/* $Id: x509-certpaths.cpp $ */ /** @file * IPRT - Crypto - X.509, Simple Certificate Path Builder & Validator. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_CRYPTO #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include #include /* critical extension OIDs */ #include /* PCRTCRPKCS7SETOFCERTS */ #include #include "x509-internal.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * X.509 certificate path node. */ typedef struct RTCRX509CERTPATHNODE { /** Sibling list entry. */ RTLISTNODE SiblingEntry; /** List of children or leaf list entry. */ RTLISTANCHOR ChildListOrLeafEntry; /** Pointer to the parent node. NULL for root. */ struct RTCRX509CERTPATHNODE *pParent; /** The distance between this node and the target. */ uint32_t uDepth : 8; /** Indicates the source of this certificate. */ uint32_t uSrc : 3; /** Set if this is a leaf node. */ uint32_t fLeaf : 1; /** Makes sure it's a 32-bit bitfield. */ uint32_t uReserved : 20; /** Leaf only: The result of the last path vertification. */ int rcVerify; /** Pointer to the certificate. This can be NULL only for trust anchors. */ PCRTCRX509CERTIFICATE pCert; /** If the certificate or trust anchor was obtained from a store, this is the * associated certificate context (referenced of course). This is used to * access the trust anchor information, if present. * * (If this is NULL it's from a certificate array or some such given directly to * the path building code. It's assumed the caller doesn't free these until the * path validation/whatever is done with and the paths destroyed.) */ PCRTCRCERTCTX pCertCtx; } RTCRX509CERTPATHNODE; /** Pointer to a X.509 path node. */ typedef RTCRX509CERTPATHNODE *PRTCRX509CERTPATHNODE; /** @name RTCRX509CERTPATHNODE::uSrc values. * The trusted and untrusted sources ordered in priority order, where higher * number means high priority in case of duplicates. * @{ */ #define RTCRX509CERTPATHNODE_SRC_NONE 0 #define RTCRX509CERTPATHNODE_SRC_TARGET 1 #define RTCRX509CERTPATHNODE_SRC_UNTRUSTED_SET 2 #define RTCRX509CERTPATHNODE_SRC_UNTRUSTED_ARRAY 3 #define RTCRX509CERTPATHNODE_SRC_UNTRUSTED_STORE 4 #define RTCRX509CERTPATHNODE_SRC_TRUSTED_STORE 5 #define RTCRX509CERTPATHNODE_SRC_TRUSTED_CERT 6 #define RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(uSrc) ((uSrc) >= RTCRX509CERTPATHNODE_SRC_TRUSTED_STORE) /** @} */ /** * Policy tree node. */ typedef struct RTCRX509CERTPATHSPOLICYNODE { /** Sibling list entry. */ RTLISTNODE SiblingEntry; /** Tree depth list entry. */ RTLISTNODE DepthEntry; /** List of children or leaf list entry. */ RTLISTANCHOR ChildList; /** Pointer to the parent. */ struct RTCRX509CERTPATHSPOLICYNODE *pParent; /** The policy object ID. */ PCRTASN1OBJID pValidPolicy; /** Optional sequence of policy qualifiers. */ PCRTCRX509POLICYQUALIFIERINFOS pPolicyQualifiers; /** The first policy ID in the exepcted policy set. */ PCRTASN1OBJID pExpectedPolicyFirst; /** Set if we've already mapped pExpectedPolicyFirst. */ bool fAlreadyMapped; /** Number of additional items in the expected policy set. */ uint32_t cMoreExpectedPolicySet; /** Additional items in the expected policy set. */ PCRTASN1OBJID *papMoreExpectedPolicySet; } RTCRX509CERTPATHSPOLICYNODE; /** Pointer to a policy tree node. */ typedef RTCRX509CERTPATHSPOLICYNODE *PRTCRX509CERTPATHSPOLICYNODE; /** * Path builder and validator instance. * * The path builder creates a tree of certificates by forward searching from the * end-entity towards a trusted source. The leaf nodes are inserted into list * ordered by the source of the leaf certificate and the path length (i.e. tree * depth). * * The path validator works the tree from the leaf end and validates each * potential path found by the builder. It is generally happy with one working * path, but may be told to verify all of them. */ typedef struct RTCRX509CERTPATHSINT { /** Magic number. */ uint32_t u32Magic; /** Reference counter. */ uint32_t volatile cRefs; /** @name Input * @{ */ /** The target certificate (end entity) to build a trusted path for. */ PCRTCRX509CERTIFICATE pTarget; /** Lone trusted certificate. */ PCRTCRX509CERTIFICATE pTrustedCert; /** Store of trusted certificates. */ RTCRSTORE hTrustedStore; /** Store of untrusted certificates. */ RTCRSTORE hUntrustedStore; /** Array of untrusted certificates, typically from the protocol. */ PCRTCRX509CERTIFICATE paUntrustedCerts; /** Number of entries in paUntrusted. */ uint32_t cUntrustedCerts; /** Set of untrusted PKCS \#7 / CMS certificatess. */ PCRTCRPKCS7SETOFCERTS pUntrustedCertsSet; /** UTC time we're going to validate the path at, requires * RTCRX509CERTPATHSINT_F_VALID_TIME to be set. */ RTTIMESPEC ValidTime; /** Number of policy OIDs in the user initial policy set, 0 means anyPolicy. */ uint32_t cInitialUserPolicySet; /** The user initial policy set. As with all other user provided data, we * assume it's immutable and remains valid for the usage period of the path * builder & validator. */ PCRTASN1OBJID *papInitialUserPolicySet; /** Number of certificates before the user wants an explicit policy result. * Set to UINT32_MAX no explicit policy restriction required by the user. */ uint32_t cInitialExplicitPolicy; /** Number of certificates before the user wants policy mapping to be * inhibited. Set to UINT32_MAX if no initial policy mapping inhibition * desired by the user. */ uint32_t cInitialPolicyMappingInhibit; /** Number of certificates before the user wants the anyPolicy to be rejected. * Set to UINT32_MAX no explicit policy restriction required by the user. */ uint32_t cInitialInhibitAnyPolicy; /** Initial name restriction: Permitted subtrees. */ PCRTCRX509GENERALSUBTREES pInitialPermittedSubtrees; /** Initial name restriction: Excluded subtrees. */ PCRTCRX509GENERALSUBTREES pInitialExcludedSubtrees; /** Flags RTCRX509CERTPATHSINT_F_XXX. */ uint32_t fFlags; /** @} */ /** Sticky status for remembering allocation errors and the like. */ int32_t rc; /** Where to store extended error info (optional). */ PRTERRINFO pErrInfo; /** @name Path Builder Output * @{ */ /** Pointer to the root of the tree. This will always be non-NULL after path * building and thus can be reliably used to tell if path building has taken * place or not. */ PRTCRX509CERTPATHNODE pRoot; /** List of working leaf tree nodes. */ RTLISTANCHOR LeafList; /** The number of paths (leafs). */ uint32_t cPaths; /** @} */ /** Path Validator State. */ struct { /** Number of nodes in the certificate path we're validating (aka 'n'). */ uint32_t cNodes; /** The current node (0 being the trust anchor). */ uint32_t iNode; /** The root node of the valid policy tree. */ PRTCRX509CERTPATHSPOLICYNODE pValidPolicyTree; /** An array of length cNodes + 1 which tracks all nodes at the given (index) * tree depth via the RTCRX509CERTPATHSPOLICYNODE::DepthEntry member. */ PRTLISTANCHOR paValidPolicyDepthLists; /** Number of entries in paPermittedSubtrees (name constraints). * If zero, no permitted name constrains currently in effect. */ uint32_t cPermittedSubtrees; /** The allocated size of papExcludedSubtrees */ uint32_t cPermittedSubtreesAlloc; /** Array of permitted subtrees we've collected so far (name constraints). */ PCRTCRX509GENERALSUBTREE *papPermittedSubtrees; /** Set if we end up with an empty set after calculating a name constraints * union. */ bool fNoPermittedSubtrees; /** Number of entries in paExcludedSubtrees (name constraints). * If zero, no excluded name constrains currently in effect. */ uint32_t cExcludedSubtrees; /** Array of excluded subtrees we've collected so far (name constraints). */ PCRTCRX509GENERALSUBTREES *papExcludedSubtrees; /** Number of non-self-issued certificates to be processed before a non-NULL * paValidPolicyTree is required. */ uint32_t cExplicitPolicy; /** Number of non-self-issued certificates to be processed we stop processing * policy mapping extensions. */ uint32_t cInhibitPolicyMapping; /** Number of non-self-issued certificates to be processed before a the * anyPolicy is rejected. */ uint32_t cInhibitAnyPolicy; /** Number of non-self-issued certificates we're allowed to process. */ uint32_t cMaxPathLength; /** The working issuer name. */ PCRTCRX509NAME pWorkingIssuer; /** The working public key algorithm ID. */ PCRTASN1OBJID pWorkingPublicKeyAlgorithm; /** The working public key algorithm parameters. */ PCRTASN1DYNTYPE pWorkingPublicKeyParameters; /** A bit string containing the public key. */ PCRTASN1BITSTRING pWorkingPublicKey; } v; /** An object identifier initialized to anyPolicy. */ RTASN1OBJID AnyPolicyObjId; /** Temporary scratch space. */ char szTmp[1024]; } RTCRX509CERTPATHSINT; typedef RTCRX509CERTPATHSINT *PRTCRX509CERTPATHSINT; /** Magic value for RTCRX509CERTPATHSINT::u32Magic (Bruce Schneier). */ #define RTCRX509CERTPATHSINT_MAGIC UINT32_C(0x19630115) /** @name RTCRX509CERTPATHSINT_F_XXX - Certificate path build flags. * @{ */ #define RTCRX509CERTPATHSINT_F_VALID_TIME RT_BIT_32(0) #define RTCRX509CERTPATHSINT_F_ELIMINATE_UNTRUSTED_PATHS RT_BIT_32(1) /** Whether checking the trust anchor signature (if self signed) and * that it is valid at the verification time, also require it to be a CA if not * leaf node. */ #define RTCRX509CERTPATHSINT_F_CHECK_TRUST_ANCHOR RT_BIT_32(2) #define RTCRX509CERTPATHSINT_F_VALID_MASK UINT32_C(0x00000007) /** @} */ /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static void rtCrX509CertPathsDestroyTree(PRTCRX509CERTPATHSINT pThis); static void rtCrX509CpvCleanup(PRTCRX509CERTPATHSINT pThis); /** @name Path Builder and Validator Config APIs * @{ */ RTDECL(int) RTCrX509CertPathsCreate(PRTCRX509CERTPATHS phCertPaths, PCRTCRX509CERTIFICATE pTarget) { AssertPtrReturn(phCertPaths, VERR_INVALID_POINTER); PRTCRX509CERTPATHSINT pThis = (PRTCRX509CERTPATHSINT)RTMemAllocZ(sizeof(*pThis)); if (pThis) { int rc = RTAsn1ObjId_InitFromString(&pThis->AnyPolicyObjId, RTCRX509_ID_CE_CP_ANY_POLICY_OID, &g_RTAsn1DefaultAllocator); if (RT_SUCCESS(rc)) { pThis->u32Magic = RTCRX509CERTPATHSINT_MAGIC; pThis->cRefs = 1; pThis->pTarget = pTarget; pThis->hTrustedStore = NIL_RTCRSTORE; pThis->hUntrustedStore = NIL_RTCRSTORE; pThis->cInitialExplicitPolicy = UINT32_MAX; pThis->cInitialPolicyMappingInhibit = UINT32_MAX; pThis->cInitialInhibitAnyPolicy = UINT32_MAX; pThis->rc = VINF_SUCCESS; RTListInit(&pThis->LeafList); *phCertPaths = pThis; return VINF_SUCCESS; } return rc; } return VERR_NO_MEMORY; } RTDECL(uint32_t) RTCrX509CertPathsRetain(RTCRX509CERTPATHS hCertPaths) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, UINT32_MAX); uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs); Assert(cRefs > 0 && cRefs < 64); return cRefs; } RTDECL(uint32_t) RTCrX509CertPathsRelease(RTCRX509CERTPATHS hCertPaths) { uint32_t cRefs; if (hCertPaths != NIL_RTCRX509CERTPATHS) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, UINT32_MAX); cRefs = ASMAtomicDecU32(&pThis->cRefs); Assert(cRefs < 64); if (!cRefs) { /* * No more references, destroy the