/* $Id: mp-r0drv-solaris.c $ */ /** @file * IPRT - Multiprocessor, Ring-0 Driver, Solaris. */ /* * Copyright (C) 2008-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "the-solaris-kernel.h" #include "internal/iprt.h" #include #include #include #include #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include #endif #include #include "r0drv/mp-r0drv.h" typedef int FNRTMPSOLWORKER(void *pvUser1, void *pvUser2, void *pvUser3); typedef FNRTMPSOLWORKER *PFNRTMPSOLWORKER; RTDECL(bool) RTMpIsCpuWorkPending(void) { return false; } RTDECL(RTCPUID) RTMpCpuId(void) { return CPU->cpu_id; } RTDECL(int) RTMpCurSetIndex(void) { return CPU->cpu_id; } RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu) { return *pidCpu = CPU->cpu_id; } RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu) { return idCpu < RTCPUSET_MAX_CPUS && idCpu <= max_cpuid ? idCpu : -1; } RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu) { return (unsigned)iCpu <= max_cpuid ? iCpu : NIL_RTCPUID; } RTDECL(RTCPUID) RTMpGetMaxCpuId(void) { return max_cpuid; } RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu) { /* * We cannot query CPU status recursively, check cpu member from cached set. */ if (idCpu >= ncpus) return false; return RTCpuSetIsMember(&g_rtMpSolCpuSet, idCpu); } RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu) { return idCpu < ncpus; } RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet) { RTCPUID idCpu; RTCpuSetEmpty(pSet); idCpu = RTMpGetMaxCpuId(); /* it's inclusive */ do { if (RTMpIsCpuPossible(idCpu)) RTCpuSetAdd(pSet, idCpu); } while (idCpu-- > 0); return pSet; } RTDECL(RTCPUID) RTMpGetCount(void) { return ncpus; } RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet) { /* * We cannot query CPU status recursively, return the cached set. */ *pSet = g_rtMpSolCpuSet; return pSet; } RTDECL(RTCPUID) RTMpGetOnlineCount(void) { RTCPUSET Set; RTMpGetOnlineSet(&Set); return RTCpuSetCount(&Set); } /** * Wrapper to Solaris IPI infrastructure. * * @returns Solaris error code. * @param pCpuSet Pointer to Solaris CPU set. * @param pfnSolWorker Function to execute on target CPU(s). * @param pArgs Pointer to RTMPARGS to pass to @a pfnSolWorker. */ static void rtMpSolCrossCall(PRTSOLCPUSET pCpuSet, PFNRTMPSOLWORKER pfnSolWorker, PRTMPARGS pArgs) { AssertPtrReturnVoid(pCpuSet); AssertPtrReturnVoid(pfnSolWorker); AssertPtrReturnVoid(pCpuSet); if (g_frtSolOldIPI) { if (g_frtSolOldIPIUlong) { g_rtSolXcCall.u.pfnSol_xc_call_old_ulong((xc_arg_t)pArgs, /* Arg to IPI function */ 0, /* Arg2, ignored */ 0, /* Arg3, ignored */ IPRT_SOL_X_CALL_HIPRI, /* IPI priority */ pCpuSet->auCpus[0], /* Target CPU(s) */ (xc_func_t)pfnSolWorker); /* Function to execute on target(s) */ } else { g_rtSolXcCall.u.pfnSol_xc_call_old((xc_arg_t)pArgs, /* Arg to IPI function */ 0, /* Arg2, ignored */ 0, /* Arg3, ignored */ IPRT_SOL_X_CALL_HIPRI, /* IPI priority */ *pCpuSet, /* Target CPU set */ (xc_func_t)pfnSolWorker); /* Function to execute on target(s) */ } } else { g_rtSolXcCall.u.pfnSol_xc_call((xc_arg_t)pArgs, /* Arg to IPI function */ 0, /* Arg2 */ 0, /* Arg3 */ &pCpuSet->auCpus[0], /* Target CPU set */ (xc_func_t)pfnSolWorker); /* Function to execute on target(s) */ } } /** * Wrapper between the native solaris per-cpu callback and PFNRTWORKER * for the RTMpOnAll API. * * @returns Solaris error code. * @param uArgs Pointer to the RTMPARGS package. * @param pvIgnored1 Ignored. * @param pvIgnored2 Ignored. */ static int rtMpSolOnAllCpuWrapper(void *uArg, void *pvIgnored1, void *pvIgnored2) { PRTMPARGS pArgs = (PRTMPARGS)(uArg); /* * Solaris CPU cross calls execute on offline CPUs too. Check our CPU cache * set and ignore if it's offline. */ if (!RTMpIsCpuOnline(RTMpCpuId())) return 0; pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2); NOREF(pvIgnored1); NOREF(pvIgnored2); return 0; } RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { RTMPARGS Args; RTSOLCPUSET CpuSet; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RT_ASSERT_INTS_ON(); Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = NIL_RTCPUID; Args.cHits = 0; for (int i = 0; i < IPRT_SOL_SET_WORDS; i++) CpuSet.auCpus[i] = (ulong_t)-1L; RTThreadPreemptDisable(&PreemptState); rtMpSolCrossCall(&CpuSet, rtMpSolOnAllCpuWrapper, &Args); RTThreadPreemptRestore(&PreemptState); return VINF_SUCCESS; } /** * Wrapper