/* $Id: dbgmoddwarf.cpp $ */ /** @file * IPRT - Debug Info Reader For DWARF. */ /* * Copyright (C) 2011-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP RTLOGGROUP_DBG_DWARF #include #include "internal/iprt.h" #include #include #include #include #include #include #define RTDBGMODDWARF_WITH_MEM_CACHE #ifdef RTDBGMODDWARF_WITH_MEM_CACHE # include #endif #include #include #include #include #include #include "internal/dbgmod.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** Pointer to a DWARF section reader. */ typedef struct RTDWARFCURSOR *PRTDWARFCURSOR; /** Pointer to an attribute descriptor. */ typedef struct RTDWARFATTRDESC const *PCRTDWARFATTRDESC; /** Pointer to a DIE. */ typedef struct RTDWARFDIE *PRTDWARFDIE; /** Pointer to a const DIE. */ typedef struct RTDWARFDIE const *PCRTDWARFDIE; /** * DWARF sections. */ typedef enum krtDbgModDwarfSect { krtDbgModDwarfSect_abbrev = 0, krtDbgModDwarfSect_aranges, krtDbgModDwarfSect_frame, krtDbgModDwarfSect_info, krtDbgModDwarfSect_inlined, krtDbgModDwarfSect_line, krtDbgModDwarfSect_loc, krtDbgModDwarfSect_macinfo, krtDbgModDwarfSect_pubnames, krtDbgModDwarfSect_pubtypes, krtDbgModDwarfSect_ranges, krtDbgModDwarfSect_str, krtDbgModDwarfSect_types, /** End of valid parts (exclusive). */ krtDbgModDwarfSect_End } krtDbgModDwarfSect; /** * Abbreviation cache entry. */ typedef struct RTDWARFABBREV { /** Whether there are children or not. */ bool fChildren; #ifdef LOG_ENABLED uint8_t cbHdr; /**< For calcing ABGOFF matching dwarfdump. */ #endif /** The tag. */ uint16_t uTag; /** Offset into the abbrev section of the specification pairs. */ uint32_t offSpec; /** The abbreviation table offset this is entry is valid for. * UINT32_MAX if not valid. */ uint32_t offAbbrev; } RTDWARFABBREV; /** Pointer to an abbreviation cache entry. */ typedef RTDWARFABBREV *PRTDWARFABBREV; /** Pointer to a const abbreviation cache entry. */ typedef RTDWARFABBREV const *PCRTDWARFABBREV; /** * Structure for gathering segment info. */ typedef struct RTDBGDWARFSEG { /** The highest offset in the segment. */ uint64_t offHighest; /** Calculated base address. */ uint64_t uBaseAddr; /** Estimated The segment size. */ uint64_t cbSegment; /** Segment number (RTLDRSEG::Sel16bit). */ RTSEL uSegment; } RTDBGDWARFSEG; /** Pointer to segment info. */ typedef RTDBGDWARFSEG *PRTDBGDWARFSEG; /** * The instance data of the DWARF reader. */ typedef struct RTDBGMODDWARF { /** The debug container containing doing the real work. */ RTDBGMOD hCnt; /** The image module (no reference). */ PRTDBGMODINT pImgMod; /** The debug info module (no reference). */ PRTDBGMODINT pDbgInfoMod; /** Nested image module (with reference ofc). */ PRTDBGMODINT pNestedMod; /** DWARF debug info sections. */ struct { /** The file offset of the part. */ RTFOFF offFile; /** The size of the part. */ size_t cb; /** The memory mapping of the part. */ void const *pv; /** Set if present. */ bool fPresent; /** The debug info ordinal number in the image file. */ uint32_t iDbgInfo; } aSections[krtDbgModDwarfSect_End]; /** The offset into the abbreviation section of the current cache. */ uint32_t offCachedAbbrev; /** The number of cached abbreviations we've allocated space for. */ uint32_t cCachedAbbrevsAlloced; /** Array of cached abbreviations, indexed by code. */ PRTDWARFABBREV paCachedAbbrevs; /** Used by rtDwarfAbbrev_Lookup when the result is uncachable. */ RTDWARFABBREV LookupAbbrev; /** The list of compilation units (RTDWARFDIE). */ RTLISTANCHOR CompileUnitList; /** Set if we have to use link addresses because the module does not have * fixups (mach_kernel). */ bool fUseLinkAddress; /** This is set to -1 if we're doing everything in one pass. * Otherwise it's 1 or 2: * - In pass 1, we collect segment info. * - In pass 2, we add debug info to the container. * The two pass parsing is necessary for watcom generated symbol files as * these contains no information about the code and data segments in the * image. So we have to figure out some approximate stuff based on the * segments and offsets we encounter in the debug info. */ int8_t iWatcomPass; /** Segment index hint. */ uint16_t iSegHint; /** The number of segments in paSegs. * (During segment copying, this is abused to count useful segments.) */ uint32_t cSegs; /** Pointer to segments if iWatcomPass isn't -1. */ PRTDBGDWARFSEG paSegs; #ifdef RTDBGMODDWARF_WITH_MEM_CACHE /** DIE allocators. */ struct { RTMEMCACHE hMemCache; uint32_t cbMax; } aDieAllocators[2]; #endif } RTDBGMODDWARF; /** Pointer to instance data of the DWARF reader. */ typedef RTDBGMODDWARF *PRTDBGMODDWARF; /** * DWARF cursor for reading byte data. */ typedef struct RTDWARFCURSOR { /** The current position. */ uint8_t const *pb; /** The number of bytes left to read. */ size_t cbLeft; /** The number of bytes left to read in the current unit. */ size_t cbUnitLeft; /** The DWARF debug info reader instance. (Can be NULL for eh_frame.) */ PRTDBGMODDWARF pDwarfMod; /** Set if this is 64-bit DWARF, clear if 32-bit. */ bool f64bitDwarf; /** Set if the format endian is native, clear if endian needs to be * inverted. */ bool fNativEndian; /** The size of a native address. */ uint8_t cbNativeAddr; /** The cursor status code. This is VINF_SUCCESS until some error * occurs. */ int rc; /** The start of the area covered by the cursor. * Used for repositioning the cursor relative to the start of a section. */ uint8_t const *pbStart; /** The section. */ krtDbgModDwarfSect enmSect; } RTDWARFCURSOR; /** * DWARF line number program state. */ typedef struct RTDWARFLINESTATE { /** @name Virtual Line Number Machine Registers. * @{ */ struct { uint64_t uAddress; uint64_t idxOp; uint32_t iFile; uint32_t uLine; uint32_t uColumn; bool fIsStatement; bool fBasicBlock; bool fEndSequence; bool fPrologueEnd; bool fEpilogueBegin; uint32_t uIsa; uint32_t uDiscriminator; RTSEL uSegment; } Regs; /** @} */ /** Header. */ struct { uint32_t uVer; uint64_t offFirstOpcode; uint8_t cbMinInstr; uint8_t cMaxOpsPerInstr; uint8_t u8DefIsStmt; int8_t s8LineBase; uint8_t u8LineRange; uint8_t u8OpcodeBase; uint8_t const *pacStdOperands; } Hdr; /** @name Include Path Table (0-based) * @{ */ const char **papszIncPaths; uint32_t cIncPaths; /** @} */ /** @name File Name Table (0-based, dummy zero entry) * @{ */ char **papszFileNames; uint32_t cFileNames; /** @} */ /** The DWARF debug info reader instance. */ PRTDBGMODDWARF pDwarfMod; } RTDWARFLINESTATE; /** Pointer to a DWARF line number program state. */ typedef RTDWARFLINESTATE *PRTDWARFLINESTATE; /** * Decodes an attribute and stores it in the specified DIE member field. * * @returns IPRT status code. * @param pDie Pointer to the DIE structure. * @param pbMember Pointer to the first byte in the member. * @param pDesc The attribute descriptor. * @param uForm The data form. * @param pCursor The cursor to read data from. */ typedef DECLCALLBACKTYPE(int, FNRTDWARFATTRDECODER,(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor)); /** Pointer to an attribute decoder callback. */ typedef FNRTDWARFATTRDECODER *PFNRTDWARFATTRDECODER; /** * Attribute descriptor. */ typedef struct RTDWARFATTRDESC { /** The attribute. */ uint16_t uAttr; /** The data member offset. */ uint16_t off; /** The data member size and initialization method. */ uint8_t cbInit; uint8_t bPadding[3]; /**< Alignment padding. */ /** The decoder function. */ PFNRTDWARFATTRDECODER pfnDecoder; } RTDWARFATTRDESC; /** Define a attribute entry. */ #define ATTR_ENTRY(a_uAttr, a_Struct, a_Member, a_Init, a_pfnDecoder) \ { \ a_uAttr, \ (uint16_t)RT_OFFSETOF(a_Struct, a_Member), \ a_Init | ((uint8_t)RT_SIZEOFMEMB(a_Struct, a_Member) & ATTR_SIZE_MASK), \ { 0, 0, 0 }, \ a_pfnDecoder\ } /** @name Attribute size and init methods. * @{ */ #define ATTR_INIT_ZERO UINT8_C(0x00) #define ATTR_INIT_FFFS UINT8_C(0x80) #define ATTR_INIT_MASK UINT8_C(0x80) #define ATTR_SIZE_MASK UINT8_C(0x3f) #define ATTR_GET_SIZE(a_pAttrDesc) ((a_pAttrDesc)->cbInit & ATTR_SIZE_MASK) /** @} */ /** * DIE descriptor. */ typedef struct RTDWARFDIEDESC { /** The size of the DIE. */ size_t cbDie; /** The number of attributes. */ size_t cAttributes; /** Pointer to the array of attributes. */ PCRTDWARFATTRDESC paAttributes; } RTDWARFDIEDESC; typedef struct RTDWARFDIEDESC const *PCRTDWARFDIEDESC; /** DIE descriptor initializer. */ #define DIE_DESC_INIT(a_Type, a_aAttrs) { sizeof(a_Type), RT_ELEMENTS(a_aAttrs), &a_aAttrs[0] } /** * DIE core structure, all inherits (starts with) this. */ typedef struct RTDWARFDIE { /** Pointer to the parent node. NULL if root unit. */ struct RTDWARFDIE *pParent; /** Our node in the sibling list. */ RTLISTNODE SiblingNode; /** List of children. */ RTLISTNODE ChildList; /** The number of attributes successfully decoded. */ uint8_t cDecodedAttrs; /** The number of unknown or otherwise unhandled attributes. */ uint8_t cUnhandledAttrs; #ifdef RTDBGMODDWARF_WITH_MEM_CACHE /** The allocator index. */ uint8_t iAllocator; #endif /** The die tag, indicating which union structure to use. */ uint16_t uTag; /** Offset of the abbreviation specification (within debug_abbrev). */ uint32_t offSpec; } RTDWARFDIE; /** * DWARF address structure. */ typedef struct RTDWARFADDR { /** The address. */ uint64_t uAddress; } RTDWARFADDR; typedef RTDWARFADDR *PRTDWARFADDR; typedef RTDWARFADDR const *PCRTDWARFADDR; /** * DWARF address range. */ typedef struct RTDWARFADDRRANGE { uint64_t uLowAddress; uint64_t uHighAddress; uint8_t const *pbRanges; /* ?? */ uint8_t cAttrs : 2; uint8_t fHaveLowAddress : 1; uint8_t fHaveHighAddress : 1; uint8_t fHaveHighIsAddress : 1; uint8_t fHaveRanges : 1; } RTDWARFADDRRANGE; typedef RTDWARFADDRRANGE *PRTDWARFADDRRANGE; typedef RTDWARFADDRRANGE const *PCRTDWARFADDRRANGE; /** What a RTDWARFREF is relative to. */ typedef enum krtDwarfRef { krtDwarfRef_NotSet, krtDwarfRef_LineSection, krtDwarfRef_LocSection, krtDwarfRef_RangesSection, krtDwarfRef_InfoSection, krtDwarfRef_SameUnit, krtDwarfRef_TypeId64 } krtDwarfRef; /** * DWARF reference. */ typedef struct RTDWARFREF { /** The offset. */ uint64_t off; /** What the offset is relative to. */ krtDwarfRef enmWrt; } RTDWARFREF; typedef RTDWARFREF *PRTDWARFREF; typedef RTDWARFREF const *PCRTDWARFREF; /** * DWARF Location state. */ typedef struct RTDWARFLOCST { /** The input cursor. */ RTDWARFCURSOR Cursor; /** Points to the current top of the stack. Initial value -1. */ int32_t iTop; /** The value stack. */ uint64_t auStack[64]; } RTDWARFLOCST; /** Pointer to location state. */ typedef RTDWARFLOCST *PRTDWARFLOCST; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static FNRTDWARFATTRDECODER rtDwarfDecode_Address; static FNRTDWARFATTRDECODER rtDwarfDecode_Bool; static FNRTDWARFATTRDECODER rtDwarfDecode_LowHighPc; static FNRTDWARFATTRDECODER rtDwarfDecode_Ranges; static FNRTDWARFATTRDECODER rtDwarfDecode_Reference; static FNRTDWARFATTRDECODER rtDwarfDecode_SectOff; static FNRTDWARFATTRDECODER rtDwarfDecode_String; static FNRTDWARFATTRDECODER rtDwarfDecode_UnsignedInt; static FNRTDWARFATTRDECODER rtDwarfDecode_SegmentLoc; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** RTDWARFDIE description. */ static const RTDWARFDIEDESC g_CoreDieDesc = { sizeof(RTDWARFDIE), 0, NULL }; /** * DW_TAG_compile_unit & DW_TAG_partial_unit. */ typedef struct RTDWARFDIECOMPILEUNIT { /** The DIE core structure. */ RTDWARFDIE Core; /** The unit name. */ const char *pszName; /** The address range of the code belonging to this unit. */ RTDWARFADDRRANGE PcRange; /** The language name. */ uint16_t uLanguage; /** The identifier case. */ uint8_t uIdentifierCase; /** String are UTF-8 encoded. If not set, the encoding is * unknown. */ bool fUseUtf8; /** The unit contains main() or equivalent. */ bool fMainFunction; /** The line numbers for this unit. */ RTDWARFREF StmtListRef; /** The macro information for this unit. */ RTDWARFREF MacroInfoRef; /** Reference to the base types. */ RTDWARFREF BaseTypesRef; /** Working directory for the unit. */ const char *pszCurDir; /** The name of the compiler or whatever that produced this unit. */ const char *pszProducer; /** @name From the unit header. * @{ */ /** The offset into debug_info of this unit (for references). */ uint64_t offUnit; /** The length of this unit. */ uint64_t cbUnit; /** The offset into debug_abbrev of the abbreviation for this unit. */ uint64_t offAbbrev; /** The native address size. */ uint8_t cbNativeAddr; /** The DWARF version. */ uint8_t uDwarfVer; /** @} */ } RTDWARFDIECOMPILEUNIT; typedef RTDWARFDIECOMPILEUNIT *PRTDWARFDIECOMPILEUNIT; /** RTDWARFDIECOMPILEUNIT attributes. */ static const RTDWARFATTRDESC g_aCompileUnitAttrs[] = { ATTR_ENTRY(DW_AT_name, RTDWARFDIECOMPILEUNIT, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc), ATTR_ENTRY(DW_AT_high_pc, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc), ATTR_ENTRY(DW_AT_ranges, RTDWARFDIECOMPILEUNIT, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_Ranges), ATTR_ENTRY(DW_AT_language, RTDWARFDIECOMPILEUNIT, uLanguage, ATTR_INIT_ZERO, rtDwarfDecode_UnsignedInt), ATTR_ENTRY(DW_AT_macro_info, RTDWARFDIECOMPILEUNIT, MacroInfoRef, ATTR_INIT_ZERO, rtDwarfDecode_SectOff), ATTR_ENTRY(DW_AT_stmt_list, RTDWARFDIECOMPILEUNIT, StmtListRef, ATTR_INIT_ZERO, rtDwarfDecode_SectOff), ATTR_ENTRY(DW_AT_comp_dir, RTDWARFDIECOMPILEUNIT, pszCurDir, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_producer, RTDWARFDIECOMPILEUNIT, pszProducer, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_identifier_case, RTDWARFDIECOMPILEUNIT, uIdentifierCase,ATTR_INIT_ZERO, rtDwarfDecode_UnsignedInt), ATTR_ENTRY(DW_AT_base_types, RTDWARFDIECOMPILEUNIT, BaseTypesRef, ATTR_INIT_ZERO, rtDwarfDecode_Reference), ATTR_ENTRY(DW_AT_use_UTF8, RTDWARFDIECOMPILEUNIT, fUseUtf8, ATTR_INIT_ZERO, rtDwarfDecode_Bool), ATTR_ENTRY(DW_AT_main_subprogram, RTDWARFDIECOMPILEUNIT, fMainFunction, ATTR_INIT_ZERO, rtDwarfDecode_Bool) }; /** RTDWARFDIECOMPILEUNIT description. */ static const RTDWARFDIEDESC g_CompileUnitDesc = DIE_DESC_INIT(RTDWARFDIECOMPILEUNIT, g_aCompileUnitAttrs); /** * DW_TAG_subprogram. */ typedef struct RTDWARFDIESUBPROGRAM { /** The DIE core structure. */ RTDWARFDIE Core; /** The name. */ const char *pszName; /** The linkage name. */ const char *pszLinkageName; /** The address range of the code belonging to this unit. */ RTDWARFADDRRANGE PcRange; /** The first instruction in the function. */ RTDWARFADDR EntryPc; /** Segment number (watcom). */ RTSEL uSegment; /** Reference to the specification. */ RTDWARFREF SpecRef; } RTDWARFDIESUBPROGRAM; /** Pointer to a DW_TAG_subprogram DIE. */ typedef RTDWARFDIESUBPROGRAM *PRTDWARFDIESUBPROGRAM; /** Pointer to a const DW_TAG_subprogram DIE. */ typedef RTDWARFDIESUBPROGRAM const *PCRTDWARFDIESUBPROGRAM; /** RTDWARFDIESUBPROGRAM attributes. */ static const RTDWARFATTRDESC g_aSubProgramAttrs[] = { ATTR_ENTRY(DW_AT_name, RTDWARFDIESUBPROGRAM, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_MIPS_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc), ATTR_ENTRY(DW_AT_high_pc, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_LowHighPc), ATTR_ENTRY(DW_AT_ranges, RTDWARFDIESUBPROGRAM, PcRange, ATTR_INIT_ZERO, rtDwarfDecode_Ranges), ATTR_ENTRY(DW_AT_entry_pc, RTDWARFDIESUBPROGRAM, EntryPc, ATTR_INIT_ZERO, rtDwarfDecode_Address), ATTR_ENTRY(DW_AT_segment, RTDWARFDIESUBPROGRAM, uSegment, ATTR_INIT_ZERO, rtDwarfDecode_SegmentLoc), ATTR_ENTRY(DW_AT_specification, RTDWARFDIESUBPROGRAM, SpecRef, ATTR_INIT_ZERO, rtDwarfDecode_Reference) }; /** RTDWARFDIESUBPROGRAM description. */ static const RTDWARFDIEDESC g_SubProgramDesc = DIE_DESC_INIT(RTDWARFDIESUBPROGRAM, g_aSubProgramAttrs); /** RTDWARFDIESUBPROGRAM attributes for the specification hack. */ static const RTDWARFATTRDESC g_aSubProgramSpecHackAttrs[] = { ATTR_ENTRY(DW_AT_name, RTDWARFDIESUBPROGRAM, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_MIPS_linkage_name, RTDWARFDIESUBPROGRAM, pszLinkageName, ATTR_INIT_ZERO, rtDwarfDecode_String), }; /** RTDWARFDIESUBPROGRAM description for the specification hack. */ static const RTDWARFDIEDESC g_SubProgramSpecHackDesc = DIE_DESC_INIT(RTDWARFDIESUBPROGRAM, g_aSubProgramSpecHackAttrs); /** * DW_TAG_label. */ typedef struct RTDWARFDIELABEL { /** The DIE core structure. */ RTDWARFDIE Core; /** The name. */ const char *pszName; /** The address of the first instruction. */ RTDWARFADDR Address; /** Segment number (watcom). */ RTSEL uSegment; /** Externally visible? */ bool fExternal; } RTDWARFDIELABEL; /** Pointer to a DW_TAG_label DIE. */ typedef RTDWARFDIELABEL *PRTDWARFDIELABEL; /** Pointer to a const DW_TAG_label DIE. */ typedef RTDWARFDIELABEL const *PCRTDWARFDIELABEL; /** RTDWARFDIESUBPROGRAM attributes. */ static const RTDWARFATTRDESC g_aLabelAttrs[] = { ATTR_ENTRY(DW_AT_name, RTDWARFDIELABEL, pszName, ATTR_INIT_ZERO, rtDwarfDecode_String), ATTR_ENTRY(DW_AT_low_pc, RTDWARFDIELABEL, Address, ATTR_INIT_ZERO, rtDwarfDecode_Address), ATTR_ENTRY(DW_AT_segment, RTDWARFDIELABEL, uSegment, ATTR_INIT_ZERO, rtDwarfDecode_SegmentLoc), ATTR_ENTRY(DW_AT_external, RTDWARFDIELABEL, fExternal, ATTR_INIT_ZERO, rtDwarfDecode_Bool) }; /** RTDWARFDIESUBPROGRAM description. */ static const RTDWARFDIEDESC g_LabelDesc = DIE_DESC_INIT(RTDWARFDIELABEL, g_aLabelAttrs); /** * Tag names and descriptors. */ static const struct RTDWARFTAGDESC { /** The tag value. */ uint16_t uTag; /** The tag name as string. */ const char *pszName; /** The DIE descriptor to use. */ PCRTDWARFDIEDESC pDesc; } g_aTagDescs[] = { #define TAGDESC(a_Name, a_pDesc) { DW_ ## a_Name, #a_Name, a_pDesc } #define TAGDESC_EMPTY() { 0, NULL, &g_CoreDieDesc } #define TAGDESC_CORE(a_Name) TAGDESC(a_Name, &g_CoreDieDesc) TAGDESC_EMPTY(), /* 0x00 */ TAGDESC_CORE(TAG_array_type), TAGDESC_CORE(TAG_class_type), TAGDESC_CORE(TAG_entry_point), TAGDESC_CORE(TAG_enumeration_type), /* 0x04 */ TAGDESC_CORE(TAG_formal_parameter), TAGDESC_EMPTY(), TAGDESC_EMPTY(), TAGDESC_CORE(TAG_imported_declaration), /* 0x08 */ TAGDESC_EMPTY(), TAGDESC(TAG_label, &g_LabelDesc), TAGDESC_CORE(TAG_lexical_block), TAGDESC_EMPTY(), /* 0x0c */ TAGDESC_CORE(TAG_member), TAGDESC_EMPTY(), TAGDESC_CORE(TAG_pointer_type), TAGDESC_CORE(TAG_reference_type), /* 0x10 */ TAGDESC_CORE(TAG_compile_unit), TAGDESC_CORE(TAG_string_type), TAGDESC_CORE(TAG_structure_type), TAGDESC_EMPTY(), /* 0x14 */ TAGDESC_CORE(TAG_subroutine_type), TAGDESC_CORE(TAG_typedef), TAGDESC_CORE(TAG_union_type), TAGDESC_CORE(TAG_unspecified_parameters), /* 0x18 */ TAGDESC_CORE(TAG_variant), TAGDESC_CORE(TAG_common_block), TAGDESC_CORE(TAG_common_inclusion), TAGDESC_CORE(TAG_inheritance), /* 0x1c */ TAGDESC_CORE(TAG_inlined_subroutine), TAGDESC_CORE(TAG_module), TAGDESC_CORE(TAG_ptr_to_member_type), TAGDESC_CORE(TAG_set_type), /* 0x20 */ TAGDESC_CORE(TAG_subrange_type), TAGDESC_CORE(TAG_with_stmt), TAGDESC_CORE(TAG_access_declaration), TAGDESC_CORE(TAG_base_type), /* 0x24 */ TAGDESC_CORE(TAG_catch_block), TAGDESC_CORE(TAG_const_type), TAGDESC_CORE(TAG_constant), TAGDESC_CORE(TAG_enumerator), /* 0x28 */ TAGDESC_CORE(TAG_file_type), TAGDESC_CORE(TAG_friend), TAGDESC_CORE(TAG_namelist), TAGDESC_CORE(TAG_namelist_item), /* 0x2c */ TAGDESC_CORE(TAG_packed_type), TAGDESC(TAG_subprogram, &g_SubProgramDesc), TAGDESC_CORE(TAG_template_type_parameter), TAGDESC_CORE(TAG_template_value_parameter), /* 0x30 */ TAGDESC_CORE(TAG_thrown_type), TAGDESC_CORE(TAG_try_block), TAGDESC_CORE(TAG_variant_part), TAGDESC_CORE(TAG_variable), /* 0x34 */ TAGDESC_CORE(TAG_volatile_type), TAGDESC_CORE(TAG_dwarf_procedure), TAGDESC_CORE(TAG_restrict_type), TAGDESC_CORE(TAG_interface_type), /* 0x38 */ TAGDESC_CORE(TAG_namespace), TAGDESC_CORE(TAG_imported_module), TAGDESC_CORE(TAG_unspecified_type), TAGDESC_CORE(TAG_partial_unit), /* 0x3c */ TAGDESC_CORE(TAG_imported_unit), TAGDESC_EMPTY(), TAGDESC_CORE(TAG_condition), TAGDESC_CORE(TAG_shared_type), /* 0x40 */ TAGDESC_CORE(TAG_type_unit), TAGDESC_CORE(TAG_rvalue_reference_type), TAGDESC_CORE(TAG_template_alias) #undef TAGDESC #undef TAGDESC_EMPTY #undef TAGDESC_CORE }; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static int rtDwarfInfo_ParseDie(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie, PCRTDWARFDIEDESC pDieDesc, PRTDWARFCURSOR pCursor, PCRTDWARFABBREV pAbbrev, bool fInitDie); #if defined(LOG_ENABLED) || defined(RT_STRICT) # if 0 /* unused */ /** * Turns a tag value into a string for logging purposes. * * @returns String name. * @param uTag The tag. */ static const char *rtDwarfLog_GetTagName(uint32_t uTag) { if (uTag < RT_ELEMENTS(g_aTagDescs)) { const char *pszTag = g_aTagDescs[uTag].pszName; if (pszTag) return pszTag; } static char s_szStatic[32]; RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_TAG_%#x", uTag); return s_szStatic; } # endif /** * Turns an attributevalue into a string for logging purposes. * * @returns String name. * @param uAttr The attribute. */ static const char *rtDwarfLog_AttrName(uint32_t uAttr) { switch (uAttr) { RT_CASE_RET_STR(DW_AT_sibling); RT_CASE_RET_STR(DW_AT_location); RT_CASE_RET_STR(DW_AT_name); RT_CASE_RET_STR(DW_AT_ordering); RT_CASE_RET_STR(DW_AT_byte_size); RT_CASE_RET_STR(DW_AT_bit_offset); RT_CASE_RET_STR(DW_AT_bit_size); RT_CASE_RET_STR(DW_AT_stmt_list); RT_CASE_RET_STR(DW_AT_low_pc); RT_CASE_RET_STR(DW_AT_high_pc); RT_CASE_RET_STR(DW_AT_language); RT_CASE_RET_STR(DW_AT_discr); RT_CASE_RET_STR(DW_AT_discr_value); RT_CASE_RET_STR(DW_AT_visibility); RT_CASE_RET_STR(DW_AT_import); RT_CASE_RET_STR(DW_AT_string_length); RT_CASE_RET_STR(DW_AT_common_reference); RT_CASE_RET_STR(DW_AT_comp_dir); RT_CASE_RET_STR(DW_AT_const_value); RT_CASE_RET_STR(DW_AT_containing_type); RT_CASE_RET_STR(DW_AT_default_value); RT_CASE_RET_STR(DW_AT_inline); RT_CASE_RET_STR(DW_AT_is_optional); RT_CASE_RET_STR(DW_AT_lower_bound); RT_CASE_RET_STR(DW_AT_producer); RT_CASE_RET_STR(DW_AT_prototyped); RT_CASE_RET_STR(DW_AT_return_addr); RT_CASE_RET_STR(DW_AT_start_scope); RT_CASE_RET_STR(DW_AT_bit_stride); RT_CASE_RET_STR(DW_AT_upper_bound); RT_CASE_RET_STR(DW_AT_abstract_origin); RT_CASE_RET_STR(DW_AT_accessibility); RT_CASE_RET_STR(DW_AT_address_class); RT_CASE_RET_STR(DW_AT_artificial); RT_CASE_RET_STR(DW_AT_base_types); RT_CASE_RET_STR(DW_AT_calling_convention); RT_CASE_RET_STR(DW_AT_count); RT_CASE_RET_STR(DW_AT_data_member_location); RT_CASE_RET_STR(DW_AT_decl_column); RT_CASE_RET_STR(DW_AT_decl_file); RT_CASE_RET_STR(DW_AT_decl_line); RT_CASE_RET_STR(DW_AT_declaration); RT_CASE_RET_STR(DW_AT_discr_list); RT_CASE_RET_STR(DW_AT_encoding); RT_CASE_RET_STR(DW_AT_external); RT_CASE_RET_STR(DW_AT_frame_base); RT_CASE_RET_STR(DW_AT_friend); RT_CASE_RET_STR(DW_AT_identifier_case); RT_CASE_RET_STR(DW_AT_macro_info); RT_CASE_RET_STR(DW_AT_namelist_item); RT_CASE_RET_STR(DW_AT_priority); RT_CASE_RET_STR(DW_AT_segment); RT_CASE_RET_STR(DW_AT_specification); RT_CASE_RET_STR(DW_AT_static_link); RT_CASE_RET_STR(DW_AT_type); RT_CASE_RET_STR(DW_AT_use_location); RT_CASE_RET_STR(DW_AT_variable_parameter); RT_CASE_RET_STR(DW_AT_virtuality); RT_CASE_RET_STR(DW_AT_vtable_elem_location); RT_CASE_RET_STR(DW_AT_allocated); RT_CASE_RET_STR(DW_AT_associated); RT_CASE_RET_STR(DW_AT_data_location); RT_CASE_RET_STR(DW_AT_byte_stride); RT_CASE_RET_STR(DW_AT_entry_pc); RT_CASE_RET_STR(DW_AT_use_UTF8); RT_CASE_RET_STR(DW_AT_extension); RT_CASE_RET_STR(DW_AT_ranges); RT_CASE_RET_STR(DW_AT_trampoline); RT_CASE_RET_STR(DW_AT_call_column); RT_CASE_RET_STR(DW_AT_call_file); RT_CASE_RET_STR(DW_AT_call_line); RT_CASE_RET_STR(DW_AT_description); RT_CASE_RET_STR(DW_AT_binary_scale); RT_CASE_RET_STR(DW_AT_decimal_scale); RT_CASE_RET_STR(DW_AT_small); RT_CASE_RET_STR(DW_AT_decimal_sign); RT_CASE_RET_STR(DW_AT_digit_count); RT_CASE_RET_STR(DW_AT_picture_string); RT_CASE_RET_STR(DW_AT_mutable); RT_CASE_RET_STR(DW_AT_threads_scaled); RT_CASE_RET_STR(DW_AT_explicit); RT_CASE_RET_STR(DW_AT_object_pointer); RT_CASE_RET_STR(DW_AT_endianity); RT_CASE_RET_STR(DW_AT_elemental); RT_CASE_RET_STR(DW_AT_pure); RT_CASE_RET_STR(DW_AT_recursive); RT_CASE_RET_STR(DW_AT_signature); RT_CASE_RET_STR(DW_AT_main_subprogram); RT_CASE_RET_STR(DW_AT_data_bit_offset); RT_CASE_RET_STR(DW_AT_const_expr); RT_CASE_RET_STR(DW_AT_enum_class); RT_CASE_RET_STR(DW_AT_linkage_name); RT_CASE_RET_STR(DW_AT_MIPS_linkage_name); RT_CASE_RET_STR(DW_AT_WATCOM_memory_model); RT_CASE_RET_STR(DW_AT_WATCOM_references_start); RT_CASE_RET_STR(DW_AT_WATCOM_parm_entry); } static char s_szStatic[32]; RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_AT_%#x", uAttr); return s_szStatic; } /** * Turns a form value into a string for logging purposes. * * @returns String name. * @param uForm The form. */ static const char *rtDwarfLog_FormName(uint32_t uForm) { switch (uForm) { RT_CASE_RET_STR(DW_FORM_addr); RT_CASE_RET_STR(DW_FORM_block2); RT_CASE_RET_STR(DW_FORM_block4); RT_CASE_RET_STR(DW_FORM_data2); RT_CASE_RET_STR(DW_FORM_data4); RT_CASE_RET_STR(DW_FORM_data8); RT_CASE_RET_STR(DW_FORM_string); RT_CASE_RET_STR(DW_FORM_block); RT_CASE_RET_STR(DW_FORM_block1); RT_CASE_RET_STR(DW_FORM_data1); RT_CASE_RET_STR(DW_FORM_flag); RT_CASE_RET_STR(DW_FORM_sdata); RT_CASE_RET_STR(DW_FORM_strp); RT_CASE_RET_STR(DW_FORM_udata); RT_CASE_RET_STR(DW_FORM_ref_addr); RT_CASE_RET_STR(DW_FORM_ref1); RT_CASE_RET_STR(DW_FORM_ref2); RT_CASE_RET_STR(DW_FORM_ref4); RT_CASE_RET_STR(DW_FORM_ref8); RT_CASE_RET_STR(DW_FORM_ref_udata); RT_CASE_RET_STR(DW_FORM_indirect); RT_CASE_RET_STR(DW_FORM_sec_offset); RT_CASE_RET_STR(DW_FORM_exprloc); RT_CASE_RET_STR(DW_FORM_flag_present); RT_CASE_RET_STR(DW_FORM_ref_sig8); } static char s_szStatic[32]; RTStrPrintf(s_szStatic, sizeof(s_szStatic),"DW_FORM_%#x", uForm); return s_szStatic; } #endif /* LOG_ENABLED || RT_STRICT */ /** @callback_method_impl{FNRTLDRENUMSEGS} */ static DECLCALLBACK(int) rtDbgModDwarfScanSegmentsCallback(RTLDRMOD hLdrMod, PCRTLDRSEG pSeg, void *pvUser) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser; Log(("Segment %.*s: LinkAddress=%#llx RVA=%#llx cb=%#llx\n", pSeg->cchName, pSeg->pszName, (uint64_t)pSeg->LinkAddress, (uint64_t)pSeg->RVA, pSeg->cb)); NOREF(hLdrMod); /* Count relevant segments. */ if (pSeg->RVA != NIL_RTLDRADDR) pThis->cSegs++; return VINF_SUCCESS; } /** @callback_method_impl{FNRTLDRENUMSEGS} */ static DECLCALLBACK(int) rtDbgModDwarfAddSegmentsCallback(RTLDRMOD hLdrMod, PCRTLDRSEG pSeg, void *pvUser) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser; Log(("Segment %.*s: LinkAddress=%#llx RVA=%#llx cb=%#llx cbMapped=%#llx\n", pSeg->cchName, pSeg->pszName, (uint64_t)pSeg->LinkAddress, (uint64_t)pSeg->RVA, pSeg->cb, pSeg->cbMapped)); NOREF(hLdrMod); Assert(pSeg->cchName > 0); Assert(!pSeg->pszName[pSeg->cchName]); /* If the segment doesn't have a mapping, just add a dummy so the indexing works out correctly (same as for the image). */ if (pSeg->RVA == NIL_RTLDRADDR) return RTDbgModSegmentAdd(pThis->hCnt, 0, 0, pSeg->pszName, 0 /*fFlags*/, NULL); /* The link address is 0 for all segments in a relocatable ELF image. */ RTLDRADDR cb = pSeg->cb; if ( cb < pSeg->cbMapped && RTLdrGetFormat(hLdrMod) != RTLDRFMT_LX /* for debugging our drivers; 64KB section align by linker, 4KB by loader. */ ) cb = pSeg->cbMapped; return RTDbgModSegmentAdd(pThis->hCnt, pSeg->RVA, cb, pSeg->pszName, 0 /*fFlags*/, NULL); } /** * Calls rtDbgModDwarfAddSegmentsCallback for each segment in the executable * image. * * @returns IPRT status code. * @param pThis The DWARF instance. */ static int rtDbgModDwarfAddSegmentsFromImage(PRTDBGMODDWARF pThis) { AssertReturn(pThis->pImgMod && pThis->pImgMod->pImgVt, VERR_INTERNAL_ERROR_2); Assert(!pThis->cSegs); int rc = pThis->pImgMod->pImgVt->pfnEnumSegments(pThis->pImgMod, rtDbgModDwarfScanSegmentsCallback, pThis); if (RT_SUCCESS(rc)) { if (pThis->cSegs == 0) pThis->iWatcomPass = 1; else { pThis->cSegs = 0; pThis->iWatcomPass = -1; rc = pThis->pImgMod->pImgVt->pfnEnumSegments(pThis->pImgMod, rtDbgModDwarfAddSegmentsCallback, pThis); } } return rc; } /** * Looks up a segment. * * @returns Pointer to the segment on success, NULL if not found. * @param pThis The DWARF instance. * @param uSeg The segment number / selector. */ static PRTDBGDWARFSEG rtDbgModDwarfFindSegment(PRTDBGMODDWARF pThis, RTSEL uSeg) { uint32_t cSegs = pThis->cSegs; uint32_t iSeg = pThis->iSegHint; PRTDBGDWARFSEG paSegs = pThis->paSegs; if ( iSeg < cSegs && paSegs[iSeg].uSegment == uSeg) return &paSegs[iSeg]; for (iSeg = 0; iSeg < cSegs; iSeg++) if (uSeg == paSegs[iSeg].uSegment) { pThis->iSegHint = iSeg; return &paSegs[iSeg]; } AssertFailed(); return NULL; } /** * Record a segment:offset during pass 1. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param uSeg The segment number / selector. * @param offSeg The segment offset. */ static int rtDbgModDwarfRecordSegOffset(PRTDBGMODDWARF pThis, RTSEL uSeg, uint64_t offSeg) { /* Look up the segment. */ uint32_t cSegs = pThis->cSegs; uint32_t iSeg = pThis->iSegHint; PRTDBGDWARFSEG paSegs = pThis->paSegs; if ( iSeg >= cSegs || paSegs[iSeg].uSegment != uSeg) { for (iSeg = 0; iSeg < cSegs; iSeg++) if (uSeg <= paSegs[iSeg].uSegment) break; if ( iSeg >= cSegs || paSegs[iSeg].uSegment != uSeg) { /* Add */ void *pvNew = RTMemRealloc(paSegs, (pThis->cSegs + 1) * sizeof(paSegs[0])); if (!pvNew) return VERR_NO_MEMORY; pThis->paSegs = paSegs = (PRTDBGDWARFSEG)pvNew; if (iSeg != cSegs) memmove(&paSegs[iSeg + 1], &paSegs[iSeg], (cSegs - iSeg) * sizeof(paSegs[0])); paSegs[iSeg].offHighest = offSeg; paSegs[iSeg].uBaseAddr = 0; paSegs[iSeg].cbSegment = 0; paSegs[iSeg].uSegment = uSeg; pThis->cSegs++; } pThis->iSegHint = iSeg; } /* Increase it's range? */ if (paSegs[iSeg].offHighest < offSeg) { Log3(("rtDbgModDwarfRecordSegOffset: iSeg=%d uSeg=%#06x offSeg=%#llx\n", iSeg, uSeg, offSeg)); paSegs[iSeg].offHighest = offSeg; } return VINF_SUCCESS; } /** * Calls pfnSegmentAdd for each segment in the executable image. * * @returns IPRT status code. * @param pThis The DWARF instance. */ static int rtDbgModDwarfAddSegmentsFromPass1(PRTDBGMODDWARF pThis) { AssertReturn(pThis->cSegs, VERR_DWARF_BAD_INFO); uint32_t const cSegs = pThis->cSegs; PRTDBGDWARFSEG paSegs = pThis->paSegs; /* * Are the segments assigned more or less in numerical order? */ if ( paSegs[0].uSegment < 16U && paSegs[cSegs - 1].uSegment - paSegs[0].uSegment + 1U <= cSegs + 16U) { /** @todo heuristics, plase. */ AssertFailedReturn(VERR_DWARF_TODO); } /* * Assume DOS segmentation. */ else { for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++) paSegs[iSeg].uBaseAddr = (uint32_t)paSegs[iSeg].uSegment << 16; for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++) paSegs[iSeg].cbSegment = paSegs[iSeg].offHighest; } /* * Add them. */ for (uint32_t iSeg = 0; iSeg < cSegs; iSeg++) { Log3(("rtDbgModDwarfAddSegmentsFromPass1: Seg#%u: %#010llx LB %#llx uSegment=%#x\n", iSeg, paSegs[iSeg].uBaseAddr, paSegs[iSeg].cbSegment, paSegs[iSeg].uSegment)); char szName[32]; RTStrPrintf(szName, sizeof(szName), "seg-%#04xh", paSegs[iSeg].uSegment); int rc = RTDbgModSegmentAdd(pThis->hCnt, paSegs[iSeg].uBaseAddr, paSegs[iSeg].cbSegment, szName, 0 /*fFlags*/, NULL); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Loads a DWARF section from the image file. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param enmSect The section to load. */ static int rtDbgModDwarfLoadSection(PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect) { /* * Don't load stuff twice. */ if (pThis->aSections[enmSect].pv) return VINF_SUCCESS; /* * Sections that are not present cannot be loaded, treat them like they * are empty */ if (!pThis->aSections[enmSect].fPresent) { Assert(pThis->aSections[enmSect].cb); return VINF_SUCCESS; } if (!pThis->aSections[enmSect].cb) return VINF_SUCCESS; /* * Sections must be readable with the current image interface. */ if (pThis->aSections[enmSect].offFile < 0) return VERR_OUT_OF_RANGE; /* * Do the job. */ return pThis->pDbgInfoMod->pImgVt->pfnMapPart(pThis->pDbgInfoMod, pThis->aSections[enmSect].iDbgInfo, pThis->aSections[enmSect].offFile, pThis->aSections[enmSect].cb, &pThis->aSections[enmSect].pv); } #ifdef SOME_UNUSED_FUNCTION /** * Unloads a DWARF section previously mapped by rtDbgModDwarfLoadSection. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param enmSect The section to unload. */ static int rtDbgModDwarfUnloadSection(PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect) { if (!pThis->aSections[enmSect].pv) return VINF_SUCCESS; int rc = pThis->pDbgInfoMod->pImgVt->pfnUnmapPart(pThis->pDbgInfoMod, pThis->aSections[enmSect].cb, &pThis->aSections[enmSect].pv); AssertRC(rc); return rc; } #endif /** * Converts to UTF-8 or otherwise makes sure it's valid UTF-8. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param ppsz Pointer to the string pointer. May be * reallocated (RTStr*). */ static int rtDbgModDwarfStringToUtf8(PRTDBGMODDWARF pThis, char **ppsz) { /** @todo DWARF & UTF-8. */ NOREF(pThis); RTStrPurgeEncoding(*ppsz); return VINF_SUCCESS; } /** * Convers a link address into a segment+offset or RVA. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param uSegment The segment, 0 if not applicable. * @param LinkAddress The address to convert.. * @param piSeg The segment index. * @param poffSeg Where to return the segment offset. */ static int rtDbgModDwarfLinkAddressToSegOffset(PRTDBGMODDWARF pThis, RTSEL uSegment, uint64_t LinkAddress, PRTDBGSEGIDX piSeg, PRTLDRADDR poffSeg) { if (pThis->paSegs) { PRTDBGDWARFSEG pSeg = rtDbgModDwarfFindSegment(pThis, uSegment); if (pSeg) { *piSeg = pSeg - pThis->paSegs; *poffSeg = LinkAddress; return VINF_SUCCESS; } } if (pThis->fUseLinkAddress) return pThis->pImgMod->pImgVt->pfnLinkAddressToSegOffset(pThis->pImgMod, LinkAddress, piSeg, poffSeg); /* If we have a non-zero segment number, assume it's correct for now. This helps loading watcom linked LX drivers. */ if (uSegment > 0) { *piSeg = uSegment - 1; *poffSeg = LinkAddress; return VINF_SUCCESS; } return pThis->pImgMod->pImgVt->pfnRvaToSegOffset(pThis->pImgMod, LinkAddress, piSeg, poffSeg); } /** * Converts a segment+offset address into an RVA. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param idxSegment The segment index. * @param offSegment The segment offset. * @param puRva Where to return the calculated RVA. */ static int rtDbgModDwarfSegOffsetToRva(PRTDBGMODDWARF pThis, RTDBGSEGIDX idxSegment, uint64_t offSegment, PRTUINTPTR puRva) { if (pThis->paSegs) { PRTDBGDWARFSEG pSeg = rtDbgModDwarfFindSegment(pThis, idxSegment); if (pSeg) { *puRva = pSeg->uBaseAddr + offSegment; return VINF_SUCCESS; } } RTUINTPTR uRva = RTDbgModSegmentRva(pThis->pImgMod, idxSegment); if (uRva != RTUINTPTR_MAX) { *puRva = uRva + offSegment; return VINF_SUCCESS; } return VERR_INVALID_POINTER; } /** * Converts a segment+offset address into an RVA. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param uRva The RVA to convert. * @param pidxSegment Where to return the segment index. * @param poffSegment Where to return the segment offset. */ static int rtDbgModDwarfRvaToSegOffset(PRTDBGMODDWARF pThis, RTUINTPTR uRva, RTDBGSEGIDX *pidxSegment, uint64_t *poffSegment) { RTUINTPTR offSeg = 0; RTDBGSEGIDX idxSeg = RTDbgModRvaToSegOff(pThis->pImgMod, uRva, &offSeg); if (idxSeg != NIL_RTDBGSEGIDX) { *pidxSegment = idxSeg; *poffSegment = offSeg; return VINF_SUCCESS; } return VERR_INVALID_POINTER; } /* * * DWARF Cursor. * DWARF Cursor. * DWARF Cursor. * */ /** * Reads a 8-bit unsigned integer and advances the cursor. * * @returns 8-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on read error. */ static uint8_t rtDwarfCursor_GetU8(PRTDWARFCURSOR pCursor, uint8_t uErrValue) { if (pCursor->cbUnitLeft < 1) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; return uErrValue; } uint8_t u8 = pCursor->pb[0]; pCursor->pb += 1; pCursor->cbUnitLeft -= 1; pCursor->cbLeft -= 1; return u8; } /** * Reads a 16-bit unsigned integer and advances the cursor. * * @returns 16-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on read error. */ static uint16_t rtDwarfCursor_GetU16(PRTDWARFCURSOR pCursor, uint16_t uErrValue) { if (pCursor->cbUnitLeft < 2) { pCursor->pb += pCursor->cbUnitLeft; pCursor->cbLeft -= pCursor->cbUnitLeft; pCursor->cbUnitLeft = 0; pCursor->rc = VERR_DWARF_UNEXPECTED_END; return uErrValue; } uint16_t u16 = RT_MAKE_U16(pCursor->pb[0], pCursor->pb[1]); pCursor->pb += 2; pCursor->cbUnitLeft -= 2; pCursor->cbLeft -= 2; if (!pCursor->fNativEndian) u16 = RT_BSWAP_U16(u16); return u16; } /** * Reads a 32-bit unsigned integer and advances the cursor. * * @returns 32-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on read error. */ static uint32_t rtDwarfCursor_GetU32(PRTDWARFCURSOR pCursor, uint32_t uErrValue) { if (pCursor->cbUnitLeft < 4) { pCursor->pb += pCursor->cbUnitLeft; pCursor->cbLeft -= pCursor->cbUnitLeft; pCursor->cbUnitLeft = 0; pCursor->rc = VERR_DWARF_UNEXPECTED_END; return uErrValue; } uint32_t u32 = RT_MAKE_U32_FROM_U8(pCursor->pb[0], pCursor->pb[1], pCursor->pb[2], pCursor->pb[3]); pCursor->pb += 4; pCursor->cbUnitLeft -= 4; pCursor->cbLeft -= 4; if (!pCursor->fNativEndian) u32 = RT_BSWAP_U32(u32); return u32; } /** * Reads a 64-bit unsigned integer and advances the cursor. * * @returns 64-bit unsigned integer. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on read error. */ static uint64_t rtDwarfCursor_GetU64(PRTDWARFCURSOR pCursor, uint64_t uErrValue) { if (pCursor->cbUnitLeft < 8) { pCursor->pb += pCursor->cbUnitLeft; pCursor->cbLeft -= pCursor->cbUnitLeft; pCursor->cbUnitLeft = 0; pCursor->rc = VERR_DWARF_UNEXPECTED_END; return uErrValue; } uint64_t u64 = RT_MAKE_U64_FROM_U8(pCursor->pb[0], pCursor->pb[1], pCursor->pb[2], pCursor->pb[3], pCursor->pb[4], pCursor->pb[5], pCursor->pb[6], pCursor->pb[7]); pCursor->pb += 8; pCursor->cbUnitLeft -= 8; pCursor->cbLeft -= 8; if (!pCursor->fNativEndian) u64 = RT_BSWAP_U64(u64); return u64; } /** * Reads an unsigned LEB128 encoded number. * * @returns unsigned 64-bit number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue The value to return on error. */ static uint64_t rtDwarfCursor_GetULeb128(PRTDWARFCURSOR pCursor, uint64_t uErrValue) { if (pCursor->cbUnitLeft < 1) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; return uErrValue; } /* * Special case - single byte. */ uint8_t b = pCursor->pb[0]; if (!(b & 0x80)) { pCursor->pb += 1; pCursor->cbUnitLeft -= 1; pCursor->cbLeft -= 1; return b; } /* * Generic case. */ /* Decode. */ uint32_t off = 1; uint64_t u64Ret = b & 0x7f; do { if (off == pCursor->cbUnitLeft) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; u64Ret = uErrValue; break; } b = pCursor->pb[off]; u64Ret |= (b & 0x7f) << off * 7; off++; } while (b & 0x80); /* Update the cursor. */ pCursor->pb += off; pCursor->cbUnitLeft -= off; pCursor->cbLeft -= off; /* Check the range. */ uint32_t cBits = off * 7; if (cBits > 64) { pCursor->rc = VERR_DWARF_LEB_OVERFLOW; u64Ret = uErrValue; } return u64Ret; } /** * Reads a signed LEB128 encoded number. * * @returns signed 64-bit number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param sErrValue The value to return on error. */ static int64_t rtDwarfCursor_GetSLeb128(PRTDWARFCURSOR pCursor, int64_t sErrValue) { if (pCursor->cbUnitLeft < 1) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; return sErrValue; } /* * Special case - single byte. */ uint8_t b = pCursor->pb[0]; if (!(b & 0x80)) { pCursor->pb += 1; pCursor->cbUnitLeft -= 1; pCursor->cbLeft -= 1; if (b & 0x40) b |= 0x80; return (int8_t)b; } /* * Generic case. */ /* Decode it. */ uint32_t off = 1; uint64_t u64Ret = b & 0x7f; do { if (off == pCursor->cbUnitLeft) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; u64Ret = (uint64_t)sErrValue; break; } b = pCursor->pb[off]; u64Ret |= (b & 0x7f) << off * 7; off++; } while (b & 0x80); /* Update cursor. */ pCursor->pb += off; pCursor->cbUnitLeft -= off; pCursor->cbLeft -= off; /* Check the range. */ uint32_t cBits = off * 7; if (cBits > 64) { pCursor->rc = VERR_DWARF_LEB_OVERFLOW; u64Ret = (uint64_t)sErrValue; } /* Sign extend the value. */ else if (u64Ret & RT_BIT_64(cBits - 1)) u64Ret |= ~(RT_BIT_64(cBits - 1) - 1); return (int64_t)u64Ret; } /** * Reads an unsigned LEB128 encoded number, max 32-bit width. * * @returns unsigned 32-bit number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue The value to return on error. */ static uint32_t rtDwarfCursor_GetULeb128AsU32(PRTDWARFCURSOR pCursor, uint32_t uErrValue) { uint64_t u64 = rtDwarfCursor_GetULeb128(pCursor, uErrValue); if (u64 > UINT32_MAX) { pCursor->rc = VERR_DWARF_LEB_OVERFLOW; return uErrValue; } return (uint32_t)u64; } /** * Reads a signed LEB128 encoded number, max 32-bit width. * * @returns signed 32-bit number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param sErrValue The value to return on error. */ static int32_t rtDwarfCursor_GetSLeb128AsS32(PRTDWARFCURSOR pCursor, int32_t sErrValue) { int64_t s64 = rtDwarfCursor_GetSLeb128(pCursor, sErrValue); if (s64 > INT32_MAX || s64 < INT32_MIN) { pCursor->rc = VERR_DWARF_LEB_OVERFLOW; return sErrValue; } return (int32_t)s64; } /** * Skips a LEB128 encoded number. * * @returns IPRT status code. * @param pCursor The cursor. */ static int rtDwarfCursor_SkipLeb128(PRTDWARFCURSOR pCursor) { if (RT_FAILURE(pCursor->rc)) return pCursor->rc; if (pCursor->cbUnitLeft < 1) return pCursor->rc = VERR_DWARF_UNEXPECTED_END; uint32_t offSkip = 1; if (pCursor->pb[0] & 0x80) do { if (offSkip == pCursor->cbUnitLeft) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; break; } } while (pCursor->pb[offSkip++] & 0x80); pCursor->pb += offSkip; pCursor->cbUnitLeft -= offSkip; pCursor->cbLeft -= offSkip; return pCursor->rc; } /** * Advances the cursor a given number of bytes. * * @returns IPRT status code. * @param pCursor The cursor. * @param offSkip The number of bytes to advance. */ static int rtDwarfCursor_SkipBytes(PRTDWARFCURSOR pCursor, uint64_t offSkip) { if (RT_FAILURE(pCursor->rc)) return pCursor->rc; if (pCursor->cbUnitLeft < offSkip) return pCursor->rc = VERR_DWARF_UNEXPECTED_END; size_t const offSkipSizeT = (size_t)offSkip; pCursor->cbUnitLeft -= offSkipSizeT; pCursor->cbLeft -= offSkipSizeT; pCursor->pb += offSkipSizeT; return VINF_SUCCESS; } /** * Reads a zero terminated string, advancing the cursor beyond the terminator. * * @returns Pointer to the string. * @param pCursor The cursor. * @param pszErrValue What to return if the string isn't terminated * before the end of the unit. */ static const char *rtDwarfCursor_GetSZ(PRTDWARFCURSOR pCursor, const char *pszErrValue) { const char *pszRet = (const char *)pCursor->pb; for (;;) { if (!pCursor->cbUnitLeft) { pCursor->rc = VERR_DWARF_BAD_STRING; return pszErrValue; } pCursor->cbUnitLeft--; pCursor->cbLeft--; if (!*pCursor->pb++) break; } return pszRet; } /** * Reads a 1, 2, 4 or 8 byte unsigned value. * * @returns 64-bit unsigned value. * @param pCursor The cursor. * @param cbValue The value size. * @param uErrValue The error value. */ static uint64_t rtDwarfCursor_GetVarSizedU(PRTDWARFCURSOR pCursor, size_t cbValue, uint64_t uErrValue) { uint64_t u64Ret; switch (cbValue) { case 1: u64Ret = rtDwarfCursor_GetU8( pCursor, UINT8_MAX); break; case 2: u64Ret = rtDwarfCursor_GetU16(pCursor, UINT16_MAX); break; case 4: u64Ret = rtDwarfCursor_GetU32(pCursor, UINT32_MAX); break; case 8: u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX); break; default: pCursor->rc = VERR_DWARF_BAD_INFO; return uErrValue; } if (RT_FAILURE(pCursor->rc)) return uErrValue; return u64Ret; } #if 0 /* unused */ /** * Gets the pointer to a variable size block and advances the cursor. * * @returns Pointer to the block at the current cursor location. On error * RTDWARFCURSOR::rc is set and NULL returned. * @param pCursor The cursor. * @param cbBlock The block size. */ static const uint8_t *rtDwarfCursor_GetBlock(PRTDWARFCURSOR pCursor, uint32_t cbBlock) { if (cbBlock > pCursor->cbUnitLeft) { pCursor->rc = VERR_DWARF_UNEXPECTED_END; return NULL; } uint8_t const *pb = &pCursor->pb[0]; pCursor->pb += cbBlock; pCursor->cbUnitLeft -= cbBlock; pCursor->cbLeft -= cbBlock; return pb; } #endif /** * Reads an unsigned DWARF half number. * * @returns The number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on error. */ static uint16_t rtDwarfCursor_GetUHalf(PRTDWARFCURSOR pCursor, uint16_t uErrValue) { return rtDwarfCursor_GetU16(pCursor, uErrValue); } /** * Reads an unsigned DWARF byte number. * * @returns The number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on error. */ static uint8_t rtDwarfCursor_GetUByte(PRTDWARFCURSOR pCursor, uint8_t uErrValue) { return rtDwarfCursor_GetU8(pCursor, uErrValue); } /** * Reads a signed DWARF byte number. * * @returns The number. