/* $Id: mp-r0drv-linux.c $ */ /** @file * IPRT - Multiprocessor, Ring-0 Driver, Linux. */ /* * Copyright (C) 2008-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "the-linux-kernel.h" #include "internal/iprt.h" #include #include #include #include #include #include "r0drv/mp-r0drv.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #if defined(nr_cpumask_bits) || RTLNX_VER_MIN(2,6,28) # define VBOX_NR_CPUMASK_BITS (nr_cpumask_bits) /* same as nr_cpu_ids */ #else # define VBOX_NR_CPUMASK_BITS (NR_CPUS) #endif RTDECL(RTCPUID) RTMpCpuId(void) { return smp_processor_id(); } RT_EXPORT_SYMBOL(RTMpCpuId); RTDECL(int) RTMpCurSetIndex(void) { return smp_processor_id(); } RT_EXPORT_SYMBOL(RTMpCurSetIndex); RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu) { return *pidCpu = smp_processor_id(); } RT_EXPORT_SYMBOL(RTMpCurSetIndexAndId); RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu) { return idCpu < RTCPUSET_MAX_CPUS && idCpu < VBOX_NR_CPUMASK_BITS ? (int)idCpu : -1; } RT_EXPORT_SYMBOL(RTMpCpuIdToSetIndex); RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu) { return (unsigned)iCpu < VBOX_NR_CPUMASK_BITS ? (RTCPUID)iCpu : NIL_RTCPUID; } RT_EXPORT_SYMBOL(RTMpCpuIdFromSetIndex); RTDECL(RTCPUID) RTMpGetMaxCpuId(void) { return VBOX_NR_CPUMASK_BITS - 1; } RT_EXPORT_SYMBOL(RTMpGetMaxCpuId); RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu) { #if defined(CONFIG_SMP) # if RTLNX_VER_MIN(2,6,2) || defined(cpu_possible) return idCpu < VBOX_NR_CPUMASK_BITS && cpu_possible(idCpu); # else /* < 2.5.29 */ return idCpu < (RTCPUID)(smp_num_cpus); # endif #else return idCpu == RTMpCpuId(); #endif } RT_EXPORT_SYMBOL(RTMpIsCpuPossible); RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet) { RTCPUID idCpu; RTCpuSetEmpty(pSet); idCpu = RTMpGetMaxCpuId(); do { if (RTMpIsCpuPossible(idCpu)) RTCpuSetAdd(pSet, idCpu); } while (idCpu-- > 0); return pSet; } RT_EXPORT_SYMBOL(RTMpGetSet); RTDECL(RTCPUID) RTMpGetCount(void) { #ifdef CONFIG_SMP # if RTLNX_VER_MIN(2,6,4) || defined(num_possible_cpus) return num_possible_cpus(); # elif RTLNX_VER_MAX(2,5,0) return smp_num_cpus; # else RTCPUSET Set; RTMpGetSet(&Set); return RTCpuSetCount(&Set); # endif #else return 1; #endif } RT_EXPORT_SYMBOL(RTMpGetCount); RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu) { #ifdef CONFIG_SMP # if RTLNX_VER_MIN(2,6,0) || defined(cpu_online) return idCpu < VBOX_NR_CPUMASK_BITS && cpu_online(idCpu); # else /* 2.4: */ return idCpu < VBOX_NR_CPUMASK_BITS && cpu_online_map & RT_BIT_64(idCpu); # endif #else return idCpu == RTMpCpuId(); #endif } RT_EXPORT_SYMBOL(RTMpIsCpuOnline); RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet) { #ifdef CONFIG_SMP RTCPUID idCpu; RTCpuSetEmpty(pSet); idCpu = RTMpGetMaxCpuId(); do { if (RTMpIsCpuOnline(idCpu)) RTCpuSetAdd(pSet, idCpu); } while (idCpu-- > 0); #else RTCpuSetEmpty(pSet); RTCpuSetAdd(pSet, RTMpCpuId()); #endif return pSet; } RT_EXPORT_SYMBOL(RTMpGetOnlineSet); RTDECL(RTCPUID) RTMpGetOnlineCount(void) { #ifdef CONFIG_SMP # if RTLNX_VER_MIN(2,6,0) || defined(num_online_cpus) return num_online_cpus(); # else RTCPUSET Set; RTMpGetOnlineSet(&Set); return RTCpuSetCount(&Set); # endif #else return 1; #endif } RT_EXPORT_SYMBOL(RTMpGetOnlineCount); RTDECL(bool) RTMpIsCpuWorkPending(void) { /** @todo (not used on non-Windows