + (pachTime[3] - '0'); pThis->Time.u8Month = (pachTime[4] - '0') * 10 + (pachTime[5] - '0'); pThis->Time.u8WeekDay = 0; pThis->Time.u16YearDay = 0; pThis->Time.u8MonthDay = (pachTime[6] - '0') * 10 + (pachTime[7] - '0'); pThis->Time.u8Hour = (pachTime[8] - '0') * 10 + (pachTime[9] - '0'); pThis->Time.u8Minute = (pachTime[10] - '0') * 10 + (pachTime[11] - '0'); pThis->Time.u8Second = (pachTime[12] - '0') * 10 + (pachTime[13] - '0'); pThis->Time.u32Nanosecond = 0; pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC; pThis->Time.offUTC = 0; /* Optional fraction part. */ rc = VINF_SUCCESS; uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1; if (cchLeft > 0) rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag); /* Check the convered data and normalize the time structure. */ if (RT_SUCCESS(rc)) { rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag); if (RT_SUCCESS(rc)) return VINF_SUCCESS; } } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Bad GeneralizedTime encoding: '%.*s'", pszErrorTag, pThis->Asn1Core.cb, pachTime); } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING, "%s: Bad GeneralizedTime length: %#x", pszErrorTag, pThis->Asn1Core.cb); RT_ZERO(*pThis); return rc; } RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) { Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT)); RT_NOREF_PV(fFlags); int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); if (RT_SUCCESS(rc)) { if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) ) { if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME) { RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag); } if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME) { RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag); } rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x", pszErrorTag, pThis->Asn1Core.uTag); } else rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x", pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag); } RT_ZERO(*pThis); return rc; } RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) { int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); if (RT_SUCCESS(rc)) { rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE, fFlags, pszErrorTag, "UTC TIME"); if (RT_SUCCESS(rc)) { RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag); } } RT_ZERO(*pThis); return rc; } RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag) { int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag); if (RT_SUCCESS(rc)) { rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME, ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE, fFlags, pszErrorTag, "GENERALIZED TIME"); if (RT_SUCCESS(rc)) { RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb); pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable; pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT; return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag); } } RT_ZERO(*pThis); return rc; } /* * Generate code for the associated collection types. */ #define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h" #include #include