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param iErrValue What to return on error. */ static int8_t rtDwarfCursor_GetSByte(PRTDWARFCURSOR pCursor, int8_t iErrValue) { return (int8_t)rtDwarfCursor_GetU8(pCursor, (uint8_t)iErrValue); } /** * Reads a unsigned DWARF offset value. * * @returns The value. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on error. */ static uint64_t rtDwarfCursor_GetUOff(PRTDWARFCURSOR pCursor, uint64_t uErrValue) { if (pCursor->f64bitDwarf) return rtDwarfCursor_GetU64(pCursor, uErrValue); return rtDwarfCursor_GetU32(pCursor, (uint32_t)uErrValue); } /** * Reads a unsigned DWARF native offset value. * * @returns The value. On error RTDWARFCURSOR::rc is set and @a * uErrValue is returned. * @param pCursor The cursor. * @param uErrValue What to return on error. */ static uint64_t rtDwarfCursor_GetNativeUOff(PRTDWARFCURSOR pCursor, uint64_t uErrValue) { switch (pCursor->cbNativeAddr) { case 1: return rtDwarfCursor_GetU8(pCursor, (uint8_t )uErrValue); case 2: return rtDwarfCursor_GetU16(pCursor, (uint16_t)uErrValue); case 4: return rtDwarfCursor_GetU32(pCursor, (uint32_t)uErrValue); case 8: return rtDwarfCursor_GetU64(pCursor, uErrValue); default: pCursor->rc = VERR_INTERNAL_ERROR_2; return uErrValue; } } /** * Reads a 1, 2, 4 or 8 byte unsigned value. * * @returns 64-bit unsigned value. * @param pCursor The cursor. * @param bPtrEnc The pointer encoding. * @param uErrValue The error value. */ static uint64_t rtDwarfCursor_GetPtrEnc(PRTDWARFCURSOR pCursor, uint8_t bPtrEnc, uint64_t uErrValue) { uint64_t u64Ret; switch (bPtrEnc & DW_EH_PE_FORMAT_MASK) { case DW_EH_PE_ptr: u64Ret = rtDwarfCursor_GetNativeUOff(pCursor, uErrValue); break; case DW_EH_PE_uleb128: u64Ret = rtDwarfCursor_GetULeb128(pCursor, uErrValue); break; case DW_EH_PE_udata2: u64Ret = rtDwarfCursor_GetU16(pCursor, UINT16_MAX); break; case DW_EH_PE_udata4: u64Ret = rtDwarfCursor_GetU32(pCursor, UINT32_MAX); break; case DW_EH_PE_udata8: u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX); break; case DW_EH_PE_sleb128: u64Ret = rtDwarfCursor_GetSLeb128(pCursor, uErrValue); break; case DW_EH_PE_sdata2: u64Ret = (int64_t)(int16_t)rtDwarfCursor_GetU16(pCursor, UINT16_MAX); break; case DW_EH_PE_sdata4: u64Ret = (int64_t)(int32_t)rtDwarfCursor_GetU32(pCursor, UINT32_MAX); break; case DW_EH_PE_sdata8: u64Ret = rtDwarfCursor_GetU64(pCursor, UINT64_MAX); break; default: pCursor->rc = VERR_DWARF_BAD_INFO; return uErrValue; } if (RT_FAILURE(pCursor->rc)) return uErrValue; return u64Ret; } /** * Gets the unit length, updating the unit length member and DWARF bitness * members of the cursor. * * @returns The unit length. * @param pCursor The cursor. */ static uint64_t rtDwarfCursor_GetInitialLength(PRTDWARFCURSOR pCursor) { /* * Read the initial length. */ pCursor->cbUnitLeft = pCursor->cbLeft; uint64_t cbUnit = rtDwarfCursor_GetU32(pCursor, 0); if (cbUnit != UINT32_C(0xffffffff)) pCursor->f64bitDwarf = false; else { pCursor->f64bitDwarf = true; cbUnit = rtDwarfCursor_GetU64(pCursor, 0); } /* * Set the unit length, quitely fixing bad lengths. */ pCursor->cbUnitLeft = (size_t)cbUnit; if ( pCursor->cbUnitLeft > pCursor->cbLeft || pCursor->cbUnitLeft != cbUnit) pCursor->cbUnitLeft = pCursor->cbLeft; return cbUnit; } /** * Calculates the section offset corresponding to the current cursor position. * * @returns 32-bit section offset. If out of range, RTDWARFCURSOR::rc will be * set and UINT32_MAX returned. * @param pCursor The cursor. */ static uint32_t rtDwarfCursor_CalcSectOffsetU32(PRTDWARFCURSOR pCursor) { size_t off = pCursor->pb - pCursor->pbStart; uint32_t offRet = (uint32_t)off; if (offRet != off) { AssertFailed(); pCursor->rc = VERR_OUT_OF_RANGE; offRet = UINT32_MAX; } return offRet; } /** * Calculates an absolute cursor position from one relative to the current * cursor position. * * @returns The absolute cursor position. * @param pCursor The cursor. * @param offRelative The relative position. Must be a positive * offset. */ static uint8_t const *rtDwarfCursor_CalcPos(PRTDWARFCURSOR pCursor, size_t offRelative) { if (offRelative > pCursor->cbUnitLeft) { Log(("rtDwarfCursor_CalcPos: bad position %#zx, cbUnitLeft=%#zu\n", offRelative, pCursor->cbUnitLeft)); pCursor->rc = VERR_DWARF_BAD_POS; return NULL; } return pCursor->pb + offRelative; } /** * Advances the cursor to the given position. * * @returns IPRT status code. * @param pCursor The cursor. * @param pbNewPos The new position - returned by * rtDwarfCursor_CalcPos(). */ static int rtDwarfCursor_AdvanceToPos(PRTDWARFCURSOR pCursor, uint8_t const *pbNewPos) { if (RT_FAILURE(pCursor->rc)) return pCursor->rc; AssertPtr(pbNewPos); if ((uintptr_t)pbNewPos < (uintptr_t)pCursor->pb) { Log(("rtDwarfCursor_AdvanceToPos: bad position %p, current %p\n", pbNewPos, pCursor->pb)); return pCursor->rc = VERR_DWARF_BAD_POS; } uintptr_t cbAdj = (uintptr_t)pbNewPos - (uintptr_t)pCursor->pb; if (RT_UNLIKELY(cbAdj > pCursor->cbUnitLeft)) { AssertFailed(); pCursor->rc = VERR_DWARF_BAD_POS; cbAdj = pCursor->cbUnitLeft; } pCursor->cbUnitLeft -= cbAdj; pCursor->cbLeft -= cbAdj; pCursor->pb += cbAdj; return pCursor->rc; } /** * Check if the cursor is at the end of the current DWARF unit. * * @retval true if at the end or a cursor error is pending. * @retval false if not. * @param pCursor The cursor. */ static bool rtDwarfCursor_IsAtEndOfUnit(PRTDWARFCURSOR pCursor) { return !pCursor->cbUnitLeft || RT_FAILURE(pCursor->rc); } /** * Skips to the end of the current unit. * * @returns IPRT status code. * @param pCursor The cursor. */ static int rtDwarfCursor_SkipUnit(PRTDWARFCURSOR pCursor) { pCursor->pb += pCursor->cbUnitLeft; pCursor->cbLeft -= pCursor->cbUnitLeft; pCursor->cbUnitLeft = 0; return pCursor->rc; } /** * Check if the cursor is at the end of the section (or whatever the cursor is * processing). * * @retval true if at the end or a cursor error is pending. * @retval false if not. * @param pCursor The cursor. */ static bool rtDwarfCursor_IsAtEnd(PRTDWARFCURSOR pCursor) { return !pCursor->cbLeft || RT_FAILURE(pCursor->rc); } /** * Initialize a section reader cursor. * * @returns IPRT status code. * @param pCursor The cursor. * @param pThis The dwarf module. * @param enmSect The name of the section to read. */ static int rtDwarfCursor_Init(PRTDWARFCURSOR pCursor, PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect) { int rc = rtDbgModDwarfLoadSection(pThis, enmSect); if (RT_FAILURE(rc)) return rc; pCursor->enmSect = enmSect; pCursor->pbStart = (uint8_t const *)pThis->aSections[enmSect].pv; pCursor->pb = pCursor->pbStart; pCursor->cbLeft = pThis->aSections[enmSect].cb; pCursor->cbUnitLeft = pCursor->cbLeft; pCursor->pDwarfMod = pThis; pCursor->f64bitDwarf = false; /** @todo ask the image about the endian used as well as the address * width. */ pCursor->fNativEndian = true; pCursor->cbNativeAddr = 4; pCursor->rc = VINF_SUCCESS; return VINF_SUCCESS; } /** * Initialize a section reader cursor with a skip offset. * * @returns IPRT status code. * @param pCursor The cursor. * @param pThis The dwarf module. * @param enmSect The name of the section to read. * @param offSect The offset to skip into the section. */ static int rtDwarfCursor_InitWithOffset(PRTDWARFCURSOR pCursor, PRTDBGMODDWARF pThis, krtDbgModDwarfSect enmSect, uint32_t offSect) { if (offSect > pThis->aSections[enmSect].cb) { Log(("rtDwarfCursor_InitWithOffset: offSect=%#x cb=%#x enmSect=%d\n", offSect, pThis->aSections[enmSect].cb, enmSect)); return VERR_DWARF_BAD_POS; } int rc = rtDwarfCursor_Init(pCursor, pThis, enmSect); if (RT_SUCCESS(rc)) { /* pCursor->pbStart += offSect; - we're skipping, offsets are relative to start of section... */ pCursor->pb += offSect; pCursor->cbLeft -= offSect; pCursor->cbUnitLeft -= offSect; } return rc; } /** * Initialize a cursor for a block (subsection) retrieved from the given cursor. * * The parent cursor will be advanced past the block. * * @returns IPRT status code. * @param pCursor The cursor. * @param pParent The parent cursor. Will be moved by @a cbBlock. * @param cbBlock The size of the block the new cursor should * cover. */ static int rtDwarfCursor_InitForBlock(PRTDWARFCURSOR pCursor, PRTDWARFCURSOR pParent, uint32_t cbBlock) { if (RT_FAILURE(pParent->rc)) return pParent->rc; if (pParent->cbUnitLeft < cbBlock) { Log(("rtDwarfCursor_InitForBlock: cbUnitLeft=%#x < cbBlock=%#x \n", pParent->cbUnitLeft, cbBlock)); return VERR_DWARF_BAD_POS; } *pCursor = *pParent; pCursor->cbLeft = cbBlock; pCursor->cbUnitLeft = cbBlock; pParent->pb += cbBlock; pParent->cbLeft -= cbBlock; pParent->cbUnitLeft -= cbBlock; return VINF_SUCCESS; } /** * Initialize a reader cursor for a memory block (eh_frame). * * @returns IPRT status code. * @param pCursor The cursor. * @param pvMem The memory block. * @param cbMem The size of the memory block. */ static int rtDwarfCursor_InitForMem(PRTDWARFCURSOR pCursor, void const *pvMem, size_t cbMem) { pCursor->enmSect = krtDbgModDwarfSect_End; pCursor->pbStart = (uint8_t const *)pvMem; pCursor->pb = (uint8_t const *)pvMem; pCursor->cbLeft = cbMem; pCursor->cbUnitLeft = cbMem; pCursor->pDwarfMod = NULL; pCursor->f64bitDwarf = false; /** @todo ask the image about the endian used as well as the address * width. */ pCursor->fNativEndian = true; pCursor->cbNativeAddr = 4; pCursor->rc = VINF_SUCCESS; return VINF_SUCCESS; } /** * Deletes a section reader initialized by rtDwarfCursor_Init. * * @returns @a rcOther or RTDWARCURSOR::rc. * @param pCursor The section reader. * @param rcOther Other error code to be returned if it indicates * error or if the cursor status is OK. */ static int rtDwarfCursor_Delete(PRTDWARFCURSOR pCursor, int rcOther) { /* ... and a drop of poison. */ pCursor->pb = NULL; pCursor->cbLeft = ~(size_t)0; pCursor->cbUnitLeft = ~(size_t)0; pCursor->pDwarfMod = NULL; if (RT_FAILURE(pCursor->rc) && RT_SUCCESS(rcOther)) rcOther = pCursor->rc; pCursor->rc = VERR_INTERNAL_ERROR_4; return rcOther; } /* * * DWARF Frame Unwind Information. * DWARF Frame Unwind Information. * DWARF Frame Unwind Information. * */ /** * Common information entry (CIE) information. */ typedef struct RTDWARFCIEINFO { /** The segment location of the CIE. */ uint64_t offCie; /** The DWARF version. */ uint8_t uDwarfVer; /** The address pointer encoding. */ uint8_t bAddressPtrEnc; /** The segment size (v4). */ uint8_t cbSegment; /** The return register column. UINT8_MAX if default register. */ uint8_t bRetReg; /** The LSDA pointer encoding. */ uint8_t bLsdaPtrEnc; /** Set if the EH data field is present ('eh'). */ bool fHasEhData : 1; /** Set if there is an augmentation data size ('z'). */ bool fHasAugmentationSize : 1; /** Set if the augmentation data contains a LSDA (pointer size byte in CIE, * pointer in FDA) ('L'). */ bool fHasLanguageSpecificDataArea : 1; /** Set if the augmentation data contains a personality routine * (pointer size + pointer) ('P'). */ bool fHasPersonalityRoutine : 1; /** Set if the augmentation data contains the address encoding . */ bool fHasAddressEnc : 1; /** Set if signal frame. */ bool fIsSignalFrame : 1; /** Set if we've encountered unknown augmentation data. This * means the CIE is incomplete and cannot be used. */ bool fHasUnknowAugmentation : 1; /** Copy of the augmentation string. */ const char *pszAugmentation; /** Code alignment factor for the instruction. */ uint64_t uCodeAlignFactor; /** Data alignment factor for the instructions. */ int64_t iDataAlignFactor; /** Pointer to the instruction sequence. */ uint8_t const *pbInstructions; /** The length of the instruction sequence. */ size_t cbInstructions; } RTDWARFCIEINFO; /** Pointer to CIE info. */ typedef RTDWARFCIEINFO *PRTDWARFCIEINFO; /** Pointer to const CIE info. */ typedef RTDWARFCIEINFO const *PCRTDWARFCIEINFO; /** Number of registers we care about. * @note We're currently not expecting to be decoding ppc, arm, ia64 or such, * only x86 and x86_64. We can easily increase the column count. */ #define RTDWARFCF_MAX_REGISTERS 96 /** * Call frame state row. */ typedef struct RTDWARFCFROW { /** Stack worked by DW_CFA_remember_state and DW_CFA_restore_state. */ struct RTDWARFCFROW *pNextOnStack; /** @name CFA - Canonical frame address expression. * Since there are partial CFA instructions, we cannot be lazy like with the * register but keep register+offset around. For DW_CFA_def_cfa_expression * we just take down the program location, though. * @{ */ /** Pointer to DW_CFA_def_cfa_expression instruction, NULL if reg+offset. */ uint8_t const *pbCfaExprInstr; /** The CFA register offset. */ int64_t offCfaReg; /** The CFA base register number. */ uint16_t uCfaBaseReg; /** Set if we've got a valid CFA definition. */ bool fCfaDefined : 1; /** @} */ /** Set if on the heap and needs freeing. */ bool fOnHeap : 1; /** Pointer to the instructions bytes defining registers. * NULL means */ uint8_t const *apbRegInstrs[RTDWARFCF_MAX_REGISTERS]; } RTDWARFCFROW; typedef RTDWARFCFROW *PRTDWARFCFROW; typedef RTDWARFCFROW const *PCRTDWARFCFROW; /** Row program execution state. */ typedef struct RTDWARFCFEXEC { PRTDWARFCFROW pRow; /** Number of PC bytes left to advance before we get a hit. */ uint64_t cbLeftToAdvance; /** Number of pushed rows. */ uint32_t cPushes; /** Set if little endian, clear if big endian. */ bool fLittleEndian; /** The CIE. */ PCRTDWARFCIEINFO pCie; /** The program counter value for the FDE. Subjected to segment. * Needed for DW_CFA_set_loc. */ uint64_t uPcBegin; /** The offset relative to uPcBegin for which we're searching for a row. * Needed for DW_CFA_set_loc. */ uint64_t offInRange; } RTDWARFCFEXEC; typedef RTDWARFCFEXEC *PRTDWARFCFEXEC; /* Set of macros for getting and skipping operands. */ #define SKIP_ULEB128_OR_LEB128() \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ } while (pbInstr[offInstr++] & 0x80) #define GET_ULEB128_AS_U14(a_uDst) \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ uint8_t b = pbInstr[offInstr++]; \ (a_uDst) = b & 0x7f; \ if (b & 0x80) \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ b = pbInstr[offInstr++]; \ AssertReturn(!(b & 0x80), VERR_DBG_MALFORMED_UNWIND_INFO); \ (a_uDst) |= (uint16_t)b << 7; \ } \ } while (0) #define GET_ULEB128_AS_U63(a_uDst) \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ uint8_t b = pbInstr[offInstr++]; \ (a_uDst) = b & 0x7f; \ if (b & 0x80) \ { \ unsigned cShift = 7; \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ AssertReturn(cShift < 63, VERR_DWARF_LEB_OVERFLOW); \ b = pbInstr[offInstr++]; \ (a_uDst) |= (uint16_t)(b & 0x7f) << cShift; \ cShift += 7; \ } while (b & 0x80); \ } \ } while (0) #define GET_LEB128_AS_I63(a_uDst) \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ uint8_t b = pbInstr[offInstr++]; \ if (!(b & 0x80)) \ (a_uDst) = !(b & 0x40) ? b : (int64_t)(int8_t)(b | 0x80); \ else \ { \ /* Read value into unsigned variable: */ \ unsigned cShift = 7; \ uint64_t uTmp = b & 0x7f; \ do \ { \ AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ AssertReturn(cShift < 63, VERR_DWARF_LEB_OVERFLOW); \ b = pbInstr[offInstr++]; \ uTmp |= (uint16_t)(b & 0x7f) << cShift; \ cShift += 7; \ } while (b & 0x80); \ /* Sign extend before setting the destination value: */ \ cShift -= 7 + 1; \ if (uTmp & RT_BIT_64(cShift)) \ uTmp |= ~(RT_BIT_64(cShift) - 1); \ (a_uDst) = (int64_t)uTmp; \ } \ } while (0) #define SKIP_BLOCK() \ do \ { \ uint16_t cbBlock; \ GET_ULEB128_AS_U14(cbBlock); \ AssertReturn(offInstr + cbBlock <= cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); \ offInstr += cbBlock; \ } while (0) static int rtDwarfUnwind_Execute(PRTDWARFCFEXEC pExecState, uint8_t const *pbInstr, uint32_t cbInstr) { PRTDWARFCFROW pRow = pExecState->pRow; for (uint32_t offInstr = 0; offInstr < cbInstr;) { /* * Instruction switches. */ uint8_t const bInstr = pbInstr[offInstr++]; switch (bInstr & DW_CFA_high_bit_mask) { case DW_CFA_advance_loc: { uint8_t const cbAdvance = bInstr & ~DW_CFA_high_bit_mask; if (cbAdvance > pExecState->cbLeftToAdvance) return VINF_SUCCESS; pExecState->cbLeftToAdvance -= cbAdvance; break; } case DW_CFA_offset: { uint8_t iReg = bInstr & ~DW_CFA_high_bit_mask; if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = &pbInstr[offInstr - 1]; SKIP_ULEB128_OR_LEB128(); break; } case 0: switch (bInstr) { case DW_CFA_nop: break; /* * Register instructions. */ case DW_CFA_register: case DW_CFA_offset_extended: case DW_CFA_offset_extended_sf: case DW_CFA_val_offset: case DW_CFA_val_offset_sf: { uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1]; uint16_t iReg; GET_ULEB128_AS_U14(iReg); if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = pbCurInstr; SKIP_ULEB128_OR_LEB128(); break; } case DW_CFA_expression: case DW_CFA_val_expression: { uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1]; uint16_t iReg; GET_ULEB128_AS_U14(iReg); if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = pbCurInstr; SKIP_BLOCK(); break; } case DW_CFA_restore_extended: { uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1]; uint16_t iReg; GET_ULEB128_AS_U14(iReg); if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = pbCurInstr; break; } case DW_CFA_undefined: { uint16_t iReg; GET_ULEB128_AS_U14(iReg); if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = NULL; break; } case DW_CFA_same_value: { uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1]; uint16_t iReg; GET_ULEB128_AS_U14(iReg); if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = pbCurInstr; break; } /* * CFA instructions. */ case DW_CFA_def_cfa: { GET_ULEB128_AS_U14(pRow->uCfaBaseReg); uint64_t offCfaReg; GET_ULEB128_AS_U63(offCfaReg); pRow->offCfaReg = offCfaReg; pRow->pbCfaExprInstr = NULL; pRow->fCfaDefined = true; break; } case DW_CFA_def_cfa_register: { GET_ULEB128_AS_U14(pRow->uCfaBaseReg); pRow->pbCfaExprInstr = NULL; pRow->fCfaDefined = true; /* Leaves offCfaReg as is. */ break; } case DW_CFA_def_cfa_offset: { uint64_t offCfaReg; GET_ULEB128_AS_U63(offCfaReg); pRow->offCfaReg = offCfaReg; pRow->pbCfaExprInstr = NULL; pRow->fCfaDefined = true; /* Leaves uCfaBaseReg as is. */ break; } case DW_CFA_def_cfa_sf: GET_ULEB128_AS_U14(pRow->uCfaBaseReg); GET_LEB128_AS_I63(pRow->offCfaReg); pRow->pbCfaExprInstr = NULL; pRow->fCfaDefined = true; break; case DW_CFA_def_cfa_offset_sf: GET_LEB128_AS_I63(pRow->offCfaReg); pRow->pbCfaExprInstr = NULL; pRow->fCfaDefined = true; /* Leaves uCfaBaseReg as is. */ break; case DW_CFA_def_cfa_expression: pRow->pbCfaExprInstr = &pbInstr[offInstr - 1]; pRow->fCfaDefined = true; SKIP_BLOCK(); break; /* * Less likely instructions: */ case DW_CFA_advance_loc1: { AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); uint8_t const cbAdvance = pbInstr[offInstr++]; if (cbAdvance > pExecState->cbLeftToAdvance) return VINF_SUCCESS; pExecState->cbLeftToAdvance -= cbAdvance; break; } case DW_CFA_advance_loc2: { AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); uint16_t const cbAdvance = pExecState->fLittleEndian ? RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1]) : RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]); if (cbAdvance > pExecState->cbLeftToAdvance) return VINF_SUCCESS; pExecState->cbLeftToAdvance -= cbAdvance; offInstr += 2; break; } case DW_CFA_advance_loc4: { AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); uint32_t const cbAdvance = pExecState->fLittleEndian ? RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1], pbInstr[offInstr + 2], pbInstr[offInstr + 3]) : RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2], pbInstr[offInstr + 1], pbInstr[offInstr + 0]); if (cbAdvance > pExecState->cbLeftToAdvance) return VINF_SUCCESS; pExecState->cbLeftToAdvance -= cbAdvance; offInstr += 4; break; } /* * This bugger is really annoying and probably never used. */ case DW_CFA_set_loc: { /* Ignore the segment number. */ if (pExecState->pCie->cbSegment) { offInstr += pExecState->pCie->cbSegment; AssertReturn(offInstr < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); } /* Retrieve the address. sigh. */ uint64_t uAddress; switch (pExecState->pCie->bAddressPtrEnc & (DW_EH_PE_FORMAT_MASK | DW_EH_PE_indirect)) { case DW_EH_PE_udata2: AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); if (pExecState->fLittleEndian) uAddress = RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1]); else uAddress = RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]); offInstr += 2; break; case DW_EH_PE_sdata2: AssertReturn(offInstr + 1 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); if (pExecState->fLittleEndian) uAddress = (int64_t)(int16_t)RT_MAKE_U16(pbInstr[offInstr], pbInstr[offInstr + 1]); else uAddress = (int64_t)(int16_t)RT_MAKE_U16(pbInstr[offInstr + 1], pbInstr[offInstr]); offInstr += 2; break; case DW_EH_PE_udata4: AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); if (pExecState->fLittleEndian) uAddress = RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1], pbInstr[offInstr + 2], pbInstr[offInstr + 3]); else uAddress = RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2], pbInstr[offInstr + 1], pbInstr[offInstr + 0]); offInstr += 4; break; case DW_EH_PE_sdata4: AssertReturn(offInstr + 3 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); if (pExecState->fLittleEndian) uAddress = (int64_t)(int32_t)RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1], pbInstr[offInstr + 2], pbInstr[offInstr + 3]); else uAddress = (int64_t)(int32_t)RT_MAKE_U32_FROM_U8(pbInstr[offInstr + 3], pbInstr[offInstr + 2], pbInstr[offInstr + 1], pbInstr[offInstr + 0]); offInstr += 4; break; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: AssertReturn(offInstr + 7 < cbInstr, VERR_DBG_MALFORMED_UNWIND_INFO); if (pExecState->fLittleEndian) uAddress = RT_MAKE_U64_FROM_U8(pbInstr[offInstr + 0], pbInstr[offInstr + 1], pbInstr[offInstr + 2], pbInstr[offInstr + 3], pbInstr[offInstr + 4], pbInstr[offInstr + 5], pbInstr[offInstr + 6], pbInstr[offInstr + 7]); else uAddress = RT_MAKE_U64_FROM_U8(pbInstr[offInstr + 7], pbInstr[offInstr + 6], pbInstr[offInstr + 5], pbInstr[offInstr + 4], pbInstr[offInstr + 3], pbInstr[offInstr + 2], pbInstr[offInstr + 1], pbInstr[offInstr + 0]); offInstr += 8; break; case DW_EH_PE_sleb128: case DW_EH_PE_uleb128: default: AssertMsgFailedReturn(("%#x\n", pExecState->pCie->bAddressPtrEnc), VERR_DWARF_TODO); } AssertReturn(uAddress >= pExecState->uPcBegin, VERR_DBG_MALFORMED_UNWIND_INFO); /* Did we advance past the desire address already? */ if (uAddress > pExecState->uPcBegin + pExecState->offInRange) return VINF_SUCCESS; pExecState->cbLeftToAdvance = pExecState->uPcBegin + pExecState->offInRange - uAddress; break; /* * Row state push/pop instructions. */ case DW_CFA_remember_state: { AssertReturn(pExecState->cPushes < 10, VERR_DBG_MALFORMED_UNWIND_INFO); PRTDWARFCFROW pNewRow = (PRTDWARFCFROW)RTMemTmpAlloc(sizeof(*pNewRow)); AssertReturn(pNewRow, VERR_NO_TMP_MEMORY); memcpy(pNewRow, pRow, sizeof(*pNewRow)); pNewRow->pNextOnStack = pRow; pNewRow->fOnHeap = true; pExecState->pRow = pNewRow; pExecState->cPushes += 1; pRow = pNewRow; break; } case DW_CFA_restore_state: AssertReturn(pRow->pNextOnStack, VERR_DBG_MALFORMED_UNWIND_INFO); Assert(pRow->fOnHeap); Assert(pExecState->cPushes > 0); pExecState->cPushes -= 1; pExecState->pRow = pRow->pNextOnStack; RTMemTmpFree(pRow); pRow = pExecState->pRow; break; } } break; case DW_CFA_restore: { uint8_t const * const pbCurInstr = &pbInstr[offInstr - 1]; uint8_t const iReg = bInstr & ~DW_CFA_high_bit_mask; if (iReg < RT_ELEMENTS(pRow->apbRegInstrs)) pRow->apbRegInstrs[iReg] = pbCurInstr; break; } } } return VINF_TRY_AGAIN; } /** * Register getter for AMD64. * * @returns true if found, false if not. * @param pState The unwind state to get the register from. * @param iReg The dwarf register number. * @param puValue Where to store the register value. */ static bool rtDwarfUnwind_Amd64GetRegFromState(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue) { switch (iReg) { case DWREG_AMD64_RAX: *puValue = pState->u.x86.auRegs[X86_GREG_xAX]; return true; case DWREG_AMD64_RDX: *puValue = pState->u.x86.auRegs[X86_GREG_xDX]; return true; case DWREG_AMD64_RCX: *puValue = pState->u.x86.auRegs[X86_GREG_xCX]; return true; case DWREG_AMD64_RBX: *puValue = pState->u.x86.auRegs[X86_GREG_xBX]; return true; case DWREG_AMD64_RSI: *puValue = pState->u.x86.auRegs[X86_GREG_xSI]; return true; case DWREG_AMD64_RDI: *puValue = pState->u.x86.auRegs[X86_GREG_xDI]; return true; case DWREG_AMD64_RBP: *puValue = pState->u.x86.auRegs[X86_GREG_xBP]; return true; case DWREG_AMD64_RSP: *puValue = pState->u.x86.auRegs[X86_GREG_xSP]; return true; case DWREG_AMD64_R8: *puValue = pState->u.x86.auRegs[X86_GREG_x8]; return true; case DWREG_AMD64_R9: *puValue = pState->u.x86.auRegs[X86_GREG_x9]; return true; case DWREG_AMD64_R10: *puValue = pState->u.x86.auRegs[X86_GREG_x10]; return true; case DWREG_AMD64_R11: *puValue = pState->u.x86.auRegs[X86_GREG_x11]; return true; case DWREG_AMD64_R12: *puValue = pState->u.x86.auRegs[X86_GREG_x12]; return true; case DWREG_AMD64_R13: *puValue = pState->u.x86.auRegs[X86_GREG_x13]; return true; case DWREG_AMD64_R14: *puValue = pState->u.x86.auRegs[X86_GREG_x14]; return true; case DWREG_AMD64_R15: *puValue = pState->u.x86.auRegs[X86_GREG_x15]; return true; case DWREG_AMD64_RFLAGS: *puValue = pState->u.x86.uRFlags; return true; case DWREG_AMD64_ES: *puValue = pState->u.x86.auSegs[X86_SREG_ES]; return true; case DWREG_AMD64_CS: *puValue = pState->u.x86.auSegs[X86_SREG_CS]; return true; case DWREG_AMD64_SS: *puValue = pState->u.x86.auSegs[X86_SREG_SS]; return true; case DWREG_AMD64_DS: *puValue = pState->u.x86.auSegs[X86_SREG_DS]; return true; case DWREG_AMD64_FS: *puValue = pState->u.x86.auSegs[X86_SREG_FS]; return true; case DWREG_AMD64_GS: *puValue = pState->u.x86.auSegs[X86_SREG_GS]; return true; } return false; } /** * Register getter for 386+. * * @returns true if found, false if not. * @param pState The unwind state to get the register from. * @param iReg The dwarf register number. * @param puValue Where to store the register value. */ static bool rtDwarfUnwind_X86GetRegFromState(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue) { switch (iReg) { case DWREG_X86_EAX: *puValue = pState->u.x86.auRegs[X86_GREG_xAX]; return true; case DWREG_X86_ECX: *puValue = pState->u.x86.auRegs[X86_GREG_xCX]; return true; case DWREG_X86_EDX: *puValue = pState->u.x86.auRegs[X86_GREG_xDX]; return true; case DWREG_X86_EBX: *puValue = pState->u.x86.auRegs[X86_GREG_xBX]; return true; case DWREG_X86_ESP: *puValue = pState->u.x86.auRegs[X86_GREG_xSP]; return true; case DWREG_X86_EBP: *puValue = pState->u.x86.auRegs[X86_GREG_xBP]; return true; case DWREG_X86_ESI: *puValue = pState->u.x86.auRegs[X86_GREG_xSI]; return true; case DWREG_X86_EDI: *puValue = pState->u.x86.auRegs[X86_GREG_xDI]; return true; case DWREG_X86_EFLAGS: *puValue = pState->u.x86.uRFlags; return true; case DWREG_X86_ES: *puValue = pState->u.x86.auSegs[X86_SREG_ES]; return true; case DWREG_X86_CS: *puValue = pState->u.x86.auSegs[X86_SREG_CS]; return true; case DWREG_X86_SS: *puValue = pState->u.x86.auSegs[X86_SREG_SS]; return true; case DWREG_X86_DS: *puValue = pState->u.x86.auSegs[X86_SREG_DS]; return true; case DWREG_X86_FS: *puValue = pState->u.x86.auSegs[X86_SREG_FS]; return true; case DWREG_X86_GS: *puValue = pState->u.x86.auSegs[X86_SREG_GS]; return true; } return false; } /** Register getter. */ typedef bool FNDWARFUNWINDGEREGFROMSTATE(PCRTDBGUNWINDSTATE pState, uint16_t iReg, uint64_t *puValue); /** Pointer to a register getter. */ typedef FNDWARFUNWINDGEREGFROMSTATE *PFNDWARFUNWINDGEREGFROMSTATE; /** * Does the heavy work for figuring out the return value of a register. * * @returns IPRT status code. * @retval VERR_NOT_FOUND if register is undefined. * * @param pRow The DWARF unwind table "row" to use. * @param uReg The DWARF register number. * @param pCie The corresponding CIE. * @param uCfa The canonical frame address to use. * @param pState The unwind to use when reading stack. * @param pOldState The unwind state to get register values from. * @param pfnGetReg The register value getter. * @param puValue Where to store the return value. * @param cbValue The size this register would have on the stack. */ static int rtDwarfUnwind_CalcRegisterValue(PRTDWARFCFROW pRow, unsigned uReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa, PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint64_t *puValue, uint8_t cbValue) { Assert(uReg < RT_ELEMENTS(pRow->apbRegInstrs)); uint8_t const *pbInstr = pRow->apbRegInstrs[uReg]; if (!pbInstr) return VERR_NOT_FOUND; uint32_t cbInstr = UINT32_MAX / 2; uint32_t offInstr = 1; uint8_t const bInstr = *pbInstr; switch (bInstr) { default: if ((bInstr & DW_CFA_high_bit_mask) == DW_CFA_offset) { uint64_t offCfa; GET_ULEB128_AS_U63(offCfa); int rc = pState->pfnReadStack(pState, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, cbValue, puValue); Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset %#RX64: %Rrc, %#RX64\n", uReg, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, rc, *puValue)); return rc; } AssertReturn((bInstr & DW_CFA_high_bit_mask) == DW_CFA_restore, VERR_INTERNAL_ERROR); RT_FALL_THRU(); case DW_CFA_restore_extended: /* Need to search the CIE for the rule. */ Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_restore/extended:\n", uReg)); AssertFailedReturn(VERR_DWARF_TODO); case DW_CFA_offset_extended: { SKIP_ULEB128_OR_LEB128(); uint64_t offCfa; GET_ULEB128_AS_U63(offCfa); int rc = pState->pfnReadStack(pState, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, cbValue, puValue); Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset_extended %#RX64: %Rrc, %#RX64\n", uReg, uCfa + (int64_t)offCfa * pCie->iDataAlignFactor, rc, *puValue)); return rc; } case DW_CFA_offset_extended_sf: { SKIP_ULEB128_OR_LEB128(); int64_t offCfa; GET_LEB128_AS_I63(offCfa); int rc = pState->pfnReadStack(pState, uCfa + offCfa * pCie->iDataAlignFactor, cbValue, puValue); Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_offset_extended_sf %#RX64: %Rrc, %#RX64\n", uReg, uCfa + offCfa * pCie->iDataAlignFactor, rc, *puValue)); return rc; } case DW_CFA_val_offset: { SKIP_ULEB128_OR_LEB128(); uint64_t offCfa; GET_ULEB128_AS_U63(offCfa); *puValue = uCfa + (int64_t)offCfa * pCie->iDataAlignFactor; Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_offset: %#RX64\n", uReg, *puValue)); return VINF_SUCCESS; } case DW_CFA_val_offset_sf: { SKIP_ULEB128_OR_LEB128(); int64_t offCfa; GET_LEB128_AS_I63(offCfa); *puValue = uCfa + offCfa * pCie->iDataAlignFactor; Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_offset_sf: %#RX64\n", uReg, *puValue)); return VINF_SUCCESS; } case DW_CFA_register: { SKIP_ULEB128_OR_LEB128(); uint16_t iSrcReg; GET_ULEB128_AS_U14(iSrcReg); if (pfnGetReg(pOldState, uReg, puValue)) { Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_register: %#RX64\n", uReg, *puValue)); return VINF_SUCCESS; } Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_register: VERR_NOT_FOUND\n", uReg)); return VERR_NOT_FOUND; } case DW_CFA_expression: Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_expression: TODO\n", uReg)); AssertFailedReturn(VERR_DWARF_TODO); case DW_CFA_val_expression: Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_val_expression: TODO\n", uReg)); AssertFailedReturn(VERR_DWARF_TODO); case DW_CFA_undefined: Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_undefined\n", uReg)); return VERR_NOT_FOUND; case DW_CFA_same_value: if (pfnGetReg(pOldState, uReg, puValue)) { Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_same_value: %#RX64\n", uReg, *puValue)); return VINF_SUCCESS; } Log8(("rtDwarfUnwind_CalcRegisterValue(%#x): DW_CFA_same_value: VERR_NOT_FOUND\n", uReg)); return VERR_NOT_FOUND; } } DECLINLINE(void) rtDwarfUnwind_UpdateX86GRegFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, unsigned idxGReg, PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint8_t cbGReg) { int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &pState->u.x86.auRegs[idxGReg], cbGReg); if (RT_SUCCESS(rc)) pState->u.x86.Loaded.s.fRegs |= RT_BIT_32(idxGReg); } DECLINLINE(void) rtDwarfUnwind_UpdateX86SRegFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, unsigned idxSReg, PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg) { uint64_t uValue = pState->u.x86.auSegs[idxSReg]; int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &uValue, sizeof(uint16_t)); if (RT_SUCCESS(rc)) { pState->u.x86.auSegs[idxSReg] = (uint16_t)uValue; pState->u.x86.Loaded.s.fSegs |= RT_BIT_32(idxSReg); } } DECLINLINE(void) rtDwarfUnwind_UpdateX86RFlagsFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg) { int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &pState->u.x86.uRFlags, sizeof(uint32_t)); if (RT_SUCCESS(rc)) pState->u.x86.Loaded.s.fRFlags = 1; } DECLINLINE(void) rtDwarfUnwind_UpdatePCFromRow(PRTDBGUNWINDSTATE pState, PCRTDBGUNWINDSTATE pOldState, PRTDWARFCFROW pRow, unsigned idxDwReg, PCRTDWARFCIEINFO pCie, uint64_t uCfa, PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg, uint8_t cbPc) { if (pCie->bRetReg != UINT8_MAX) idxDwReg = pCie->bRetReg; int rc = rtDwarfUnwind_CalcRegisterValue(pRow, idxDwReg, pCie, uCfa, pState, pOldState, pfnGetReg, &pState->uPc, cbPc); if (RT_SUCCESS(rc)) pState->u.x86.Loaded.s.fPc = 1; else { rc = pState->pfnReadStack(pState, uCfa - cbPc, cbPc, &pState->uPc); if (RT_SUCCESS(rc)) pState->u.x86.Loaded.s.fPc = 1; } } /** * Updates @a pState with the rules found in @a pRow. * * @returns IPRT status code. * @param pState The unwind state to update. * @param pRow The "row" in the dwarf unwind table. * @param pCie The CIE structure for the row. * @param enmImageArch The image architecture. */ static int rtDwarfUnwind_UpdateStateFromRow(PRTDBGUNWINDSTATE pState, PRTDWARFCFROW pRow, PCRTDWARFCIEINFO pCie, RTLDRARCH enmImageArch) { /* * We need to make a copy of the current state so we can get at the * current register values while calculating the ones of the next frame. */ RTDBGUNWINDSTATE const Old = *pState; /* * Get the register state getter. */ PFNDWARFUNWINDGEREGFROMSTATE pfnGetReg; switch (enmImageArch) { case RTLDRARCH_AMD64: pfnGetReg = rtDwarfUnwind_Amd64GetRegFromState; break; case RTLDRARCH_X86_32: case RTLDRARCH_X86_16: pfnGetReg = rtDwarfUnwind_X86GetRegFromState; break; default: return VERR_NOT_SUPPORTED; } /* * Calc the canonical frame address for the current row. */ AssertReturn(pRow->fCfaDefined, VERR_DBG_MALFORMED_UNWIND_INFO); uint64_t uCfa = 0; if (!pRow->pbCfaExprInstr) { pfnGetReg(&Old, pRow->uCfaBaseReg, &uCfa); uCfa += pRow->offCfaReg; } else { AssertFailed(); return VERR_DWARF_TODO; } Log8(("rtDwarfUnwind_UpdateStateFromRow: uCfa=%RX64\n", uCfa)); /* * Do the architecture specific register updating. */ switch (enmImageArch) { case RTLDRARCH_AMD64: pState->enmRetType = RTDBGRETURNTYPE_NEAR64; pState->u.x86.FrameAddr.off = uCfa - 8*2; pState->u.x86.Loaded.fAll = 0; pState->u.x86.Loaded.s.fFrameAddr = 1; rtDwarfUnwind_UpdatePCFromRow(pState, &Old, pRow, DWREG_AMD64_RA, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86RFlagsFromRow(pState, &Old, pRow, DWREG_AMD64_RFLAGS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xAX, pRow, DWREG_AMD64_RAX, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xCX, pRow, DWREG_AMD64_RCX, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDX, pRow, DWREG_AMD64_RDX, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBX, pRow, DWREG_AMD64_RBX, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSP, pRow, DWREG_AMD64_RSP, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBP, pRow, DWREG_AMD64_RBP, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSI, pRow, DWREG_AMD64_RSI, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDI, pRow, DWREG_AMD64_RDI, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x8, pRow, DWREG_AMD64_R8, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x9, pRow, DWREG_AMD64_R9, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x10, pRow, DWREG_AMD64_R10, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x11, pRow, DWREG_AMD64_R11, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x12, pRow, DWREG_AMD64_R12, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x13, pRow, DWREG_AMD64_R13, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x14, pRow, DWREG_AMD64_R14, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_x15, pRow, DWREG_AMD64_R15, pCie, uCfa, pfnGetReg, sizeof(uint64_t)); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_ES, pRow, DWREG_AMD64_ES, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_CS, pRow, DWREG_AMD64_CS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_SS, pRow, DWREG_AMD64_SS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_DS, pRow, DWREG_AMD64_DS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_FS, pRow, DWREG_AMD64_FS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_GS, pRow, DWREG_AMD64_GS, pCie, uCfa, pfnGetReg); break; case RTLDRARCH_X86_32: case RTLDRARCH_X86_16: pState->enmRetType = RTDBGRETURNTYPE_NEAR32; pState->u.x86.FrameAddr.off = uCfa - 4*2; pState->u.x86.Loaded.fAll = 0; pState->u.x86.Loaded.s.fFrameAddr = 1; rtDwarfUnwind_UpdatePCFromRow(pState, &Old, pRow, DWREG_X86_RA, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86RFlagsFromRow(pState, &Old, pRow, DWREG_X86_EFLAGS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xAX, pRow, DWREG_X86_EAX, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xCX, pRow, DWREG_X86_ECX, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDX, pRow, DWREG_X86_EDX, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBX, pRow, DWREG_X86_EBX, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSP, pRow, DWREG_X86_ESP, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xBP, pRow, DWREG_X86_EBP, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xSI, pRow, DWREG_X86_ESI, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86GRegFromRow(pState, &Old, X86_GREG_xDI, pRow, DWREG_X86_EDI, pCie, uCfa, pfnGetReg, sizeof(uint32_t)); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_ES, pRow, DWREG_X86_ES, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_CS, pRow, DWREG_X86_CS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_SS, pRow, DWREG_X86_SS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_DS, pRow, DWREG_X86_DS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_FS, pRow, DWREG_X86_FS, pCie, uCfa, pfnGetReg); rtDwarfUnwind_UpdateX86SRegFromRow(pState, &Old, X86_SREG_GS, pRow, DWREG_X86_GS, pCie, uCfa, pfnGetReg); if (pState->u.x86.Loaded.s.fRegs & RT_BIT_32(X86_GREG_xSP)) pState->u.x86.FrameAddr.off = pState->u.x86.auRegs[X86_GREG_xSP] - 8; else pState->u.x86.FrameAddr.off = uCfa - 8; pState->u.x86.FrameAddr.sel = pState->u.x86.auSegs[X86_SREG_SS]; if (pState->u.x86.Loaded.s.fSegs & RT_BIT_32(X86_SREG_CS)) { if ((pState->uPc >> 16) == pState->u.x86.auSegs[X86_SREG_CS]) { pState->enmRetType = RTDBGRETURNTYPE_FAR16; pState->uPc &= UINT16_MAX; Log8(("rtDwarfUnwind_UpdateStateFromRow: Detected FAR16 return to %04x:%04RX64\n", pState->u.x86.auSegs[X86_SREG_CS], pState->uPc)); } else { pState->enmRetType = RTDBGRETURNTYPE_FAR32; Log8(("rtDwarfUnwind_UpdateStateFromRow: CS loaded, assume far return.\n")); } } break; default: AssertFailedReturn(VERR_NOT_SUPPORTED); } return VINF_SUCCESS; } /** * Processes a FDE, taking over after the PC range field. * * @returns IPRT status code. * @param pCursor The cursor. * @param pCie Information about the corresponding CIE. * @param uPcBegin The PC begin field value (sans segment). * @param cbPcRange The PC range from @a uPcBegin. * @param offInRange The offset into the range corresponding to * pState->uPc. * @param enmImageArch The image architecture. * @param pState The unwind state to work. */ static int rtDwarfUnwind_ProcessFde(PRTDWARFCURSOR pCursor, PCRTDWARFCIEINFO pCie, uint64_t uPcBegin, uint64_t cbPcRange, uint64_t offInRange, RTLDRARCH enmImageArch, PRTDBGUNWINDSTATE pState) { /* * Deal with augmented data fields. */ /* The size. */ size_t cbInstr = ~(size_t)0; if (pCie->fHasAugmentationSize) { uint64_t cbAugData = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX); if (RT_FAILURE(pCursor->rc)) return pCursor->rc; if (cbAugData > pCursor->cbUnitLeft) return VERR_DBG_MALFORMED_UNWIND_INFO; cbInstr = pCursor->cbUnitLeft - cbAugData; } else if (pCie->fHasUnknowAugmentation) return VERR_DBG_MALFORMED_UNWIND_INFO; /* Parse the string and fetch FDE fields. */ if (!pCie->fHasEhData) for (const char *pszAug = pCie->pszAugmentation; *pszAug != '\0'; pszAug++) switch (*pszAug) { case 'L': if (pCie->bLsdaPtrEnc != DW_EH_PE_omit) rtDwarfCursor_GetPtrEnc(pCursor, pCie->bLsdaPtrEnc, 0); break; } /* Skip unconsumed bytes. */ if ( cbInstr != ~(size_t)0 && pCursor->cbUnitLeft > cbInstr) rtDwarfCursor_SkipBytes(pCursor, pCursor->cbUnitLeft - cbInstr); if (RT_FAILURE(pCursor->rc)) return pCursor->rc; /* * Now "execute" the programs till we've constructed the desired row. */ RTDWARFCFROW Row; RTDWARFCFEXEC ExecState = { &Row, offInRange, 0, true /** @todo byte-order*/, pCie, uPcBegin, offInRange }; RT_ZERO(Row); int rc = rtDwarfUnwind_Execute(&ExecState, pCie->pbInstructions, (uint32_t)pCie->cbInstructions); if (rc == VINF_TRY_AGAIN) rc = rtDwarfUnwind_Execute(&ExecState, pCursor->pb, (uint32_t)pCursor->cbUnitLeft); /* On success, extract whatever state we've got. */ if (RT_SUCCESS(rc)) rc = rtDwarfUnwind_UpdateStateFromRow(pState, &Row, pCie, enmImageArch); /* * Clean up allocations in case of pushes. */ if (ExecState.pRow == &Row) Assert(!ExecState.pRow->fOnHeap); else do { PRTDWARFCFROW pPopped = ExecState.pRow; ExecState.pRow = ExecState.pRow->pNextOnStack; Assert(pPopped->fOnHeap); RTMemTmpFree(pPopped); } while (ExecState.pRow && ExecState.pRow != &Row); RT_NOREF(pState, uPcBegin, cbPcRange, offInRange); return rc; } /** * Load the information we need from a CIE. * * This starts after the initial length and CIE_pointer fields has * been processed. * * @returns IPRT status code. * @param pCursor The cursor. * @param pNewCie The structure to populate with parsed CIE info. * @param offUnit The unit offset. * @param bDefaultPtrEnc The default pointer encoding. */ static int rtDwarfUnwind_LoadCie(PRTDWARFCURSOR pCursor, PRTDWARFCIEINFO pNewCie, uint64_t offUnit, uint8_t bDefaultPtrEnc) { /* * Initialize the CIE record and get the version. */ RT_ZERO(*pNewCie); pNewCie->offCie = offUnit; pNewCie->bLsdaPtrEnc = DW_EH_PE_omit; pNewCie->bAddressPtrEnc = DW_EH_PE_omit; /* set later */ pNewCie->uDwarfVer = rtDwarfCursor_GetUByte(pCursor, 0); if ( pNewCie->uDwarfVer >= 1 /* Note! Some GCC versions may emit v1 here. */ && pNewCie->uDwarfVer <= 5) { /* likely */ } else { Log(("rtDwarfUnwind_LoadCie(%RX64): uDwarfVer=%u: VERR_VERSION_MISMATCH\n", offUnit, pNewCie->uDwarfVer)); return VERR_VERSION_MISMATCH; } /* * The augmentation string. * * First deal with special "eh" string from oldish GCC (dwarf2out.c about 1997), specified in LSB: * https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-PDA/LSB-PDA/ehframechpt.html */ pNewCie->pszAugmentation = rtDwarfCursor_GetSZ(pCursor, ""); if ( pNewCie->pszAugmentation[0] == 'e' && pNewCie->pszAugmentation[1] == 'h' && pNewCie->pszAugmentation[2] == '\0') { pNewCie->fHasEhData = true; rtDwarfCursor_GetPtrEnc(pCursor, bDefaultPtrEnc, 0); } else { /* Regular augmentation string. */ for (const char *pszAug = pNewCie->pszAugmentation; *pszAug != '\0'; pszAug++) switch (*pszAug) { case 'z': pNewCie->fHasAugmentationSize = true; break; case 'L': pNewCie->fHasLanguageSpecificDataArea = true; break; case 'P': pNewCie->fHasPersonalityRoutine = true; break; case 'R': pNewCie->fHasAddressEnc = true; break; case 'S': pNewCie->fIsSignalFrame = true; break; default: pNewCie->fHasUnknowAugmentation = true; break; } } /* * More standard fields */ uint8_t cbAddress = 0; if (pNewCie->uDwarfVer >= 4) { cbAddress = rtDwarfCursor_GetU8(pCursor, bDefaultPtrEnc == DW_EH_PE_udata8 ? 