/* $Id: semeventmulti-nt.cpp $ */ /** @file * IPRT - Multiple Release Event Semaphores, Ring-0 Driver, NT. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define RTSEMEVENTMULTI_WITHOUT_REMAPPING #ifdef IN_RING0 # include "../r0drv/nt/the-nt-kernel.h" #else # include #endif #include #include #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * NT event semaphore. */ typedef struct RTSEMEVENTMULTIINTERNAL { /** Magic value (RTSEMEVENTMULTI_MAGIC). */ uint32_t volatile u32Magic; /** Reference counter. */ uint32_t volatile cRefs; #ifdef IN_RING0 /** The NT event object. */ KEVENT Event; #elif defined(IN_RING3) /** Handle to the NT event object. */ HANDLE hEvent; #endif #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) /** Signallers. */ RTLOCKVALRECSHRD Signallers; /** Indicates that lock validation should be performed. */ bool volatile fEverHadSignallers; #endif } RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL; RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem) { return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL); } RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...) { AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER); RT_NOREF2(hClass, pszNameFmt); AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *)); PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis)); if (pThis) { pThis->u32Magic = RTSEMEVENTMULTI_MAGIC; pThis->cRefs = 1; #ifdef IN_RING0 KeInitializeEvent(&pThis->Event, NotificationEvent, FALSE /* not signalled */); #else NTSTATUS rcNt = NtCreateEvent(&pThis->hEvent, EVENT_ALL_ACCESS, NULL /*pObjAttr*/, NotificationEvent, FALSE /*not signalled*/); if (NT_SUCCESS(rcNt)) #endif { #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) if (!pszNameFmt) { static uint32_t volatile s_iSemEventMultiAnon = 0; RTLockValidatorRecSharedInit(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis, true /*fSignaller*/, !(fFlags & RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), "RTSemEventMulti-%u", ASMAtomicIncU32(&s_iSemEventMultiAnon) - 1); } else { va_list va; va_start(va, pszNameFmt); RTLockValidatorRecSharedInitV(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis, true /*fSignaller*/, !(fFlags & RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), pszNameFmt, va); va_end(va); } pThis->fEverHadSignallers = false; #else RT_NOREF_PV(hClass); RT_NOREF_PV(pszNameFmt); #endif *phEventMultiSem = pThis; return VINF_SUCCESS; } #ifdef IN_RING3 RTMemFree(pThis); return RTErrConvertFromNtStatus(rcNt); #endif } return VERR_NO_MEMORY; } /** * Retains a reference to the semaphore. * * @param pThis The semaphore to retain. */ DECLINLINE(void) rtR0SemEventMultiNtRetain(PRTSEMEVENTMULTIINTERNAL pThis) { uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs); Assert(cRefs < 100000); NOREF(cRefs); } /** * Releases a reference to the semaphore. * * @param pThis The semaphore to release */ DECLINLINE(void) rtR0SemEventMultiNtRelease(PRTSEMEVENTMULTIINTERNAL pThis) { if (ASMAtomicDecU32(&pThis->cRefs) == 0) { #ifdef IN_RING3 NTSTATUS rcNt = NtClose(pThis->hEvent); AssertMsg(NT_SUCCESS(rcNt), ("%#x\n", rcNt)); RT_NOREF(rcNt); pThis->hEvent = NULL; #endif #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) RTLockValidatorRecSharedDelete(&pThis->Signallers); #endif RTMemFree(pThis); } } RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem) { /* * Validate input. */ PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; if (pThis == NIL_RTSEMEVENTMULTI) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); /* * Invalidate it and signal the object just in case. */ ASMAtomicIncU32(&pThis->u32Magic); #ifdef IN_RING0 