/* $Id: openssl-sha3.cpp $ */ /** @file * IPRT - SHA-3 hash functions, OpenSSL based implementation. */ /* * Copyright (C) 2020-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ #if 1 /* For now: */ # include "alt-sha3.cpp" #else /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include "internal/openssl-pre.h" #include #include "internal/openssl-post.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define RTSHA3PRIVATECTX_MAGIC UINT64_C(0xb6362d323c56b758) #define RTSHA3PRIVATECTX_MAGIC_FINAL UINT64_C(0x40890fe0e474215d) #define RTSHA3PRIVATECTX_MAGIC_DEAD UINT64_C(0xdead7a05081cbeef) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /* Internal EVP structure that we fake here to avoid lots of casting. */ struct evp_md_ctx_st { void *apvWhatever[10]; }; /** The OpenSSL private context structure. */ typedef struct RTSHA3PRIVATECTX { /** RTSHA3PRIVATECTX_MAGIC / RTSHA3PRIVATECTX_MAGIC_FINAL / RTSHA3PRIVATECTX_MAGIC_DEAD */ uint64_t u64Magic; /** The OpenSSL context. We cheat to avoid EVP_MD_CTX_new/free. */ struct evp_md_ctx_st MdCtx; } RTSHA3PRIVATECTX; #define RT_SHA3_PRIVATE_CONTEXT #include AssertCompile(RT_SIZEOFMEMB(RTSHA3CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA3CONTEXT, Private)); static int rtSha3Init(PRTSHA3CONTEXT pCtx, const EVP_MD *pMdType) { RT_ZERO(*pCtx); /* This is what EVP_MD_CTX_new does. */ pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC; AssertReturnStmt(EVP_DigestInit_ex(&pCtx->Private.MdCtx, pMdType, NULL /*engine*/), pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC_DEAD, VERR_CR_DIGEST_OSSL_DIGEST_INIT_ERROR); return VINF_SUCCESS; } static int rtSha3Update(PRTSHA3CONTEXT pCtx, uint8_t const *pbData, size_t cbData) { AssertMsgReturn(pCtx->Private.u64Magic == RTSHA3PRIVATECTX_MAGIC, ("u64Magic=%RX64\n", pCtx->Private.u64Magic), VERR_INVALID_CONTEXT); AssertReturn(EVP_DigestUpdate(&pCtx->Private.MdCtx, pbData, cbData), VERR_GENERAL_FAILURE); return VINF_SUCCESS; } static int rtSha3Final(PRTSHA3CONTEXT pCtx, uint8_t *pbDigest, size_t cbDigest) { RT_BZERO(pbDigest, cbDigest); AssertMsgReturn(pCtx->Private.u64Magic == RTSHA3PRIVATECTX_MAGIC, ("u64Magic=%RX64\n", pCtx->Private.u64Magic), VERR_INVALID_CONTEXT); AssertReturn(EVP_DigestFinal_ex(&pCtx->Private.MdCtx, pbDigest, NULL), VERR_GENERAL_FAILURE); /* Implicit cleanup. */ EVP_MD_CTX_reset(&pCtx->Private.MdCtx); pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC_FINAL; return VINF_SUCCESS; } static int rtSha3Cleanup(PRTSHA3CONTEXT pCtx) { if (pCtx) { if (pCtx->Private.u64Magic == RTSHA3PRIVATECTX_MAGIC_FINAL) { /* likely */ } else if (pCtx->Private.u64Magic == RTSHA3PRIVATECTX_MAGIC) EVP_MD_CTX_reset(&pCtx->Private.MdCtx); else AssertMsgFailedReturn(("u64Magic=%RX64\n", pCtx->Private.u64Magic), VERR_INVALID_CONTEXT); pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC_DEAD; } return VINF_SUCCESS; } static int rtSha3Clone(PRTSHA3CONTEXT pCtx, RTSHA3CONTEXT const *pCtxSrc) { Assert(pCtx->Private.u64Magic != RTSHA3PRIVATECTX_MAGIC); RT_ZERO(*pCtx); /* This is what EVP_MD_CTX_new does. */ AssertReturn(pCtxSrc->Private.u64Magic == RTSHA3PRIVATECTX_MAGIC, VERR_INVALID_CONTEXT); pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC; AssertReturnStmt(EVP_MD_CTX_copy_ex(&pCtx->Private.MdCtx, &pCtxSrc->Private.MdCtx), pCtx->Private.u64Magic = RTSHA3PRIVATECTX_MAGIC_DEAD, VERR_CR_DIGEST_OSSL_DIGEST_CTX_COPY_ERROR); return VINF_SUCCESS; } static int rtSha3(const void *pvData, size_t cbData, const EVP_MD *pMdType, uint8_t *pabHash, size_t cbHash) { RT_BZERO(pabHash, cbHash); int rc; EVP_MD_CTX *pCtx = EVP_MD_CTX_new(); if (pCtx) { if (EVP_DigestInit_ex(pCtx, pMdType, NULL /*engine*/)) { if (EVP_DigestUpdate(pCtx, pvData, cbData)) { if (EVP_DigestFinal_ex(pCtx, pabHash, NULL)) rc = VINF_SUCCESS; else AssertFailedStmt(rc = VERR_GENERAL_FAILURE); } else AssertFailedStmt(rc = VERR_GENERAL_FAILURE); } else AssertFailedStmt(rc = VERR_CR_DIGEST_OSSL_DIGEST_INIT_ERROR); EVP_MD_CTX_free(pCtx); } else AssertFailedStmt(rc = VERR_NO_MEMORY); return rc; } static bool rtSha3Check(const void *pvData, size_t cbData, const EVP_MD *pMdType, const uint8_t *pabHash, uint8_t *pabHashTmp, size_t cbHash) { int rc = rtSha3(pvData, cbData, pMdType, pabHashTmp, cbHash); return RT_SUCCESS(rc) && memcmp(pabHash, pabHashTmp, cbHash) == 0; } /** Macro for declaring the interface for a SHA3 variation. * @internal */ #define RTSHA3_DEFINE_VARIANT(a_cBits, a_pMdType) \ AssertCompile((a_cBits / 8) == RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)); \ \ RTDECL(int) RT_CONCAT(RTSha3t,a_cBits)(const void *pvBuf, size_t cbBuf, uint8_t pabHash[RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)]) \ { \ return rtSha3(pvBuf, cbBuf, a_pMdType, pabHash, (a_cBits) / 8); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT(RTSha3t,a_cBits)); \ \ \ RTDECL(bool) RT_CONCAT3(RTSha3t,a_cBits,Check)(const void *pvBuf, size_t cbBuf, \ uint8_t const pabHash[RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)]) \ { \ uint8_t abHashTmp[(a_cBits) / 8]; \ return rtSha3Check(pvBuf, cbBuf, a_pMdType, pabHash, abHashTmp, (a_cBits) / 8); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Check)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,Init)(RT_CONCAT3(PRTSHA3T,a_cBits,CONTEXT) pCtx) \ { \ return rtSha3Init(&pCtx->Sha3, a_pMdType); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Init)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,Update)(RT_CONCAT3(PRTSHA3T,a_cBits,CONTEXT) pCtx, const void *pvBuf, size_t cbBuf) \ { \ return rtSha3Update(&pCtx->Sha3, (uint8_t const *)pvBuf, cbBuf); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Update)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,Final)(RT_CONCAT3(PRTSHA3T,a_cBits,CONTEXT) pCtx, \ uint8_t pabHash[RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)]) \ { \ return rtSha3Final(&pCtx->Sha3, pabHash, (a_cBits) / 8); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Final)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,Cleanup)(RT_CONCAT3(PRTSHA3T,a_cBits,CONTEXT) pCtx) \ { \ return rtSha3Cleanup(&pCtx->Sha3); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Cleanup)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,Clone)(RT_CONCAT3(PRTSHA3T,a_cBits,CONTEXT) pCtx, \ RT_CONCAT3(RTSHA3T,a_cBits,CONTEXT) const *pCtxSrc) \ { \ return rtSha3Clone(&pCtx->Sha3, &pCtxSrc->Sha3); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,Clone)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,ToString)(uint8_t const pabHash[RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)], \ char *pszDigest, size_t cchDigest) \ { \ return RTStrPrintHexBytes(pszDigest, cchDigest, pabHash, (a_cBits) / 8, 0 /*fFlags*/); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,ToString)); \ \ \ RTDECL(int) RT_CONCAT3(RTSha3t,a_cBits,FromString)(char const *pszDigest, uint8_t pabHash[RT_CONCAT3(RTSHA3_,a_cBits,_HASH_SIZE)]) \ { \ return RTStrConvertHexBytes(RTStrStripL(pszDigest), &pabHash[0], (a_cBits) / 8, 0 /*fFlags*/); \ } \ RT_EXPORT_SYMBOL(RT_CONCAT3(RTSha3t,a_cBits,FromString)) RTSHA3_DEFINE_VARIANT(224, EVP_sha3_224()); RTSHA3_DEFINE_VARIANT(256, EVP_sha3_256()); RTSHA3_DEFINE_VARIANT(384, EVP_sha3_384()); RTSHA3_DEFINE_VARIANT(512, EVP_sha3_512()); #endif /* !alt-sha3.cpp */