8 : 4); pNewCie->cbSegment = rtDwarfCursor_GetU8(pCursor, 0); } pNewCie->uCodeAlignFactor = rtDwarfCursor_GetULeb128(pCursor, 1); pNewCie->iDataAlignFactor = rtDwarfCursor_GetSLeb128(pCursor, 1); pNewCie->bRetReg = rtDwarfCursor_GetU8(pCursor, UINT8_MAX); /* * Augmentation data. */ if (!pNewCie->fHasEhData) { /* The size. */ size_t cbInstr = ~(size_t)0; if (pNewCie->fHasAugmentationSize) { uint64_t cbAugData = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX); if (RT_FAILURE(pCursor->rc)) { Log(("rtDwarfUnwind_LoadCie(%#RX64): rtDwarfCursor_GetULeb128 -> %Rrc!\n", offUnit, pCursor->rc)); return pCursor->rc; } if (cbAugData > pCursor->cbUnitLeft) { Log(("rtDwarfUnwind_LoadCie(%#RX64): cbAugData=%#x pCursor->cbUnitLeft=%#x -> VERR_DBG_MALFORMED_UNWIND_INFO!\n", offUnit, cbAugData, pCursor->cbUnitLeft)); return VERR_DBG_MALFORMED_UNWIND_INFO; } cbInstr = pCursor->cbUnitLeft - cbAugData; } else if (pNewCie->fHasUnknowAugmentation) { Log(("rtDwarfUnwind_LoadCie(%#RX64): fHasUnknowAugmentation=1 -> VERR_DBG_MALFORMED_UNWIND_INFO!\n", offUnit)); return VERR_DBG_MALFORMED_UNWIND_INFO; } /* Parse the string. */ for (const char *pszAug = pNewCie->pszAugmentation; *pszAug != '\0'; pszAug++) switch (*pszAug) { case 'L': pNewCie->bLsdaPtrEnc = rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit); break; case 'P': rtDwarfCursor_GetPtrEnc(pCursor, rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit), 0); break; case 'R': pNewCie->bAddressPtrEnc = rtDwarfCursor_GetU8(pCursor, DW_EH_PE_omit); break; } /* Skip unconsumed bytes. */ if ( cbInstr != ~(size_t)0 && pCursor->cbUnitLeft > cbInstr) rtDwarfCursor_SkipBytes(pCursor, pCursor->cbUnitLeft - cbInstr); } /* * Note down where the instructions are. */ pNewCie->pbInstructions = pCursor->pb; pNewCie->cbInstructions = pCursor->cbUnitLeft; /* * Determine the target address encoding. Make sure we resolve DW_EH_PE_ptr. */ if (pNewCie->bAddressPtrEnc == DW_EH_PE_omit) switch (cbAddress) { case 2: pNewCie->bAddressPtrEnc = DW_EH_PE_udata2; break; case 4: pNewCie->bAddressPtrEnc = DW_EH_PE_udata4; break; case 8: pNewCie->bAddressPtrEnc = DW_EH_PE_udata8; break; default: pNewCie->bAddressPtrEnc = bDefaultPtrEnc; break; } else if ((pNewCie->bAddressPtrEnc & DW_EH_PE_FORMAT_MASK) == DW_EH_PE_ptr) pNewCie->bAddressPtrEnc = bDefaultPtrEnc; return VINF_SUCCESS; } /** * Does a slow unwind of a '.debug_frame' or '.eh_frame' section. * * @returns IPRT status code. * @param pCursor The cursor. * @param uRvaCursor The RVA corrsponding to the cursor start location. * @param idxSeg The segment of the PC location. * @param offSeg The segment offset of the PC location. * @param uRva The RVA of the PC location. * @param pState The unwind state to work. * @param bDefaultPtrEnc The default pointer encoding. * @param fIsEhFrame Set if this is a '.eh_frame'. GCC generate these * with different CIE_pointer values. * @param enmImageArch The image architecture. */ DECLHIDDEN(int) rtDwarfUnwind_Slow(PRTDWARFCURSOR pCursor, RTUINTPTR uRvaCursor, RTDBGSEGIDX idxSeg, RTUINTPTR offSeg, RTUINTPTR uRva, PRTDBGUNWINDSTATE pState, uint8_t bDefaultPtrEnc, bool fIsEhFrame, RTLDRARCH enmImageArch) { Log8(("rtDwarfUnwind_Slow: idxSeg=%#x offSeg=%RTptr uRva=%RTptr enmArch=%d PC=%#RX64\n", idxSeg, offSeg, uRva, pState->enmArch, pState->uPc)); /* * CIE info we collect. */ PRTDWARFCIEINFO paCies = NULL; uint32_t cCies = 0; PRTDWARFCIEINFO pCieHint = NULL; /* * Do the scanning. */ uint64_t const offCieOffset = pCursor->f64bitDwarf ? UINT64_MAX : UINT32_MAX; int rc = VERR_DBG_UNWIND_INFO_NOT_FOUND; while (!rtDwarfCursor_IsAtEnd(pCursor)) { uint64_t const offUnit = rtDwarfCursor_CalcSectOffsetU32(pCursor); if (rtDwarfCursor_GetInitialLength(pCursor) == 0) break; uint64_t const offRelCie = rtDwarfCursor_GetUOff(pCursor, offCieOffset); if (offRelCie != offCieOffset) { /* * Frame descriptor entry (FDE). */ /* Locate the corresponding CIE. The CIE pointer is self relative in .eh_frame and section relative in .debug_frame. */ PRTDWARFCIEINFO pCieForFde; uint64_t offCie = fIsEhFrame ? offUnit + 4 - offRelCie : offRelCie; if (pCieHint && pCieHint->offCie == offCie) pCieForFde = pCieHint; else { pCieForFde = NULL; uint32_t i = cCies; while (i-- > 0) if (paCies[i].offCie == offCie) { pCieHint = pCieForFde = &paCies[i]; break; } } if (pCieForFde) { /* Read the PC range covered by this FDE (the fields are also known as initial_location). */ RTDBGSEGIDX idxFdeSeg = RTDBGSEGIDX_RVA; if (pCieForFde->cbSegment) idxFdeSeg = rtDwarfCursor_GetVarSizedU(pCursor, pCieForFde->cbSegment, RTDBGSEGIDX_RVA); uint64_t uPcBegin; switch (pCieForFde->bAddressPtrEnc & DW_EH_PE_APPL_MASK) { default: AssertFailed(); RT_FALL_THRU(); case DW_EH_PE_absptr: uPcBegin = rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0); break; case DW_EH_PE_pcrel: { uPcBegin = rtDwarfCursor_CalcSectOffsetU32(pCursor) + uRvaCursor; uPcBegin += rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0); break; } } uint64_t cbPcRange = rtDwarfCursor_GetPtrEnc(pCursor, pCieForFde->bAddressPtrEnc, 0); /* Match it with what we're looking for. */ bool fMatch = idxFdeSeg == RTDBGSEGIDX_RVA ? uRva - uPcBegin < cbPcRange : idxSeg == idxFdeSeg && offSeg - uPcBegin < cbPcRange; Log8(("%#08RX64: FDE pCie=%p idxFdeSeg=%#x uPcBegin=%#RX64 cbPcRange=%#x fMatch=%d\n", offUnit, pCieForFde, idxFdeSeg, uPcBegin, cbPcRange, fMatch)); if (fMatch) { rc = rtDwarfUnwind_ProcessFde(pCursor, pCieForFde, uPcBegin, cbPcRange, idxFdeSeg == RTDBGSEGIDX_RVA ? uRva - uPcBegin : offSeg - uPcBegin, enmImageArch, pState); break; } } else Log8(("%#08RX64: FDE - pCie=NULL!! offCie=%#RX64 offRelCie=%#RX64 fIsEhFrame=%d\n", offUnit, offCie, offRelCie, fIsEhFrame)); } else { /* * Common information entry (CIE). Record the info we need about it. */ if ((cCies % 8) == 0) { void *pvNew = RTMemRealloc(paCies, sizeof(paCies[0]) * (cCies + 8)); if (pvNew) { paCies = (PRTDWARFCIEINFO)pvNew; pCieHint = NULL; } else { rc = VERR_NO_MEMORY; break; } } Log8(("%#08RX64: CIE\n", offUnit)); int rc2 = rtDwarfUnwind_LoadCie(pCursor, &paCies[cCies], offUnit, bDefaultPtrEnc); if (RT_SUCCESS(rc2)) { Log8(("%#08RX64: CIE #%u: offCie=%#RX64\n", offUnit, cCies, paCies[cCies].offCie)); cCies++; } } rtDwarfCursor_SkipUnit(pCursor); } /* * Cleanup. */ if (paCies) RTMemFree(paCies); Log8(("rtDwarfUnwind_Slow: returns %Rrc PC=%#RX64\n", rc, pState->uPc)); return rc; } /** * Helper for translating a loader architecture value to a pointe encoding. * * @returns Pointer encoding. * @param enmLdrArch The loader architecture value to convert. */ static uint8_t rtDwarfUnwind_ArchToPtrEnc(RTLDRARCH enmLdrArch) { switch (enmLdrArch) { case RTLDRARCH_AMD64: case RTLDRARCH_ARM64: return DW_EH_PE_udata8; case RTLDRARCH_X86_16: case RTLDRARCH_X86_32: case RTLDRARCH_ARM32: return DW_EH_PE_udata4; case RTLDRARCH_HOST: case RTLDRARCH_WHATEVER: case RTLDRARCH_INVALID: case RTLDRARCH_END: case RTLDRARCH_32BIT_HACK: break; } AssertFailed(); return DW_EH_PE_udata4; } /** * Interface for the loader code. * * @returns IPRT status. * @param pvSection The '.eh_frame' section data. * @param cbSection The size of the '.eh_frame' section data. * @param uRvaSection The RVA of the '.eh_frame' section. * @param idxSeg The segment of the PC location. * @param offSeg The segment offset of the PC location. * @param uRva The RVA of the PC location. * @param pState The unwind state to work. * @param enmArch The image architecture. */ DECLHIDDEN(int) rtDwarfUnwind_EhData(void const *pvSection, size_t cbSection, RTUINTPTR uRvaSection, RTDBGSEGIDX idxSeg, RTUINTPTR offSeg, RTUINTPTR uRva, PRTDBGUNWINDSTATE pState, RTLDRARCH enmArch) { RTDWARFCURSOR Cursor; rtDwarfCursor_InitForMem(&Cursor, pvSection, cbSection); int rc = rtDwarfUnwind_Slow(&Cursor, uRvaSection, idxSeg, offSeg, uRva, pState, rtDwarfUnwind_ArchToPtrEnc(enmArch), true /*fIsEhFrame*/, enmArch); LogFlow(("rtDwarfUnwind_EhData: rtDwarfUnwind_Slow -> %Rrc\n", rc)); rc = rtDwarfCursor_Delete(&Cursor, rc); LogFlow(("rtDwarfUnwind_EhData: returns %Rrc\n", rc)); return rc; } /* * * DWARF Line Numbers. * DWARF Line Numbers. * DWARF Line Numbers. * */ /** * Defines a file name. * * @returns IPRT status code. * @param pLnState The line number program state. * @param pszFilename The name of the file. * @param idxInc The include path index. */ static int rtDwarfLine_DefineFileName(PRTDWARFLINESTATE pLnState, const char *pszFilename, uint64_t idxInc) { /* * Resize the array if necessary. */ uint32_t iFileName = pLnState->cFileNames; if ((iFileName % 2) == 0) { void *pv = RTMemRealloc(pLnState->papszFileNames, sizeof(pLnState->papszFileNames[0]) * (iFileName + 2)); if (!pv) return VERR_NO_MEMORY; pLnState->papszFileNames = (char **)pv; } /* * Add the file name. */ if ( pszFilename[0] == '/' || pszFilename[0] == '\\' || (RT_C_IS_ALPHA(pszFilename[0]) && pszFilename[1] == ':') ) pLnState->papszFileNames[iFileName] = RTStrDup(pszFilename); else if (idxInc < pLnState->cIncPaths) pLnState->papszFileNames[iFileName] = RTPathJoinA(pLnState->papszIncPaths[idxInc], pszFilename); else return VERR_DWARF_BAD_LINE_NUMBER_HEADER; if (!pLnState->papszFileNames[iFileName]) return VERR_NO_STR_MEMORY; pLnState->cFileNames = iFileName + 1; /* * Sanitize the name. */ int rc = rtDbgModDwarfStringToUtf8(pLnState->pDwarfMod, &pLnState->papszFileNames[iFileName]); Log((" File #%02u = '%s'\n", iFileName, pLnState->papszFileNames[iFileName])); return rc; } /** * Adds a line to the table and resets parts of the state (DW_LNS_copy). * * @returns IPRT status code * @param pLnState The line number program state. * @param offOpCode The opcode offset (for logging * purposes). */ static int rtDwarfLine_AddLine(PRTDWARFLINESTATE pLnState, uint32_t offOpCode) { PRTDBGMODDWARF pThis = pLnState->pDwarfMod; int rc; if (pThis->iWatcomPass == 1) rc = rtDbgModDwarfRecordSegOffset(pThis, pLnState->Regs.uSegment, pLnState->Regs.uAddress + 1); else { const char *pszFile = pLnState->Regs.iFile < pLnState->cFileNames ? pLnState->papszFileNames[pLnState->Regs.iFile] : ""; NOREF(offOpCode); RTDBGSEGIDX iSeg; RTUINTPTR offSeg; rc = rtDbgModDwarfLinkAddressToSegOffset(pLnState->pDwarfMod, pLnState->Regs.uSegment, pLnState->Regs.uAddress, &iSeg, &offSeg); /*AssertRC(rc);*/ if (RT_SUCCESS(rc)) { Log2(("rtDwarfLine_AddLine: %x:%08llx (%#llx) %s(%d) [offOpCode=%08x]\n", iSeg, offSeg, pLnState->Regs.uAddress, pszFile, pLnState->Regs.uLine, offOpCode)); rc = RTDbgModLineAdd(pLnState->pDwarfMod->hCnt, pszFile, pLnState->Regs.uLine, iSeg, offSeg, NULL); /* Ignore address conflicts for now. */ if (rc == VERR_DBG_ADDRESS_CONFLICT) rc = VINF_SUCCESS; } else rc = VINF_SUCCESS; /* ignore failure */ } pLnState->Regs.fBasicBlock = false; pLnState->Regs.fPrologueEnd = false; pLnState->Regs.fEpilogueBegin = false; pLnState->Regs.uDiscriminator = 0; return rc; } /** * Reset the program to the start-of-sequence state. * * @param pLnState The line number program state. */ static void rtDwarfLine_ResetState(PRTDWARFLINESTATE pLnState) { pLnState->Regs.uAddress = 0; pLnState->Regs.idxOp = 0; pLnState->Regs.iFile = 1; pLnState->Regs.uLine = 1; pLnState->Regs.uColumn = 0; pLnState->Regs.fIsStatement = RT_BOOL(pLnState->Hdr.u8DefIsStmt); pLnState->Regs.fBasicBlock = false; pLnState->Regs.fEndSequence = false; pLnState->Regs.fPrologueEnd = false; pLnState->Regs.fEpilogueBegin = false; pLnState->Regs.uIsa = 0; pLnState->Regs.uDiscriminator = 0; pLnState->Regs.uSegment = 0; } /** * Runs the line number program. * * @returns IPRT status code. * @param pLnState The line number program state. * @param pCursor The cursor. */ static int rtDwarfLine_RunProgram(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor) { LogFlow(("rtDwarfLine_RunProgram: cbUnitLeft=%zu\n", pCursor->cbUnitLeft)); int rc = VINF_SUCCESS; rtDwarfLine_ResetState(pLnState); while (!rtDwarfCursor_IsAtEndOfUnit(pCursor)) { #ifdef LOG_ENABLED uint32_t const offOpCode = rtDwarfCursor_CalcSectOffsetU32(pCursor); #else uint32_t const offOpCode = 0; #endif uint8_t bOpCode = rtDwarfCursor_GetUByte(pCursor, DW_LNS_extended); if (bOpCode >= pLnState->Hdr.u8OpcodeBase) { /* * Special opcode. */ uint8_t const bLogOpCode = bOpCode; NOREF(bLogOpCode); bOpCode -= pLnState->Hdr.u8OpcodeBase; int32_t const cLineDelta = bOpCode % pLnState->Hdr.u8LineRange + (int32_t)pLnState->Hdr.s8LineBase; bOpCode /= pLnState->Hdr.u8LineRange; uint64_t uTmp = bOpCode + pLnState->Regs.idxOp; uint64_t const cAddressDelta = uTmp / pLnState->Hdr.cMaxOpsPerInstr * pLnState->Hdr.cbMinInstr; uint64_t const cOpIndexDelta = uTmp % pLnState->Hdr.cMaxOpsPerInstr; pLnState->Regs.uLine += cLineDelta; pLnState->Regs.uAddress += cAddressDelta; pLnState->Regs.idxOp += cOpIndexDelta; Log2(("%08x: DW Special Opcode %#04x: uLine + %d => %u; uAddress + %#llx => %#llx; idxOp + %#llx => %#llx\n", offOpCode, bLogOpCode, cLineDelta, pLnState->Regs.uLine, cAddressDelta, pLnState->Regs.uAddress, cOpIndexDelta, pLnState->Regs.idxOp)); /* * LLVM emits debug info for global constructors (_GLOBAL__I_a) which are not part of source * code but are inserted by the compiler: The resulting line number will be 0 * because they are not part of the source file obviously (see https://reviews.llvm.org/rL205999), * so skip adding them when they are encountered. */ if (pLnState->Regs.uLine) rc = rtDwarfLine_AddLine(pLnState, offOpCode); } else { switch (bOpCode) { /* * Standard opcode. */ case DW_LNS_copy: Log2(("%08x: DW_LNS_copy\n", offOpCode)); /* See the comment about LLVM above. */ if (pLnState->Regs.uLine) rc = rtDwarfLine_AddLine(pLnState, offOpCode); break; case DW_LNS_advance_pc: { uint64_t u64Adv = rtDwarfCursor_GetULeb128(pCursor, 0); pLnState->Regs.uAddress += (pLnState->Regs.idxOp + u64Adv) / pLnState->Hdr.cMaxOpsPerInstr * pLnState->Hdr.cbMinInstr; pLnState->Regs.idxOp += (pLnState->Regs.idxOp + u64Adv) % pLnState->Hdr.cMaxOpsPerInstr; Log2(("%08x: DW_LNS_advance_pc: u64Adv=%#llx (%lld) )\n", offOpCode, u64Adv, u64Adv)); break; } case DW_LNS_advance_line: { int32_t cLineDelta = rtDwarfCursor_GetSLeb128AsS32(pCursor, 0); pLnState->Regs.uLine += cLineDelta; Log2(("%08x: DW_LNS_advance_line: uLine + %d => %u\n", offOpCode, cLineDelta, pLnState->Regs.uLine)); break; } case DW_LNS_set_file: pLnState->Regs.iFile = rtDwarfCursor_GetULeb128AsU32(pCursor, 0); Log2(("%08x: DW_LNS_set_file: iFile=%u\n", offOpCode, pLnState->Regs.iFile)); break; case DW_LNS_set_column: pLnState->Regs.uColumn = rtDwarfCursor_GetULeb128AsU32(pCursor, 0); Log2(("%08x: DW_LNS_set_column\n", offOpCode)); break; case DW_LNS_negate_stmt: pLnState->Regs.fIsStatement = !pLnState->Regs.fIsStatement; Log2(("%08x: DW_LNS_negate_stmt\n", offOpCode)); break; case DW_LNS_set_basic_block: pLnState->Regs.fBasicBlock = true; Log2(("%08x: DW_LNS_set_basic_block\n", offOpCode)); break; case DW_LNS_const_add_pc: { uint8_t u8Adv = (255 - pLnState->Hdr.u8OpcodeBase) / pLnState->Hdr.u8LineRange; if (pLnState->Hdr.cMaxOpsPerInstr <= 1) pLnState->Regs.uAddress += (uint32_t)pLnState->Hdr.cbMinInstr * u8Adv; else { pLnState->Regs.uAddress += (pLnState->Regs.idxOp + u8Adv) / pLnState->Hdr.cMaxOpsPerInstr * pLnState->Hdr.cbMinInstr; pLnState->Regs.idxOp = (pLnState->Regs.idxOp + u8Adv) % pLnState->Hdr.cMaxOpsPerInstr; } Log2(("%08x: DW_LNS_const_add_pc\n", offOpCode)); break; } case DW_LNS_fixed_advance_pc: pLnState->Regs.uAddress += rtDwarfCursor_GetUHalf(pCursor, 0); pLnState->Regs.idxOp = 0; Log2(("%08x: DW_LNS_fixed_advance_pc\n", offOpCode)); break; case DW_LNS_set_prologue_end: pLnState->Regs.fPrologueEnd = true; Log2(("%08x: DW_LNS_set_prologue_end\n", offOpCode)); break; case DW_LNS_set_epilogue_begin: pLnState->Regs.fEpilogueBegin = true; Log2(("%08x: DW_LNS_set_epilogue_begin\n", offOpCode)); break; case DW_LNS_set_isa: pLnState->Regs.uIsa = rtDwarfCursor_GetULeb128AsU32(pCursor, 0); Log2(("%08x: DW_LNS_set_isa %#x\n", offOpCode, pLnState->Regs.uIsa)); break; default: { unsigned cOpsToSkip = pLnState->Hdr.pacStdOperands[bOpCode - 1]; Log(("rtDwarfLine_RunProgram: Unknown standard opcode %#x, %#x operands, at %08x.\n", bOpCode, cOpsToSkip, offOpCode)); while (cOpsToSkip-- > 0) rc = rtDwarfCursor_SkipLeb128(pCursor); break; } /* * Extended opcode. */ case DW_LNS_extended: { /* The instruction has a length prefix. */ uint64_t cbInstr = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX); if (RT_FAILURE(pCursor->rc)) return pCursor->rc; if (cbInstr > pCursor->cbUnitLeft) return VERR_DWARF_BAD_LNE; uint8_t const * const pbEndOfInstr = rtDwarfCursor_CalcPos(pCursor, cbInstr); /* Get the opcode and deal with it if we know it. */ bOpCode = rtDwarfCursor_GetUByte(pCursor, 0); switch (bOpCode) { case DW_LNE_end_sequence: #if 0 /* No need for this, I think. */ pLnState->Regs.fEndSequence = true; rc = rtDwarfLine_AddLine(pLnState, offOpCode); #endif rtDwarfLine_ResetState(pLnState); Log2(("%08x: DW_LNE_end_sequence\n", offOpCode)); break; case DW_LNE_set_address: pLnState->Regs.uAddress = rtDwarfCursor_GetVarSizedU(pCursor, cbInstr - 1, UINT64_MAX); pLnState->Regs.idxOp = 0; Log2(("%08x: DW_LNE_set_address: %#llx\n", offOpCode, pLnState->Regs.uAddress)); break; case DW_LNE_define_file: { const char *pszFilename = rtDwarfCursor_GetSZ(pCursor, NULL); uint32_t idxInc = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX); rtDwarfCursor_SkipLeb128(pCursor); /* st_mtime */ rtDwarfCursor_SkipLeb128(pCursor); /* st_size */ Log2(("%08x: DW_LNE_define_file: {%d}/%s\n", offOpCode, idxInc, pszFilename)); rc = rtDwarfCursor_AdvanceToPos(pCursor, pbEndOfInstr); if (RT_SUCCESS(rc)) rc = rtDwarfLine_DefineFileName(pLnState, pszFilename, idxInc); break; } /* * Note! Was defined in DWARF 4. But... Watcom used it for setting the * segment in DWARF 2, creating an incompatibility with the newer * standard. And gcc 10 uses v3 for these. */ case DW_LNE_set_descriminator: if (pLnState->Hdr.uVer != 2) { Assert(pLnState->Hdr.uVer >= 3); pLnState->Regs.uDiscriminator = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX); Log2(("%08x: DW_LNE_set_descriminator: %u\n", offOpCode, pLnState->Regs.uDiscriminator)); } else { uint64_t uSeg = rtDwarfCursor_GetVarSizedU(pCursor, cbInstr - 1, UINT64_MAX); Log2(("%08x: DW_LNE_set_segment: %#llx, cbInstr=%#x - Watcom Extension\n", offOpCode, uSeg, cbInstr)); pLnState->Regs.uSegment = (RTSEL)uSeg; AssertStmt(pLnState->Regs.uSegment == uSeg, rc = VERR_DWARF_BAD_INFO); } break; default: Log(("rtDwarfLine_RunProgram: Unknown extended opcode %#x, length %#x at %08x\n", bOpCode, cbInstr, offOpCode)); break; } /* Advance the cursor to the end of the instruction . */ rtDwarfCursor_AdvanceToPos(pCursor, pbEndOfInstr); break; } } } /* * Check the status before looping. */ if (RT_FAILURE(rc)) return rc; if (RT_FAILURE(pCursor->rc)) return pCursor->rc; } return rc; } /** * Reads the include directories for a line number unit. * * @returns IPRT status code * @param pLnState The line number program state. * @param pCursor The cursor. */ static int rtDwarfLine_ReadFileNames(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor) { int rc = rtDwarfLine_DefineFileName(pLnState, "/", 0); if (RT_FAILURE(rc)) return rc; for (;;) { const char *psz = rtDwarfCursor_GetSZ(pCursor, NULL); if (!*psz) break; uint64_t idxInc = rtDwarfCursor_GetULeb128(pCursor, UINT64_MAX); rtDwarfCursor_SkipLeb128(pCursor); /* st_mtime */ rtDwarfCursor_SkipLeb128(pCursor); /* st_size */ rc = rtDwarfLine_DefineFileName(pLnState, psz, idxInc); if (RT_FAILURE(rc)) return rc; } return pCursor->rc; } /** * Reads the include directories for a line number unit. * * @returns IPRT status code * @param pLnState The line number program state. * @param pCursor The cursor. */ static int rtDwarfLine_ReadIncludePaths(PRTDWARFLINESTATE pLnState, PRTDWARFCURSOR pCursor) { const char *psz = ""; /* The zeroth is the unit dir. */ for (;;) { if ((pLnState->cIncPaths % 2) == 0) { void *pv = RTMemRealloc(pLnState->papszIncPaths, sizeof(pLnState->papszIncPaths[0]) * (pLnState->cIncPaths + 2)); if (!pv) return VERR_NO_MEMORY; pLnState->papszIncPaths = (const char **)pv; } Log((" Path #%02u = '%s'\n", pLnState->cIncPaths, psz)); pLnState->papszIncPaths[pLnState->cIncPaths] = psz; pLnState->cIncPaths++; psz = rtDwarfCursor_GetSZ(pCursor, NULL); if (!