whole thing. */ ASMAtomicWriteU32(&pThis->u32Magic, ~RTCRX509CERTPATHSINT_MAGIC); /* config */ pThis->pTarget = NULL; /* Referencing user memory. */ pThis->pTrustedCert = NULL; /* Referencing user memory. */ RTCrStoreRelease(pThis->hTrustedStore); pThis->hTrustedStore = NIL_RTCRSTORE; RTCrStoreRelease(pThis->hUntrustedStore); pThis->hUntrustedStore = NIL_RTCRSTORE; pThis->paUntrustedCerts = NULL; /* Referencing user memory. */ pThis->pUntrustedCertsSet = NULL; /* Referencing user memory. */ pThis->papInitialUserPolicySet = NULL; /* Referencing user memory. */ pThis->pInitialPermittedSubtrees = NULL; /* Referencing user memory. */ pThis->pInitialExcludedSubtrees = NULL; /* Referencing user memory. */ /* builder */ rtCrX509CertPathsDestroyTree(pThis); /* validator */ rtCrX509CpvCleanup(pThis); /* misc */ RTAsn1VtDelete(&pThis->AnyPolicyObjId.Asn1Core); /* Finally, the instance itself. */ RTMemFree(pThis); } } else cRefs = 0; return cRefs; } RTDECL(int) RTCrX509CertPathsSetTrustedStore(RTCRX509CERTPATHS hCertPaths, RTCRSTORE hTrustedStore) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertReturn(pThis->pRoot == NULL, VERR_WRONG_ORDER); if (pThis->hTrustedStore != NIL_RTCRSTORE) { RTCrStoreRelease(pThis->hTrustedStore); pThis->hTrustedStore = NIL_RTCRSTORE; } if (hTrustedStore != NIL_RTCRSTORE) { AssertReturn(RTCrStoreRetain(hTrustedStore) != UINT32_MAX, VERR_INVALID_HANDLE); pThis->hTrustedStore = hTrustedStore; } return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetUntrustedStore(RTCRX509CERTPATHS hCertPaths, RTCRSTORE hUntrustedStore) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertReturn(pThis->pRoot == NULL, VERR_WRONG_ORDER); if (pThis->hUntrustedStore != NIL_RTCRSTORE) { RTCrStoreRelease(pThis->hUntrustedStore); pThis->hUntrustedStore = NIL_RTCRSTORE; } if (hUntrustedStore != NIL_RTCRSTORE) { AssertReturn(RTCrStoreRetain(hUntrustedStore) != UINT32_MAX, VERR_INVALID_HANDLE); pThis->hUntrustedStore = hUntrustedStore; } return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetUntrustedArray(RTCRX509CERTPATHS hCertPaths, PCRTCRX509CERTIFICATE paCerts, uint32_t cCerts) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); pThis->paUntrustedCerts = paCerts; pThis->cUntrustedCerts = cCerts; return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetUntrustedSet(RTCRX509CERTPATHS hCertPaths, PCRTCRPKCS7SETOFCERTS pSetOfCerts) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); pThis->pUntrustedCertsSet = pSetOfCerts; return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetValidTime(RTCRX509CERTPATHS hCertPaths, PCRTTIME pTime) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); /* Allow this after building paths, as it's only used during verification. */ if (pTime) { if (RTTimeImplode(&pThis->ValidTime, pTime)) return VERR_INVALID_PARAMETER; pThis->fFlags |= RTCRX509CERTPATHSINT_F_VALID_TIME; } else pThis->fFlags &= ~RTCRX509CERTPATHSINT_F_VALID_TIME; return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetValidTimeSpec(RTCRX509CERTPATHS hCertPaths, PCRTTIMESPEC pTimeSpec) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); /* Allow this after building paths, as it's only used during verification. */ if (pTimeSpec) { pThis->ValidTime = *pTimeSpec; pThis->fFlags |= RTCRX509CERTPATHSINT_F_VALID_TIME; } else pThis->fFlags &= ~RTCRX509CERTPATHSINT_F_VALID_TIME; return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsSetTrustAnchorChecks(RTCRX509CERTPATHS hCertPaths, bool fEnable) { PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); if (fEnable) pThis->fFlags |= RTCRX509CERTPATHSINT_F_CHECK_TRUST_ANCHOR; else pThis->fFlags &= ~RTCRX509CERTPATHSINT_F_CHECK_TRUST_ANCHOR; return VINF_SUCCESS; } RTDECL(int) RTCrX509CertPathsCreateEx(PRTCRX509CERTPATHS phCertPaths, PCRTCRX509CERTIFICATE pTarget, RTCRSTORE hTrustedStore, RTCRSTORE hUntrustedStore, PCRTCRX509CERTIFICATE paUntrustedCerts, uint32_t cUntrustedCerts, PCRTTIMESPEC pValidTime) { int rc = RTCrX509CertPathsCreate(phCertPaths, pTarget); if (RT_SUCCESS(rc)) { PRTCRX509CERTPATHSINT pThis = *phCertPaths; rc = RTCrX509CertPathsSetTrustedStore(pThis, hTrustedStore); if (RT_SUCCESS(rc)) { rc = RTCrX509CertPathsSetUntrustedStore(pThis, hUntrustedStore); if (RT_SUCCESS(rc)) { rc = RTCrX509CertPathsSetUntrustedArray(pThis, paUntrustedCerts, cUntrustedCerts); if (RT_SUCCESS(rc)) { rc = RTCrX509CertPathsSetValidTimeSpec(pThis, pValidTime); if (RT_SUCCESS(rc)) { return VINF_SUCCESS; } } RTCrStoreRelease(pThis->hUntrustedStore); } RTCrStoreRelease(pThis->hTrustedStore); } RTMemFree(pThis); *phCertPaths = NIL_RTCRX509CERTPATHS; } return rc; } /** @} */ /** @name Path Builder and Validator Common Utility Functions. * @{ */ /** * Checks if the certificate is self-issued. * * @returns true / false. * @param pNode The path node to check.. */ static bool rtCrX509CertPathsIsSelfIssued(PRTCRX509CERTPATHNODE pNode) { return pNode->pCert && RTCrX509Name_MatchByRfc5280(&pNode->pCert->TbsCertificate.Subject, &pNode->pCert->TbsCertificate.Issuer); } /** * Helper for checking whether a certificate is in the trusted store or not. */ static bool rtCrX509CertPathsIsCertInStore(PRTCRX509CERTPATHNODE pNode, RTCRSTORE hStore) { bool fRc = false; PCRTCRCERTCTX pCertCtx = RTCrStoreCertByIssuerAndSerialNo(hStore, &pNode->pCert->TbsCertificate.Issuer, &pNode->pCert->TbsCertificate.SerialNumber); if (pCertCtx) { if (pCertCtx->pCert) fRc = RTCrX509Certificate_Compare(pCertCtx->pCert, pNode->pCert) == 0; RTCrCertCtxRelease(pCertCtx); } return fRc; } /** @} */ /** @name Path Builder Functions. * @{ */ static PRTCRX509CERTPATHNODE rtCrX509CertPathsNewNode(PRTCRX509CERTPATHSINT pThis) { PRTCRX509CERTPATHNODE pNode = (PRTCRX509CERTPATHNODE)RTMemAllocZ(sizeof(*pNode)); if (RT_LIKELY(pNode)) { RTListInit(&pNode->SiblingEntry); RTListInit(&pNode->ChildListOrLeafEntry); pNode->rcVerify = VERR_CR_X509_NOT_VERIFIED; return pNode; } pThis->rc = RTErrInfoSet(pThis->pErrInfo, VERR_NO_MEMORY, "No memory for path node"); return NULL; } static void rtCrX509CertPathsDestroyNode(PRTCRX509CERTPATHNODE pNode) { if (pNode->pCertCtx) { RTCrCertCtxRelease(pNode->pCertCtx); pNode->pCertCtx = NULL; } RT_ZERO(*pNode); RTMemFree(pNode); } static void rtCrX509CertPathsAddIssuer(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pParent, PCRTCRX509CERTIFICATE pCert, PCRTCRCERTCTX pCertCtx, uint8_t uSrc) { /* * Check if we've seen this certificate already in the current path or * among the already gathered issuers. */ if (pCert) { /* No duplicate certificates in the path. */ PRTCRX509CERTPATHNODE pTmpNode = pParent; while (pTmpNode) { Assert(pTmpNode->pCert); if ( pTmpNode->pCert == pCert || RTCrX509Certificate_Compare(pTmpNode->pCert, pCert) == 0) { /* If target and the source it trusted, upgrade the source so we can successfully verify single node 'paths'. */ if ( RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(uSrc) && pTmpNode == pParent && pTmpNode->uSrc == RTCRX509CERTPATHNODE_SRC_TARGET) { AssertReturnVoid(!pTmpNode->pParent); pTmpNode->uSrc = uSrc; } return; } pTmpNode = pTmpNode->pParent; } /* No duplicate tree branches. */ RTListForEach(&pParent->ChildListOrLeafEntry, pTmpNode, RTCRX509CERTPATHNODE, SiblingEntry) { if (RTCrX509Certificate_Compare(pTmpNode->pCert, pCert) == 0) return; } } else Assert(pCertCtx); /* * Reference the context core before making the allocation. */ if (pCertCtx) AssertReturnVoidStmt(RTCrCertCtxRetain(pCertCtx) != UINT32_MAX, pThis->rc = RTErrInfoSetF(pThis->pErrInfo, VERR_CR_X509_CPB_BAD_CERT_CTX, "Bad pCertCtx=%p", pCertCtx)); /* * We haven't see it, append it as a child. */ PRTCRX509CERTPATHNODE pNew = rtCrX509CertPathsNewNode(pThis); if (pNew) { pNew->pParent = pParent; pNew->pCert = pCert; pNew->pCertCtx = pCertCtx; pNew->uSrc = uSrc; pNew->uDepth = pParent->uDepth + 1; RTListAppend(&pParent->ChildListOrLeafEntry, &pNew->SiblingEntry); Log2Func(("pNew=%p uSrc=%u uDepth=%u\n", pNew, uSrc, pNew->uDepth)); } else RTCrCertCtxRelease(pCertCtx); } static void rtCrX509CertPathsGetIssuersFromStore(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode, PCRTCRX509NAME pIssuer, RTCRSTORE hStore, uint8_t uSrc) { RTCRSTORECERTSEARCH Search; int rc = RTCrStoreCertFindBySubjectOrAltSubjectByRfc5280(hStore, pIssuer, &Search); if (RT_SUCCESS(rc)) { PCRTCRCERTCTX pCertCtx; while ((pCertCtx = RTCrStoreCertSearchNext(hStore, &Search)) != NULL) { if ( pCertCtx->pCert || ( RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(uSrc) && pCertCtx->pTaInfo) ) rtCrX509CertPathsAddIssuer(pThis, pNode, pCertCtx->pCert, pCertCtx, uSrc); RTCrCertCtxRelease(pCertCtx); } RTCrStoreCertSearchDestroy(hStore, &Search); } } static void rtCrX509CertPathsGetIssuers(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { Assert(RTListIsEmpty(&pNode->ChildListOrLeafEntry)); Assert(!pNode->fLeaf); Assert(pNode->pCert); /* * Don't recurse infintely. */ if (RT_UNLIKELY(pNode->uDepth >= 50)) return; PCRTCRX509NAME const pIssuer = &pNode->pCert->TbsCertificate.Issuer; #if defined(LOG_ENABLED) && defined(IN_RING3) if (LogIs2Enabled()) { char szIssuer[128] = {0}; RTCrX509Name_FormatAsString(pIssuer, szIssuer, sizeof(szIssuer), NULL); char szSubject[128] = {0}; RTCrX509Name_FormatAsString(&pNode->pCert->TbsCertificate.Subject, szSubject, sizeof(szSubject), NULL); Log2Func(("pNode=%p uSrc=%u uDepth=%u Issuer='%s' (Subject='%s')\n", pNode, pNode->uSrc, pNode->uDepth, szIssuer, szSubject)); } #endif /* * Trusted certificate. */ if ( pThis->pTrustedCert && RTCrX509Certificate_MatchSubjectOrAltSubjectByRfc5280(pThis->pTrustedCert, pIssuer)) rtCrX509CertPathsAddIssuer(pThis, pNode, pThis->pTrustedCert, NULL, RTCRX509CERTPATHNODE_SRC_TRUSTED_CERT); /* * Trusted certificate store. */ if (pThis->hTrustedStore != NIL_RTCRSTORE) rtCrX509CertPathsGetIssuersFromStore(pThis, pNode, pIssuer, pThis->hTrustedStore, RTCRX509CERTPATHNODE_SRC_TRUSTED_STORE); /* * Untrusted store. */ if (pThis->hUntrustedStore != NIL_RTCRSTORE) rtCrX509CertPathsGetIssuersFromStore(pThis, pNode, pIssuer, pThis->hTrustedStore, RTCRX509CERTPATHNODE_SRC_UNTRUSTED_STORE); /* * Untrusted array. */ if (pThis->paUntrustedCerts) for (uint32_t i = 0; i < pThis->cUntrustedCerts; i++) if (RTCrX509Certificate_MatchSubjectOrAltSubjectByRfc5280(&pThis->paUntrustedCerts[i], pIssuer)) rtCrX509CertPathsAddIssuer(pThis, pNode, &pThis->paUntrustedCerts[i], NULL, RTCRX509CERTPATHNODE_SRC_UNTRUSTED_ARRAY); /** @todo Rainy day: Should abstract the untrusted array and set so we don't get * unnecessary PKCS7/CMS header dependencies. */ /* * Untrusted set. */ if (pThis->pUntrustedCertsSet) { uint32_t const cCerts = pThis->pUntrustedCertsSet->cItems; PRTCRPKCS7CERT const *papCerts = pThis->pUntrustedCertsSet->papItems; for (uint32_t i = 0; i < cCerts; i++) { PCRTCRPKCS7CERT pCert = papCerts[i]; if ( pCert->enmChoice == RTCRPKCS7CERTCHOICE_X509 && RTCrX509Certificate_MatchSubjectOrAltSubjectByRfc5280(pCert->u.pX509Cert, pIssuer)) rtCrX509CertPathsAddIssuer(pThis, pNode, pCert->u.pX509Cert, NULL, RTCRX509CERTPATHNODE_SRC_UNTRUSTED_SET); } } } static