/* $Id: PGMAllGstSlatEpt.cpp.h $ */ /** @file * VBox - Page Manager, Guest EPT SLAT - All context code. */ /* * Copyright (C) 2021-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #if PGM_SLAT_TYPE != PGM_SLAT_TYPE_EPT # error "Unsupported SLAT type." #endif /** * Checks if the EPT PTE permissions are valid. * * @returns @c true if valid, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uEntry The EPT page table entry to check. * * @remarks Current this ASSUMES @c uEntry is present (debug asserted)! */ DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(PCVMCPUCC pVCpu, uint64_t uEntry) { if (!(uEntry & EPT_E_READ)) { if (uEntry & EPT_E_WRITE) return false; /* * Currently all callers of this function check for the present mask prior * to calling this function. Hence, the execute bit must be set now. */ Assert(uEntry & EPT_E_EXECUTE); Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt); if (pVCpu->pgm.s.uEptVpidCapMsr & VMX_BF_EPT_VPID_CAP_EXEC_ONLY_MASK) return true; return false; } return true; } /** * Checks if the EPT memory type is valid. * * @returns @c true if valid, @c false otherwise. * @param uEntry The EPT page table entry to check. * @param uLevel The page table walk level. */ DECLINLINE(bool) PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(uint64_t uEntry, uint8_t uLevel) { Assert(uLevel <= 3 && uLevel >= 1); NOREF(uLevel); uint8_t const fEptMemTypeMask = uEntry & VMX_BF_EPT_PT_MEMTYPE_MASK; switch (fEptMemTypeMask) { case EPT_E_MEMTYPE_WB: case EPT_E_MEMTYPE_UC: case EPT_E_MEMTYPE_WP: case EPT_E_MEMTYPE_WT: case EPT_E_MEMTYPE_WC: return true; } return false; } /** * Updates page walk result info when a not-present page is encountered. * * @returns VERR_PAGE_TABLE_NOT_PRESENT. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pWalk The page walk info to update. * @param uEntry The EPT PTE that is not present. * @param uLevel The page table walk level. */ DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint64_t uEntry, uint8_t uLevel) { static PGMWALKFAIL const s_afEptViolations[] = { PGM_WALKFAIL_EPT_VIOLATION, PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE }; uint8_t const fEptVeSupported = pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxEptXcptVe; uint8_t const fConvertible = RT_BOOL(uLevel == 1 || (uEntry & EPT_E_BIT_LEAF)); uint8_t const idxViolationType = fEptVeSupported & fConvertible & !RT_BF_GET(uEntry, VMX_BF_EPT_PT_SUPPRESS_VE); pWalk->fNotPresent = true; pWalk->uLevel = uLevel; pWalk->fFailed = s_afEptViolations[idxViolationType]; return VERR_PAGE_TABLE_NOT_PRESENT; } /** * Updates page walk result info when a bad physical address is encountered. * * @returns VERR_PAGE_TABLE_NOT_PRESENT . * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pWalk The page walk info to update. * @param uLevel The page table walk level. * @param rc The error code that caused this bad physical address situation. */ DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(PCVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel, int rc) { AssertMsg(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc)); NOREF(rc); NOREF(pVCpu); pWalk->fBadPhysAddr = true; pWalk->uLevel = uLevel; pWalk->fFailed = PGM_WALKFAIL_EPT_VIOLATION; return VERR_PAGE_TABLE_NOT_PRESENT; } /** * Updates page walk result info when reserved bits are encountered. * * @returns VERR_PAGE_TABLE_NOT_PRESENT. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pWalk The page walk info to update. * @param uLevel The page table walk level. */ DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint8_t uLevel) { NOREF(pVCpu); pWalk->fRsvdError = true; pWalk->uLevel = uLevel; pWalk->fFailed = PGM_WALKFAIL_EPT_MISCONFIG; return VERR_PAGE_TABLE_NOT_PRESENT; } /** * Walks the guest's EPT page table (second-level address translation). * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PAGE_TABLE_NOT_PRESENT on failure. Check pWalk for details. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhysNested The nested-guest physical address to walk. * @param fIsLinearAddrValid Whether the linear-address in @c GCPtrNested caused * this page walk. * @param GCPtrNested The nested-guest linear address that caused this * translation. If @c fIsLinearAddrValid is false, pass * 0. * @param pWalk The page walk info. * @param pSlatWalk The SLAT mode specific page walk info. */ DECLINLINE(int) PGM_GST_SLAT_NAME_EPT(Walk)(PVMCPUCC pVCpu, RTGCPHYS GCPhysNested, bool fIsLinearAddrValid, RTGCPTR GCPtrNested, PPGMPTWALK pWalk, PSLATPTWALK pSlatWalk) { Assert(fIsLinearAddrValid || GCPtrNested == 0); /* * Init walk structures. */ RT_ZERO(*pWalk); RT_ZERO(*pSlatWalk); pWalk->GCPtr = GCPtrNested; pWalk->GCPhysNested = GCPhysNested; pWalk->fIsLinearAddrValid = fIsLinearAddrValid; pWalk->fIsSlat = true; /* * Figure out EPT attributes that are cumulative (logical-AND) across page walks. * - R, W, X_SUPER are unconditionally cumulative. * See Intel spec. Table 26-7 "Exit Qualification for EPT Violations". * * - X_USER is cumulative but relevant only when mode-based execute control for EPT * which we currently don't support it (asserted below). * * - MEMTYPE is not cumulative and only applicable to the final paging entry. * * - A, D EPT bits map to the regular page-table bit positions. Thus, they're not * included in the mask below and handled separately. Accessed bits are * cumulative but dirty bits are not cumulative as they're only applicable to * the final paging entry. */ Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt); uint64_t const fEptAndMask = ( PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK) & PGM_PTATTRS_EPT_MASK; /* * Do the walk. */ uint64_t fEffective; { /* * EPTP. * * We currently only support 4-level EPT paging. * EPT 5-level paging was documented at some point (bit 7 of MSR_IA32_VMX_EPT_VPID_CAP) * but for some reason seems to have been removed from subsequent specs. */ int const rc = pgmGstGetEptPML4PtrEx(pVCpu, &pSlatWalk->pPml4); if (RT_SUCCESS(rc)) { /* likely */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 4, rc); } { /* * PML4E. */ PEPTPML4E pPml4e; pSlatWalk->pPml4e = pPml4e = &pSlatWalk->pPml4->a[(GCPhysNested >> SLAT_PML4_SHIFT) & SLAT_PML4_MASK]; EPTPML4E Pml4e; pSlatWalk->Pml4e.u = Pml4e.u = pPml4e->u; if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pml4e)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pml4e.u, 4); if (RT_LIKELY( SLAT_IS_PML4E_VALID(pVCpu, Pml4e) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pml4e.u))) { /* likely */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 4); uint64_t const fEptAttrs = Pml4e.u & EPT_PML4E_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective = RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; pWalk->fEffective = fEffective; int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pml4e.u & EPT_PML4E_PG_MASK, &pSlatWalk->pPdpt); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc); } { /* * PDPTE. */ PEPTPDPTE pPdpte; pSlatWalk->pPdpte = pPdpte = &pSlatWalk->pPdpt->a[(GCPhysNested >> SLAT_PDPT_SHIFT) & SLAT_PDPT_MASK]; EPTPDPTE Pdpte; pSlatWalk->Pdpte.u = Pdpte.u = pPdpte->u; if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pdpte)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pdpte.u, 3); /* The order of the following "if" and "else if" statements matter. */ if ( SLAT_IS_PDPE_VALID(pVCpu, Pdpte) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u)) { uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; fEffective |= RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute); pWalk->fEffective = fEffective; } else if ( SLAT_IS_BIG_PDPE_VALID(pVCpu, Pdpte) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pdpte.u) && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pdpte.u, 3)) { uint64_t const fEptAttrs = Pdpte.u & EPT_PDPTE1G_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY); uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty) | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType) | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute); pWalk->fEffective = fEffective; pWalk->fGigantPage = true; pWalk->fSucceeded = true; pWalk->GCPhys = SLAT_GET_PDPE1G_GCPHYS(pVCpu, Pdpte) | (GCPhysNested & SLAT_PAGE_1G_OFFSET_MASK); PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys); return VINF_SUCCESS; } else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 3); int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pdpte.u & EPT_PDPTE_PG_MASK, &pSlatWalk->pPd); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 3, rc); } { /* * PDE. */ PSLATPDE pPde; pSlatWalk->pPde = pPde = &pSlatWalk->pPd->a[(GCPhysNested >> SLAT_PD_SHIFT) & SLAT_PD_MASK]; SLATPDE Pde; pSlatWalk->Pde.u = Pde.u = pPde->u; if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pde)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pde.u, 2); /* The order of the following "if" and "else if" statements matter. */ if ( SLAT_IS_PDE_VALID(pVCpu, Pde) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u)) { uint64_t const fEptAttrs = Pde.u & EPT_PDE_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; fEffective |= RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute); pWalk->fEffective = fEffective; } else if ( SLAT_IS_BIG_PDE_VALID(pVCpu, Pde) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pde.u) && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pde.u, 2)) { uint64_t const fEptAttrs = Pde.u & EPT_PDE2M_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY); uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty) | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType) | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute); pWalk->fEffective = fEffective; pWalk->fBigPage = true; pWalk->fSucceeded = true; pWalk->GCPhys = SLAT_GET_PDE2M_GCPHYS(pVCpu, Pde) | (GCPhysNested & SLAT_PAGE_2M_OFFSET_MASK); PGM_A20_APPLY_TO_VAR(pVCpu, pWalk->GCPhys); return VINF_SUCCESS; } else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 2); int const rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, Pde.u & EPT_PDE_PG_MASK, &pSlatWalk->pPt); if (RT_SUCCESS(rc)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnBadPhysAddr)(pVCpu, pWalk, 1, rc); } { /* * PTE. */ PSLATPTE pPte; pSlatWalk->pPte = pPte = &pSlatWalk->pPt->a[(GCPhysNested >> SLAT_PT_SHIFT) & SLAT_PT_MASK]; SLATPTE Pte; pSlatWalk->Pte.u = Pte.u = pPte->u; if (SLAT_IS_PGENTRY_PRESENT(pVCpu, Pte)) { /* probable */ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnNotPresent)(pVCpu, pWalk, Pte.u, 1); if ( SLAT_IS_PTE_VALID(pVCpu, Pte) && PGM_GST_SLAT_NAME_EPT(WalkIsPermValid)(pVCpu, Pte.u) && PGM_GST_SLAT_NAME_EPT(WalkIsMemTypeValid)(Pte.u, 1)) { /* likely*/ } else return PGM_GST_SLAT_NAME_EPT(WalkReturnRsvdError)(pVCpu, pWalk, 1); uint64_t const fEptAttrs = Pte.u & EPT_PTE_ATTR_MASK; uint8_t const fRead = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_READ); uint8_t const fWrite = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_WRITE); uint8_t const fExecute = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_EXECUTE); uint8_t const fAccessed = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_ACCESSED); uint8_t const fDirty = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_DIRTY); uint8_t const fMemType = RT_BF_GET(fEptAttrs, VMX_BF_EPT_PT_MEMTYPE); uint64_t const fEptAndBits = (fEptAttrs << PGM_PTATTRS_EPT_SHIFT) & fEptAndMask; fEffective &= RT_BF_MAKE(PGM_PTATTRS_R, fRead) | RT_BF_MAKE(PGM_PTATTRS_W, fWrite) | RT_BF_MAKE(PGM_PTATTRS_A, fAccessed) | fEptAndBits; fEffective |= RT_BF_MAKE(PGM_PTATTRS_D, fDirty) | RT_BF_MAKE(PGM_PTATTRS_EPT_MEMTYPE, fMemType) | RT_BF_MAKE(PGM_PTATTRS_NX, !fExecute); pWalk->fEffective = fEffective; pWalk->fSucceeded = true; pWalk->GCPhys = SLAT_GET_PTE_GCPHYS(pVCpu, Pte) | (GCPhysNested & GUEST_PAGE_OFFSET_MASK); return VINF_SUCCESS; } }