*psz) break; } return pCursor->rc; } /** * Explodes the line number table for a compilation unit. * * @returns IPRT status code * @param pThis The DWARF instance. * @param pCursor The cursor to read the line number information * via. */ static int rtDwarfLine_ExplodeUnit(PRTDBGMODDWARF pThis, PRTDWARFCURSOR pCursor) { RTDWARFLINESTATE LnState; RT_ZERO(LnState); LnState.pDwarfMod = pThis; /* * Parse the header. */ rtDwarfCursor_GetInitialLength(pCursor); LnState.Hdr.uVer = rtDwarfCursor_GetUHalf(pCursor, 0); if ( LnState.Hdr.uVer < 2 || LnState.Hdr.uVer > 4) return rtDwarfCursor_SkipUnit(pCursor); LnState.Hdr.offFirstOpcode = rtDwarfCursor_GetUOff(pCursor, 0); uint8_t const * const pbFirstOpcode = rtDwarfCursor_CalcPos(pCursor, LnState.Hdr.offFirstOpcode); LnState.Hdr.cbMinInstr = rtDwarfCursor_GetUByte(pCursor, 0); if (LnState.Hdr.uVer >= 4) LnState.Hdr.cMaxOpsPerInstr = rtDwarfCursor_GetUByte(pCursor, 0); else LnState.Hdr.cMaxOpsPerInstr = 1; LnState.Hdr.u8DefIsStmt = rtDwarfCursor_GetUByte(pCursor, 0); LnState.Hdr.s8LineBase = rtDwarfCursor_GetSByte(pCursor, 0); LnState.Hdr.u8LineRange = rtDwarfCursor_GetUByte(pCursor, 0); LnState.Hdr.u8OpcodeBase = rtDwarfCursor_GetUByte(pCursor, 0); if ( !LnState.Hdr.u8OpcodeBase || !LnState.Hdr.cMaxOpsPerInstr || !LnState.Hdr.u8LineRange || LnState.Hdr.u8DefIsStmt > 1) return VERR_DWARF_BAD_LINE_NUMBER_HEADER; Log2(("DWARF Line number header:\n" " uVer %d\n" " offFirstOpcode %#llx\n" " cbMinInstr %u\n" " cMaxOpsPerInstr %u\n" " u8DefIsStmt %u\n" " s8LineBase %d\n" " u8LineRange %u\n" " u8OpcodeBase %u\n", LnState.Hdr.uVer, LnState.Hdr.offFirstOpcode, LnState.Hdr.cbMinInstr, LnState.Hdr.cMaxOpsPerInstr, LnState.Hdr.u8DefIsStmt, LnState.Hdr.s8LineBase, LnState.Hdr.u8LineRange, LnState.Hdr.u8OpcodeBase)); LnState.Hdr.pacStdOperands = pCursor->pb; for (uint8_t iStdOpcode = 1; iStdOpcode < LnState.Hdr.u8OpcodeBase; iStdOpcode++) rtDwarfCursor_GetUByte(pCursor, 0); int rc = pCursor->rc; if (RT_SUCCESS(rc)) rc = rtDwarfLine_ReadIncludePaths(&LnState, pCursor); if (RT_SUCCESS(rc)) rc = rtDwarfLine_ReadFileNames(&LnState, pCursor); /* * Run the program.... */ if (RT_SUCCESS(rc)) rc = rtDwarfCursor_AdvanceToPos(pCursor, pbFirstOpcode); if (RT_SUCCESS(rc)) rc = rtDwarfLine_RunProgram(&LnState, pCursor); /* * Clean up. */ size_t i = LnState.cFileNames; while (i-- > 0) RTStrFree(LnState.papszFileNames[i]); RTMemFree(LnState.papszFileNames); RTMemFree(LnState.papszIncPaths); Assert(rtDwarfCursor_IsAtEndOfUnit(pCursor) || RT_FAILURE(rc)); return rc; } /** * Explodes the line number table. * * The line numbers are insered into the debug info container. * * @returns IPRT status code * @param pThis The DWARF instance. */ static int rtDwarfLine_ExplodeAll(PRTDBGMODDWARF pThis) { if (!pThis->aSections[krtDbgModDwarfSect_line].fPresent) return VINF_SUCCESS; RTDWARFCURSOR Cursor; int rc = rtDwarfCursor_Init(&Cursor, pThis, krtDbgModDwarfSect_line); if (RT_FAILURE(rc)) return rc; while ( !rtDwarfCursor_IsAtEnd(&Cursor) && RT_SUCCESS(rc)) rc = rtDwarfLine_ExplodeUnit(pThis, &Cursor); return rtDwarfCursor_Delete(&Cursor, rc); } /* * * DWARF Abbreviations. * DWARF Abbreviations. * DWARF Abbreviations. * */ /** * Deals with a cache miss in rtDwarfAbbrev_Lookup. * * @returns Pointer to abbreviation cache entry (read only). May be rendered * invalid by subsequent calls to this function. * @param pThis The DWARF instance. * @param uCode The abbreviation code to lookup. */ static PCRTDWARFABBREV rtDwarfAbbrev_LookupMiss(PRTDBGMODDWARF pThis, uint32_t uCode) { /* * There is no entry with code zero. */ if (!uCode) return NULL; /* * Resize the cache array if the code is considered cachable. */ bool fFillCache = true; if (pThis->cCachedAbbrevsAlloced < uCode) { if (uCode >= _64K) fFillCache = false; else { uint32_t cNew = RT_ALIGN(uCode, 64); void *pv = RTMemRealloc(pThis->paCachedAbbrevs, sizeof(pThis->paCachedAbbrevs[0]) * cNew); if (!pv) fFillCache = false; else { Log(("rtDwarfAbbrev_LookupMiss: Growing from %u to %u...\n", pThis->cCachedAbbrevsAlloced, cNew)); pThis->paCachedAbbrevs = (PRTDWARFABBREV)pv; for (uint32_t i = pThis->cCachedAbbrevsAlloced; i < cNew; i++) pThis->paCachedAbbrevs[i].offAbbrev = UINT32_MAX; pThis->cCachedAbbrevsAlloced = cNew; } } } /* * Walk the abbreviations till we find the desired code. */ RTDWARFCURSOR Cursor; int rc = rtDwarfCursor_InitWithOffset(&Cursor, pThis, krtDbgModDwarfSect_abbrev, pThis->offCachedAbbrev); if (RT_FAILURE(rc)) return NULL; PRTDWARFABBREV pRet = NULL; if (fFillCache) { /* * Search for the entry and fill the cache while doing so. * We assume that abbreviation codes for a unit will stop when we see * zero code or when the code value drops. */ uint32_t uPrevCode = 0; for (;;) { /* Read the 'header'. Skipping zero code bytes. */ #ifdef LOG_ENABLED uint32_t const offStart = rtDwarfCursor_CalcSectOffsetU32(&Cursor); #endif uint32_t const uCurCode = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); if (pRet && (uCurCode == 0 || uCurCode < uPrevCode)) break; /* probably end of unit. */ if (uCurCode != 0) { uint32_t const uCurTag = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); uint8_t const uChildren = rtDwarfCursor_GetU8(&Cursor, 0); if (RT_FAILURE(Cursor.rc)) break; if ( uCurTag > 0xffff || uChildren > 1) { Cursor.rc = VERR_DWARF_BAD_ABBREV; break; } /* Cache it? */ if (uCurCode <= pThis->cCachedAbbrevsAlloced) { PRTDWARFABBREV pEntry = &pThis->paCachedAbbrevs[uCurCode - 1]; if (pEntry->offAbbrev != pThis->offCachedAbbrev) { pEntry->offAbbrev = pThis->offCachedAbbrev; pEntry->fChildren = RT_BOOL(uChildren); pEntry->uTag = uCurTag; pEntry->offSpec = rtDwarfCursor_CalcSectOffsetU32(&Cursor); #ifdef LOG_ENABLED pEntry->cbHdr = (uint8_t)(pEntry->offSpec - offStart); Log7(("rtDwarfAbbrev_LookupMiss(%#x): fill: %#x: uTag=%#x offAbbrev=%#x%s\n", uCode, offStart, pEntry->uTag, pEntry->offAbbrev, pEntry->fChildren ? " has-children" : "")); #endif if (uCurCode == uCode) { Assert(!pRet); pRet = pEntry; if (uCurCode == pThis->cCachedAbbrevsAlloced) break; } } else if (pRet) break; /* Next unit, don't cache more. */ /* else: We're growing the cache and re-reading old data. */ } /* Skip the specification. */ uint32_t uAttr, uForm; do { uAttr = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); uForm = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); } while (uAttr != 0); } if (RT_FAILURE(Cursor.rc)) break; /* Done? (Maximize cache filling.) */ if ( pRet != NULL && uCurCode >= pThis->cCachedAbbrevsAlloced) break; uPrevCode = uCurCode; } if (pRet) Log6(("rtDwarfAbbrev_LookupMiss(%#x): uTag=%#x offSpec=%#x offAbbrev=%#x [fill]\n", uCode, pRet->uTag, pRet->offSpec, pRet->offAbbrev)); else Log6(("rtDwarfAbbrev_LookupMiss(%#x): failed [fill]\n", uCode)); } else { /* * Search for the entry with the desired code, no cache filling. */ for (;;) { /* Read the 'header'. */ #ifdef LOG_ENABLED uint32_t const offStart = rtDwarfCursor_CalcSectOffsetU32(&Cursor); #endif uint32_t const uCurCode = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); uint32_t const uCurTag = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); uint8_t const uChildren = rtDwarfCursor_GetU8(&Cursor, 0); if (RT_FAILURE(Cursor.rc)) break; if ( uCurTag > 0xffff || uChildren > 1) { Cursor.rc = VERR_DWARF_BAD_ABBREV; break; } /* Do we have a match? */ if (uCurCode == uCode) { pRet = &pThis->LookupAbbrev; pRet->fChildren = RT_BOOL(uChildren); pRet->uTag = uCurTag; pRet->offSpec = rtDwarfCursor_CalcSectOffsetU32(&Cursor); pRet->offAbbrev = pThis->offCachedAbbrev; #ifdef LOG_ENABLED pRet->cbHdr = (uint8_t)(pRet->offSpec - offStart); #endif break; } /* Skip the specification. */ uint32_t uAttr, uForm; do { uAttr = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); uForm = rtDwarfCursor_GetULeb128AsU32(&Cursor, 0); } while (uAttr != 0); if (RT_FAILURE(Cursor.rc)) break; } if (pRet) Log6(("rtDwarfAbbrev_LookupMiss(%#x): uTag=%#x offSpec=%#x offAbbrev=%#x [no-fill]\n", uCode, pRet->uTag, pRet->offSpec, pRet->offAbbrev)); else Log6(("rtDwarfAbbrev_LookupMiss(%#x): failed [no-fill]\n", uCode)); } rtDwarfCursor_Delete(&Cursor, VINF_SUCCESS); return pRet; } /** * Looks up an abbreviation. * * @returns Pointer to abbreviation cache entry (read only). May be rendered * invalid by subsequent calls to this function. * @param pThis The DWARF instance. * @param uCode The abbreviation code to lookup. */ static PCRTDWARFABBREV rtDwarfAbbrev_Lookup(PRTDBGMODDWARF pThis, uint32_t uCode) { uCode -= 1; if (uCode < pThis->cCachedAbbrevsAlloced) { if (pThis->paCachedAbbrevs[uCode].offAbbrev == pThis->offCachedAbbrev) return &pThis->paCachedAbbrevs[uCode]; } return rtDwarfAbbrev_LookupMiss(pThis, uCode + 1); } /** * Sets the abbreviation offset of the current unit. * * @param pThis The DWARF instance. * @param offAbbrev The offset into the abbreviation section. */ static void rtDwarfAbbrev_SetUnitOffset(PRTDBGMODDWARF pThis, uint32_t offAbbrev) { pThis->offCachedAbbrev = offAbbrev; } /* * * DIE Attribute Parsers. * DIE Attribute Parsers. * DIE Attribute Parsers. * */ /** * Gets the compilation unit a DIE belongs to. * * @returns The compilation unit DIE. * @param pDie Some DIE in the unit. */ static PRTDWARFDIECOMPILEUNIT rtDwarfDie_GetCompileUnit(PRTDWARFDIE pDie) { while (pDie->pParent) pDie = pDie->pParent; AssertReturn( pDie->uTag == DW_TAG_compile_unit || pDie->uTag == DW_TAG_partial_unit, NULL); return (PRTDWARFDIECOMPILEUNIT)pDie; } /** * Resolves a string section (debug_str) reference. * * @returns Pointer to the string (inside the string section). * @param pThis The DWARF instance. * @param pCursor The cursor. * @param pszErrValue What to return on failure (@a * pCursor->rc is set). */ static const char *rtDwarfDecodeHlp_GetStrp(PRTDBGMODDWARF pThis, PRTDWARFCURSOR pCursor, const char *pszErrValue) { uint64_t offDebugStr = rtDwarfCursor_GetUOff(pCursor, UINT64_MAX); if (RT_FAILURE(pCursor->rc)) return pszErrValue; if (offDebugStr >= pThis->aSections[krtDbgModDwarfSect_str].cb) { /* Ugly: Exploit the cursor status field for reporting errors. */ pCursor->rc = VERR_DWARF_BAD_INFO; return pszErrValue; } if (!pThis->aSections[krtDbgModDwarfSect_str].pv) { int rc = rtDbgModDwarfLoadSection(pThis, krtDbgModDwarfSect_str); if (RT_FAILURE(rc)) { /* Ugly: Exploit the cursor status field for reporting errors. */ pCursor->rc = rc; return pszErrValue; } } return (const char *)pThis->aSections[krtDbgModDwarfSect_str].pv + (size_t)offDebugStr; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_Address(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDR), VERR_INTERNAL_ERROR_3); NOREF(pDie); uint64_t uAddr; switch (uForm) { case DW_FORM_addr: uAddr = rtDwarfCursor_GetNativeUOff(pCursor, 0); break; case DW_FORM_data1: uAddr = rtDwarfCursor_GetU8(pCursor, 0); break; case DW_FORM_data2: uAddr = rtDwarfCursor_GetU16(pCursor, 0); break; case DW_FORM_data4: uAddr = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_data8: uAddr = rtDwarfCursor_GetU64(pCursor, 0); break; case DW_FORM_udata: uAddr = rtDwarfCursor_GetULeb128(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x (%s)\n", uForm, rtDwarfLog_FormName(uForm)), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; PRTDWARFADDR pAddr = (PRTDWARFADDR)pbMember; pAddr->uAddress = uAddr; Log4((" %-20s %#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), uAddr, rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_Bool(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(bool), VERR_INTERNAL_ERROR_3); NOREF(pDie); bool *pfMember = (bool *)pbMember; switch (uForm) { case DW_FORM_flag: { uint8_t b = rtDwarfCursor_GetU8(pCursor, UINT8_MAX); if (b > 1) { Log(("Unexpected boolean value %#x\n", b)); return RT_FAILURE(pCursor->rc) ? pCursor->rc : pCursor->rc = VERR_DWARF_BAD_INFO; } *pfMember = RT_BOOL(b); break; } case DW_FORM_flag_present: *pfMember = true; break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } Log4((" %-20s %RTbool [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), *pfMember, rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_LowHighPc(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDRRANGE), VERR_INTERNAL_ERROR_3); AssertReturn(pDesc->uAttr == DW_AT_low_pc || pDesc->uAttr == DW_AT_high_pc, VERR_INTERNAL_ERROR_3); NOREF(pDie); uint64_t uAddr; switch (uForm) { case DW_FORM_addr: uAddr = rtDwarfCursor_GetNativeUOff(pCursor, 0); break; case DW_FORM_data1: uAddr = rtDwarfCursor_GetU8(pCursor, 0); break; case DW_FORM_data2: uAddr = rtDwarfCursor_GetU16(pCursor, 0); break; case DW_FORM_data4: uAddr = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_data8: uAddr = rtDwarfCursor_GetU64(pCursor, 0); break; case DW_FORM_udata: uAddr = rtDwarfCursor_GetULeb128(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; PRTDWARFADDRRANGE pRange = (PRTDWARFADDRRANGE)pbMember; if (pDesc->uAttr == DW_AT_low_pc) { if (pRange->fHaveLowAddress) { Log(("rtDwarfDecode_LowHighPc: Duplicate DW_AT_low_pc\n")); return pCursor->rc = VERR_DWARF_BAD_INFO; } pRange->fHaveLowAddress = true; pRange->uLowAddress = uAddr; } else { if (pRange->fHaveHighAddress) { Log(("rtDwarfDecode_LowHighPc: Duplicate DW_AT_high_pc\n")); return pCursor->rc = VERR_DWARF_BAD_INFO; } pRange->fHaveHighAddress = true; pRange->fHaveHighIsAddress = uForm == DW_FORM_addr; if (!pRange->fHaveHighIsAddress && pRange->fHaveLowAddress) { pRange->fHaveHighIsAddress = true; pRange->uHighAddress = uAddr + pRange->uLowAddress; } else pRange->uHighAddress = uAddr; } pRange->cAttrs++; Log4((" %-20s %#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), uAddr, rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_Ranges(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFADDRRANGE), VERR_INTERNAL_ERROR_3); AssertReturn(pDesc->uAttr == DW_AT_ranges, VERR_INTERNAL_ERROR_3); NOREF(pDie); /* Decode it. */ uint64_t off; switch (uForm) { case DW_FORM_addr: off = rtDwarfCursor_GetNativeUOff(pCursor, 0); break; case DW_FORM_data4: off = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_data8: off = rtDwarfCursor_GetU64(pCursor, 0); break; case DW_FORM_sec_offset: off = rtDwarfCursor_GetUOff(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; /* Validate the offset and load the ranges. */ PRTDBGMODDWARF pThis = pCursor->pDwarfMod; if (off >= pThis->aSections[krtDbgModDwarfSect_ranges].cb) { Log(("rtDwarfDecode_Ranges: bad ranges off=%#llx\n", off)); return pCursor->rc = VERR_DWARF_BAD_POS; } if (!pThis->aSections[krtDbgModDwarfSect_ranges].pv) { int rc = rtDbgModDwarfLoadSection(pThis, krtDbgModDwarfSect_ranges); if (RT_FAILURE(rc)) return pCursor->rc = rc; } /* Store the result. */ PRTDWARFADDRRANGE pRange = (PRTDWARFADDRRANGE)pbMember; if (pRange->fHaveRanges) { Log(("rtDwarfDecode_Ranges: Duplicate DW_AT_ranges\n")); return pCursor->rc = VERR_DWARF_BAD_INFO; } pRange->fHaveRanges = true; pRange->cAttrs++; pRange->pbRanges = (uint8_t const *)pThis->aSections[krtDbgModDwarfSect_ranges].pv + (size_t)off; Log4((" %-20s TODO [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_Reference(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFREF), VERR_INTERNAL_ERROR_3); /* Decode it. */ uint64_t off; krtDwarfRef enmWrt = krtDwarfRef_SameUnit; switch (uForm) { case DW_FORM_ref1: off = rtDwarfCursor_GetU8(pCursor, 0); break; case DW_FORM_ref2: off = rtDwarfCursor_GetU16(pCursor, 0); break; case DW_FORM_ref4: off = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_ref8: off = rtDwarfCursor_GetU64(pCursor, 0); break; case DW_FORM_ref_udata: off = rtDwarfCursor_GetULeb128(pCursor, 0); break; case DW_FORM_ref_addr: enmWrt = krtDwarfRef_InfoSection; off = rtDwarfCursor_GetUOff(pCursor, 0); break; case DW_FORM_ref_sig8: enmWrt = krtDwarfRef_TypeId64; off = rtDwarfCursor_GetU64(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; /* Validate the offset and convert to debug_info relative offsets. */ if (enmWrt == krtDwarfRef_InfoSection) { if (off >= pCursor->pDwarfMod->aSections[krtDbgModDwarfSect_info].cb) { Log(("rtDwarfDecode_Reference: bad info off=%#llx\n", off)); return pCursor->rc = VERR_DWARF_BAD_POS; } } else if (enmWrt == krtDwarfRef_SameUnit) { PRTDWARFDIECOMPILEUNIT pUnit = rtDwarfDie_GetCompileUnit(pDie); if (off >= pUnit->cbUnit) { Log(("rtDwarfDecode_Reference: bad unit off=%#llx\n", off)); return pCursor->rc = VERR_DWARF_BAD_POS; } off += pUnit->offUnit; enmWrt = krtDwarfRef_InfoSection; } /* else: not bother verifying/resolving the indirect type reference yet. */ /* Store it */ PRTDWARFREF pRef = (PRTDWARFREF)pbMember; pRef->enmWrt = enmWrt; pRef->off = off; Log4((" %-20s %d:%#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), enmWrt, off, rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_SectOff(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(RTDWARFREF), VERR_INTERNAL_ERROR_3); NOREF(pDie); uint64_t off; switch (uForm) { case DW_FORM_data4: off = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_data8: off = rtDwarfCursor_GetU64(pCursor, 0); break; case DW_FORM_sec_offset: off = rtDwarfCursor_GetUOff(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x (%s)\n", uForm, rtDwarfLog_FormName(uForm)), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; krtDbgModDwarfSect enmSect; krtDwarfRef enmWrt; switch (pDesc->uAttr) { case DW_AT_stmt_list: enmSect = krtDbgModDwarfSect_line; enmWrt = krtDwarfRef_LineSection; break; case DW_AT_macro_info: enmSect = krtDbgModDwarfSect_loc; enmWrt = krtDwarfRef_LocSection; break; case DW_AT_ranges: enmSect = krtDbgModDwarfSect_ranges; enmWrt = krtDwarfRef_RangesSection; break; default: AssertMsgFailedReturn(("%u (%s)\n", pDesc->uAttr, rtDwarfLog_AttrName(pDesc->uAttr)), VERR_INTERNAL_ERROR_4); } size_t cbSect = pCursor->pDwarfMod->aSections[enmSect].cb; if (off >= cbSect) { /* Watcom generates offset past the end of the section, increasing the offset by one for each compile unit. So, just fudge it. */ Log(("rtDwarfDecode_SectOff: bad off=%#llx, attr %#x (%s), enmSect=%d cb=%#llx; Assuming watcom/gcc.\n", off, pDesc->uAttr, rtDwarfLog_AttrName(pDesc->uAttr), enmSect, cbSect)); off = cbSect; } PRTDWARFREF pRef = (PRTDWARFREF)pbMember; pRef->enmWrt = enmWrt; pRef->off = off; Log4((" %-20s %d:%#010llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), enmWrt, off, rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_String(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { AssertReturn(ATTR_GET_SIZE(pDesc) == sizeof(const char *), VERR_INTERNAL_ERROR_3); NOREF(pDie); const char *psz; switch (uForm) { case DW_FORM_string: psz = rtDwarfCursor_GetSZ(pCursor, NULL); break; case DW_FORM_strp: psz = rtDwarfDecodeHlp_GetStrp(pCursor->pDwarfMod, pCursor, NULL); break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } *(const char **)pbMember = psz; Log4((" %-20s '%s' [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), psz, rtDwarfLog_FormName(uForm))); return pCursor->rc; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_UnsignedInt(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { NOREF(pDie); uint64_t u64Val; switch (uForm) { case DW_FORM_udata: u64Val = rtDwarfCursor_GetULeb128(pCursor, 0); break; case DW_FORM_data1: u64Val = rtDwarfCursor_GetU8(pCursor, 0); break; case DW_FORM_data2: u64Val = rtDwarfCursor_GetU16(pCursor, 0); break; case DW_FORM_data4: u64Val = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_data8: u64Val = rtDwarfCursor_GetU64(pCursor, 0); break; default: AssertMsgFailedReturn(("%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } if (RT_FAILURE(pCursor->rc)) return pCursor->rc; switch (ATTR_GET_SIZE(pDesc)) { case 1: *pbMember = (uint8_t)u64Val; if (*pbMember != u64Val) { AssertFailed(); return VERR_OUT_OF_RANGE; } break; case 2: *(uint16_t *)pbMember = (uint16_t)u64Val; if (*(uint16_t *)pbMember != u64Val) { AssertFailed(); return VERR_OUT_OF_RANGE; } break; case 4: *(uint32_t *)pbMember = (uint32_t)u64Val; if (*(uint32_t *)pbMember != u64Val) { AssertFailed(); return VERR_OUT_OF_RANGE; } break; case 8: *(uint64_t *)pbMember = (uint64_t)u64Val; if (*(uint64_t *)pbMember != u64Val) { AssertFailed(); return VERR_OUT_OF_RANGE; } break; default: AssertMsgFailedReturn(("%#x\n", ATTR_GET_SIZE(pDesc)), VERR_INTERNAL_ERROR_2); } return VINF_SUCCESS; } /** * Initialize location interpreter state from cursor & form. * * @returns IPRT status code. * @retval VERR_NOT_FOUND if no location information (i.e. there is source but * it resulted in no byte code). * @param pLoc The location state structure to initialize. * @param pCursor The cursor to read from. * @param uForm The attribute form. */ static int rtDwarfLoc_Init(PRTDWARFLOCST pLoc, PRTDWARFCURSOR pCursor, uint32_t uForm) { uint32_t cbBlock; switch (uForm) { case DW_FORM_block1: cbBlock = rtDwarfCursor_GetU8(pCursor, 0); break; case DW_FORM_block2: cbBlock = rtDwarfCursor_GetU16(pCursor, 0); break; case DW_FORM_block4: cbBlock = rtDwarfCursor_GetU32(pCursor, 0); break; case DW_FORM_block: cbBlock = rtDwarfCursor_GetULeb128(pCursor, 0); break; default: AssertMsgFailedReturn(("uForm=%#x\n", uForm), VERR_DWARF_UNEXPECTED_FORM); } if (!cbBlock) return VERR_NOT_FOUND; int rc = rtDwarfCursor_InitForBlock(&pLoc->Cursor, pCursor, cbBlock); if (RT_FAILURE(rc)) return rc; pLoc->iTop = -1; return VINF_SUCCESS; } /** * Pushes a value onto the stack. * * @returns VINF_SUCCESS or VERR_DWARF_STACK_OVERFLOW. * @param pLoc The state. * @param uValue The value to push. */ static int rtDwarfLoc_Push(PRTDWARFLOCST pLoc, uint64_t uValue) { int iTop = pLoc->iTop + 1; AssertReturn((unsigned)iTop < RT_ELEMENTS(pLoc->auStack), VERR_DWARF_STACK_OVERFLOW); pLoc->auStack[iTop] = uValue; pLoc->iTop = iTop; return VINF_SUCCESS; } static int rtDwarfLoc_Evaluate(PRTDWARFLOCST pLoc, void *pvLater, void *pvUser) { RT_NOREF_PV(pvLater); RT_NOREF_PV(pvUser); while (!rtDwarfCursor_IsAtEndOfUnit(&pLoc->Cursor)) { /* Read the next opcode.