PRTCRX509CERTPATHNODE rtCrX509CertPathsGetNextRightUp(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { for (;;) { /* The root node has no siblings. */ PRTCRX509CERTPATHNODE pParent = pNode->pParent; if (!pNode->pParent) return NULL; /* Try go to the right. */ PRTCRX509CERTPATHNODE pNext = RTListGetNext(&pParent->ChildListOrLeafEntry, pNode, RTCRX509CERTPATHNODE, SiblingEntry); if (pNext) return pNext; /* Up. */ pNode = pParent; } RT_NOREF_PV(pThis); } static PRTCRX509CERTPATHNODE rtCrX509CertPathsEliminatePath(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { for (;;) { Assert(RTListIsEmpty(&pNode->ChildListOrLeafEntry)); /* Don't remove the root node. */ PRTCRX509CERTPATHNODE pParent = pNode->pParent; if (!pParent) return NULL; /* Before removing and deleting the node check if there is sibling right to it that we should continue processing from. */ PRTCRX509CERTPATHNODE pNext = RTListGetNext(&pParent->ChildListOrLeafEntry, pNode, RTCRX509CERTPATHNODE, SiblingEntry); RTListNodeRemove(&pNode->SiblingEntry); rtCrX509CertPathsDestroyNode(pNode); if (pNext) return pNext; /* If the parent node cannot be removed, do a normal get-next-rigth-up to find the continuation point for the tree loop. */ if (!RTListIsEmpty(&pParent->ChildListOrLeafEntry)) return rtCrX509CertPathsGetNextRightUp(pThis, pParent); pNode = pParent; } } /** * Destroys the whole path tree. * * @param pThis The path builder and verifier instance. */ static void rtCrX509CertPathsDestroyTree(PRTCRX509CERTPATHSINT pThis) { PRTCRX509CERTPATHNODE pNode, pNextLeaf; RTListForEachSafe(&pThis->LeafList, pNode, pNextLeaf, RTCRX509CERTPATHNODE, ChildListOrLeafEntry) { RTListNodeRemove(&pNode->ChildListOrLeafEntry); RTListInit(&pNode->ChildListOrLeafEntry); for (;;) { PRTCRX509CERTPATHNODE pParent = pNode->pParent; RTListNodeRemove(&pNode->SiblingEntry); rtCrX509CertPathsDestroyNode(pNode); if (!pParent) { pThis->pRoot = NULL; break; } if (!RTListIsEmpty(&pParent->ChildListOrLeafEntry)) break; pNode = pParent; } } Assert(!pThis->pRoot); } /** * Adds a leaf node. * * This should normally be a trusted certificate, but the caller can also * request the incomplete paths, in which case this will be an untrusted * certificate. * * @returns Pointer to the next node in the tree to process. * @param pThis The path builder instance. * @param pNode The leaf node. */ static PRTCRX509CERTPATHNODE rtCrX509CertPathsAddLeaf(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { pNode->fLeaf = true; /* * Priority insert by source and depth. */ PRTCRX509CERTPATHNODE pCurLeaf; RTListForEach(&pThis->LeafList, pCurLeaf, RTCRX509CERTPATHNODE, ChildListOrLeafEntry) { if ( pNode->uSrc > pCurLeaf->uSrc || ( pNode->uSrc == pCurLeaf->uSrc && pNode->uDepth < pCurLeaf->uDepth) ) { RTListNodeInsertBefore(&pCurLeaf->ChildListOrLeafEntry, &pNode->ChildListOrLeafEntry); pThis->cPaths++; return rtCrX509CertPathsGetNextRightUp(pThis, pNode); } } RTListAppend(&pThis->LeafList, &pNode->ChildListOrLeafEntry); pThis->cPaths++; return rtCrX509CertPathsGetNextRightUp(pThis, pNode); } RTDECL(int) RTCrX509CertPathsBuild(RTCRX509CERTPATHS hCertPaths, PRTERRINFO pErrInfo) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!(pThis->fFlags & ~RTCRX509CERTPATHSINT_F_VALID_MASK), VERR_INVALID_PARAMETER); AssertReturn( (pThis->paUntrustedCerts == NULL && pThis->cUntrustedCerts == 0) || (pThis->paUntrustedCerts != NULL && pThis->cUntrustedCerts > 0), VERR_INVALID_PARAMETER); AssertReturn(RTListIsEmpty(&pThis->LeafList), VERR_INVALID_PARAMETER); AssertReturn(pThis->pRoot == NULL, VERR_INVALID_PARAMETER); AssertReturn(pThis->rc == VINF_SUCCESS, pThis->rc); AssertPtrReturn(pThis->pTarget, VERR_INVALID_PARAMETER); Assert(RT_SUCCESS(RTCrX509Certificate_CheckSanity(pThis->pTarget, 0, NULL, NULL))); /* * Set up the target. */ PRTCRX509CERTPATHNODE pCur; pThis->pRoot = pCur = rtCrX509CertPathsNewNode(pThis); if (pThis->pRoot) { pCur->pCert = pThis->pTarget; pCur->uDepth = 0; pCur->uSrc = RTCRX509CERTPATHNODE_SRC_TARGET; /* Check if the target is trusted and do the upgrade (this is outside the RFC, but this simplifies the path validator usage a lot (less work for the caller)). */ if ( pThis->pTrustedCert && RTCrX509Certificate_Compare(pThis->pTrustedCert, pCur->pCert) == 0) pCur->uSrc = RTCRX509CERTPATHNODE_SRC_TRUSTED_CERT; else if ( pThis->hTrustedStore != NIL_RTCRSTORE && rtCrX509CertPathsIsCertInStore(pCur, pThis->hTrustedStore)) pCur->uSrc = RTCRX509CERTPATHNODE_SRC_TRUSTED_STORE; pThis->pErrInfo = pErrInfo; /* * The tree construction loop. * Walks down, up, and right as the tree is constructed. */ do { /* * Check for the two leaf cases first. */ if (RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(pCur->uSrc)) pCur = rtCrX509CertPathsAddLeaf(pThis, pCur); #if 0 /* This isn't right.*/ else if (rtCrX509CertPathsIsSelfIssued(pCur)) { if (pThis->fFlags & RTCRX509CERTPATHSINT_F_ELIMINATE_UNTRUSTED_PATHS) pCur = rtCrX509CertPathsEliminatePath(pThis, pCur); else pCur = rtCrX509CertPathsAddLeaf(pThis, pCur); } #endif /* * Not a leaf, find all potential issuers and decend into these. */ else { rtCrX509CertPathsGetIssuers(pThis, pCur); if (RT_FAILURE(pThis->rc)) break; if (!RTListIsEmpty(&pCur->ChildListOrLeafEntry)) pCur = RTListGetFirst(&pCur->ChildListOrLeafEntry, RTCRX509CERTPATHNODE, SiblingEntry); else if (pThis->fFlags & RTCRX509CERTPATHSINT_F_ELIMINATE_UNTRUSTED_PATHS) pCur = rtCrX509CertPathsEliminatePath(pThis, pCur); else pCur = rtCrX509CertPathsAddLeaf(pThis, pCur); } if (pCur) Log2(("RTCrX509CertPathsBuild: pCur=%p fLeaf=%d pParent=%p pNext=%p pPrev=%p\n", pCur, pCur->fLeaf, pCur->pParent, pCur->pParent ? RTListGetNext(&pCur->pParent->ChildListOrLeafEntry, pCur, RTCRX509CERTPATHNODE, SiblingEntry) : NULL, pCur->pParent ? RTListGetPrev(&pCur->pParent->ChildListOrLeafEntry, pCur, RTCRX509CERTPATHNODE, SiblingEntry) : NULL)); } while (pCur); pThis->pErrInfo = NULL; if (RT_SUCCESS(pThis->rc)) return VINF_SUCCESS; } else Assert(RT_FAILURE_NP(pThis->rc)); return pThis->rc; } /** * Looks up path by leaf/path index. * * @returns Pointer to the leaf node of the path. * @param pThis The path builder & validator instance. * @param iPath The oridnal of the path to get. */ static PRTCRX509CERTPATHNODE rtCrX509CertPathsGetLeafByIndex(PRTCRX509CERTPATHSINT pThis, uint32_t iPath) { Assert(iPath < pThis->cPaths); uint32_t iCurPath = 0; PRTCRX509CERTPATHNODE pCurLeaf; RTListForEach(&pThis->LeafList, pCurLeaf, RTCRX509CERTPATHNODE, ChildListOrLeafEntry) { if (iCurPath == iPath) return pCurLeaf; iCurPath++; } AssertFailedReturn(NULL); } static void rtDumpPrintf(PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser, const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); pfnPrintfV(pvUser, pszFormat, va); va_end(va); } static void rtDumpIndent(PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser, uint32_t cchSpaces, const char *pszFormat, ...) { static const char s_szSpaces[] = " "; while (cchSpaces > 0) { uint32_t cchBurst = RT_MIN(sizeof(s_szSpaces) - 1, cchSpaces); rtDumpPrintf(pfnPrintfV, pvUser, &s_szSpaces[sizeof(s_szSpaces) - cchBurst - 1]); cchSpaces -= cchBurst; } va_list va; va_start(va, pszFormat); pfnPrintfV(pvUser, pszFormat, va); va_end(va); } /** @name X.500 attribute types * See RFC-4519 among others. * @{ */ #define RTCRX500_ID_AT_OBJECT_CLASS_OID "2.5.4.0" #define RTCRX500_ID_AT_ALIASED_ENTRY_NAME_OID "2.5.4.1" #define RTCRX500_ID_AT_KNOWLDGEINFORMATION_OID "2.5.4.2" #define RTCRX500_ID_AT_COMMON_NAME_OID "2.5.4.3" #define RTCRX500_ID_AT_SURNAME_OID "2.5.4.4" #define RTCRX500_ID_AT_SERIAL_NUMBER_OID "2.5.4.5" #define RTCRX500_ID_AT_COUNTRY_NAME_OID "2.5.4.6" #define RTCRX500_ID_AT_LOCALITY_NAME_OID "2.5.4.7" #define RTCRX500_ID_AT_STATE_OR_PROVINCE_NAME_OID "2.5.4.8" #define RTCRX500_ID_AT_STREET_ADDRESS_OID "2.5.4.9" #define RTCRX500_ID_AT_ORGANIZATION_NAME_OID "2.5.4.10" #define RTCRX500_ID_AT_ORGANIZATION_UNIT_NAME_OID "2.5.4.11" #define RTCRX500_ID_AT_TITLE_OID "2.5.4.12" #define RTCRX500_ID_AT_DESCRIPTION_OID "2.5.4.13" #define RTCRX500_ID_AT_SEARCH_GUIDE_OID "2.5.4.14" #define RTCRX500_ID_AT_BUSINESS_CATEGORY_OID "2.5.4.15" #define RTCRX500_ID_AT_POSTAL_ADDRESS_OID "2.5.4.16" #define RTCRX500_ID_AT_POSTAL_CODE_OID "2.5.4.17" #define RTCRX500_ID_AT_POST_OFFICE_BOX_OID "2.5.4.18" #define RTCRX500_ID_AT_PHYSICAL_DELIVERY_OFFICE_NAME_OID "2.5.4.19" #define RTCRX500_ID_AT_TELEPHONE_NUMBER_OID "2.5.4.20" #define RTCRX500_ID_AT_TELEX_NUMBER_OID "2.5.4.21" #define RTCRX500_ID_AT_TELETEX_TERMINAL_IDENTIFIER_OID "2.5.4.22" #define RTCRX500_ID_AT_FACIMILE_TELEPHONE_NUMBER_OID "2.5.4.23" #define RTCRX500_ID_AT_X121_ADDRESS_OID "2.5.4.24" #define RTCRX500_ID_AT_INTERNATIONAL_ISDN_NUMBER_OID "2.5.4.25" #define RTCRX500_ID_AT_REGISTERED_ADDRESS_OID "2.5.4.26" #define RTCRX500_ID_AT_DESTINATION_INDICATOR_OID "2.5.4.27" #define RTCRX500_ID_AT_PREFERRED_DELIVERY_METHOD_OID "2.5.4.28" #define RTCRX500_ID_AT_PRESENTATION_ADDRESS_OID "2.5.4.29" #define RTCRX500_ID_AT_SUPPORTED_APPLICATION_CONTEXT_OID "2.5.4.30" #define RTCRX500_ID_AT_MEMBER_OID "2.5.4.31" #define RTCRX500_ID_AT_OWNER_OID "2.5.4.32" #define RTCRX500_ID_AT_ROLE_OCCUPANT_OID "2.5.4.33" #define RTCRX500_ID_AT_SEE_ALSO_OID "2.5.4.34" #define RTCRX500_ID_AT_USER_PASSWORD_OID "2.5.4.35" #define RTCRX500_ID_AT_USER_CERTIFICATE_OID "2.5.4.36" #define RTCRX500_ID_AT_CA_CERTIFICATE_OID "2.5.4.37" #define RTCRX500_ID_AT_AUTHORITY_REVOCATION_LIST_OID "2.5.4.38" #define RTCRX500_ID_AT_CERTIFICATE_REVOCATION_LIST_OID "2.5.4.39" #define RTCRX500_ID_AT_CROSS_CERTIFICATE_PAIR_OID "2.5.4.40" #define RTCRX500_ID_AT_NAME_OID "2.5.4.41" #define RTCRX500_ID_AT_GIVEN_NAME_OID "2.5.4.42" #define RTCRX500_ID_AT_INITIALS_OID "2.5.4.43" #define RTCRX500_ID_AT_GENERATION_QUALIFIER_OID "2.5.4.44" #define RTCRX500_ID_AT_UNIQUE_IDENTIFIER_OID "2.5.4.45" #define RTCRX500_ID_AT_DN_QUALIFIER_OID "2.5.4.46" #define RTCRX500_ID_AT_ENHANCHED_SEARCH_GUIDE_OID "2.5.4.47" #define RTCRX500_ID_AT_PROTOCOL_INFORMATION_OID "2.5.4.48" #define RTCRX500_ID_AT_DISTINGUISHED_NAME_OID "2.5.4.49" #define RTCRX500_ID_AT_UNIQUE_MEMBER_OID "2.5.4.50" #define RTCRX500_ID_AT_HOUSE_IDENTIFIER_OID "2.5.4.51" #define RTCRX500_ID_AT_SUPPORTED_ALGORITHMS_OID "2.5.4.52" #define RTCRX500_ID_AT_DELTA_REVOCATION_LIST_OID "2.5.4.53" #define RTCRX500_ID_AT_ATTRIBUTE_CERTIFICATE_OID "2.5.4.58" #define RTCRX500_ID_AT_PSEUDONYM_OID "2.5.4.65" /** @} */ static void rtCrX509NameDump(PCRTCRX509NAME pName, PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser) { for (uint32_t i = 0; i < pName->cItems; i++) { PCRTCRX509RELATIVEDISTINGUISHEDNAME const pRdn = pName->papItems[i]; for (uint32_t j = 0; j < pRdn->cItems; j++) { PRTCRX509ATTRIBUTETYPEANDVALUE pAttrib = pRdn->papItems[j]; const char *pszType = RTCrX509Name_GetShortRdn(&pAttrib->Type); if (!pszType) pszType = pAttrib->Type.szObjId; rtDumpPrintf(pfnPrintfV, pvUser, "/%s=", pszType); if (pAttrib->Value.enmType == RTASN1TYPE_STRING) { if (pAttrib->Value.u.String.pszUtf8) rtDumpPrintf(pfnPrintfV, pvUser, "%s", pAttrib->Value.u.String.pszUtf8); else { const char *pch = pAttrib->Value.u.String.Asn1Core.uData.pch; uint32_t cch = pAttrib->Value.u.String.Asn1Core.cb; int rc = RTStrValidateEncodingEx(pch, cch, 0); if (RT_SUCCESS(rc) && cch) rtDumpPrintf(pfnPrintfV, pvUser, "%.