platforms yet). */ return false; } RT_EXPORT_SYMBOL(RTMpIsCpuWorkPending); /** * Wrapper between the native linux per-cpu callbacks and PFNRTWORKER. * * @param pvInfo Pointer to the RTMPARGS package. */ static void rtmpLinuxWrapper(void *pvInfo) { PRTMPARGS pArgs = (PRTMPARGS)pvInfo; ASMAtomicIncU32(&pArgs->cHits); pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2); } #ifdef CONFIG_SMP # if RTLNX_VER_MIN(2,6,27) /** * Wrapper between the native linux per-cpu callbacks and PFNRTWORKER, does hit * increment after calling the worker. * * @param pvInfo Pointer to the RTMPARGS package. */ static void rtmpLinuxWrapperPostInc(void *pvInfo) { PRTMPARGS pArgs = (PRTMPARGS)pvInfo; pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2); ASMAtomicIncU32(&pArgs->cHits); } # endif /** * Wrapper between the native linux all-cpu callbacks and PFNRTWORKER. * * @param pvInfo Pointer to the RTMPARGS package. */ static void rtmpLinuxAllWrapper(void *pvInfo) { PRTMPARGS pArgs = (PRTMPARGS)pvInfo; PRTCPUSET pWorkerSet = pArgs->pWorkerSet; RTCPUID idCpu = RTMpCpuId(); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); if (RTCpuSetIsMember(pWorkerSet, idCpu)) { pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); RTCpuSetDel(pWorkerSet, idCpu); } } #endif /* CONFIG_SMP */ RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { IPRT_LINUX_SAVE_EFL_AC(); RTMPARGS Args; RTCPUSET OnlineSet; RTCPUID idCpu; #ifdef CONFIG_SMP uint32_t cLoops; #endif RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = NIL_RTCPUID; Args.cHits = 0; RTThreadPreemptDisable(&PreemptState); RTMpGetOnlineSet(&OnlineSet); Args.pWorkerSet = &OnlineSet; idCpu = RTMpCpuId(); #ifdef CONFIG_SMP if (RTCpuSetCount(&OnlineSet) > 1) { /* Fire the function on all other CPUs without waiting for completion. */ # if RTLNX_VER_MIN(5,3,0) smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* wait */); # elif RTLNX_VER_MIN(2,6,27) int rc = smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* wait */); Assert(!rc); NOREF(rc); # else int rc = smp_call_function(rtmpLinuxAllWrapper, &Args, 0 /* retry */, 0 /* wait */); Assert(!rc); NOREF(rc); # endif } #endif /* Fire the function on this CPU. */ Args.pfnWorker(idCpu, Args.pvUser1, Args.pvUser2); RTCpuSetDel(Args.pWorkerSet, idCpu); #ifdef CONFIG_SMP /* Wait for all of them finish. */ cLoops = 64000; while (!RTCpuSetIsEmpty(Args.pWorkerSet)) { /* Periodically check if any CPU in the wait set has gone offline, if so update the wait set. */ if (!cLoops--) { RTCPUSET OnlineSetNow; RTMpGetOnlineSet(&OnlineSetNow); RTCpuSetAnd(Args.pWorkerSet, &OnlineSetNow); cLoops = 64000; } ASMNopPause(); } #endif RTThreadPreemptRestore(&PreemptState); IPRT_LINUX_RESTORE_EFL_AC(); return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTMpOnAll); RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { #ifdef CONFIG_SMP IPRT_LINUX_SAVE_EFL_AC(); RTMPARGS Args; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = NIL_RTCPUID; Args.cHits = 0; RTThreadPreemptDisable(&PreemptState); # if RTLNX_VER_MIN(5,3,0) smp_call_function(rtmpLinuxWrapper, &Args, 1 /* wait */); # elif RTLNX_VER_MIN(2,6,27) int rc = smp_call_function(rtmpLinuxWrapper, &Args, 1 /* wait */); Assert(rc == 0); NOREF(rc); # else /* older kernels */ int rc = smp_call_function(rtmpLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */); Assert(rc == 0); NOREF(rc); # endif /* older kernels */ RTThreadPreemptRestore(&PreemptState); IPRT_LINUX_RESTORE_EFL_AC(); #else RT_NOREF(pfnWorker, pvUser1, pvUser2); #endif return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTMpOnOthers); #if RTLNX_VER_MAX(2,6,27) && defined(CONFIG_SMP) /** * Wrapper between the native linux per-cpu callbacks and PFNRTWORKER * employed by RTMpOnPair on older kernels that lacks smp_call_function_many. * * @param pvInfo Pointer to the RTMPARGS package. */ static void rtMpLinuxOnPairWrapper(void *pvInfo) { PRTMPARGS pArgs = (PRTMPARGS)pvInfo; RTCPUID idCpu = RTMpCpuId(); if ( idCpu == pArgs->idCpu || idCpu == pArgs->idCpu2) { pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); ASMAtomicIncU32(&pArgs->cHits); } } #endif RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { #ifdef CONFIG_SMP IPRT_LINUX_SAVE_EFL_AC(); int rc; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; # if RTLNX_VER_MIN(2,6,28) /* 2.6.28 introduces CONFIG_CPUMASK_OFFSTACK */ cpumask_var_t DstCpuMask; # elif RTLNX_VER_MIN(2,6,27) cpumask_t DstCpuMask; # endif AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER); AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS); /* * Prepare the CPU mask before we disable preemption. */ # if RTLNX_VER_MIN(2,6,30) if (!zalloc_cpumask_var(&DstCpuMask, GFP_KERNEL)) return VERR_NO_MEMORY; cpumask_set_cpu(idCpu1, DstCpuMask); cpumask_set_cpu(idCpu2, DstCpuMask); # elif RTLNX_VER_MIN(2,6,28) if (!alloc_cpumask_var(&DstCpuMask, GFP_KERNEL)) return VERR_NO_MEMORY; cpumask_clear(DstCpuMask); cpumask_set_cpu(idCpu1, DstCpuMask); cpumask_set_cpu(idCpu2, DstCpuMask); # elif RTLNX_VER_MIN(2,6,27) cpus_clear(DstCpuMask); cpu_set(idCpu1, DstCpuMask); cpu_set(idCpu2, DstCpuMask); # endif /* * Check that both CPUs are online before doing the broadcast call. */ RTThreadPreemptDisable(&PreemptState); if ( RTMpIsCpuOnline(idCpu1) && RTMpIsCpuOnline(idCpu2)) { /* * Use the smp_call_function variant taking a cpu mask where available, * falling back on broadcast with filter. Slight snag if one of the * CPUs is the one we're running on, we must do the call and the post * call wait ourselves. */ RTCPUID idCpuSelf = RTMpCpuId(); bool const fCallSelf = idCpuSelf == idCpu1 || idCpuSelf == idCpu2; RTMPARGS Args; Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = idCpu1; Args.idCpu2 = idCpu2; Args.cHits = 0; # if RTLNX_VER_MIN(2,6,28) smp_call_function_many(DstCpuMask, rtmpLinuxWrapperPostInc, &Args, !fCallSelf /* wait */); rc = 0; # elif RTLNX_VER_MIN(2,6,27) rc = smp_call_function_mask(DstCpuMask, rtmpLinuxWrapperPostInc, &Args, !fCallSelf /* wait */); # else /* older kernels */ rc = smp_call_function(rtMpLinuxOnPairWrapper, &Args, 0 /* retry */, !fCallSelf /* wait */); # endif /* older kernels */ Assert(rc == 0); /* Call ourselves if necessary and wait for the other party to be done. */ if (fCallSelf) { uint32_t cLoops = 0; rtmpLinuxWrapper(&Args); while (ASMAtomicReadU32(&Args.cHits) < 2) { if ((cLoops & 0x1ff) == 0 && !RTMpIsCpuOnline(idCpuSelf == idCpu1 ? idCpu2 : idCpu1)) break; cLoops++; ASMNopPause(); } } Assert(Args.cHits <= 2); if (Args.cHits == 2) rc = VINF_SUCCESS; else if (Args.cHits == 1) rc = VERR_NOT_ALL_CPUS_SHOWED; else if (Args.cHits == 0) rc = VERR_CPU_OFFLINE; else rc = VERR_CPU_IPE_1; } /* * A CPU must be present to be considered just offline. */ else if ( RTMpIsCpuPresent(idCpu1) && RTMpIsCpuPresent(idCpu2)) rc = VERR_CPU_OFFLINE; else rc = VERR_CPU_NOT_FOUND; RTThreadPreemptRestore(&PreemptState);; # if RTLNX_VER_MIN(2,6,28) free_cpumask_var(DstCpuMask); # endif IPRT_LINUX_RESTORE_EFL_AC(); return rc; #else /* !CONFIG_SMP */ RT_NOREF(idCpu1, idCpu2, fFlags, pfnWorker, pvUser1, pvUser2); return VERR_CPU_NOT_FOUND; #endif /* !CONFIG_SMP */ } RT_EXPORT_SYMBOL(RTMpOnPair); RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void) { return true; } RT_EXPORT_SYMBOL(RTMpOnPairIsConcurrentExecSupported); #if RTLNX_VER_MAX(2,6,19) && defined(CONFIG_SMP) /** * Wrapper between the native linux per-cpu callbacks and PFNRTWORKER * employed by RTMpOnSpecific on older kernels that lacks smp_call_function_single. * * @param pvInfo Pointer to the RTMPARGS package. */ static void rtmpOnSpecificLinuxWrapper(void *pvInfo) { PRTMPARGS pArgs = (PRTMPARGS)pvInfo; RTCPUID idCpu = RTMpCpuId(); if (idCpu == pArgs->idCpu) { pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); ASMAtomicIncU32(&pArgs->cHits); } } #endif RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { IPRT_LINUX_SAVE_EFL_AC(); int rc; RTMPARGS Args; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = idCpu; Args.cHits = 0; if (!RTMpIsCpuPossible(idCpu)) return VERR_CPU_NOT_FOUND; RTThreadPreemptDisable(&PreemptState); if (idCpu != RTMpCpuId()) { #ifdef CONFIG_SMP if (RTMpIsCpuOnline(idCpu)) { # if RTLNX_VER_MIN(2,6,27) rc = smp_call_function_single(idCpu, rtmpLinuxWrapper, &Args, 1 /* wait */); # elif RTLNX_VER_MIN(2,6,19) rc = smp_call_function_single(idCpu, rtmpLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */); # else /* older kernels */ rc = smp_call_function(rtmpOnSpecificLinuxWrapper, &Args, 0 /* retry */, 1 /* wait */); # endif /* older kernels */ Assert(rc == 0); rc = Args.cHits ? VINF_SUCCESS : VERR_CPU_OFFLINE; } else #endif /* CONFIG_SMP */ rc = VERR_CPU_OFFLINE; } else { rtmpLinuxWrapper(&Args); rc = VINF_SUCCESS; } RTThreadPreemptRestore(&PreemptState);; NOREF(rc); IPRT_LINUX_RESTORE_EFL_AC(); return rc; } RT_EXPORT_SYMBOL(RTMpOnSpecific); #if RTLNX_VER_MIN(2,6,19) && defined(CONFIG_SMP) /** * Dummy callback used by RTMpPokeCpu. * * @param pvInfo Ignored. */ static void rtmpLinuxPokeCpuCallback(void *pvInfo) { NOREF(pvInfo); } #endif RTDECL(int) RTMpPokeCpu(RTCPUID idCpu) { #if RTLNX_VER_MIN(2,6,19) IPRT_LINUX_SAVE_EFL_AC(); int rc; if (RTMpIsCpuPossible(idCpu)) { if (RTMpIsCpuOnline(idCpu)) { # ifdef CONFIG_SMP # if RTLNX_VER_MIN(2,6,27) rc = smp_call_function_single(idCpu, rtmpLinuxPokeCpuCallback, NULL, 0 /* wait */); # elif RTLNX_VER_MIN(2,6,19) rc = smp_call_function_single(idCpu, rtmpLinuxPokeCpuCallback, NULL, 0 /* retry */, 0 /* wait */); # else /* older kernels */ # error oops # endif /* older kernels */ Assert(rc == 0); # endif /* CONFIG_SMP */ rc = VINF_SUCCESS; } else rc = VERR_CPU_OFFLINE; } else rc = VERR_CPU_NOT_FOUND; IPRT_LINUX_RESTORE_EFL_AC(); return rc; #else /* older kernels */ /* no unicast here? */ return VERR_NOT_SUPPORTED; #endif /* older kernels */ } RT_EXPORT_SYMBOL(RTMpPokeCpu); RTDECL(bool) RTMpOnAllIsConcurrentSafe(void) { return true; } RT_EXPORT_SYMBOL(RTMpOnAllIsConcurrentSafe);