*/ uint8_t const bOpcode = rtDwarfCursor_GetU8(&pLoc->Cursor, 0); /* Get its operands. */ uint64_t uOperand1 = 0; uint64_t uOperand2 = 0; switch (bOpcode) { case DW_OP_addr: uOperand1 = rtDwarfCursor_GetNativeUOff(&pLoc->Cursor, 0); break; case DW_OP_pick: case DW_OP_const1u: case DW_OP_deref_size: case DW_OP_xderef_size: uOperand1 = rtDwarfCursor_GetU8(&pLoc->Cursor, 0); break; case DW_OP_const1s: uOperand1 = (int8_t)rtDwarfCursor_GetU8(&pLoc->Cursor, 0); break; case DW_OP_const2u: uOperand1 = rtDwarfCursor_GetU16(&pLoc->Cursor, 0); break; case DW_OP_skip: case DW_OP_bra: case DW_OP_const2s: uOperand1 = (int16_t)rtDwarfCursor_GetU16(&pLoc->Cursor, 0); break; case DW_OP_const4u: uOperand1 = rtDwarfCursor_GetU32(&pLoc->Cursor, 0); break; case DW_OP_const4s: uOperand1 = (int32_t)rtDwarfCursor_GetU32(&pLoc->Cursor, 0); break; case DW_OP_const8u: uOperand1 = rtDwarfCursor_GetU64(&pLoc->Cursor, 0); break; case DW_OP_const8s: uOperand1 = rtDwarfCursor_GetU64(&pLoc->Cursor, 0); break; case DW_OP_regx: case DW_OP_piece: case DW_OP_plus_uconst: case DW_OP_constu: uOperand1 = rtDwarfCursor_GetULeb128(&pLoc->Cursor, 0); break; case DW_OP_consts: case DW_OP_fbreg: case DW_OP_breg0+0: case DW_OP_breg0+1: case DW_OP_breg0+2: case DW_OP_breg0+3: case DW_OP_breg0+4: case DW_OP_breg0+5: case DW_OP_breg0+6: case DW_OP_breg0+7: case DW_OP_breg0+8: case DW_OP_breg0+9: case DW_OP_breg0+10: case DW_OP_breg0+11: case DW_OP_breg0+12: case DW_OP_breg0+13: case DW_OP_breg0+14: case DW_OP_breg0+15: case DW_OP_breg0+16: case DW_OP_breg0+17: case DW_OP_breg0+18: case DW_OP_breg0+19: case DW_OP_breg0+20: case DW_OP_breg0+21: case DW_OP_breg0+22: case DW_OP_breg0+23: case DW_OP_breg0+24: case DW_OP_breg0+25: case DW_OP_breg0+26: case DW_OP_breg0+27: case DW_OP_breg0+28: case DW_OP_breg0+29: case DW_OP_breg0+30: case DW_OP_breg0+31: uOperand1 = rtDwarfCursor_GetSLeb128(&pLoc->Cursor, 0); break; case DW_OP_bregx: uOperand1 = rtDwarfCursor_GetULeb128(&pLoc->Cursor, 0); uOperand2 = rtDwarfCursor_GetSLeb128(&pLoc->Cursor, 0); break; } if (RT_FAILURE(pLoc->Cursor.rc)) break; /* Interpret the opcode. */ int rc; switch (bOpcode) { case DW_OP_const1u: case DW_OP_const1s: case DW_OP_const2u: case DW_OP_const2s: case DW_OP_const4u: case DW_OP_const4s: case DW_OP_const8u: case DW_OP_const8s: case DW_OP_constu: case DW_OP_consts: case DW_OP_addr: rc = rtDwarfLoc_Push(pLoc, uOperand1); break; case DW_OP_lit0 + 0: case DW_OP_lit0 + 1: case DW_OP_lit0 + 2: case DW_OP_lit0 + 3: case DW_OP_lit0 + 4: case DW_OP_lit0 + 5: case DW_OP_lit0 + 6: case DW_OP_lit0 + 7: case DW_OP_lit0 + 8: case DW_OP_lit0 + 9: case DW_OP_lit0 + 10: case DW_OP_lit0 + 11: case DW_OP_lit0 + 12: case DW_OP_lit0 + 13: case DW_OP_lit0 + 14: case DW_OP_lit0 + 15: case DW_OP_lit0 + 16: case DW_OP_lit0 + 17: case DW_OP_lit0 + 18: case DW_OP_lit0 + 19: case DW_OP_lit0 + 20: case DW_OP_lit0 + 21: case DW_OP_lit0 + 22: case DW_OP_lit0 + 23: case DW_OP_lit0 + 24: case DW_OP_lit0 + 25: case DW_OP_lit0 + 26: case DW_OP_lit0 + 27: case DW_OP_lit0 + 28: case DW_OP_lit0 + 29: case DW_OP_lit0 + 30: case DW_OP_lit0 + 31: rc = rtDwarfLoc_Push(pLoc, bOpcode - DW_OP_lit0); break; case DW_OP_nop: break; case DW_OP_dup: /** @todo 0 operands. */ case DW_OP_drop: /** @todo 0 operands. */ case DW_OP_over: /** @todo 0 operands. */ case DW_OP_pick: /** @todo 1 operands, a 1-byte stack index. */ case DW_OP_swap: /** @todo 0 operands. */ case DW_OP_rot: /** @todo 0 operands. */ case DW_OP_abs: /** @todo 0 operands. */ case DW_OP_and: /** @todo 0 operands. */ case DW_OP_div: /** @todo 0 operands. */ case DW_OP_minus: /** @todo 0 operands. */ case DW_OP_mod: /** @todo 0 operands. */ case DW_OP_mul: /** @todo 0 operands. */ case DW_OP_neg: /** @todo 0 operands. */ case DW_OP_not: /** @todo 0 operands. */ case DW_OP_or: /** @todo 0 operands. */ case DW_OP_plus: /** @todo 0 operands. */ case DW_OP_plus_uconst: /** @todo 1 operands, a ULEB128 addend. */ case DW_OP_shl: /** @todo 0 operands. */ case DW_OP_shr: /** @todo 0 operands. */ case DW_OP_shra: /** @todo 0 operands. */ case DW_OP_xor: /** @todo 0 operands. */ case DW_OP_skip: /** @todo 1 signed 2-byte constant. */ case DW_OP_bra: /** @todo 1 signed 2-byte constant. */ case DW_OP_eq: /** @todo 0 operands. */ case DW_OP_ge: /** @todo 0 operands. */ case DW_OP_gt: /** @todo 0 operands. */ case DW_OP_le: /** @todo 0 operands. */ case DW_OP_lt: /** @todo 0 operands. */ case DW_OP_ne: /** @todo 0 operands. */ case DW_OP_reg0 + 0: case DW_OP_reg0 + 1: case DW_OP_reg0 + 2: case DW_OP_reg0 + 3: /** @todo 0 operands - reg 0..31. */ case DW_OP_reg0 + 4: case DW_OP_reg0 + 5: case DW_OP_reg0 + 6: case DW_OP_reg0 + 7: case DW_OP_reg0 + 8: case DW_OP_reg0 + 9: case DW_OP_reg0 + 10: case DW_OP_reg0 + 11: case DW_OP_reg0 + 12: case DW_OP_reg0 + 13: case DW_OP_reg0 + 14: case DW_OP_reg0 + 15: case DW_OP_reg0 + 16: case DW_OP_reg0 + 17: case DW_OP_reg0 + 18: case DW_OP_reg0 + 19: case DW_OP_reg0 + 20: case DW_OP_reg0 + 21: case DW_OP_reg0 + 22: case DW_OP_reg0 + 23: case DW_OP_reg0 + 24: case DW_OP_reg0 + 25: case DW_OP_reg0 + 26: case DW_OP_reg0 + 27: case DW_OP_reg0 + 28: case DW_OP_reg0 + 29: case DW_OP_reg0 + 30: case DW_OP_reg0 + 31: case DW_OP_breg0+ 0: case DW_OP_breg0+ 1: case DW_OP_breg0+ 2: case DW_OP_breg0+ 3: /** @todo 1 operand, a SLEB128 offset. */ case DW_OP_breg0+ 4: case DW_OP_breg0+ 5: case DW_OP_breg0+ 6: case DW_OP_breg0+ 7: case DW_OP_breg0+ 8: case DW_OP_breg0+ 9: case DW_OP_breg0+ 10: case DW_OP_breg0+ 11: case DW_OP_breg0+ 12: case DW_OP_breg0+ 13: case DW_OP_breg0+ 14: case DW_OP_breg0+ 15: case DW_OP_breg0+ 16: case DW_OP_breg0+ 17: case DW_OP_breg0+ 18: case DW_OP_breg0+ 19: case DW_OP_breg0+ 20: case DW_OP_breg0+ 21: case DW_OP_breg0+ 22: case DW_OP_breg0+ 23: case DW_OP_breg0+ 24: case DW_OP_breg0+ 25: case DW_OP_breg0+ 26: case DW_OP_breg0+ 27: case DW_OP_breg0+ 28: case DW_OP_breg0+ 29: case DW_OP_breg0+ 30: case DW_OP_breg0+ 31: case DW_OP_piece: /** @todo 1 operand, a ULEB128 size of piece addressed. */ case DW_OP_regx: /** @todo 1 operand, a ULEB128 register. */ case DW_OP_fbreg: /** @todo 1 operand, a SLEB128 offset. */ case DW_OP_bregx: /** @todo 2 operands, a ULEB128 register followed by a SLEB128 offset. */ case DW_OP_deref: /** @todo 0 operands. */ case DW_OP_deref_size: /** @todo 1 operand, a 1-byte size of data retrieved. */ case DW_OP_xderef: /** @todo 0 operands. */ case DW_OP_xderef_size: /** @todo 1 operand, a 1-byte size of data retrieved. */ AssertMsgFailedReturn(("bOpcode=%#x\n", bOpcode), VERR_DWARF_TODO); default: AssertMsgFailedReturn(("bOpcode=%#x\n", bOpcode), VERR_DWARF_UNKNOWN_LOC_OPCODE); } } return pLoc->Cursor.rc; } /** @callback_method_impl{FNRTDWARFATTRDECODER} */ static DECLCALLBACK(int) rtDwarfDecode_SegmentLoc(PRTDWARFDIE pDie, uint8_t *pbMember, PCRTDWARFATTRDESC pDesc, uint32_t uForm, PRTDWARFCURSOR pCursor) { NOREF(pDie); AssertReturn(ATTR_GET_SIZE(pDesc) == 2, VERR_DWARF_IPE); int rc; if ( uForm == DW_FORM_block || uForm == DW_FORM_block1 || uForm == DW_FORM_block2 || uForm == DW_FORM_block4) { RTDWARFLOCST LocSt; rc = rtDwarfLoc_Init(&LocSt, pCursor, uForm); if (RT_SUCCESS(rc)) { rc = rtDwarfLoc_Evaluate(&LocSt, NULL, NULL); if (RT_SUCCESS(rc)) { if (LocSt.iTop >= 0) { *(uint16_t *)pbMember = LocSt.auStack[LocSt.iTop]; Log4((" %-20s %#06llx [%s]\n", rtDwarfLog_AttrName(pDesc->uAttr), LocSt.auStack[LocSt.iTop], rtDwarfLog_FormName(uForm))); return VINF_SUCCESS; } rc = VERR_DWARF_STACK_UNDERFLOW; } } } else rc = rtDwarfDecode_UnsignedInt(pDie, pbMember, pDesc, uForm, pCursor); return rc; } /* * * DWARF debug_info parser * DWARF debug_info parser * DWARF debug_info parser * */ /** * Special hack to get the name and/or linkage name for a subprogram via a * specification reference. * * Since this is a hack, we ignore failure. * * If we want to really make use of DWARF info, we'll have to create some kind * of lookup tree for handling this. But currently we don't, so a hack will * suffice. * * @param pThis The DWARF instance. * @param pSubProgram The subprogram which is short on names. */ static void rtDwarfInfo_TryGetSubProgramNameFromSpecRef(PRTDBGMODDWARF pThis, PRTDWARFDIESUBPROGRAM pSubProgram) { /* * Must have a spec ref, and it must be in the info section. */ if (pSubProgram->SpecRef.enmWrt != krtDwarfRef_InfoSection) return; /* * Create a cursor for reading the info and then the abbrivation code * starting the off the DIE. */ RTDWARFCURSOR InfoCursor; int rc = rtDwarfCursor_InitWithOffset(&InfoCursor, pThis, krtDbgModDwarfSect_info, pSubProgram->SpecRef.off); if (RT_FAILURE(rc)) return; uint32_t uAbbrCode = rtDwarfCursor_GetULeb128AsU32(&InfoCursor, UINT32_MAX); if (uAbbrCode) { /* Only references to subprogram tags are interesting here. */ PCRTDWARFABBREV pAbbrev = rtDwarfAbbrev_Lookup(pThis, uAbbrCode); if ( pAbbrev && pAbbrev->uTag == DW_TAG_subprogram) { /* * Use rtDwarfInfo_ParseDie to do the parsing, but with a different * attribute spec than usual. */ rtDwarfInfo_ParseDie(pThis, &pSubProgram->Core, &g_SubProgramSpecHackDesc, &InfoCursor, pAbbrev, false /*fInitDie*/); } } rtDwarfCursor_Delete(&InfoCursor, VINF_SUCCESS); } /** * Select which name to use. * * @returns One of the names. * @param pszName The DWARF name, may exclude namespace and class. * Can also be NULL. * @param pszLinkageName The linkage name. Can be NULL. */ static const char *rtDwarfInfo_SelectName(const char *pszName, const char *pszLinkageName) { if (!pszName || !pszLinkageName) return pszName ? pszName : pszLinkageName; /* * Some heuristics for selecting the link name if the normal name is missing * namespace or class prefixes. */ size_t cchName = strlen(pszName); size_t cchLinkageName = strlen(pszLinkageName); if (cchLinkageName <= cchName + 1) return pszName; const char *psz = strstr(pszLinkageName, pszName); if (!psz || psz - pszLinkageName < 4) return pszName; return pszLinkageName; } /** * Parse the attributes of a DIE. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param pDie The internal DIE structure to fill. */ static int rtDwarfInfo_SnoopSymbols(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie) { int rc = VINF_SUCCESS; switch (pDie->uTag) { case DW_TAG_subprogram: { PRTDWARFDIESUBPROGRAM pSubProgram = (PRTDWARFDIESUBPROGRAM)pDie; /* Obtain referenced specification there is only partial info. */ if ( pSubProgram->PcRange.cAttrs && !pSubProgram->pszName) rtDwarfInfo_TryGetSubProgramNameFromSpecRef(pThis, pSubProgram); if (pSubProgram->PcRange.cAttrs) { if (pSubProgram->PcRange.fHaveRanges) Log5(("subprogram %s (%s) \n", pSubProgram->pszName, pSubProgram->pszLinkageName)); else { Log5(("subprogram %s (%s) %#llx-%#llx%s\n", pSubProgram->pszName, pSubProgram->pszLinkageName, pSubProgram->PcRange.uLowAddress, pSubProgram->PcRange.uHighAddress, pSubProgram->PcRange.cAttrs == 2 ? "" : " !bad!")); if ( ( pSubProgram->pszName || pSubProgram->pszLinkageName) && pSubProgram->PcRange.cAttrs == 2) { if (pThis->iWatcomPass == 1) rc = rtDbgModDwarfRecordSegOffset(pThis, pSubProgram->uSegment, pSubProgram->PcRange.uHighAddress); else { RTDBGSEGIDX iSeg; RTUINTPTR offSeg; rc = rtDbgModDwarfLinkAddressToSegOffset(pThis, pSubProgram->uSegment, pSubProgram->PcRange.uLowAddress, &iSeg, &offSeg); if (RT_SUCCESS(rc)) { uint64_t cb; if (pSubProgram->PcRange.uHighAddress >= pSubProgram->PcRange.uLowAddress) cb = pSubProgram->PcRange.uHighAddress - pSubProgram->PcRange.uLowAddress; else cb = 1; rc = RTDbgModSymbolAdd(pThis->hCnt, rtDwarfInfo_SelectName(pSubProgram->pszName, pSubProgram->pszLinkageName), iSeg, offSeg, cb, 0 /*fFlags*/, NULL /*piOrdinal*/); if (RT_FAILURE(rc)) { if ( rc == VERR_DBG_DUPLICATE_SYMBOL || rc == VERR_DBG_ADDRESS_CONFLICT /** @todo figure why this happens with 10.6.8 mach_kernel, 32-bit. */ ) rc = VINF_SUCCESS; else AssertMsgFailed(("%Rrc\n", rc)); } } else if ( pSubProgram->PcRange.uLowAddress == 0 /* see with vmlinux */ && pSubProgram->PcRange.uHighAddress == 0) { Log5(("rtDbgModDwarfLinkAddressToSegOffset: Ignoring empty range.\n")); rc = VINF_SUCCESS; /* ignore */ } else { AssertRC(rc); Log5(("rtDbgModDwarfLinkAddressToSegOffset failed: %Rrc\n", rc)); } } } } } else Log5(("subprogram %s (%s) external\n", pSubProgram->pszName, pSubProgram->pszLinkageName)); break; } case DW_TAG_label: { PCRTDWARFDIELABEL pLabel = (PCRTDWARFDIELABEL)pDie; //if (pLabel->fExternal) { Log5(("label %s %#x:%#llx\n", pLabel->pszName, pLabel->uSegment, pLabel->Address.uAddress)); if (pThis->iWatcomPass == 1) rc = rtDbgModDwarfRecordSegOffset(pThis, pLabel->uSegment, pLabel->Address.uAddress); else if (pLabel->pszName && *pLabel->pszName != '\0') /* Seen empty labels with isolinux. */ { RTDBGSEGIDX iSeg; RTUINTPTR offSeg; rc = rtDbgModDwarfLinkAddressToSegOffset(pThis, pLabel->uSegment, pLabel->Address.uAddress, &iSeg, &offSeg); AssertRC(rc); if (RT_SUCCESS(rc)) { rc = RTDbgModSymbolAdd(pThis->hCnt, pLabel->pszName, iSeg, offSeg, 0 /*cb*/, 0 /*fFlags*/, NULL /*piOrdinal*/); AssertMsg(RT_SUCCESS(rc) || rc == VERR_DBG_ADDRESS_CONFLICT, ("%Rrc %s %x:%x\n", rc, pLabel->pszName, iSeg, offSeg)); } else Log5(("rtDbgModDwarfLinkAddressToSegOffset failed: %Rrc\n", rc)); /* Ignore errors regarding local labels. */ if (RT_FAILURE(rc) && !pLabel->fExternal) rc = -rc; } } break; } } return rc; } /** * Initializes the non-core fields of an internal DIE structure. * * @param pDie The DIE structure. * @param pDieDesc The DIE descriptor. */ static void rtDwarfInfo_InitDie(PRTDWARFDIE pDie, PCRTDWARFDIEDESC pDieDesc) { size_t i = pDieDesc->cAttributes; while (i-- > 0) { switch (pDieDesc->paAttributes[i].cbInit & ATTR_INIT_MASK) { case ATTR_INIT_ZERO: /* Nothing to do (RTMemAllocZ). */ break; case ATTR_INIT_FFFS: switch (pDieDesc->paAttributes[i].cbInit & ATTR_SIZE_MASK) { case 1: *(uint8_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT8_MAX; break; case 2: *(uint16_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT16_MAX; break; case 4: *(uint32_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT32_MAX; break; case 8: *(uint64_t *)((uintptr_t)pDie + pDieDesc->paAttributes[i].off) = UINT64_MAX; break; default: AssertFailed(); memset((uint8_t *)pDie + pDieDesc->paAttributes[i].off, 0xff, pDieDesc->paAttributes[i].cbInit & ATTR_SIZE_MASK); break; } break; default: AssertFailed(); } } } /** * Creates a new internal DIE structure and links it up. * * @returns Pointer to the new DIE structure. * @param pThis The DWARF instance. * @param pDieDesc The DIE descriptor (for size and init). * @param pAbbrev The abbreviation cache entry. * @param pParent The parent DIE (NULL if unit). */ static PRTDWARFDIE rtDwarfInfo_NewDie(PRTDBGMODDWARF pThis, PCRTDWARFDIEDESC pDieDesc, PCRTDWARFABBREV pAbbrev, PRTDWARFDIE pParent) { NOREF(pThis); Assert(pDieDesc->cbDie >= sizeof(RTDWARFDIE)); #ifdef RTDBGMODDWARF_WITH_MEM_CACHE uint32_t iAllocator = pDieDesc->cbDie > pThis->aDieAllocators[0].cbMax; Assert(pDieDesc->cbDie <= pThis->aDieAllocators[iAllocator].cbMax); PRTDWARFDIE pDie = (PRTDWARFDIE)RTMemCacheAlloc(pThis->aDieAllocators[iAllocator].hMemCache); #else PRTDWARFDIE pDie = (PRTDWARFDIE)RTMemAllocZ(pDieDesc->cbDie); #endif if (pDie) { #ifdef RTDBGMODDWARF_WITH_MEM_CACHE RT_BZERO(pDie, pDieDesc->cbDie); pDie->iAllocator = iAllocator; #endif rtDwarfInfo_InitDie(pDie, pDieDesc); pDie->uTag = pAbbrev->uTag; pDie->offSpec = pAbbrev->offSpec; pDie->pParent = pParent; if (pParent) RTListAppend(&pParent->ChildList, &pDie->SiblingNode); else RTListInit(&pDie->SiblingNode); RTListInit(&pDie->ChildList); } return pDie; } /** * Free all children of a DIE. * * @param pThis The DWARF instance. * @param pParentDie The parent DIE. */ static void rtDwarfInfo_FreeChildren(PRTDBGMODDWARF pThis, PRTDWARFDIE pParentDie) { PRTDWARFDIE pChild, pNextChild; RTListForEachSafe(&pParentDie->ChildList, pChild, pNextChild, RTDWARFDIE, SiblingNode) { if (!RTListIsEmpty(&pChild->ChildList)) rtDwarfInfo_FreeChildren(pThis, pChild); RTListNodeRemove(&pChild->SiblingNode); #ifdef RTDBGMODDWARF_WITH_MEM_CACHE RTMemCacheFree(pThis->aDieAllocators[pChild->iAllocator].hMemCache, pChild); #else RTMemFree(pChild); #endif } } /** * Free a DIE an all its children. * * @param pThis The DWARF instance. * @param pDie The DIE to free. */ static void rtDwarfInfo_FreeDie(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie) { rtDwarfInfo_FreeChildren(pThis, pDie); RTListNodeRemove(&pDie->SiblingNode); #ifdef RTDBGMODDWARF_WITH_MEM_CACHE RTMemCacheFree(pThis->aDieAllocators[pDie->iAllocator].hMemCache, pDie); #else RTMemFree(pChild); #endif } /** * Skips a form. * @returns IPRT status code * @param pCursor The cursor. * @param uForm The form to skip. */ static int rtDwarfInfo_SkipForm(PRTDWARFCURSOR pCursor, uint32_t uForm) { switch (uForm) { case DW_FORM_addr: return rtDwarfCursor_SkipBytes(pCursor, pCursor->cbNativeAddr); case DW_FORM_block: case DW_FORM_exprloc: return rtDwarfCursor_SkipBytes(pCursor, rtDwarfCursor_GetULeb128(pCursor, 0)); case DW_FORM_block1: return rtDwarfCursor_SkipBytes(pCursor, rtDwarfCursor_GetU8(pCursor, 0)); case DW_FORM_block2: return rtDwarfCursor_SkipBytes(pCursor, rtDwarfCursor_GetU16(pCursor, 0)); case DW_FORM_block4: return rtDwarfCursor_SkipBytes(pCursor, rtDwarfCursor_GetU32(pCursor, 0)); case DW_FORM_data1: case DW_FORM_ref1: case DW_FORM_flag: return rtDwarfCursor_SkipBytes(pCursor, 1); case DW_FORM_data2: case DW_FORM_ref2: return rtDwarfCursor_SkipBytes(pCursor, 2); case DW_FORM_data4: case DW_FORM_ref4: return rtDwarfCursor_SkipBytes(pCursor, 4); case DW_FORM_data8: case DW_FORM_ref8: case DW_FORM_ref_sig8: return rtDwarfCursor_SkipBytes(pCursor, 8); case DW_FORM_udata: case DW_FORM_sdata: case DW_FORM_ref_udata: return rtDwarfCursor_SkipLeb128(pCursor); case DW_FORM_string: rtDwarfCursor_GetSZ(pCursor, NULL); return pCursor->rc; case DW_FORM_indirect: return rtDwarfInfo_SkipForm(pCursor, rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX)); case DW_FORM_strp: case DW_FORM_ref_addr: case DW_FORM_sec_offset: return rtDwarfCursor_SkipBytes(pCursor, pCursor->f64bitDwarf ? 8 : 4); case DW_FORM_flag_present: return pCursor->rc; /* no data */ default: Log(("rtDwarfInfo_SkipForm: Unknown form %#x\n", uForm)); return VERR_DWARF_UNKNOWN_FORM; } } #ifdef SOME_UNUSED_FUNCTION /** * Skips a DIE. * * @returns IPRT status code. * @param pCursor The cursor. * @param pAbbrevCursor The abbreviation cursor. */ static int rtDwarfInfo_SkipDie(PRTDWARFCURSOR pCursor, PRTDWARFCURSOR pAbbrevCursor) { for (;;) { uint32_t uAttr = rtDwarfCursor_GetULeb128AsU32(pAbbrevCursor, 0); uint32_t uForm = rtDwarfCursor_GetULeb128AsU32(pAbbrevCursor, 0); if (uAttr == 0 && uForm == 0) break; int rc = rtDwarfInfo_SkipForm(pCursor, uForm); if (RT_FAILURE(rc)) return rc; } return RT_FAILURE(pCursor->rc) ? pCursor->rc : pAbbrevCursor->rc; } #endif /** * Parse the attributes of a DIE. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param pDie The internal DIE structure to fill. * @param pDieDesc The DIE descriptor. * @param pCursor The debug_info cursor. * @param pAbbrev The abbreviation cache entry. * @param fInitDie Whether to initialize the DIE first. If not (@c * false) it's safe to assume we're following a * DW_AT_specification or DW_AT_abstract_origin, * and that we shouldn't be snooping any symbols. */ static int rtDwarfInfo_ParseDie(PRTDBGMODDWARF pThis, PRTDWARFDIE pDie, PCRTDWARFDIEDESC pDieDesc, PRTDWARFCURSOR pCursor, PCRTDWARFABBREV pAbbrev, bool fInitDie) { RTDWARFCURSOR AbbrevCursor; int rc = rtDwarfCursor_InitWithOffset(&AbbrevCursor, pThis, krtDbgModDwarfSect_abbrev, pAbbrev->offSpec); if (RT_FAILURE(rc)) return rc; if (fInitDie) rtDwarfInfo_InitDie(pDie, pDieDesc); for (;;) { #ifdef LOG_ENABLED uint32_t const off = (uint32_t)(AbbrevCursor.pb - AbbrevCursor.pbStart); #endif uint32_t uAttr = rtDwarfCursor_GetULeb128AsU32(&AbbrevCursor, 0); uint32_t uForm = rtDwarfCursor_GetULeb128AsU32(&AbbrevCursor, 0); Log4((" %04x: %-23s [%s]\n", off, rtDwarfLog_AttrName(uAttr), rtDwarfLog_FormName(uForm))); if (uAttr == 0) break; if (uForm == DW_FORM_indirect) uForm = rtDwarfCursor_GetULeb128AsU32(pCursor, 0); /* Look up the attribute in the descriptor and invoke the decoder. */ PCRTDWARFATTRDESC pAttr = NULL; size_t i = pDieDesc->cAttributes; while (i-- > 0) if (pDieDesc->paAttributes[i].uAttr == uAttr) { pAttr = &pDieDesc->paAttributes[i]; rc = pAttr->pfnDecoder(pDie, (uint8_t *)pDie + pAttr->off, pAttr, uForm, pCursor); break; } /* Some house keeping. */ if (pAttr) pDie->cDecodedAttrs++; else { pDie->cUnhandledAttrs++; rc = rtDwarfInfo_SkipForm(pCursor, uForm); } if (RT_FAILURE(rc)) break; } rc = rtDwarfCursor_Delete(&AbbrevCursor, rc); if (RT_SUCCESS(rc)) rc = pCursor->rc; /* * Snoop up symbols on the way out. */ if (RT_SUCCESS(rc) && fInitDie) { rc = rtDwarfInfo_SnoopSymbols(pThis, pDie); /* Ignore duplicates, get work done instead. */ /** @todo clean up global/static symbol mess. */ if (rc == VERR_DBG_DUPLICATE_SYMBOL || rc == VERR_DBG_ADDRESS_CONFLICT) rc = VINF_SUCCESS; } return rc; } /** * Load the debug information of a unit. * * @returns IPRT status code. * @param pThis The DWARF instance. * @param pCursor The debug_info cursor. * @param fKeepDies Whether to keep the DIEs or discard them as soon * as possible. */ static int rtDwarfInfo_LoadUnit(PRTDBGMODDWARF pThis, PRTDWARFCURSOR pCursor, bool fKeepDies) { Log(("rtDwarfInfo_LoadUnit: %#x\n", rtDwarfCursor_CalcSectOffsetU32(pCursor))); /* * Read the compilation unit header. */ uint64_t offUnit = rtDwarfCursor_CalcSectOffsetU32(pCursor); uint64_t cbUnit = rtDwarfCursor_GetInitialLength(pCursor); cbUnit += rtDwarfCursor_CalcSectOffsetU32(pCursor) - offUnit; uint16_t const uVer = rtDwarfCursor_GetUHalf(pCursor, 0); if ( uVer < 2 || uVer > 4) return rtDwarfCursor_SkipUnit(pCursor); uint64_t const offAbbrev = rtDwarfCursor_GetUOff(pCursor, UINT64_MAX); uint8_t const cbNativeAddr = rtDwarfCursor_GetU8(pCursor, UINT8_MAX); if (RT_FAILURE(pCursor->rc)) return pCursor->rc; Log((" uVer=%d offAbbrev=%#llx cbNativeAddr=%d\n", uVer, offAbbrev, cbNativeAddr)); /* * Set up the abbreviation cache and store the native address size in