*s", (size_t)cch, pch); else while (cch > 0) { if (RT_C_IS_PRINT(*pch)) rtDumpPrintf(pfnPrintfV, pvUser, "%c", *pch); else rtDumpPrintf(pfnPrintfV, pvUser, "\\x%02x", *pch); cch--; pch++; } } } else rtDumpPrintf(pfnPrintfV, pvUser, "", pAttrib->Value.u.Core.uTag); } } } static const char *rtCrX509CertPathsNodeGetSourceName(PRTCRX509CERTPATHNODE pNode) { switch (pNode->uSrc) { case RTCRX509CERTPATHNODE_SRC_TARGET: return "target"; case RTCRX509CERTPATHNODE_SRC_UNTRUSTED_SET: return "untrusted_set"; case RTCRX509CERTPATHNODE_SRC_UNTRUSTED_ARRAY: return "untrusted_array"; case RTCRX509CERTPATHNODE_SRC_UNTRUSTED_STORE: return "untrusted_store"; case RTCRX509CERTPATHNODE_SRC_TRUSTED_STORE: return "trusted_store"; case RTCRX509CERTPATHNODE_SRC_TRUSTED_CERT: return "trusted_cert"; default: return "invalid"; } } static void rtCrX509CertPathsDumpOneWorker(PRTCRX509CERTPATHSINT pThis, uint32_t iPath, PRTCRX509CERTPATHNODE pCurLeaf, uint32_t uVerbosity, PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser) { RT_NOREF_PV(pThis); rtDumpPrintf(pfnPrintfV, pvUser, "Path #%u: %s, %u deep, rcVerify=%Rrc\n", iPath, RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(pCurLeaf->uSrc) ? "trusted" : "untrusted", pCurLeaf->uDepth, pCurLeaf->rcVerify); for (uint32_t iIndent = 2; pCurLeaf; iIndent += 2, pCurLeaf = pCurLeaf->pParent) { if (pCurLeaf->pCert) { rtDumpIndent(pfnPrintfV, pvUser, iIndent, "Issuer : "); rtCrX509NameDump(&pCurLeaf->pCert->TbsCertificate.Issuer, pfnPrintfV, pvUser); rtDumpPrintf(pfnPrintfV, pvUser, "\n"); rtDumpIndent(pfnPrintfV, pvUser, iIndent, "Subject: "); rtCrX509NameDump(&pCurLeaf->pCert->TbsCertificate.Subject, pfnPrintfV, pvUser); rtDumpPrintf(pfnPrintfV, pvUser, "\n"); if (uVerbosity >= 4) RTAsn1Dump(&pCurLeaf->pCert->SeqCore.Asn1Core, 0, iIndent, pfnPrintfV, pvUser); else if (uVerbosity >= 3) RTAsn1Dump(&pCurLeaf->pCert->TbsCertificate.T3.Extensions.SeqCore.Asn1Core, 0, iIndent, pfnPrintfV, pvUser); rtDumpIndent(pfnPrintfV, pvUser, iIndent, "Valid : %s thru %s\n", RTTimeToString(&pCurLeaf->pCert->TbsCertificate.Validity.NotBefore.Time, pThis->szTmp, sizeof(pThis->szTmp) / 2), RTTimeToString(&pCurLeaf->pCert->TbsCertificate.Validity.NotAfter.Time, &pThis->szTmp[sizeof(pThis->szTmp) / 2], sizeof(pThis->szTmp) / 2) ); } else { Assert(pCurLeaf->pCertCtx); Assert(pCurLeaf->pCertCtx->pTaInfo); rtDumpIndent(pfnPrintfV, pvUser, iIndent, "Subject: "); rtCrX509NameDump(&pCurLeaf->pCertCtx->pTaInfo->CertPath.TaName, pfnPrintfV, pvUser); if (uVerbosity >= 4) RTAsn1Dump(&pCurLeaf->pCertCtx->pTaInfo->SeqCore.Asn1Core, 0, iIndent, pfnPrintfV, pvUser); } const char *pszSrc = rtCrX509CertPathsNodeGetSourceName(pCurLeaf); rtDumpIndent(pfnPrintfV, pvUser, iIndent, "Source : %s\n", pszSrc); } } RTDECL(int) RTCrX509CertPathsDumpOne(RTCRX509CERTPATHS hCertPaths, uint32_t iPath, uint32_t uVerbosity, PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pfnPrintfV, VERR_INVALID_POINTER); int rc; if (iPath < pThis->cPaths) { PRTCRX509CERTPATHNODE pLeaf = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); if (pLeaf) { rtCrX509CertPathsDumpOneWorker(pThis, iPath, pLeaf, uVerbosity, pfnPrintfV, pvUser); rc = VINF_SUCCESS; } else rc = VERR_CR_X509_CERTPATHS_INTERNAL_ERROR; } else rc = VERR_NOT_FOUND; return rc; } RTDECL(int) RTCrX509CertPathsDumpAll(RTCRX509CERTPATHS hCertPaths, uint32_t uVerbosity, PFNRTDUMPPRINTFV pfnPrintfV, void *pvUser) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pfnPrintfV, VERR_INVALID_POINTER); /* * Dump all the paths. */ rtDumpPrintf(pfnPrintfV, pvUser, "%u paths, rc=%Rrc\n", pThis->cPaths, pThis->rc); uint32_t iPath = 0; PRTCRX509CERTPATHNODE pCurLeaf, pNextLeaf; RTListForEachSafe(&pThis->LeafList, pCurLeaf, pNextLeaf, RTCRX509CERTPATHNODE, ChildListOrLeafEntry) { rtCrX509CertPathsDumpOneWorker(pThis, iPath, pCurLeaf, uVerbosity, pfnPrintfV, pvUser); iPath++; } return VINF_SUCCESS; } /** @} */ /** @name Path Validator Functions. * @{ */ static void *rtCrX509CpvAllocZ(PRTCRX509CERTPATHSINT pThis, size_t cb, const char *pszWhat) { void *pv = RTMemAllocZ(cb); if (!pv) pThis->rc = RTErrInfoSetF(pThis->pErrInfo, VERR_NO_MEMORY, "Failed to allocate %zu bytes for %s", cb, pszWhat); return pv; } DECL_NO_INLINE(static, bool) rtCrX509CpvFailed(PRTCRX509CERTPATHSINT pThis, int rc, const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); pThis->rc = RTErrInfoSetV(pThis->pErrInfo, rc, pszFormat, va); va_end(va); return false; } /** * Adds a sequence of excluded sub-trees. * * Don't waste time optimizing the output if this is supposed to be a union. * Unless the path is very long, it's a lot more work to optimize and the result * will be the same anyway. * * @returns success indicator. * @param pThis The validator instance. * @param pSubtrees The sequence of sub-trees to add. */ static bool rtCrX509CpvAddExcludedSubtrees(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALSUBTREES pSubtrees) { if (((pThis->v.cExcludedSubtrees + 1) & 0xf) == 0) { void *pvNew = RTMemRealloc(pThis->v.papExcludedSubtrees, (pThis->v.cExcludedSubtrees + 16) * sizeof(pThis->v.papExcludedSubtrees[0])); if (RT_UNLIKELY(!pvNew)) return rtCrX509CpvFailed(pThis, VERR_NO_MEMORY, "Error growing subtrees pointer array to %u elements", pThis->v.cExcludedSubtrees + 16); pThis->v.papExcludedSubtrees = (PCRTCRX509GENERALSUBTREES *)pvNew; } pThis->v.papExcludedSubtrees[pThis->v.cExcludedSubtrees] = pSubtrees; pThis->v.cExcludedSubtrees++; return true; } /** * Checks if a sub-tree is according to RFC-5280. * * @returns Success indiciator. * @param pThis The validator instance. * @param pSubtree The subtree to check. */ static bool rtCrX509CpvCheckSubtreeValidity(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALSUBTREE pSubtree) { if ( pSubtree->Base.enmChoice <= RTCRX509GENERALNAMECHOICE_INVALID || pSubtree->Base.enmChoice >= RTCRX509GENERALNAMECHOICE_END) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_UNEXP_GENERAL_SUBTREE_CHOICE, "Unexpected GeneralSubtree choice %#x", pSubtree->Base.enmChoice); if (RTAsn1Integer_UnsignedCompareWithU32(&pSubtree->Minimum, 0) != 0) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_UNEXP_GENERAL_SUBTREE_MIN, "Unexpected GeneralSubtree Minimum value: %#llx", pSubtree->Minimum.uValue); if (RTAsn1Integer_IsPresent(&pSubtree->Maximum)) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_UNEXP_GENERAL_SUBTREE_MAX, "Unexpected GeneralSubtree Maximum value: %#llx", pSubtree->Maximum.uValue); return true; } /** * Grows the array of permitted sub-trees. * * @returns success indiciator. * @param pThis The validator instance. * @param cAdding The number of subtrees we should grow by * (relative to the current number of valid * entries). */ static bool rtCrX509CpvGrowPermittedSubtrees(PRTCRX509CERTPATHSINT pThis, uint32_t cAdding) { uint32_t cNew = RT_ALIGN_32(pThis->v.cPermittedSubtrees + cAdding, 16); if (cNew > pThis->v.cPermittedSubtreesAlloc) { if (cNew >= _4K) return rtCrX509CpvFailed(pThis, VERR_NO_MEMORY, "Too many permitted subtrees: %u (cur %u)", cNew, pThis->v.cPermittedSubtrees); void *pvNew = RTMemRealloc(pThis->v.papPermittedSubtrees, cNew * sizeof(pThis->v.papPermittedSubtrees[0])); if (RT_UNLIKELY(!pvNew)) return rtCrX509CpvFailed(pThis, VERR_NO_MEMORY, "Error growing subtrees pointer array from %u to %u elements", pThis->v.cPermittedSubtreesAlloc, cNew); pThis->v.papPermittedSubtrees = (PCRTCRX509GENERALSUBTREE *)pvNew; } return true; } /** * Adds a sequence of permitted sub-trees. * * We store reference to each individual sub-tree because we must support * intersection calculation. * * @returns success indiciator. * @param pThis The validator instance. * @param cSubtrees The number of sub-trees to add. * @param papSubtrees Array of sub-trees to add. */ static bool rtCrX509CpvAddPermittedSubtrees(PRTCRX509CERTPATHSINT pThis, uint32_t cSubtrees, PRTCRX509GENERALSUBTREE const *papSubtrees) { /* * If the array is empty, assume no permitted names. */ if (!cSubtrees) { pThis->v.fNoPermittedSubtrees = true; return true; } /* * Grow the array if necessary. */ if (!rtCrX509CpvGrowPermittedSubtrees(pThis, cSubtrees)) return false; /* * Append each subtree to the array. */ uint32_t iDst = pThis->v.cPermittedSubtrees; for (uint32_t iSrc = 0; iSrc < cSubtrees; iSrc++) { if (!rtCrX509CpvCheckSubtreeValidity(pThis, papSubtrees[iSrc])) return false; pThis->v.papPermittedSubtrees[iDst] = papSubtrees[iSrc]; iDst++; } pThis->v.cPermittedSubtrees = iDst; return true; } /** * Adds a one permitted sub-tree. * * We store reference to each individual sub-tree because we must support * intersection calculation. * * @returns success indiciator. * @param pThis The validator instance. * @param pSubtree Array of sub-trees to add. */ static bool rtCrX509CpvAddPermittedSubtree(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALSUBTREE pSubtree) { return rtCrX509CpvAddPermittedSubtrees(pThis, 1, (PRTCRX509GENERALSUBTREE const *)&pSubtree); } /** * Calculates the intersection between @a pSubtrees and the current permitted * sub-trees. * * @returns Success indicator. * @param pThis The validator instance. * @param pSubtrees The sub-tree sequence to intersect with. */ static bool rtCrX509CpvIntersectionPermittedSubtrees(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALSUBTREES pSubtrees) { /* * Deal with special cases first. */ if (pThis->v.fNoPermittedSubtrees) { Assert(pThis->v.cPermittedSubtrees == 0); return true; } uint32_t cRight = pSubtrees->cItems; PRTCRX509GENERALSUBTREE const *papRight = pSubtrees->papItems; if (cRight == 0) { pThis->v.cPermittedSubtrees = 0; pThis->v.fNoPermittedSubtrees = true; return true; } uint32_t cLeft = pThis->v.cPermittedSubtrees; PCRTCRX509GENERALSUBTREE *papLeft = pThis->v.papPermittedSubtrees; if (!cLeft) /* first name constraint, no initial constraint */ return rtCrX509CpvAddPermittedSubtrees(pThis, cRight, papRight); /* * Create a new array with the intersection, freeing the old (left) array * once we're done. */ bool afRightTags[RTCRX509GENERALNAMECHOICE_END] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; pThis->v.cPermittedSubtrees = 0; pThis->v.cPermittedSubtreesAlloc = 0; pThis->v.papPermittedSubtrees = NULL; for (uint32_t iRight = 0; iRight < cRight; iRight++) { if (!rtCrX509CpvCheckSubtreeValidity(pThis, papRight[iRight])) return false; RTCRX509GENERALNAMECHOICE const enmRightChoice = papRight[iRight]->Base.enmChoice; afRightTags[enmRightChoice] = true; bool fHaveRight = false; for (uint32_t iLeft = 0; iLeft < cLeft; iLeft++) if (papLeft[iLeft]->Base.enmChoice == enmRightChoice) { if (RTCrX509GeneralSubtree_Compare(papLeft[iLeft], papRight[iRight]) == 0) { if (!fHaveRight) { fHaveRight = true; rtCrX509CpvAddPermittedSubtree(pThis, papLeft[iLeft]); } } else if (RTCrX509GeneralSubtree_ConstraintMatch(papLeft[iLeft], papRight[iRight])) { if (!fHaveRight) { fHaveRight = true; rtCrX509CpvAddPermittedSubtree(pThis, papRight[iRight]); } } else if (RTCrX509GeneralSubtree_ConstraintMatch(papRight[iRight], papLeft[iLeft])) rtCrX509CpvAddPermittedSubtree(pThis, papLeft[iLeft]); } } /* * Add missing types not specified in the right set. */ for (uint32_t iLeft = 0; iLeft < cLeft; iLeft++) if (!afRightTags[papLeft[iLeft]->Base.enmChoice]) rtCrX509CpvAddPermittedSubtree(pThis, papLeft[iLeft]); /* * If we ended up with an empty set, no names are permitted any more. */ if (pThis->v.cPermittedSubtrees == 0) pThis->v.fNoPermittedSubtrees = true; RTMemFree(papLeft); return RT_SUCCESS(pThis->rc); } /** * Check if the given X.509 name is permitted by current name constraints. * * @returns true is permitteded, false if not (caller set error info). * @param pThis The validator instance. * @param pName The name to match. */ static bool rtCrX509CpvIsNamePermitted(PRTCRX509CERTPATHSINT pThis, PCRTCRX509NAME pName) { uint32_t i = pThis->v.cPermittedSubtrees; if (i == 0) return !pThis->v.fNoPermittedSubtrees; while (i-- > 0) { PCRTCRX509GENERALSUBTREE pConstraint = pThis->v.papPermittedSubtrees[i]; if ( RTCRX509GENERALNAME_IS_DIRECTORY_NAME(&pConstraint->Base) && RTCrX509Name_ConstraintMatch(&pConstraint->Base.u.pT4->DirectoryName, pName)) return true; } return false; } /** * Check if the given X.509 general name is permitted by current name * constraints. * * @returns true is permitteded, false if not (caller sets error info). * @param pThis The validator instance. * @param pGeneralName The name to match. */ static bool rtCrX509CpvIsGeneralNamePermitted(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALNAME pGeneralName) { uint32_t i = pThis->v.cPermittedSubtrees; if (i == 0) return !pThis->v.fNoPermittedSubtrees; while (i-- > 0) if (RTCrX509GeneralName_ConstraintMatch(&pThis->v.papPermittedSubtrees[i]->Base, pGeneralName)) return true; return false; } /** * Check if the given X.509 name is excluded by current name constraints. * * @returns true if excluded (caller sets error info), false if not explicitly * excluded. * @param pThis The validator instance. * @param pName The name to match. */ static bool rtCrX509CpvIsNameExcluded(PRTCRX509CERTPATHSINT pThis, PCRTCRX509NAME pName) { uint32_t i = pThis->v.cExcludedSubtrees; while (i-- > 0) { PCRTCRX509GENERALSUBTREES pSubTrees = pThis->v.papExcludedSubtrees[i]; uint32_t j = pSubTrees->cItems; while (j-- > 0) { PCRTCRX509GENERALSUBTREE const pSubTree = pSubTrees->papItems[j]; if ( RTCRX509GENERALNAME_IS_DIRECTORY_NAME(&pSubTree->Base) && RTCrX509Name_ConstraintMatch(&pSubTree->Base.u.pT4->DirectoryName, pName)) return true; } } return false; } /** * Check if the given X.509 general name is excluded by current name * constraints. * * @returns true if excluded (caller sets error info), false if not explicitly * excluded. * @param pThis The validator instance. * @param pGeneralName The name to match. */ static bool rtCrX509CpvIsGeneralNameExcluded(PRTCRX509CERTPATHSINT pThis, PCRTCRX509GENERALNAME pGeneralName) { uint32_t i = pThis->v.cExcludedSubtrees; while (i-- > 0) { PCRTCRX509GENERALSUBTREES pSubTrees = pThis->v.papExcludedSubtrees[i]; uint32_t j = pSubTrees->cItems; while (j-- > 0) if (RTCrX509GeneralName_ConstraintMatch(&pSubTrees->papItems[j]->Base, pGeneralName)) return true; } return false; } /** * Creates a new node and inserts it. * * @param pThis The path builder & validator instance. * @param pParent The parent node. NULL for the root node. * @param iDepth The tree depth to insert at. * @param pValidPolicy The valid policy of the new node. * @param pQualifiers The qualifiers of the new node. * @param pExpectedPolicy The (first) expected polcy of the new node. */ static bool rtCrX509CpvPolicyTreeInsertNew(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHSPOLICYNODE pParent, uint32_t iDepth, PCRTASN1OBJID pValidPolicy, PCRTCRX509POLICYQUALIFIERINFOS pQualifiers, PCRTASN1OBJID pExpectedPolicy) { Assert(iDepth <= pThis->v.cNodes); PRTCRX509CERTPATHSPOLICYNODE pNode; pNode = (PRTCRX509CERTPATHSPOLICYNODE)rtCrX509CpvAllocZ(pThis, sizeof(*pNode), "policy tree node"); if (pNode) { pNode->pParent = pParent; if (pParent) RTListAppend(&pParent->ChildList, &pNode->SiblingEntry); else { Assert(pThis->v.pValidPolicyTree == NULL); pThis->v.pValidPolicyTree = pNode; RTListInit(&pNode->SiblingEntry); } RTListInit(&pNode->ChildList); RTListAppend(&pThis->v.paValidPolicyDepthLists[iDepth], &pNode->DepthEntry); pNode->pValidPolicy = pValidPolicy; pNode->pPolicyQualifiers = pQualifiers; pNode->pExpectedPolicyFirst = pExpectedPolicy; pNode->cMoreExpectedPolicySet = 0; pNode->papMoreExpectedPolicySet = NULL; return true; } return false; } /** * Unlinks and frees a node in the valid policy tree. * * @param pThis The path builder & validator instance. * @param pNode The node to destroy. */ static void rtCrX509CpvPolicyTreeDestroyNode(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHSPOLICYNODE pNode) { Assert(RTListIsEmpty(&pNode->ChildList)); if (pNode->pParent) RTListNodeRemove(&pNode->SiblingEntry); else pThis->v.pValidPolicyTree = NULL; RTListNodeRemove(&pNode->DepthEntry); pNode->pParent = NULL; if (pNode->papMoreExpectedPolicySet) { RTMemFree(pNode->papMoreExpectedPolicySet); pNode->papMoreExpectedPolicySet = NULL; } RTMemFree(pNode); } /** * Unlinks and frees a sub-tree in the valid policy tree. * * @param pThis The path builder & validator instance. * @param pNode The node that is the root of the subtree. */ static void rtCrX509CpvPolicyTreeDestroySubtree(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHSPOLICYNODE pNode) { if (!RTListIsEmpty(&pNode->ChildList)) { PRTCRX509CERTPATHSPOLICYNODE pCur = pNode; do { Assert(!RTListIsEmpty(&pCur->ChildList)); /* Decend until we find a leaf. */ do pCur = RTListGetFirst(&pCur->ChildList, RTCRX509CERTPATHSPOLICYNODE, SiblingEntry); while (!RTListIsEmpty(&pCur->ChildList)); /* Remove it and all leafy siblings. */ PRTCRX509CERTPATHSPOLICYNODE pParent = pCur->pParent; do { Assert(pCur != pNode); rtCrX509CpvPolicyTreeDestroyNode(pThis, pCur); pCur = RTListGetFirst(&pParent->ChildList, RTCRX509CERTPATHSPOLICYNODE, SiblingEntry); if (!pCur) { pCur = pParent; pParent = pParent->pParent; } } while (RTListIsEmpty(&pCur->ChildList) && pCur != pNode); } while (pCur != pNode); } rtCrX509CpvPolicyTreeDestroyNode(pThis, pNode); } /** * Destroys the entire policy tree. * * @param pThis The path builder & validator instance. */ static void rtCrX509CpvPolicyTreeDestroy(PRTCRX509CERTPATHSINT pThis) { uint32_t i = pThis->v.cNodes + 1; while (i-- > 0) { PRTCRX509CERTPATHSPOLICYNODE pCur, pNext; RTListForEachSafe(&pThis->v.paValidPolicyDepthLists[i], pCur, pNext, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { rtCrX509CpvPolicyTreeDestroyNode(pThis, pCur); } } } /** * Removes all leaf nodes at level @a iDepth and above. * * @param pThis The path builder & validator instance. * @param iDepth The depth to start pruning at. */ static void rtCrX509CpvPolicyTreePrune(PRTCRX509CERTPATHSINT pThis, uint32_t iDepth) { do { PRTLISTANCHOR pList = &pThis->v.paValidPolicyDepthLists[iDepth]; PRTCRX509CERTPATHSPOLICYNODE pCur, pNext; RTListForEachSafe(pList, pCur, pNext, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTListIsEmpty(&pCur->ChildList)) rtCrX509CpvPolicyTreeDestroyNode(pThis, pCur); } } while (iDepth-- > 0); } /** * Checks if @a pPolicy is the valid policy of a child of @a pNode. * * @returns true if in child node, false if not. * @param pNode The node which children to check. * @param pPolicy The valid policy to look for among the children. */ static bool rtCrX509CpvPolicyTreeIsChild(PRTCRX509CERTPATHSPOLICYNODE pNode, PCRTASN1OBJID pPolicy) { PRTCRX509CERTPATHSPOLICYNODE pChild; RTListForEach(&pNode->ChildList, pChild, RTCRX509CERTPATHSPOLICYNODE, SiblingEntry) { if (RTAsn1ObjId_Compare(pChild->pValidPolicy, pPolicy) == 0) return true; } return true; } /** * Prunes the valid policy tree according to the specified user policy set. * * @returns Pointer to the policy object from @a papPolicies if found, NULL if * no match. * @param pObjId The object ID to locate at match in the set. * @param cPolicies The number of policies in @a papPolicies. * @param papPolicies The policy set to search. */ static PCRTASN1OBJID rtCrX509CpvFindObjIdInPolicySet(PCRTASN1OBJID pObjId, uint32_t cPolicies, PCRTASN1OBJID *papPolicies) { uint32_t i = cPolicies; while (i-- > 0) if (RTAsn1ObjId_Compare(pObjId, papPolicies[i]) == 0) return papPolicies[i]; return NULL; } /** * Prunes the valid policy tree according to the specified user policy set. * * @returns success indicator (allocates memory) * @param pThis The path builder & validator instance. * @param cPolicies The number of policies in @a papPolicies. * @param papPolicies The user initial policies. */ static bool rtCrX509CpvPolicyTreeIntersect(PRTCRX509CERTPATHSINT pThis, uint32_t cPolicies, PCRTASN1OBJID *papPolicies) { /* * 4.1.6.g.i - NULL tree remains NULL. */ if (!pThis->v.pValidPolicyTree) return true; /* * 4.1.6.g.ii - If the user set includes anyPolicy, the whole tree is the * result of the intersection. */ uint32_t i = cPolicies; while (i-- > 0) if (RTAsn1ObjId_CompareWithString(papPolicies[i], RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) return true; /* * 4.1.6.g.iii - Complicated. */ PRTCRX509CERTPATHSPOLICYNODE pCur, pNext; PRTLISTANCHOR pList; /* 1 & 2: Delete nodes which parent has valid policy == anyPolicy and which valid policy is neither anyPolicy nor a member of papszPolicies. While doing so, construct a set of unused user policies that we'll replace anyPolicy nodes with in step 3. */ uint32_t cPoliciesLeft = 0; PCRTASN1OBJID *papPoliciesLeft = NULL; if (cPolicies) { papPoliciesLeft = (PCRTASN1OBJID *)rtCrX509CpvAllocZ(pThis, cPolicies * sizeof(papPoliciesLeft[0]), "papPoliciesLeft"); if (!papPoliciesLeft) return false; for (i = 0; i < cPolicies; i++) papPoliciesLeft[i] = papPolicies[i]; } for (uint32_t iDepth = 1; iDepth <= pThis->v.cNodes; iDepth++) { pList = &pThis->v.paValidPolicyDepthLists[iDepth]; RTListForEachSafe(pList, pCur, pNext, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { Assert(pCur->pParent); if ( RTAsn1ObjId_CompareWithString(pCur->pParent->pValidPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0 && RTAsn1ObjId_CompareWithString(pCur->pValidPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) != 0) { PCRTASN1OBJID pFound = rtCrX509CpvFindObjIdInPolicySet(pCur->pValidPolicy, cPolicies, papPolicies); if (!pFound) rtCrX509CpvPolicyTreeDestroySubtree(pThis, pCur); else for (i = 0; i < cPoliciesLeft; i++) if (papPoliciesLeft[i] == pFound) { cPoliciesLeft--; if (i < cPoliciesLeft) papPoliciesLeft[i] = papPoliciesLeft[cPoliciesLeft]; papPoliciesLeft[cPoliciesLeft] = NULL; break; } } } } /* * 4.1.5.g.iii.3 - Replace anyPolicy nodes on the final tree depth with * the policies in papPoliciesLeft. */ pList = &pThis->v.paValidPolicyDepthLists[pThis->v.cNodes]; RTListForEachSafe(pList, pCur, pNext, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTAsn1ObjId_CompareWithString(pCur->pValidPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) { for (i = 0; i < cPoliciesLeft; i++) rtCrX509CpvPolicyTreeInsertNew(pThis, pCur->pParent, pThis->v.cNodes - 1, papPoliciesLeft[i], pCur->pPolicyQualifiers, papPoliciesLeft[i]); rtCrX509CpvPolicyTreeDestroyNode(pThis, pCur); } } RTMemFree(papPoliciesLeft); /* * 4.1.5.g.iii.4 - Prune the tree */ rtCrX509CpvPolicyTreePrune(pThis, pThis->v.cNodes - 1); return RT_SUCCESS(pThis->rc); } /** * Frees the path validator state. * * @param pThis The path builder & validator instance. */ static void rtCrX509CpvCleanup(PRTCRX509CERTPATHSINT pThis) { /* * Destroy the policy tree and all its nodes. We do this from the bottom * up via the depth lists, saving annoying tree traversal. */ if (pThis->v.paValidPolicyDepthLists) { rtCrX509CpvPolicyTreeDestroy(pThis); RTMemFree(pThis->v.paValidPolicyDepthLists); pThis->v.paValidPolicyDepthLists = NULL; } Assert(pThis->v.pValidPolicyTree == NULL); pThis->v.pValidPolicyTree = NULL; /* * Destroy the name constraint arrays. */ if (pThis->v.papPermittedSubtrees) { RTMemFree(pThis->v.papPermittedSubtrees); pThis->v.papPermittedSubtrees = NULL; } pThis->v.cPermittedSubtrees = 0; pThis->v.cPermittedSubtreesAlloc = 0; pThis->v.fNoPermittedSubtrees = false; if (pThis->v.papExcludedSubtrees) { RTMemFree(pThis->v.papExcludedSubtrees); pThis->v.papExcludedSubtrees = NULL; } pThis->v.cExcludedSubtrees = 0; /* * Clear other pointers. */ pThis->v.pWorkingIssuer = NULL; pThis->v.pWorkingPublicKey = NULL; pThis->v.pWorkingPublicKeyAlgorithm = NULL; pThis->v.pWorkingPublicKeyParameters = NULL; } /** * Initializes the state. * * Caller must check pThis->rc. * * @param pThis The path builder & validator instance. * @param pTrustAnchor The trust anchor node for the path that we're about * to validate. */ static void rtCrX509CpvInit(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pTrustAnchor) { rtCrX509CpvCleanup(pThis); /* * The node count does not include the trust anchor. */ pThis->v.cNodes = pTrustAnchor->uDepth; /* * Valid policy tree starts with an anyPolicy node. */ uint32_t i = pThis->v.cNodes + 1; pThis->v.paValidPolicyDepthLists = (PRTLISTANCHOR)rtCrX509CpvAllocZ(pThis, i * sizeof(RTLISTANCHOR), "paValidPolicyDepthLists"); if (RT_UNLIKELY(!pThis->v.paValidPolicyDepthLists)) return; while (i-- > 0) RTListInit(&pThis->v.paValidPolicyDepthLists[i]); if (!rtCrX509CpvPolicyTreeInsertNew(pThis, NULL, 0 /* iDepth*/, &pThis->AnyPolicyObjId, NULL, &pThis->AnyPolicyObjId)) return; Assert(!RTListIsEmpty(&pThis->v.paValidPolicyDepthLists[0])); Assert(pThis->v.pValidPolicyTree); /* * Name constrains. */ if (pThis->pInitialPermittedSubtrees) rtCrX509CpvAddPermittedSubtrees(pThis, pThis->pInitialPermittedSubtrees->cItems, pThis->pInitialPermittedSubtrees->papItems); if (pThis->pInitialExcludedSubtrees) rtCrX509CpvAddExcludedSubtrees(pThis, pThis->pInitialExcludedSubtrees); /* * Counters. */ pThis->v.cExplicitPolicy = pThis->cInitialExplicitPolicy; pThis->v.cInhibitPolicyMapping = pThis->cInitialPolicyMappingInhibit; pThis->v.cInhibitAnyPolicy = pThis->cInitialInhibitAnyPolicy; pThis->v.cMaxPathLength = pThis->v.cNodes; /* * Certificate info from the trust anchor. */ if (pTrustAnchor->pCert) { PCRTCRX509TBSCERTIFICATE const pTbsCert = &pTrustAnchor->pCert->TbsCertificate; pThis->v.pWorkingIssuer = &pTbsCert->Subject; pThis->v.pWorkingPublicKey = &pTbsCert->SubjectPublicKeyInfo.SubjectPublicKey; pThis->v.pWorkingPublicKeyAlgorithm = &pTbsCert->SubjectPublicKeyInfo.Algorithm.Algorithm; pThis->v.pWorkingPublicKeyParameters = &pTbsCert->SubjectPublicKeyInfo.Algorithm.Parameters; } else { Assert(pTrustAnchor->pCertCtx); Assert(pTrustAnchor->pCertCtx->pTaInfo); PCRTCRTAFTRUSTANCHORINFO const pTaInfo = pTrustAnchor->pCertCtx->pTaInfo; pThis->v.pWorkingIssuer = &pTaInfo->CertPath.TaName; pThis->v.pWorkingPublicKey = &pTaInfo->PubKey.SubjectPublicKey; pThis->v.pWorkingPublicKeyAlgorithm = &pTaInfo->PubKey.Algorithm.Algorithm; pThis->v.pWorkingPublicKeyParameters = &pTaInfo->PubKey.Algorithm.Parameters; } if ( !RTASN1CORE_IS_PRESENT(&pThis->v.pWorkingPublicKeyParameters->u.Core) || pThis->v.pWorkingPublicKeyParameters->enmType == RTASN1TYPE_NULL) pThis->v.pWorkingPublicKeyParameters = NULL; } /** * This does basic trust anchor checks (similar to 6.1.3.a) before starting on * the RFC-5280 algorithm. */ static bool rtCrX509CpvMaybeCheckTrustAnchor(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pTrustAnchor) { /* * This is optional (not part of RFC-5280) and we need a full certificate * structure to do it. */ if (!(pThis->fFlags & RTCRX509CERTPATHSINT_F_CHECK_TRUST_ANCHOR)) return true; PCRTCRX509CERTIFICATE const pCert = pTrustAnchor->pCert; if (!pCert) return true; /* * Verify the certificate signature if self-signed. */ if (RTCrX509Certificate_IsSelfSigned(pCert)) { int rc = RTCrX509Certificate_VerifySignature(pCert, pThis->v.pWorkingPublicKeyAlgorithm, pThis->v.pWorkingPublicKeyParameters, pThis->v.pWorkingPublicKey, pThis->pErrInfo); if (RT_FAILURE(rc)) { pThis->rc = rc; return false; } } /* * Verify that the certificate is valid at the specified time. */ AssertCompile(sizeof(pThis->szTmp) >= 36 * 3); if ( (pThis->fFlags & RTCRX509CERTPATHSINT_F_VALID_TIME) && !RTCrX509Validity_IsValidAtTimeSpec(&pCert->TbsCertificate.Validity, &pThis->ValidTime)) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_VALID_AT_TIME, "Certificate is not valid (ValidTime=%s Validity=[%s...%s])", RTTimeSpecToString(&pThis->ValidTime, &pThis->szTmp[0], 36), RTTimeToString(&pCert->TbsCertificate.Validity.NotBefore.Time, &pThis->szTmp[36], 36), RTTimeToString(&pCert->TbsCertificate.Validity.NotAfter.Time, &pThis->szTmp[2*36], 36) ); /* * Verified that the certficiate is not revoked. */ /** @todo rainy day. */ /* * If non-leaf certificate CA must be set, if basic constraints are present. */ if (pTrustAnchor->pParent) { if (RTAsn1Integer_UnsignedCompareWithU32(&pTrustAnchor->pCert->TbsCertificate.T0.Version, RTCRX509TBSCERTIFICATE_V3) != 0) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_V3_CERT, "Only version 3 TA certificates are supported (Version=%llu)", pTrustAnchor->pCert->TbsCertificate.T0.Version.uValue); PCRTCRX509BASICCONSTRAINTS pBasicConstraints = pTrustAnchor->pCert->TbsCertificate.T3.pBasicConstraints; if (pBasicConstraints && !pBasicConstraints->CA.fValue) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_CA_CERT, "Trust anchor certificate is not marked as a CA"); } return true; } /** * Step 6.1.3.a. */ static bool rtCrX509CpvCheckBasicCertInfo(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { /* * 6.1.3.a.1 - Verify the certificate signature. */ int rc = RTCrX509Certificate_VerifySignature(pNode->pCert, pThis->v.pWorkingPublicKeyAlgorithm, pThis->v.pWorkingPublicKeyParameters, pThis->v.pWorkingPublicKey, pThis->pErrInfo); if (RT_FAILURE(rc)) { pThis->rc = rc; return false; } /* * 6.1.3.a.2 - Verify that the certificate is valid at the specified time. */ AssertCompile(sizeof(pThis->szTmp) >= 36 * 3); if ( (pThis->fFlags & RTCRX509CERTPATHSINT_F_VALID_TIME) && !RTCrX509Validity_IsValidAtTimeSpec(&pNode->pCert->TbsCertificate.Validity, &pThis->ValidTime)) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_VALID_AT_TIME, "Certificate is not valid (ValidTime=%s Validity=[%s...%s])", RTTimeSpecToString(&pThis->ValidTime, &pThis->szTmp[0], 36), RTTimeToString(&pNode->pCert->TbsCertificate.Validity.NotBefore.Time, &pThis->szTmp[36], 36), RTTimeToString(&pNode->pCert->TbsCertificate.Validity.NotAfter.Time, &pThis->szTmp[2*36], 36) ); /* * 6.1.3.a.3 - Verified that the certficiate is not revoked. */ /** @todo rainy day. */ /* * 6.1.3.a.4 - Check the issuer name. */ if (!RTCrX509Name_MatchByRfc5280(&pNode->pCert->TbsCertificate.Issuer, pThis->v.pWorkingIssuer)) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_ISSUER_MISMATCH, "Issuer mismatch"); return true; } /** * Step 6.1.3.b-c. */ static bool rtCrX509CpvCheckNameConstraints(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { if (pThis->v.fNoPermittedSubtrees) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NO_PERMITTED_NAMES, "No permitted subtrees"); if ( pNode->pCert->TbsCertificate.Subject.cItems > 0 && ( !rtCrX509CpvIsNamePermitted(pThis, &pNode->pCert->TbsCertificate.Subject) || rtCrX509CpvIsNameExcluded(pThis, &pNode->pCert->TbsCertificate.Subject)) ) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NAME_NOT_PERMITTED, "Subject name is not permitted by current name constraints"); PCRTCRX509GENERALNAMES pAltSubjectName = pNode->pCert->TbsCertificate.T3.pAltSubjectName; if (pAltSubjectName) { uint32_t i = pAltSubjectName->cItems; while (i-- > 0) if ( !rtCrX509CpvIsGeneralNamePermitted(pThis, pAltSubjectName->papItems[i]) || rtCrX509CpvIsGeneralNameExcluded(pThis, pAltSubjectName->papItems[i])) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_ALT_NAME_NOT_PERMITTED, "Alternative name #%u is is not permitted by current name constraints", i); } return true; } /** * Step 6.1.3.d-f. */ static bool rtCrX509CpvWorkValidPolicyTree(PRTCRX509CERTPATHSINT pThis, uint32_t iDepth, PRTCRX509CERTPATHNODE pNode, bool fSelfIssued) { PCRTCRX509CERTIFICATEPOLICIES pPolicies = pNode->pCert->TbsCertificate.T3.pCertificatePolicies; if (pPolicies) { /* * 6.1.3.d.1 - Work the certiciate policies into the tree. */ PRTCRX509CERTPATHSPOLICYNODE pCur; PRTLISTANCHOR pListAbove = &pThis->v.paValidPolicyDepthLists[iDepth - 1]; uint32_t iAnyPolicy = UINT32_MAX; uint32_t i = pPolicies->cItems; while (i-- > 0) { PCRTCRX509POLICYQUALIFIERINFOS const pQualifiers = &pPolicies->papItems[i]->PolicyQualifiers; PCRTASN1OBJID const pIdP = &pPolicies->papItems[i]->PolicyIdentifier; if (RTAsn1ObjId_CompareWithString(pIdP, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) { iAnyPolicy++; continue; } /* * 6.1.3.d.1.i - Create children for matching policies. */ uint32_t cMatches = 0; RTListForEach(pListAbove, pCur, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { bool fMatch = RTAsn1ObjId_Compare(pCur->pExpectedPolicyFirst, pIdP) == 0; if (!fMatch && pCur->cMoreExpectedPolicySet) for (uint32_t j = 0; !fMatch && j < pCur->cMoreExpectedPolicySet; j++) fMatch = RTAsn1ObjId_Compare(pCur->papMoreExpectedPolicySet[j], pIdP) == 0; if (fMatch) { if (!rtCrX509CpvPolicyTreeInsertNew(pThis, pCur, iDepth, pIdP, pQualifiers, pIdP)) return false; cMatches++; } } /* * 6.1.3.d.1.ii - If no matches above do the same for anyPolicy * nodes, only match with valid