between the native solaris per-cpu callback and PFNRTWORKER * for the RTMpOnOthers API. * * @returns Solaris error code. * @param uArgs Pointer to the RTMPARGS package. * @param pvIgnored1 Ignored. * @param pvIgnored2 Ignored. */ static int rtMpSolOnOtherCpusWrapper(void *uArg, void *pvIgnored1, void *pvIgnored2) { PRTMPARGS pArgs = (PRTMPARGS)(uArg); RTCPUID idCpu = RTMpCpuId(); Assert(idCpu != pArgs->idCpu); pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); NOREF(pvIgnored1); NOREF(pvIgnored2); return 0; } RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { RTMPARGS Args; RTSOLCPUSET CpuSet; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RT_ASSERT_INTS_ON(); Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = RTMpCpuId(); Args.cHits = 0; /* The caller is supposed to have disabled preemption, but take no chances. */ RTThreadPreemptDisable(&PreemptState); for (int i = 0; i < IPRT_SOL_SET_WORDS; i++) CpuSet.auCpus[0] = (ulong_t)-1L; BT_CLEAR(CpuSet.auCpus, RTMpCpuId()); rtMpSolCrossCall(&CpuSet, rtMpSolOnOtherCpusWrapper, &Args); RTThreadPreemptRestore(&PreemptState); return VINF_SUCCESS; } /** * Wrapper between the native solaris per-cpu callback and PFNRTWORKER * for the RTMpOnPair API. * * @returns Solaris error code. * @param uArgs Pointer to the RTMPARGS package. * @param pvIgnored1 Ignored. * @param pvIgnored2 Ignored. */ static int rtMpSolOnPairCpuWrapper(void *uArg, void *pvIgnored1, void *pvIgnored2) { PRTMPARGS pArgs = (PRTMPARGS)(uArg); RTCPUID idCpu = RTMpCpuId(); Assert(idCpu == pArgs->idCpu || idCpu == pArgs->idCpu2); pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); ASMAtomicIncU32(&pArgs->cHits); NOREF(pvIgnored1); NOREF(pvIgnored2); return 0; } RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { int rc; RTMPARGS Args; RTSOLCPUSET CpuSet; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER); AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS); Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = idCpu1; Args.idCpu2 = idCpu2; Args.cHits = 0; for (int i = 0; i < IPRT_SOL_SET_WORDS; i++) CpuSet.auCpus[i] = 0; BT_SET(CpuSet.auCpus, idCpu1); BT_SET(CpuSet.auCpus, idCpu2); /* * Check that both CPUs are online before doing the broadcast call. */ RTThreadPreemptDisable(&PreemptState); if ( RTMpIsCpuOnline(idCpu1) && RTMpIsCpuOnline(idCpu2)) { rtMpSolCrossCall(&CpuSet, rtMpSolOnPairCpuWrapper, &Args); Assert(Args.cHits <= 2); if (Args.cHits == 2) rc = VINF_SUCCESS; else if (Args.cHits == 1) rc = VERR_NOT_ALL_CPUS_SHOWED; else if (Args.cHits == 0) rc = VERR_CPU_OFFLINE; else rc = VERR_CPU_IPE_1; } /* * A CPU must be present to be considered just offline. */ else if ( RTMpIsCpuPresent(idCpu1) && RTMpIsCpuPresent(idCpu2)) rc = VERR_CPU_OFFLINE; else rc = VERR_CPU_NOT_FOUND; RTThreadPreemptRestore(&PreemptState); return rc; } RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void) { return true; } /** * Wrapper between the native solaris per-cpu callback and PFNRTWORKER * for the RTMpOnSpecific API. * * @returns Solaris error code. * @param uArgs Pointer to the RTMPARGS package. * @param pvIgnored1 Ignored. * @param pvIgnored2 Ignored. */ static int rtMpSolOnSpecificCpuWrapper(void *uArg, void *pvIgnored1, void *pvIgnored2) { PRTMPARGS pArgs = (PRTMPARGS)(uArg); RTCPUID idCpu = RTMpCpuId(); Assert(idCpu == pArgs->idCpu); pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2); ASMAtomicIncU32(&pArgs->cHits); NOREF(pvIgnored1); NOREF(pvIgnored2); return 0; } RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2) { RTMPARGS Args; RTSOLCPUSET CpuSet; RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RT_ASSERT_INTS_ON(); if (idCpu >= ncpus) return VERR_CPU_NOT_FOUND; if (RT_UNLIKELY(!RTMpIsCpuOnline(idCpu))) return RTMpIsCpuPresent(idCpu) ? VERR_CPU_OFFLINE : VERR_CPU_NOT_FOUND; Args.pfnWorker = pfnWorker; Args.pvUser1 = pvUser1; Args.pvUser2 = pvUser2; Args.idCpu = idCpu; Args.cHits = 0; for (int i = 0; i < IPRT_SOL_SET_WORDS; i++) CpuSet.auCpus[i] = 0; BT_SET(CpuSet.auCpus, idCpu); RTThreadPreemptDisable(&PreemptState); rtMpSolCrossCall(&CpuSet, rtMpSolOnSpecificCpuWrapper, &Args); RTThreadPreemptRestore(&PreemptState); Assert(ASMAtomicUoReadU32(&Args.cHits) <= 1); return ASMAtomicUoReadU32(&Args.cHits) == 1 ? VINF_SUCCESS : VERR_CPU_NOT_FOUND; } RTDECL(bool) RTMpOnAllIsConcurrentSafe(void) { return true; }