the cursor. */ if (offAbbrev > UINT32_MAX) { Log(("Unexpected abbrviation code offset of %#llx\n", offAbbrev)); return VERR_DWARF_BAD_INFO; } rtDwarfAbbrev_SetUnitOffset(pThis, (uint32_t)offAbbrev); pCursor->cbNativeAddr = cbNativeAddr; /* * The first DIE is a compile or partial unit, parse it here. */ uint32_t uAbbrCode = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX); if (!uAbbrCode) { Log(("Unexpected abbrviation code of zero\n")); return VERR_DWARF_BAD_INFO; } PCRTDWARFABBREV pAbbrev = rtDwarfAbbrev_Lookup(pThis, uAbbrCode); if (!pAbbrev) return VERR_DWARF_ABBREV_NOT_FOUND; if ( pAbbrev->uTag != DW_TAG_compile_unit && pAbbrev->uTag != DW_TAG_partial_unit) { Log(("Unexpected compile/partial unit tag %#x\n", pAbbrev->uTag)); return VERR_DWARF_BAD_INFO; } PRTDWARFDIECOMPILEUNIT pUnit; pUnit = (PRTDWARFDIECOMPILEUNIT)rtDwarfInfo_NewDie(pThis, &g_CompileUnitDesc, pAbbrev, NULL /*pParent*/); if (!pUnit) return VERR_NO_MEMORY; pUnit->offUnit = offUnit; pUnit->cbUnit = cbUnit; pUnit->offAbbrev = offAbbrev; pUnit->cbNativeAddr = cbNativeAddr; pUnit->uDwarfVer = (uint8_t)uVer; RTListAppend(&pThis->CompileUnitList, &pUnit->Core.SiblingNode); int rc = rtDwarfInfo_ParseDie(pThis, &pUnit->Core, &g_CompileUnitDesc, pCursor, pAbbrev, true /*fInitDie*/); if (RT_FAILURE(rc)) return rc; /* * Parse DIEs. */ uint32_t cDepth = 0; PRTDWARFDIE pParentDie = &pUnit->Core; while (!rtDwarfCursor_IsAtEndOfUnit(pCursor)) { #ifdef LOG_ENABLED uint32_t offLog = rtDwarfCursor_CalcSectOffsetU32(pCursor); #endif uAbbrCode = rtDwarfCursor_GetULeb128AsU32(pCursor, UINT32_MAX); if (!uAbbrCode) { /* End of siblings, up one level. (Is this correct?) */ if (pParentDie->pParent) { pParentDie = pParentDie->pParent; cDepth--; if (!fKeepDies && pParentDie->pParent) rtDwarfInfo_FreeChildren(pThis, pParentDie); } } else { /* * Look up the abbreviation and match the tag up with a descriptor. */ pAbbrev = rtDwarfAbbrev_Lookup(pThis, uAbbrCode); if (!pAbbrev) return VERR_DWARF_ABBREV_NOT_FOUND; PCRTDWARFDIEDESC pDieDesc; const char *pszName; if (pAbbrev->uTag < RT_ELEMENTS(g_aTagDescs)) { Assert(g_aTagDescs[pAbbrev->uTag].uTag == pAbbrev->uTag || g_aTagDescs[pAbbrev->uTag].uTag == 0); pszName = g_aTagDescs[pAbbrev->uTag].pszName; pDieDesc = g_aTagDescs[pAbbrev->uTag].pDesc; } else { pszName = ""; pDieDesc = &g_CoreDieDesc; } Log4(("%08x: %*stag=%s (%#x, abbrev %u @ %#x)%s\n", offLog, cDepth * 2, "", pszName, pAbbrev->uTag, uAbbrCode, pAbbrev->offSpec - pAbbrev->cbHdr, pAbbrev->fChildren ? " has children" : "")); /* * Create a new internal DIE structure and parse the * attributes. */ PRTDWARFDIE pNewDie = rtDwarfInfo_NewDie(pThis, pDieDesc, pAbbrev, pParentDie); if (!pNewDie) return VERR_NO_MEMORY; if (pAbbrev->fChildren) { pParentDie = pNewDie; cDepth++; } rc = rtDwarfInfo_ParseDie(pThis, pNewDie, pDieDesc, pCursor, pAbbrev, true /*fInitDie*/); if (RT_FAILURE(rc)) return rc; if (!fKeepDies && !pAbbrev->fChildren) rtDwarfInfo_FreeDie(pThis, pNewDie); } } /* while more DIEs */ /* Unlink and free child DIEs if told to do so. */ if (!fKeepDies) rtDwarfInfo_FreeChildren(pThis, &pUnit->Core); return RT_SUCCESS(rc) ? pCursor->rc : rc; } /** * Extracts the symbols. * * The symbols are insered into the debug info container. * * @returns IPRT status code * @param pThis The DWARF instance. */ static int rtDwarfInfo_LoadAll(PRTDBGMODDWARF pThis) { RTDWARFCURSOR Cursor; int rc = rtDwarfCursor_Init(&Cursor, pThis, krtDbgModDwarfSect_info); if (RT_SUCCESS(rc)) { while ( !rtDwarfCursor_IsAtEnd(&Cursor) && RT_SUCCESS(rc)) rc = rtDwarfInfo_LoadUnit(pThis, &Cursor, false /* fKeepDies */); rc = rtDwarfCursor_Delete(&Cursor, rc); } return rc; } /* * * Public and image level symbol handling. * Public and image level symbol handling. * Public and image level symbol handling. * Public and image level symbol handling. * * */ #define RTDBGDWARF_SYM_ENUM_BASE_ADDRESS UINT32_C(0x200000) /** @callback_method_impl{FNRTLDRENUMSYMS, * Adds missing symbols from the image symbol table.} */ static DECLCALLBACK(int) rtDwarfSyms_EnumSymbolsCallback(RTLDRMOD hLdrMod, const char *pszSymbol, unsigned uSymbol, RTLDRADDR Value, void *pvUser) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser; RT_NOREF_PV(hLdrMod); RT_NOREF_PV(uSymbol); Assert(pThis->iWatcomPass != 1); RTLDRADDR uRva = Value - RTDBGDWARF_SYM_ENUM_BASE_ADDRESS; if ( Value >= RTDBGDWARF_SYM_ENUM_BASE_ADDRESS && uRva < _1G) { RTDBGSYMBOL SymInfo; RTINTPTR offDisp; int rc = RTDbgModSymbolByAddr(pThis->hCnt, RTDBGSEGIDX_RVA, uRva, RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &offDisp, &SymInfo); if ( RT_FAILURE(rc) || offDisp != 0) { rc = RTDbgModSymbolAdd(pThis->hCnt, pszSymbol, RTDBGSEGIDX_RVA, uRva, 1, 0 /*fFlags*/, NULL /*piOrdinal*/); Log(("Dwarf: Symbol #%05u %#018RTptr %s [%Rrc]\n", uSymbol, Value, pszSymbol, rc)); NOREF(rc); } } else Log(("Dwarf: Symbol #%05u %#018RTptr '%s' [SKIPPED - INVALID ADDRESS]\n", uSymbol, Value, pszSymbol)); return VINF_SUCCESS; } /** * Loads additional symbols from the pubnames section and the executable image. * * The symbols are insered into the debug info container. * * @returns IPRT status code * @param pThis The DWARF instance. */ static int rtDwarfSyms_LoadAll(PRTDBGMODDWARF pThis) { /* * pubnames. */ int rc = VINF_SUCCESS; if (pThis->aSections[krtDbgModDwarfSect_pubnames].fPresent) { // RTDWARFCURSOR Cursor; // int rc = rtDwarfCursor_Init(&Cursor, pThis, krtDbgModDwarfSect_info); // if (RT_SUCCESS(rc)) // { // while ( !rtDwarfCursor_IsAtEnd(&Cursor) // && RT_SUCCESS(rc)) // rc = rtDwarfInfo_LoadUnit(pThis, &Cursor, false /* fKeepDies */); // // rc = rtDwarfCursor_Delete(&Cursor, rc); // } // return rc; } /* * The executable image. */ if ( pThis->pImgMod && pThis->pImgMod->pImgVt->pfnEnumSymbols && pThis->iWatcomPass != 1 && RT_SUCCESS(rc)) { rc = pThis->pImgMod->pImgVt->pfnEnumSymbols(pThis->pImgMod, RTLDR_ENUM_SYMBOL_FLAGS_ALL | RTLDR_ENUM_SYMBOL_FLAGS_NO_FWD, RTDBGDWARF_SYM_ENUM_BASE_ADDRESS, rtDwarfSyms_EnumSymbolsCallback, pThis); } return rc; } /* * * DWARF Debug module implementation. * DWARF Debug module implementation. * DWARF Debug module implementation. * */ /** @interface_method_impl{RTDBGMODVTDBG,pfnUnwindFrame} */ static DECLCALLBACK(int) rtDbgModDwarf_UnwindFrame(PRTDBGMODINT pMod, RTDBGSEGIDX iSeg, RTUINTPTR off, PRTDBGUNWINDSTATE pState) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; /* * Unwinding info is stored in the '.debug_frame' section, or altertively * in the '.eh_frame' one in the image. In the latter case the dbgmodldr.cpp * part of the operation will take care of it. Since the sections contain the * same data, we just create a cursor and call a common function to do the job. */ if (pThis->aSections[krtDbgModDwarfSect_frame].fPresent) { RTDWARFCURSOR Cursor; int rc = rtDwarfCursor_Init(&Cursor, pThis, krtDbgModDwarfSect_frame); if (RT_SUCCESS(rc)) { /* Figure default pointer encoding from image arch. */ uint8_t bPtrEnc = rtDwarfUnwind_ArchToPtrEnc(pMod->pImgVt->pfnGetArch(pMod)); /* Make sure we've got both seg:off and rva for the input address. */ RTUINTPTR uRva = off; if (iSeg == RTDBGSEGIDX_RVA) rtDbgModDwarfRvaToSegOffset(pThis, uRva, &iSeg, &off); else rtDbgModDwarfSegOffsetToRva(pThis, iSeg, off, &uRva); /* Do the work */ rc = rtDwarfUnwind_Slow(&Cursor, 0 /** @todo .debug_frame RVA*/, iSeg, off, uRva, pState, bPtrEnc, false /*fIsEhFrame*/, pMod->pImgVt->pfnGetArch(pMod)); rc = rtDwarfCursor_Delete(&Cursor, rc); } return rc; } return VERR_DBG_NO_UNWIND_INFO; } /** @interface_method_impl{RTDBGMODVTDBG,pfnLineByAddr} */ static DECLCALLBACK(int) rtDbgModDwarf_LineByAddr(PRTDBGMODINT pMod, RTDBGSEGIDX iSeg, RTUINTPTR off, PRTINTPTR poffDisp, PRTDBGLINE pLineInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModLineByAddr(pThis->hCnt, iSeg, off, poffDisp, pLineInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnLineByOrdinal} */ static DECLCALLBACK(int) rtDbgModDwarf_LineByOrdinal(PRTDBGMODINT pMod, uint32_t iOrdinal, PRTDBGLINE pLineInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModLineByOrdinal(pThis->hCnt, iOrdinal, pLineInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnLineCount} */ static DECLCALLBACK(uint32_t) rtDbgModDwarf_LineCount(PRTDBGMODINT pMod) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModLineCount(pThis->hCnt); } /** @interface_method_impl{RTDBGMODVTDBG,pfnLineAdd} */ static DECLCALLBACK(int) rtDbgModDwarf_LineAdd(PRTDBGMODINT pMod, const char *pszFile, size_t cchFile, uint32_t uLineNo, uint32_t iSeg, RTUINTPTR off, uint32_t *piOrdinal) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; Assert(!pszFile[cchFile]); NOREF(cchFile); return RTDbgModLineAdd(pThis->hCnt, pszFile, uLineNo, iSeg, off, piOrdinal); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSymbolByAddr} */ static DECLCALLBACK(int) rtDbgModDwarf_SymbolByAddr(PRTDBGMODINT pMod, RTDBGSEGIDX iSeg, RTUINTPTR off, uint32_t fFlags, PRTINTPTR poffDisp, PRTDBGSYMBOL pSymInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModSymbolByAddr(pThis->hCnt, iSeg, off, fFlags, poffDisp, pSymInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSymbolByName} */ static DECLCALLBACK(int) rtDbgModDwarf_SymbolByName(PRTDBGMODINT pMod, const char *pszSymbol, size_t cchSymbol, PRTDBGSYMBOL pSymInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; Assert(!pszSymbol[cchSymbol]); RT_NOREF_PV(cchSymbol); return RTDbgModSymbolByName(pThis->hCnt, pszSymbol/*, cchSymbol*/, pSymInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSymbolByOrdinal} */ static DECLCALLBACK(int) rtDbgModDwarf_SymbolByOrdinal(PRTDBGMODINT pMod, uint32_t iOrdinal, PRTDBGSYMBOL pSymInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModSymbolByOrdinal(pThis->hCnt, iOrdinal, pSymInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSymbolCount} */ static DECLCALLBACK(uint32_t) rtDbgModDwarf_SymbolCount(PRTDBGMODINT pMod) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModSymbolCount(pThis->hCnt); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSymbolAdd} */ static DECLCALLBACK(int) rtDbgModDwarf_SymbolAdd(PRTDBGMODINT pMod, const char *pszSymbol, size_t cchSymbol, RTDBGSEGIDX iSeg, RTUINTPTR off, RTUINTPTR cb, uint32_t fFlags, uint32_t *piOrdinal) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; Assert(!pszSymbol[cchSymbol]); NOREF(cchSymbol); return RTDbgModSymbolAdd(pThis->hCnt, pszSymbol, iSeg, off, cb, fFlags, piOrdinal); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSegmentByIndex} */ static DECLCALLBACK(int) rtDbgModDwarf_SegmentByIndex(PRTDBGMODINT pMod, RTDBGSEGIDX iSeg, PRTDBGSEGMENT pSegInfo) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModSegmentByIndex(pThis->hCnt, iSeg, pSegInfo); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSegmentCount} */ static DECLCALLBACK(RTDBGSEGIDX) rtDbgModDwarf_SegmentCount(PRTDBGMODINT pMod) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModSegmentCount(pThis->hCnt); } /** @interface_method_impl{RTDBGMODVTDBG,pfnSegmentAdd} */ static DECLCALLBACK(int) rtDbgModDwarf_SegmentAdd(PRTDBGMODINT pMod, RTUINTPTR uRva, RTUINTPTR cb, const char *pszName, size_t cchName, uint32_t fFlags, PRTDBGSEGIDX piSeg) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; Assert(!pszName[cchName]); NOREF(cchName); return RTDbgModSegmentAdd(pThis->hCnt, uRva, cb, pszName, fFlags, piSeg); } /** @interface_method_impl{RTDBGMODVTDBG,pfnImageSize} */ static DECLCALLBACK(RTUINTPTR) rtDbgModDwarf_ImageSize(PRTDBGMODINT pMod) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; RTUINTPTR cb1 = RTDbgModImageSize(pThis->hCnt); RTUINTPTR cb2 = pThis->pImgMod->pImgVt->pfnImageSize(pMod); return RT_MAX(cb1, cb2); } /** @interface_method_impl{RTDBGMODVTDBG,pfnRvaToSegOff} */ static DECLCALLBACK(RTDBGSEGIDX) rtDbgModDwarf_RvaToSegOff(PRTDBGMODINT pMod, RTUINTPTR uRva, PRTUINTPTR poffSeg) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; return RTDbgModRvaToSegOff(pThis->hCnt, uRva, poffSeg); } /** @interface_method_impl{RTDBGMODVTDBG,pfnClose} */ static DECLCALLBACK(int) rtDbgModDwarf_Close(PRTDBGMODINT pMod) { PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pMod->pvDbgPriv; for (unsigned iSect = 0; iSect < RT_ELEMENTS(pThis->aSections); iSect++) if (pThis->aSections[iSect].pv) pThis->pDbgInfoMod->pImgVt->pfnUnmapPart(pThis->pDbgInfoMod, pThis->aSections[iSect].cb, &pThis->aSections[iSect].pv); RTDbgModRelease(pThis->hCnt); RTMemFree(pThis->paCachedAbbrevs); if (pThis->pNestedMod) { pThis->pNestedMod->pImgVt->pfnClose(pThis->pNestedMod); RTStrCacheRelease(g_hDbgModStrCache, pThis->pNestedMod->pszName); RTStrCacheRelease(g_hDbgModStrCache, pThis->pNestedMod->pszDbgFile); RTMemFree(pThis->pNestedMod); pThis->pNestedMod = NULL; } #ifdef RTDBGMODDWARF_WITH_MEM_CACHE uint32_t i = RT_ELEMENTS(pThis->aDieAllocators); while (i-- > 0) { RTMemCacheDestroy(pThis->aDieAllocators[i].hMemCache); pThis->aDieAllocators[i].hMemCache = NIL_RTMEMCACHE; } #endif RTMemFree(pThis); return VINF_SUCCESS; } /** @callback_method_impl{FNRTLDRENUMDBG} */ static DECLCALLBACK(int) rtDbgModDwarfEnumCallback(RTLDRMOD hLdrMod, PCRTLDRDBGINFO pDbgInfo, void *pvUser) { RT_NOREF_PV(hLdrMod); /* * Skip stuff we can't handle. */ if (pDbgInfo->enmType != RTLDRDBGINFOTYPE_DWARF) return VINF_SUCCESS; const char *pszSection = pDbgInfo->u.Dwarf.pszSection; if (!pszSection || !*pszSection) return VINF_SUCCESS; Assert(!pDbgInfo->pszExtFile); /* * Must have a part name starting with debug_ and possibly prefixed by dots * or underscores. */ if (!strncmp(pszSection, RT_STR_TUPLE(".debug_"))) /* ELF */ pszSection += sizeof(".debug_") - 1; else if (!strncmp(pszSection, RT_STR_TUPLE("__debug_"))) /* Mach-O */ pszSection += sizeof("__debug_") - 1; else if (!strcmp(pszSection, ".WATCOM_references")) return VINF_SUCCESS; /* Ignore special watcom section for now.*/ else if ( !strcmp(pszSection, "__apple_types") || !strcmp(pszSection, "__apple_namespac") || !strcmp(pszSection, "__apple_objc") || !strcmp(pszSection, "__apple_names")) return VINF_SUCCESS; /* Ignore special apple sections for now. */ else AssertMsgFailedReturn(("%s\n", pszSection), VINF_SUCCESS /*ignore*/); /* * Figure out which part we're talking about. */ krtDbgModDwarfSect enmSect; if (0) { /* dummy */ } #define ELSE_IF_STRCMP_SET(a_Name) else if (!strcmp(pszSection, #a_Name)) enmSect = krtDbgModDwarfSect_ ## a_Name ELSE_IF_STRCMP_SET(abbrev); ELSE_IF_STRCMP_SET(aranges); ELSE_IF_STRCMP_SET(frame); ELSE_IF_STRCMP_SET(info); ELSE_IF_STRCMP_SET(inlined); ELSE_IF_STRCMP_SET(line); ELSE_IF_STRCMP_SET(loc); ELSE_IF_STRCMP_SET(macinfo); ELSE_IF_STRCMP_SET(pubnames); ELSE_IF_STRCMP_SET(pubtypes); ELSE_IF_STRCMP_SET(ranges); ELSE_IF_STRCMP_SET(str); ELSE_IF_STRCMP_SET(types); #undef ELSE_IF_STRCMP_SET else { AssertMsgFailed(("%s\n", pszSection)); return VINF_SUCCESS; } /* * Record the section. */ PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)pvUser; AssertMsgReturn(!pThis->aSections[enmSect].fPresent, ("duplicate %s\n", pszSection), VINF_SUCCESS /*ignore*/); pThis->aSections[enmSect].fPresent = true; pThis->aSections[enmSect].offFile = pDbgInfo->offFile; pThis->aSections[enmSect].pv = NULL; pThis->aSections[enmSect].cb = (size_t)pDbgInfo->cb; pThis->aSections[enmSect].iDbgInfo = pDbgInfo->iDbgInfo; if (pThis->aSections[enmSect].cb != pDbgInfo->cb) pThis->aSections[enmSect].cb = ~(size_t)0; return VINF_SUCCESS; } static int rtDbgModDwarfTryOpenDbgFile(PRTDBGMODINT pDbgMod, PRTDBGMODDWARF pThis, RTLDRARCH enmArch) { if ( !pDbgMod->pszDbgFile || RTPathIsSame(pDbgMod->pszDbgFile, pDbgMod->pszImgFile) == (int)true /* returns VERR too */) return VERR_DBG_NO_MATCHING_INTERPRETER; /* * Only open the image. */ PRTDBGMODINT pDbgInfoMod = (PRTDBGMODINT)RTMemAllocZ(sizeof(*pDbgInfoMod)); if (!pDbgInfoMod) return VERR_NO_MEMORY; int rc; pDbgInfoMod->u32Magic = RTDBGMOD_MAGIC; pDbgInfoMod->cRefs = 1; if (RTStrCacheRetain(pDbgMod->pszDbgFile) != UINT32_MAX) { pDbgInfoMod->pszImgFile = pDbgMod->pszDbgFile; if (RTStrCacheRetain(pDbgMod->pszName) != UINT32_MAX) { pDbgInfoMod->pszName = pDbgMod->pszName; pDbgInfoMod->pImgVt = &g_rtDbgModVtImgLdr; rc = pDbgInfoMod->pImgVt->pfnTryOpen(pDbgInfoMod, enmArch, 0 /*fLdrFlags*/); if (RT_SUCCESS(rc)) { pThis->pDbgInfoMod = pDbgInfoMod; pThis->pNestedMod = pDbgInfoMod; return VINF_SUCCESS; } RTStrCacheRelease(g_hDbgModStrCache, pDbgInfoMod->pszName); } else rc = VERR_NO_STR_MEMORY; RTStrCacheRelease(g_hDbgModStrCache, pDbgInfoMod->pszImgFile); } else rc = VERR_NO_STR_MEMORY; RTMemFree(pDbgInfoMod); return rc; } /** @interface_method_impl{RTDBGMODVTDBG,pfnTryOpen} */ static DECLCALLBACK(int) rtDbgModDwarf_TryOpen(PRTDBGMODINT pMod, RTLDRARCH enmArch) { /* * DWARF is only supported when part of an image. */ if (!pMod->pImgVt) return VERR_DBG_NO_MATCHING_INTERPRETER; /* * Create the module instance data. */ PRTDBGMODDWARF pThis = (PRTDBGMODDWARF)RTMemAllocZ(sizeof(*pThis)); if (!pThis) return VERR_NO_MEMORY; pThis->pDbgInfoMod = pMod; pThis->pImgMod = pMod; RTListInit(&pThis->CompileUnitList); /** @todo better fUseLinkAddress heuristics! */ /* mach_kernel: */ if ( (pMod->pszDbgFile && strstr(pMod->pszDbgFile, "mach_kernel")) || (pMod->pszImgFile && strstr(pMod->pszImgFile, "mach_kernel")) || (pMod->pszImgFileSpecified && strstr(pMod->pszImgFileSpecified, "mach_kernel")) ) pThis->fUseLinkAddress = true; #ifdef RTDBGMODDWARF_WITH_MEM_CACHE AssertCompile(RT_ELEMENTS(pThis->aDieAllocators) == 2); pThis->aDieAllocators[0].cbMax = sizeof(RTDWARFDIE); pThis->aDieAllocators[1].cbMax = sizeof(RTDWARFDIECOMPILEUNIT); for (uint32_t i = 0; i < RT_ELEMENTS(g_aTagDescs); i++) if (g_aTagDescs[i].pDesc && g_aTagDescs[i].pDesc->cbDie > pThis->aDieAllocators[1].cbMax) pThis->aDieAllocators[1].cbMax = (uint32_t)g_aTagDescs[i].pDesc->cbDie; pThis->aDieAllocators[1].cbMax = RT_ALIGN_32(pThis->aDieAllocators[1].cbMax, sizeof(uint64_t)); for (uint32_t i = 0; i < RT_ELEMENTS(pThis->aDieAllocators); i++) { int rc = RTMemCacheCreate(&pThis->aDieAllocators[i].hMemCache, pThis->aDieAllocators[i].cbMax, sizeof(uint64_t), UINT32_MAX, NULL /*pfnCtor*/, NULL /*pfnDtor*/, NULL /*pvUser*/, 0 /*fFlags*/); if (RT_FAILURE(rc)) { while (i-- > 0) RTMemCacheDestroy(pThis->aDieAllocators[i].hMemCache); RTMemFree(pThis); return rc; } } #endif /* * If the debug file name is set, let's see if it's an ELF image with DWARF * inside it. In that case we'll have to deal with two image modules, one * for segments and address translation and one for the debug information. */ if (pMod->pszDbgFile != NULL) rtDbgModDwarfTryOpenDbgFile(pMod, pThis, enmArch); /* * Enumerate the debug info in the module, looking for DWARF bits. */ int rc = pThis->pDbgInfoMod->pImgVt->pfnEnumDbgInfo(pThis->pDbgInfoMod, rtDbgModDwarfEnumCallback, pThis); if (RT_SUCCESS(rc)) { if (pThis->aSections[krtDbgModDwarfSect_info].fPresent) { /* * Extract / explode the data we want (symbols and line numbers) * storing them in a container module. */ rc = RTDbgModCreate(&pThis->hCnt, pMod->pszName, 0 /*cbSeg*/, 0 /*fFlags*/); if (RT_SUCCESS(rc)) { pMod->pvDbgPriv = pThis; rc = rtDbgModDwarfAddSegmentsFromImage(pThis); if (RT_SUCCESS(rc)) rc = rtDwarfInfo_LoadAll(pThis); if (RT_SUCCESS(rc)) rc = rtDwarfSyms_LoadAll(pThis); if (RT_SUCCESS(rc)) rc = rtDwarfLine_ExplodeAll(pThis); if (RT_SUCCESS(rc) && pThis->iWatcomPass == 1) { rc = rtDbgModDwarfAddSegmentsFromPass1(pThis); pThis->iWatcomPass = 2; if (RT_SUCCESS(rc)) rc = rtDwarfInfo_LoadAll(pThis); if (RT_SUCCESS(rc)) rc = rtDwarfSyms_LoadAll(pThis); if (RT_SUCCESS(rc)) rc = rtDwarfLine_ExplodeAll(pThis); } /* * Free the cached abbreviations and unload all sections. */ pThis->cCachedAbbrevsAlloced = 0; RTMemFree(pThis->paCachedAbbrevs); pThis->paCachedAbbrevs = NULL; for (unsigned iSect = 0; iSect < RT_ELEMENTS(pThis->aSections); iSect++) if (pThis->aSections[iSect].pv) pThis->pDbgInfoMod->pImgVt->pfnUnmapPart(pThis->pDbgInfoMod, pThis->aSections[iSect].cb, &pThis->aSections[iSect].pv); if (RT_SUCCESS(rc)) { /** @todo Kill pThis->CompileUnitList and the alloc caches. */ return VINF_SUCCESS; } /* bail out. */ RTDbgModRelease(pThis->hCnt); pMod->pvDbgPriv = NULL; } } else rc = VERR_DBG_NO_MATCHING_INTERPRETER; } if (pThis->paCachedAbbrevs) RTMemFree(pThis->paCachedAbbrevs); pThis->paCachedAbbrevs = NULL; for (unsigned iSect = 0; iSect < RT_ELEMENTS(pThis->aSections); iSect++) if (pThis->aSections[iSect].pv) pThis->pDbgInfoMod->pImgVt->pfnUnmapPart(pThis->pDbgInfoMod, pThis->aSections[iSect].cb, &pThis->aSections[iSect].pv); #ifdef RTDBGMODDWARF_WITH_MEM_CACHE uint32_t i = RT_ELEMENTS(pThis->aDieAllocators); while (i-- > 0) { RTMemCacheDestroy(pThis->aDieAllocators[i].hMemCache); pThis->aDieAllocators[i].hMemCache = NIL_RTMEMCACHE; } #endif RTMemFree(pThis); return rc; } /** Virtual function table for the DWARF debug info reader. */ DECL_HIDDEN_CONST(RTDBGMODVTDBG) const g_rtDbgModVtDbgDwarf = { /*.u32Magic = */ RTDBGMODVTDBG_MAGIC, /*.fSupports = */ RT_DBGTYPE_DWARF, /*.pszName = */ "dwarf", /*.pfnTryOpen = */ rtDbgModDwarf_TryOpen, /*.pfnClose = */ rtDbgModDwarf_Close, /*.pfnRvaToSegOff = */ rtDbgModDwarf_RvaToSegOff, /*.pfnImageSize = */ rtDbgModDwarf_ImageSize, /*.pfnSegmentAdd = */ rtDbgModDwarf_SegmentAdd, /*.pfnSegmentCount = */ rtDbgModDwarf_SegmentCount, /*.pfnSegmentByIndex = */ rtDbgModDwarf_SegmentByIndex, /*.pfnSymbolAdd = */ rtDbgModDwarf_SymbolAdd, /*.pfnSymbolCount = */ rtDbgModDwarf_SymbolCount, /*.pfnSymbolByOrdinal = */ rtDbgModDwarf_SymbolByOrdinal, /*.pfnSymbolByName = */ rtDbgModDwarf_SymbolByName, /*.pfnSymbolByAddr = */ rtDbgModDwarf_SymbolByAddr, /*.pfnLineAdd = */ rtDbgModDwarf_LineAdd, /*.pfnLineCount = */ rtDbgModDwarf_LineCount, /*.pfnLineByOrdinal = */ rtDbgModDwarf_LineByOrdinal, /*.pfnLineByAddr = */ rtDbgModDwarf_LineByAddr, /*.pfnUnwindFrame = */ rtDbgModDwarf_UnwindFrame, /*.u32EndMagic = */ RTDBGMODVTDBG_MAGIC };