KeSetEvent(&pThis->Event, 0xfff, FALSE); #else NtSetEvent(pThis->hEvent, NULL); #endif rtR0SemEventMultiNtRelease(pThis); return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem) { /* * Validate input. */ PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; if (!pThis) return VERR_INVALID_PARAMETER; AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); rtR0SemEventMultiNtRetain(pThis); #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) if (pThis->fEverHadSignallers) { int rc9 = RTLockValidatorRecSharedCheckSignaller(&pThis->Signallers, NIL_RTTHREAD); if (RT_FAILURE(rc9)) return rc9; } #endif /* * Signal the event object. */ #ifdef IN_RING0 KeSetEvent(&pThis->Event, 1, FALSE); #else NTSTATUS rcNt = NtSetEvent(pThis->hEvent, NULL); #endif rtR0SemEventMultiNtRelease(pThis); #ifdef IN_RING3 AssertMsgReturn(NT_SUCCESS(rcNt), ("Signaling hEventMultiSem %p failed: %#x\n", pThis, rcNt), RTErrConvertFromNtStatus(rcNt)); #endif return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem) { /* * Validate input. */ PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; if (!pThis) return VERR_INVALID_PARAMETER; AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); rtR0SemEventMultiNtRetain(pThis); /* * Reset the event object. */ #ifdef IN_RING0 KeResetEvent(&pThis->Event); #else NTSTATUS rcNt = NtResetEvent(pThis->hEvent, NULL); #endif rtR0SemEventMultiNtRelease(pThis); #ifdef IN_RING3 AssertMsgReturn(NT_SUCCESS(rcNt), ("Resetting hEventMultiSem %p failed: %#x\n", pThis, rcNt), RTErrConvertFromNtStatus(rcNt)); #endif return VINF_SUCCESS; } /** * Worker for RTSemEventMultiWaitEx and RTSemEventMultiWaitExDebug. * * @returns VBox status code. * @param pThis The event semaphore. * @param fFlags See RTSemEventMultiWaitEx. * @param uTimeout See RTSemEventMultiWaitEx. * @param pSrcPos The source code position of the wait. */ DECLINLINE(int) rtR0SemEventMultiNtWait(PRTSEMEVENTMULTIINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout, PCRTLOCKVALSRCPOS pSrcPos) { /* * Validate input. */ if (!pThis) return VERR_INVALID_PARAMETER; AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER); RT_NOREF1(pSrcPos); rtR0SemEventMultiNtRetain(pThis); /* * Lock validation needs to be done only when not polling. */ #if defined(RTSEMEVENT_STRICT) && defined(IN_RING3) RTTHREAD const hThreadSelf = RTThreadSelfAutoAdopt(); if ( pThis->fEverHadSignallers && ( uTimeout != 0 || (fFlags & (RTSEMWAIT_FLAGS_INDEFINITE | RTSEMWAIT_FLAGS_ABSOLUTE))) ) { int rc9 = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, NULL /*pSrcPos*/, false, fFlags & RTSEMWAIT_FLAGS_INDEFINITE ? RT_INDEFINITE_WAIT : RT_MS_30SEC /*whatever*/, RTTHREADSTATE_EVENT_MULTI, true); if (RT_FAILURE(rc9)) return rc9; } #elif defined(IN_RING3) RTTHREAD const hThreadSelf = RTThreadSelf(); #endif /* * Convert the timeout to a relative one because KeWaitForSingleObject * takes system time instead of interrupt time as input for absolute * timeout specifications. So, we're best of by giving it relative time. * * Lazy bird converts uTimeout to relative nanoseconds and then to Nt time. */ #ifdef IN_RING3 uint64_t nsStartNow = 0; #endif if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)) { if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) uTimeout = uTimeout < UINT64_MAX / RT_NS_1MS ? uTimeout * RT_NS_1MS : UINT64_MAX; if (uTimeout == UINT64_MAX) fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; else { #ifdef IN_RING3 if (fFlags & (RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_ABSOLUTE)) nsStartNow = RTTimeSystemNanoTS(); #endif if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE) { #ifdef IN_RING0 uint64_t const