policy this time. */ if (cMatches == 0) { RTListForEach(pListAbove, pCur, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTAsn1ObjId_CompareWithString(pCur->pExpectedPolicyFirst, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) { if (!rtCrX509CpvPolicyTreeInsertNew(pThis, pCur, iDepth, pIdP, pQualifiers, pIdP)) return false; } } } } /* * 6.1.3.d.2 - If anyPolicy present, make sure all expected policies * are propagated to the current depth. */ if ( iAnyPolicy < pPolicies->cItems && ( pThis->v.cInhibitAnyPolicy > 0 || (pNode->pParent && fSelfIssued) ) ) { PCRTCRX509POLICYQUALIFIERINFOS pApQ = &pPolicies->papItems[iAnyPolicy]->PolicyQualifiers; RTListForEach(pListAbove, pCur, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (!rtCrX509CpvPolicyTreeIsChild(pCur, pCur->pExpectedPolicyFirst)) rtCrX509CpvPolicyTreeInsertNew(pThis, pCur, iDepth, pCur->pExpectedPolicyFirst, pApQ, pCur->pExpectedPolicyFirst); for (uint32_t j = 0; j < pCur->cMoreExpectedPolicySet; j++) if (!rtCrX509CpvPolicyTreeIsChild(pCur, pCur->papMoreExpectedPolicySet[j])) rtCrX509CpvPolicyTreeInsertNew(pThis, pCur, iDepth, pCur->papMoreExpectedPolicySet[j], pApQ, pCur->papMoreExpectedPolicySet[j]); } } /* * 6.1.3.d.3 - Prune the tree. */ else rtCrX509CpvPolicyTreePrune(pThis, iDepth - 1); } else { /* * 6.1.3.e - No policy extension present, set tree to NULL. */ rtCrX509CpvPolicyTreeDestroy(pThis); } /* * 6.1.3.f - NULL tree check. */ if ( pThis->v.pValidPolicyTree == NULL && pThis->v.cExplicitPolicy == 0) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NO_VALID_POLICY, "An explicit policy is called for but the valid policy tree is NULL."); return RT_SUCCESS(pThis->rc); } /** * Step 6.1.4.a-b. */ static bool rtCrX509CpvSoakUpPolicyMappings(PRTCRX509CERTPATHSINT pThis, uint32_t iDepth, PCRTCRX509POLICYMAPPINGS pPolicyMappings) { /* * 6.1.4.a - The anyPolicy is not allowed in policy mappings as it would * allow an evil intermediate certificate to expand the policy * scope of a certiciate chain without regard to upstream. */ uint32_t i = pPolicyMappings->cItems; while (i-- > 0) { PCRTCRX509POLICYMAPPING const pOne = pPolicyMappings->papItems[i]; if (RTAsn1ObjId_CompareWithString(&pOne->IssuerDomainPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_INVALID_POLICY_MAPPING, "Invalid policy mapping %#u: IssuerDomainPolicy is anyPolicy.", i); if (RTAsn1ObjId_CompareWithString(&pOne->SubjectDomainPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_INVALID_POLICY_MAPPING, "Invalid policy mapping %#u: SubjectDomainPolicy is anyPolicy.", i); } PRTCRX509CERTPATHSPOLICYNODE pCur, pNext; if (pThis->v.cInhibitPolicyMapping > 0) { /* * 6.1.4.b.1 - Do the policy mapping. */ i = pPolicyMappings->cItems; while (i-- > 0) { PCRTCRX509POLICYMAPPING const pOne = pPolicyMappings->papItems[i]; uint32_t cFound = 0; RTListForEach(&pThis->v.paValidPolicyDepthLists[iDepth], pCur, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTAsn1ObjId_Compare(pCur->pValidPolicy, &pOne->IssuerDomainPolicy)) { if (!pCur->fAlreadyMapped) { pCur->fAlreadyMapped = true; pCur->pExpectedPolicyFirst = &pOne->SubjectDomainPolicy; } else { uint32_t iExpected = pCur->cMoreExpectedPolicySet; void *pvNew = RTMemRealloc(pCur->papMoreExpectedPolicySet, sizeof(pCur->papMoreExpectedPolicySet[0]) * (iExpected + 1)); if (!pvNew) return rtCrX509CpvFailed(pThis, VERR_NO_MEMORY, "Error growing papMoreExpectedPolicySet array (cur %u, depth %u)", pCur->cMoreExpectedPolicySet, iDepth); pCur->papMoreExpectedPolicySet = (PCRTASN1OBJID *)pvNew; pCur->papMoreExpectedPolicySet[iExpected] = &pOne->SubjectDomainPolicy; pCur->cMoreExpectedPolicySet = iExpected + 1; } cFound++; } } /* * If no mapping took place, look for an anyPolicy node. */ if (!cFound) { RTListForEach(&pThis->v.paValidPolicyDepthLists[iDepth], pCur, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTAsn1ObjId_CompareWithString(pCur->pValidPolicy, RTCRX509_ID_CE_CP_ANY_POLICY_OID) == 0) { if (!rtCrX509CpvPolicyTreeInsertNew(pThis, pCur->pParent, iDepth, &pOne->IssuerDomainPolicy, pCur->pPolicyQualifiers, &pOne->SubjectDomainPolicy)) return false; break; } } } } } else { /* * 6.1.4.b.2 - Remove matching policies from the tree if mapping is * inhibited and prune the tree. */ uint32_t cRemoved = 0; i = pPolicyMappings->cItems; while (i-- > 0) { PCRTCRX509POLICYMAPPING const pOne = pPolicyMappings->papItems[i]; RTListForEachSafe(&pThis->v.paValidPolicyDepthLists[iDepth], pCur, pNext, RTCRX509CERTPATHSPOLICYNODE, DepthEntry) { if (RTAsn1ObjId_Compare(pCur->pValidPolicy, &pOne->IssuerDomainPolicy)) { rtCrX509CpvPolicyTreeDestroyNode(pThis, pCur); cRemoved++; } } } if (cRemoved) rtCrX509CpvPolicyTreePrune(pThis, iDepth - 1); } return true; } /** * Step 6.1.4.d-f & 6.1.5.c-e. */ static void rtCrX509CpvSetWorkingPublicKeyInfo(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { PCRTCRX509TBSCERTIFICATE const pTbsCert = &pNode->pCert->TbsCertificate; /* * 6.1.4.d - The public key. */ pThis->v.pWorkingPublicKey = &pTbsCert->SubjectPublicKeyInfo.SubjectPublicKey; /* * 6.1.4.e - The public key parameters. Use new ones if present, keep old * if the algorithm remains the same. */ if ( RTASN1CORE_IS_PRESENT(&pTbsCert->SubjectPublicKeyInfo.Algorithm.Parameters.u.Core) && pTbsCert->SubjectPublicKeyInfo.Algorithm.Parameters.enmType != RTASN1TYPE_NULL) pThis->v.pWorkingPublicKeyParameters = &pTbsCert->SubjectPublicKeyInfo.Algorithm.Parameters; else if ( pThis->v.pWorkingPublicKeyParameters && RTAsn1ObjId_Compare(pThis->v.pWorkingPublicKeyAlgorithm, &pTbsCert->SubjectPublicKeyInfo.Algorithm.Algorithm) != 0) pThis->v.pWorkingPublicKeyParameters = NULL; /* * 6.1.4.f - The public algorithm. */ pThis->v.pWorkingPublicKeyAlgorithm = &pTbsCert->SubjectPublicKeyInfo.Algorithm.Algorithm; } /** * Step 6.1.4.g. */ static bool rtCrX509CpvSoakUpNameConstraints(PRTCRX509CERTPATHSINT pThis, PCRTCRX509NAMECONSTRAINTS pNameConstraints) { if (pNameConstraints->T0.PermittedSubtrees.cItems > 0) if (!rtCrX509CpvIntersectionPermittedSubtrees(pThis, &pNameConstraints->T0.PermittedSubtrees)) return false; if (pNameConstraints->T1.ExcludedSubtrees.cItems > 0) if (!rtCrX509CpvAddExcludedSubtrees(pThis, &pNameConstraints->T1.ExcludedSubtrees)) return false; return true; } /** * Step 6.1.4.i. */ static bool rtCrX509CpvSoakUpPolicyConstraints(PRTCRX509CERTPATHSINT pThis, PCRTCRX509POLICYCONSTRAINTS pPolicyConstraints) { if (RTAsn1Integer_IsPresent(&pPolicyConstraints->RequireExplicitPolicy)) { if (RTAsn1Integer_UnsignedCompareWithU32(&pPolicyConstraints->RequireExplicitPolicy, pThis->v.cExplicitPolicy) < 0) pThis->v.cExplicitPolicy = pPolicyConstraints->RequireExplicitPolicy.uValue.s.Lo; } if (RTAsn1Integer_IsPresent(&pPolicyConstraints->InhibitPolicyMapping)) { if (RTAsn1Integer_UnsignedCompareWithU32(&pPolicyConstraints->InhibitPolicyMapping, pThis->v.cInhibitPolicyMapping) < 0) pThis->v.cInhibitPolicyMapping = pPolicyConstraints->InhibitPolicyMapping.uValue.s.Lo; } return true; } /** * Step 6.1.4.j. */ static bool rtCrX509CpvSoakUpInhibitAnyPolicy(PRTCRX509CERTPATHSINT pThis, PCRTASN1INTEGER pInhibitAnyPolicy) { if (RTAsn1Integer_UnsignedCompareWithU32(pInhibitAnyPolicy, pThis->v.cInhibitAnyPolicy) < 0) pThis->v.cInhibitAnyPolicy = pInhibitAnyPolicy->uValue.s.Lo; return true; } /** * Steps 6.1.4.k, 6.1.4.l, 6.1.4.m, and 6.1.4.n. */ static bool rtCrX509CpvCheckAndSoakUpBasicConstraintsAndKeyUsage(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode, bool fSelfIssued) { /* 6.1.4.k - If basic constraints present, CA must be set. */ if (RTAsn1Integer_UnsignedCompareWithU32(&pNode->pCert->TbsCertificate.T0.Version, RTCRX509TBSCERTIFICATE_V3) != 0) { /* Note! Add flags if support for older certificates is needed later. */ return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_V3_CERT, "Only version 3 certificates are supported (Version=%llu)", pNode->pCert->TbsCertificate.T0.Version.uValue); } PCRTCRX509BASICCONSTRAINTS pBasicConstraints = pNode->pCert->TbsCertificate.T3.pBasicConstraints; if (pBasicConstraints) { if (!pBasicConstraints->CA.fValue) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NOT_CA_CERT, "Intermediate certificate (#%u) is not marked as a CA", pThis->v.iNode); } /* 6.1.4.l - Work cMaxPathLength. */ if (!fSelfIssued) { if (pThis->v.cMaxPathLength > 0) pThis->v.cMaxPathLength--; else return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_MAX_PATH_LENGTH, "Hit max path length at node #%u", pThis->v.iNode); } /* 6.1.4.m - Update cMaxPathLength if basic constrain field is present and smaller. */ if (pBasicConstraints) { if (RTAsn1Integer_IsPresent(&pBasicConstraints->PathLenConstraint)) if (RTAsn1Integer_UnsignedCompareWithU32(&pBasicConstraints->PathLenConstraint, pThis->v.cMaxPathLength) < 0) pThis->v.cMaxPathLength = pBasicConstraints->PathLenConstraint.uValue.s.Lo; } /* 6.1.4.n - Require keyCertSign in key usage if the extension is present. */ PCRTCRX509TBSCERTIFICATE const pTbsCert = &pNode->pCert->TbsCertificate; if ( (pTbsCert->T3.fFlags & RTCRX509TBSCERTIFICATE_F_PRESENT_KEY_USAGE) && !(pTbsCert->T3.fKeyUsage & RTCRX509CERT_KEY_USAGE_F_KEY_CERT_SIGN)) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_MISSING_KEY_CERT_SIGN, "Node #%u does not have KeyCertSign set (keyUsage=%#x)", pThis->v.iNode, pTbsCert->T3.fKeyUsage); return true; } /** * Step 6.1.4.o - check out critical extensions. */ static bool rtCrX509CpvCheckCriticalExtensions(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { uint32_t cLeft = pNode->pCert->TbsCertificate.T3.Extensions.cItems; PRTCRX509EXTENSION const *ppCur = pNode->pCert->TbsCertificate.T3.Extensions.papItems; while (cLeft-- > 0) { PCRTCRX509EXTENSION const pCur = *ppCur; if (pCur->Critical.fValue) { if ( RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_KEY_USAGE_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_SUBJECT_ALT_NAME_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_ISSUER_ALT_NAME_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_BASIC_CONSTRAINTS_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_NAME_CONSTRAINTS_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_CERTIFICATE_POLICIES_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_POLICY_MAPPINGS_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_POLICY_CONSTRAINTS_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_EXT_KEY_USAGE_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_INHIBIT_ANY_POLICY_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCR_APPLE_CS_DEVID_APPLICATION_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCR_APPLE_CS_DEVID_INSTALLER_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCR_APPLE_CS_DEVID_KEXT_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCR_APPLE_CS_DEVID_IPHONE_SW_DEV_OID) != 0 && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCR_APPLE_CS_DEVID_MAC_SW_DEV_OID) != 0 ) { /* @bugref{10130}: An IntelGraphicsPE2021 cert issued by iKG_AZSKGFDCS has a critical subjectKeyIdentifier which we quietly ignore here. RFC-5280 conforming CAs should not mark this as critical. On an end entity this extension can have relevance to path construction. */ if ( pNode->uSrc == RTCRX509CERTPATHNODE_SRC_TARGET && RTAsn1ObjId_CompareWithString(&pCur->ExtnId, RTCRX509_ID_CE_SUBJECT_KEY_IDENTIFIER_OID) == 0) LogFunc(("Ignoring non-standard subjectKeyIdentifier on target certificate.