/* $Id: tstRTSemEventMulti.cpp $ */ /** @file * IPRT Testcase - Multiple Release Event Semaphores. */ /* * Copyright (C) 2009-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The test handle. */ static RTTEST g_hTest; static DECLCALLBACK(int) test1Thread1(RTTHREAD ThreadSelf, void *pvUser) { RTSEMEVENTMULTI hSem = *(PRTSEMEVENTMULTI)pvUser; RT_NOREF_PV(ThreadSelf); uint64_t u64 = RTTimeSystemMilliTS(); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, 1000), VERR_TIMEOUT); u64 = RTTimeSystemMilliTS() - u64; RTTEST_CHECK_MSG(g_hTest, u64 < 1500 && u64 > 950, (g_hTest, "u64=%llu\n", u64)); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, 2000), VINF_SUCCESS); return VINF_SUCCESS; } static DECLCALLBACK(int) test1Thread2(RTTHREAD ThreadSelf, void *pvUser) { RTSEMEVENTMULTI hSem = *(PRTSEMEVENTMULTI)pvUser; RT_NOREF_PV(ThreadSelf); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS); return VINF_SUCCESS; } static void test1(void) { RTTestISub("Three threads"); /* * Create the threads and let them block on the event multi semaphore. */ RTSEMEVENTMULTI hSem; RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS); RTTHREAD hThread2; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread2, test1Thread2, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test2"), VINF_SUCCESS); RTThreadSleep(100); RTTHREAD hThread1; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread1, test1Thread1, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test1"), VINF_SUCCESS); /* Force first thread (which has a timeout of 1 second) to timeout in the * first wait, and the second wait will succeed. */ RTTESTI_CHECK_RC(RTThreadSleep(1500), VINF_SUCCESS); RTTESTI_CHECK_RC(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread1, 5000, NULL), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread2, 5000, NULL), VINF_SUCCESS); RTTESTI_CHECK_RC(RTSemEventMultiDestroy(hSem), VINF_SUCCESS); } static void testBasicsWaitTimeout(RTSEMEVENTMULTI hSem, unsigned i) { RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, 0), VERR_TIMEOUT); #if 0 RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, 0), VERR_TIMEOUT); #else RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemNanoTS() + 1000*i), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeNanoTS() + 1000*i), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VERR_TIMEOUT); #endif } static void testBasicsWaitSuccess(RTSEMEVENTMULTI hSem, unsigned i) { RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS); #if 0 RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitNoResume(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS); #else RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemNanoTS() + 1000*i), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeNanoTS() + 1000*i), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, _1G), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, UINT64_MAX), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemMilliTS() + 1000*i), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeMilliTS() + 1000*i), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, 0), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, _1M), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, UINT64_MAX), VINF_SUCCESS); #endif } static void testBasics(void) { RTTestISub("Basics"); RTSEMEVENTMULTI hSem; RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS); /* The semaphore is created in a reset state, calling reset explicitly shouldn't make any difference. */ testBasicsWaitTimeout(hSem, 0); RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); if (RTTestIErrorCount()) return; /* When signalling the semaphore all successive wait calls shall succeed, signalling it again should make no difference. */ RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); testBasicsWaitSuccess(hSem, 2); if (RTTestIErrorCount()) return; /* After resetting it we should time out again. */ RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 3); if (RTTestIErrorCount()) return; /* The number of resets or signal calls shouldn't matter. */ RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 4); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); testBasicsWaitSuccess(hSem, 5); RTTESTI_CHECK_RC_RETV(RTSemEventMultiReset(hSem), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 6); /* Destroy it. */ RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(NIL_RTSEMEVENTMULTI), VINF_SUCCESS); /* Whether it is reset (above), signalled or not used shouldn't matter. */ RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiCreate(&hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventMultiDestroy(hSem), VINF_SUCCESS); RTTestISubDone(); } int main(int argc, char **argv) { RT_NOREF_PV(argc); RT_NOREF_PV(argv); RTEXITCODE rcExit = RTTestInitAndCreate("tstRTSemEventMulti", &g_hTest); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; testBasics(); if (!RTTestErrorCount(g_hTest)) { test1(); } return RTTestSummaryAndDestroy(g_hTest); }