nsStartNow = RTTimeSystemNanoTS(); #endif uTimeout = nsStartNow < uTimeout ? uTimeout - nsStartNow : 0; } } } /* * Wait for it. * We're assuming interruptible waits should happen at UserMode level. */ int rc; #ifdef IN_RING3 for (;;) #endif { #ifdef IN_RING0 BOOLEAN fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE); KPROCESSOR_MODE WaitMode = fInterruptible ? UserMode : KernelMode; #endif NTSTATUS rcNt; #ifdef IN_RING3 RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT_MULTI, true); #endif if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE) #ifdef IN_RING0 rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, NULL); #else rcNt = NtWaitForSingleObject(pThis->hEvent, TRUE /*Alertable*/, NULL); #endif else { LARGE_INTEGER Timeout; Timeout.QuadPart = -(int64_t)(uTimeout / 100); #ifdef IN_RING0 rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, &Timeout); #else rcNt = NtWaitForSingleObject(pThis->hEvent, TRUE /*Alertable*/, &Timeout); #endif } #ifdef IN_RING3 RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT_MULTI); #endif if (pThis->u32Magic == RTSEMEVENTMULTI_MAGIC) { switch (rcNt) { case STATUS_SUCCESS: rc = VINF_SUCCESS; break; case STATUS_TIMEOUT: Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)); rc = VERR_TIMEOUT; break; case STATUS_USER_APC: case STATUS_ALERTED: rc = VERR_INTERRUPTED; #ifdef IN_RING3 /* Loop if when automatically resuming on interruption, adjusting the timeout. */ if (fFlags & RTSEMWAIT_FLAGS_RESUME) { if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE) && uTimeout > 0) { uint64_t const nsNewNow = RTTimeSystemNanoTS(); uint64_t const cNsElapsed = nsNewNow - nsStartNow; if (cNsElapsed < uTimeout) uTimeout -= cNsElapsed; else uTimeout = 0; nsStartNow = nsNewNow; } continue; } #endif break; #ifdef IN_RING3 case STATUS_ABANDONED_WAIT_0: rc = VERR_SEM_OWNER_DIED; break; #endif default: AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %x!\n", pThis->u32Magic, pThis, rcNt)); rc = VERR_INTERNAL_ERROR_4; break; } } else rc = VERR_SEM_DESTROYED; #ifdef IN_RING3 break; #endif } rtR0SemEventMultiNtRelease(pThis); return rc; } RTDECL(int) RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout) { #ifndef RTSEMEVENT_STRICT return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, NULL); #else RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API(); return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, &SrcPos); #endif } RTDECL(int) RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout, RTHCUINTPTR uId, RT_SRC_POS_DECL) { RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API(); return rtR0SemEventMultiNtWait(hEventMultiSem, fFlags, uTimeout, &SrcPos); } #ifdef IN_RING0 RTR0DECL(bool) RTSemEventMultiIsSignalSafe(void) { return KeGetCurrentIrql() <= DISPATCH_LEVEL; } #endif #ifdef IN_RING3 RTDECL(void) RTSemEventMultiSetSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedResetOwner(&pThis->Signallers, hThread, NULL); # else RT_NOREF_PV(hEventMultiSem); RT_NOREF_PV(hThread); # endif } RTDECL(void) RTSemEventMultiAddSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedAddOwner(&pThis->Signallers, hThread, NULL); # else RT_NOREF_PV(hEventMultiSem); RT_NOREF_PV(hThread); # endif } RTDECL(void) RTSemEventMultiRemoveSignaller(RTSEMEVENTMULTI hEventMultiSem, RTTHREAD hThread) { # ifdef RTSEMEVENT_STRICT struct RTSEMEVENTMULTIINTERNAL *pThis = hEventMultiSem; AssertPtrReturnVoid(pThis); AssertReturnVoid(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); RTLockValidatorRecSharedRemoveOwner(&pThis->Signallers, hThread); # else RT_NOREF_PV(hEventMultiSem); RT_NOREF_PV(hThread); # endif } #endif /* IN_RING3 */