\n")); else return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_UNKNOWN_CRITICAL_EXTENSION, "Node #%u has an unknown critical extension: %s", pThis->v.iNode, pCur->ExtnId.szObjId); } } ppCur++; } return true; } /** * Step 6.1.5 - The wrapping up. */ static bool rtCrX509CpvWrapUp(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pNode) { Assert(!pNode->pParent); Assert(pThis->pTarget == pNode->pCert); /* * 6.1.5.a - Decrement explicit policy. */ if (pThis->v.cExplicitPolicy > 0) pThis->v.cExplicitPolicy--; /* * 6.1.5.b - Policy constraints and explicit policy. */ PCRTCRX509POLICYCONSTRAINTS pPolicyConstraints = pNode->pCert->TbsCertificate.T3.pPolicyConstraints; if ( pPolicyConstraints && RTAsn1Integer_IsPresent(&pPolicyConstraints->RequireExplicitPolicy) && RTAsn1Integer_UnsignedCompareWithU32(&pPolicyConstraints->RequireExplicitPolicy, 0) == 0) pThis->v.cExplicitPolicy = 0; /* * 6.1.5.c-e - Update working public key info. */ rtCrX509CpvSetWorkingPublicKeyInfo(pThis, pNode); /* * 6.1.5.f - Critical extensions. */ if (!rtCrX509CpvCheckCriticalExtensions(pThis, pNode)) return false; /* * 6.1.5.g - Calculate the intersection between the user initial policy set * and the valid policy tree. */ rtCrX509CpvPolicyTreeIntersect(pThis, pThis->cInitialUserPolicySet, pThis->papInitialUserPolicySet); if ( pThis->v.cExplicitPolicy == 0 && pThis->v.pValidPolicyTree == NULL) return rtCrX509CpvFailed(pThis, VERR_CR_X509_CPV_NO_VALID_POLICY, "No valid policy (wrap-up)."); return true; } /** * Worker that validates one path. * * This implements the algorithm in RFC-5280, section 6.1, with exception of * the CRL checks in 6.1.3.a.3. * * @returns success indicator. * @param pThis The path builder & validator instance. * @param pTrustAnchor The trust anchor node. */ static bool rtCrX509CpvOneWorker(PRTCRX509CERTPATHSINT pThis, PRTCRX509CERTPATHNODE pTrustAnchor) { /* * Init. */ rtCrX509CpvInit(pThis, pTrustAnchor); if (RT_SUCCESS(pThis->rc)) { /* * Maybe do some trust anchor checks. */ if (!rtCrX509CpvMaybeCheckTrustAnchor(pThis, pTrustAnchor)) { AssertStmt(RT_FAILURE_NP(pThis->rc), pThis->rc = VERR_CR_X509_CERTPATHS_INTERNAL_ERROR); return false; } /* * Special case, target certificate is trusted. */ if (!pTrustAnchor->pParent) return true; /* rtCrX509CpvWrapUp should not be needed here. */ /* * Normal processing. */ PRTCRX509CERTPATHNODE pNode = pTrustAnchor->pParent; uint32_t iNode = pThis->v.iNode = 1; /* We count to cNode (inclusive). Same a validation tree depth. */ while (pNode && RT_SUCCESS(pThis->rc)) { /* * Basic certificate processing. */ if (!rtCrX509CpvCheckBasicCertInfo(pThis, pNode)) /* Step 6.1.3.a */ break; bool const fSelfIssued = rtCrX509CertPathsIsSelfIssued(pNode); if (!fSelfIssued || !pNode->pParent) /* Step 6.1.3.b-c */ if (!rtCrX509CpvCheckNameConstraints(pThis, pNode)) break; if (!rtCrX509CpvWorkValidPolicyTree(pThis, iNode, pNode, fSelfIssued)) /* Step 6.1.3.d-f */ break; /* * If it's the last certificate in the path, do wrap-ups. */ if (!pNode->pParent) /* Step 6.1.5 */ { Assert(iNode == pThis->v.cNodes); if (!rtCrX509CpvWrapUp(pThis, pNode)) break; AssertRCBreak(pThis->rc); return true; } /* * Preparations for the next certificate. */ PCRTCRX509TBSCERTIFICATE const pTbsCert = &pNode->pCert->TbsCertificate; if ( pTbsCert->T3.pPolicyMappings && !rtCrX509CpvSoakUpPolicyMappings(pThis, iNode, pTbsCert->T3.pPolicyMappings)) /* Step 6.1.4.a-b */ break; pThis->v.pWorkingIssuer = &pTbsCert->Subject; /* Step 6.1.4.c */ rtCrX509CpvSetWorkingPublicKeyInfo(pThis, pNode); /* Step 6.1.4.d-f */ if ( pTbsCert->T3.pNameConstraints /* Step 6.1.4.g */ && !rtCrX509CpvSoakUpNameConstraints(pThis, pTbsCert->T3.pNameConstraints)) break; if (!fSelfIssued) /* Step 6.1.4.h */ { if (pThis->v.cExplicitPolicy > 0) pThis->v.cExplicitPolicy--; if (pThis->v.cInhibitPolicyMapping > 0) pThis->v.cInhibitPolicyMapping--; if (pThis->v.cInhibitAnyPolicy > 0) pThis->v.cInhibitAnyPolicy--; } if ( pTbsCert->T3.pPolicyConstraints /* Step 6.1.4.j */ && !rtCrX509CpvSoakUpPolicyConstraints(pThis, pTbsCert->T3.pPolicyConstraints)) break; if ( pTbsCert->T3.pInhibitAnyPolicy /* Step 6.1.4.j */ && !rtCrX509CpvSoakUpInhibitAnyPolicy(pThis, pTbsCert->T3.pInhibitAnyPolicy)) break; if (!rtCrX509CpvCheckAndSoakUpBasicConstraintsAndKeyUsage(pThis, pNode, fSelfIssued)) /* Step 6.1.4.k-n */ break; if (!rtCrX509CpvCheckCriticalExtensions(pThis, pNode)) /* Step 6.1.4.o */ break; /* * Advance to the next certificate. */ pNode = pNode->pParent; pThis->v.iNode = ++iNode; } AssertStmt(RT_FAILURE_NP(pThis->rc), pThis->rc = VERR_CR_X509_CERTPATHS_INTERNAL_ERROR); } return false; } RTDECL(int) RTCrX509CertPathsValidateOne(RTCRX509CERTPATHS hCertPaths, uint32_t iPath, PRTERRINFO pErrInfo) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!(pThis->fFlags & ~RTCRX509CERTPATHSINT_F_VALID_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pThis->pTarget, VERR_INVALID_PARAMETER); AssertPtrReturn(pThis->pRoot, VERR_INVALID_PARAMETER); AssertReturn(pThis->rc == VINF_SUCCESS, VERR_INVALID_PARAMETER); /* * Locate the path and validate it. */ int rc; if (iPath < pThis->cPaths) { PRTCRX509CERTPATHNODE pLeaf = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); if (pLeaf) { if (RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(pLeaf->uSrc)) { pThis->pErrInfo = pErrInfo; rtCrX509CpvOneWorker(pThis, pLeaf); pThis->pErrInfo = NULL; rc = pThis->rc; pThis->rc = VINF_SUCCESS; } else rc = RTErrInfoSetF(pErrInfo, VERR_CR_X509_NO_TRUST_ANCHOR, "Path #%u is does not have a trust anchor: uSrc=%s", iPath, rtCrX509CertPathsNodeGetSourceName(pLeaf)); pLeaf->rcVerify = rc; } else rc = VERR_CR_X509_CERTPATHS_INTERNAL_ERROR; } else rc = VERR_NOT_FOUND; return rc; } RTDECL(int) RTCrX509CertPathsValidateAll(RTCRX509CERTPATHS hCertPaths, uint32_t *pcValidPaths, PRTERRINFO pErrInfo) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!(pThis->fFlags & ~RTCRX509CERTPATHSINT_F_VALID_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pThis->pTarget, VERR_INVALID_PARAMETER); AssertPtrReturn(pThis->pRoot, VERR_INVALID_PARAMETER); AssertReturn(pThis->rc == VINF_SUCCESS, VERR_INVALID_PARAMETER); AssertPtrNullReturn(pcValidPaths, VERR_INVALID_POINTER); /* * Validate the paths. */ pThis->pErrInfo = pErrInfo; int rcLastFailure = VINF_SUCCESS; uint32_t cValidPaths = 0; PRTCRX509CERTPATHNODE pCurLeaf; RTListForEach(&pThis->LeafList, pCurLeaf, RTCRX509CERTPATHNODE, ChildListOrLeafEntry) { if (RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(pCurLeaf->uSrc)) { rtCrX509CpvOneWorker(hCertPaths, pCurLeaf); if (RT_SUCCESS(pThis->rc)) cValidPaths++; else rcLastFailure = pThis->rc; pCurLeaf->rcVerify = pThis->rc; pThis->rc = VINF_SUCCESS; } else pCurLeaf->rcVerify = VERR_CR_X509_NO_TRUST_ANCHOR; } pThis->pErrInfo = NULL; if (pcValidPaths) *pcValidPaths = cValidPaths; if (cValidPaths > 0) return VINF_SUCCESS; if (RT_SUCCESS_NP(rcLastFailure)) return RTErrInfoSetF(pErrInfo, VERR_CR_X509_CPV_NO_TRUSTED_PATHS, "None of the %u path(s) have a trust anchor.", pThis->cPaths); return rcLastFailure; } RTDECL(uint32_t) RTCrX509CertPathsGetPathCount(RTCRX509CERTPATHS hCertPaths) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, UINT32_MAX); AssertPtrReturn(pThis->pRoot, UINT32_MAX); /* * Return data. */ return pThis->cPaths; } RTDECL(int) RTCrX509CertPathsQueryPathInfo(RTCRX509CERTPATHS hCertPaths, uint32_t iPath, bool *pfTrusted, uint32_t *pcNodes, PCRTCRX509NAME *ppSubject, PCRTCRX509SUBJECTPUBLICKEYINFO *ppPublicKeyInfo, PCRTCRX509CERTIFICATE *ppCert, PCRTCRCERTCTX *ppCertCtx, int *prcVerify) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pThis->pRoot, VERR_WRONG_ORDER); AssertReturn(iPath < pThis->cPaths, VERR_NOT_FOUND); /* * Get the data. */ PRTCRX509CERTPATHNODE pLeaf = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); AssertReturn(pLeaf, VERR_CR_X509_INTERNAL_ERROR); if (pfTrusted) *pfTrusted = RTCRX509CERTPATHNODE_SRC_IS_TRUSTED(pLeaf->uSrc); if (pcNodes) *pcNodes = pLeaf->uDepth + 1; /* Includes both trust anchor and target. */ if (ppSubject) *ppSubject = pLeaf->pCert ? &pLeaf->pCert->TbsCertificate.Subject : &pLeaf->pCertCtx->pTaInfo->CertPath.TaName; if (ppPublicKeyInfo) *ppPublicKeyInfo = pLeaf->pCert ? &pLeaf->pCert->TbsCertificate.SubjectPublicKeyInfo : &pLeaf->pCertCtx->pTaInfo->PubKey; if (ppCert) *ppCert = pLeaf->pCert; if (ppCertCtx) { if (pLeaf->pCertCtx) { uint32_t cRefs = RTCrCertCtxRetain(pLeaf->pCertCtx); AssertReturn(cRefs != UINT32_MAX, VERR_CR_X509_INTERNAL_ERROR); } *ppCertCtx = pLeaf->pCertCtx; } if (prcVerify) *prcVerify = pLeaf->rcVerify; return VINF_SUCCESS; } RTDECL(uint32_t) RTCrX509CertPathsGetPathLength(RTCRX509CERTPATHS hCertPaths, uint32_t iPath) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, UINT32_MAX); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, UINT32_MAX); AssertPtrReturn(pThis->pRoot, UINT32_MAX); AssertReturn(iPath < pThis->cPaths, UINT32_MAX); /* * Get the data. */ PRTCRX509CERTPATHNODE pLeaf = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); AssertReturn(pLeaf, UINT32_MAX); return pLeaf->uDepth + 1; } RTDECL(int) RTCrX509CertPathsGetPathVerifyResult(RTCRX509CERTPATHS hCertPaths, uint32_t iPath) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, VERR_INVALID_HANDLE); AssertPtrReturn(pThis->pRoot, VERR_WRONG_ORDER); AssertReturn(iPath < pThis->cPaths, VERR_NOT_FOUND); /* * Get the data. */ PRTCRX509CERTPATHNODE pLeaf = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); AssertReturn(pLeaf, VERR_CR_X509_INTERNAL_ERROR); return pLeaf->rcVerify; } static PRTCRX509CERTPATHNODE rtCrX509CertPathsGetPathNodeByIndexes(PRTCRX509CERTPATHSINT pThis, uint32_t iPath, uint32_t iNode) { PRTCRX509CERTPATHNODE pNode = rtCrX509CertPathsGetLeafByIndex(pThis, iPath); Assert(pNode); if (pNode) { if (iNode <= pNode->uDepth) { uint32_t uCertDepth = pNode->uDepth - iNode; while (pNode->uDepth > uCertDepth) pNode = pNode->pParent; Assert(pNode); Assert(pNode && pNode->uDepth == uCertDepth); return pNode; } } return NULL; } RTDECL(PCRTCRX509CERTIFICATE) RTCrX509CertPathsGetPathNodeCert(RTCRX509CERTPATHS hCertPaths, uint32_t iPath, uint32_t iNode) { /* * Validate the input. */ PRTCRX509CERTPATHSINT pThis = hCertPaths; AssertPtrReturn(pThis, NULL); AssertReturn(pThis->u32Magic == RTCRX509CERTPATHSINT_MAGIC, NULL); AssertPtrReturn(pThis->pRoot, NULL); AssertReturn(iPath < pThis->cPaths, NULL); /* * Get the data. */ PRTCRX509CERTPATHNODE pNode = rtCrX509CertPathsGetPathNodeByIndexes(pThis, iPath, iNode); if (pNode) return pNode->pCert; return NULL; } /** @} */