#!/usr/bin/env python # -*- coding: utf-8 -*- # $Id: InstructionTestGen.py $ """ Instruction Test Generator. """ from __future__ import print_function; __copyright__ = \ """ Copyright (C) 2012-2023 Oracle and/or its affiliates. This file is part of VirtualBox base platform packages, as available from https://www.virtualbox.org. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, in version 3 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . SPDX-License-Identifier: GPL-3.0-only """ __version__ = "$Revision: 155244 $"; # pylint: disable=C0103,R0913 # Standard python imports. import io; import os; from optparse import OptionParser import random; import sys; ## @name Exit codes ## @{ RTEXITCODE_SUCCESS = 0; RTEXITCODE_SYNTAX = 2; ## @} ## @name Various C macros we're used to. ## @{ UINT8_MAX = 0xff UINT16_MAX = 0xffff UINT32_MAX = 0xffffffff UINT64_MAX = 0xffffffffffffffff def RT_BIT_32(iBit): # pylint: disable=C0103 """ 32-bit one bit mask. """ return 1 << iBit; def RT_BIT_64(iBit): # pylint: disable=C0103 """ 64-bit one bit mask. """ return 1 << iBit; ## @} ## @name ModR/M ## @{ X86_MODRM_RM_MASK = 0x07; X86_MODRM_REG_MASK = 0x38; X86_MODRM_REG_SMASK = 0x07; X86_MODRM_REG_SHIFT = 3; X86_MODRM_MOD_MASK = 0xc0; X86_MODRM_MOD_SMASK = 0x03; X86_MODRM_MOD_SHIFT = 6; ## @} ## @name SIB ## @{ X86_SIB_BASE_MASK = 0x07; X86_SIB_INDEX_MASK = 0x38; X86_SIB_INDEX_SMASK = 0x07; X86_SIB_INDEX_SHIFT = 3; X86_SIB_SCALE_MASK = 0xc0; X86_SIB_SCALE_SMASK = 0x03; X86_SIB_SCALE_SHIFT = 6; ## @} ## @name Prefixes ## @ X86_OP_PRF_CS = 0x2e; X86_OP_PRF_SS = 0x36; X86_OP_PRF_DS = 0x3e; X86_OP_PRF_ES = 0x26; X86_OP_PRF_FS = 0x64; X86_OP_PRF_GS = 0x65; X86_OP_PRF_SIZE_OP = 0x66; X86_OP_PRF_SIZE_ADDR = 0x67; X86_OP_PRF_LOCK = 0xf0; X86_OP_PRF_REPNZ = 0xf2; X86_OP_PRF_REPZ = 0xf3; X86_OP_REX_B = 0x41; X86_OP_REX_X = 0x42; X86_OP_REX_R = 0x44; X86_OP_REX_W = 0x48; ## @} ## @name General registers ## @ X86_GREG_xAX = 0 X86_GREG_xCX = 1 X86_GREG_xDX = 2 X86_GREG_xBX = 3 X86_GREG_xSP = 4 X86_GREG_xBP = 5 X86_GREG_xSI = 6 X86_GREG_xDI = 7 X86_GREG_x8 = 8 X86_GREG_x9 = 9 X86_GREG_x10 = 10 X86_GREG_x11 = 11 X86_GREG_x12 = 12 X86_GREG_x13 = 13 X86_GREG_x14 = 14 X86_GREG_x15 = 15 ## @} ## @name Register names. ## @{ g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi', 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi', 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di', 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di', 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ch', 'dh', 'bh'); g_asGRegs8Rex = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil', 'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b', 'ah', 'ch', 'dh', 'bh'); ## @} ## @name EFLAGS/RFLAGS/EFLAGS ## @{ X86_EFL_CF = RT_BIT_32(0); X86_EFL_CF_BIT = 0; X86_EFL_1 = RT_BIT_32(1); X86_EFL_PF = RT_BIT_32(2); X86_EFL_AF = RT_BIT_32(4); X86_EFL_AF_BIT = 4; X86_EFL_ZF = RT_BIT_32(6); X86_EFL_ZF_BIT = 6; X86_EFL_SF = RT_BIT_32(7); X86_EFL_SF_BIT = 7; X86_EFL_TF = RT_BIT_32(8); X86_EFL_IF = RT_BIT_32(9); X86_EFL_DF = RT_BIT_32(10); X86_EFL_OF = RT_BIT_32(11); X86_EFL_OF_BIT = 11; X86_EFL_IOPL = (RT_BIT_32(12) | RT_BIT_32(13)); X86_EFL_NT = RT_BIT_32(14); X86_EFL_RF = RT_BIT_32(16); X86_EFL_VM = RT_BIT_32(17); X86_EFL_AC = RT_BIT_32(18); X86_EFL_VIF = RT_BIT_32(19); X86_EFL_VIP = RT_BIT_32(20); X86_EFL_ID = RT_BIT_32(21); X86_EFL_LIVE_MASK = 0x003f7fd5; X86_EFL_RA1_MASK = RT_BIT_32(1); X86_EFL_IOPL_SHIFT = 12; X86_EFL_STATUS_BITS = ( X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF ); ## @} ## @name Random ## @{ g_iMyRandSeed = int((os.urandom(4)).encode('hex'), 16); #g_iMyRandSeed = 286523426; #g_iMyRandSeed = 1994382324; g_oMyRand = random.Random(g_iMyRandSeed); #g_oMyRand = random.SystemRandom(); def randU8(): """ Unsigned 8-bit random number. """ return g_oMyRand.getrandbits(8); def randU16(): """ Unsigned 16-bit random number. """ return g_oMyRand.getrandbits(16); def randU32(): """ Unsigned 32-bit random number. """ return g_oMyRand.getrandbits(32); def randU64(): """ Unsigned 64-bit random number. """ return g_oMyRand.getrandbits(64); def randUxx(cBits): """ Unsigned 8-, 16-, 32-, or 64-bit random number. """ return g_oMyRand.getrandbits(cBits); def randSxx(cBits): """ Signed 8-, 16-, 32-, or 64-bit random number. """ uVal = randUxx(cBits); iRet = uVal & ((1 << (cBits - 1)) - 1); if iRet != uVal: iRet = -iRet; return iRet; def randUxxList(cBits, cElements): """ List of unsigned 8-, 16-, 32-, or 64-bit random numbers. """ return [randUxx(cBits) for _ in range(cElements)]; ## @} ## @name Instruction Emitter Helpers ## @{ def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0): """ Calculates a rex prefix if neccessary given the two registers and optional rex size prefixes. Returns an empty array if not necessary. """ bRex = bOtherRexPrefixes; if iReg >= 8: bRex |= X86_OP_REX_R; if iRm >= 8: bRex |= X86_OP_REX_B; if bRex == 0: return []; return [bRex,]; def calcModRmForTwoRegs(iReg, iRm): """ Calculate the RM byte for two registers. Returns an array with one byte in it. """ bRm = (0x3 << X86_MODRM_MOD_SHIFT) \ | ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \ | (iRm & X86_MODRM_RM_MASK); return [bRm,]; ## @} ## @name Misc ## @{ def convU32ToSigned(u32): """ Converts a 32-bit unsigned value to 32-bit signed. """ if u32 < 0x80000000: return u32; return u32 - UINT32_MAX - 1; def rotateLeftUxx(cBits, uVal, cShift): """ Rotate a xx-bit wide unsigned number to the left. """ assert cShift < cBits; if cBits == 16: uMask = UINT16_MAX; elif cBits == 32: uMask = UINT32_MAX; elif cBits == 64: uMask = UINT64_MAX; else: assert cBits == 8; uMask = UINT8_MAX; uVal &= uMask; uRet = (uVal << cShift) & uMask; uRet |= (uVal >> (cBits - cShift)); return uRet; def rotateRightUxx(cBits, uVal, cShift): """ Rotate a xx-bit wide unsigned number to the right. """ assert cShift < cBits; if cBits == 16: uMask = UINT16_MAX; elif cBits == 32: uMask = UINT32_MAX; elif cBits == 64: uMask = UINT64_MAX; else: assert cBits == 8; uMask = UINT8_MAX; uVal &= uMask; uRet = (uVal >> cShift); uRet |= (uVal << (cBits - cShift)) & uMask; return uRet; def gregName(iReg, cBits, fRexByteRegs = True): """ Gets the name of a general register by index and width. """ if cBits == 64: return g_asGRegs64[iReg]; if cBits == 32: return g_asGRegs32[iReg]; if cBits == 16: return g_asGRegs16[iReg]; assert cBits == 8; if fRexByteRegs: return g_asGRegs8Rex[iReg]; return g_asGRegs8[iReg]; ## @} class TargetEnv(object): """ Target Runtime Environment. """ ## @name CPU Modes ## @{ ksCpuMode_Real = 'real'; ksCpuMode_Protect = 'prot'; ksCpuMode_Paged = 'paged'; ksCpuMode_Long = 'long'; ksCpuMode_V86 = 'v86'; ## @} ## @name Instruction set. ## @{ ksInstrSet_16 = '16'; ksInstrSet_32 = '32'; ksInstrSet_64 = '64'; ## @} def __init__(self, sName, sInstrSet = ksInstrSet_32, sCpuMode = ksCpuMode_Paged, iRing = 3, ): self.sName = sName; self.sInstrSet = sInstrSet; self.sCpuMode = sCpuMode; self.iRing = iRing; self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32; self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp; def isUsingIprt(self): """ Whether it's an IPRT environment or not. """ return self.sName.startswith('iprt'); def is64Bit(self): """ Whether it's a 64-bit environment or not. """ return self.sInstrSet == self.ksInstrSet_64; def getDefOpBits(self): """ Get the default operand size as a bit count. """ if self.sInstrSet == self.ksInstrSet_16: return 16; return 32; def getDefOpBytes(self): """ Get the default operand size as a byte count. """ return self.getDefOpBits() / 8; def getMaxOpBits(self): """ Get the max operand size as a bit count. """ if self.sInstrSet == self.ksInstrSet_64: return 64; return 32; def getMaxOpBytes(self): """ Get the max operand size as a byte count. """ return self.getMaxOpBits() / 8; def getDefAddrBits(self): """ Get the default address size as a bit count. """ if self.sInstrSet == self.ksInstrSet_16: return 16; if self.sInstrSet == self.ksInstrSet_32: return 32; return 64; def getDefAddrBytes(self): """ Get the default address size as a byte count. """ return self.getDefAddrBits() / 8; def getGRegCount(self, cbEffBytes = 4): """ Get the number of general registers. """ if self.sInstrSet == self.ksInstrSet_64: if cbEffBytes == 1: return 16 + 4; return 16; return 8; def randGRegNoSp(self, cbEffBytes = 4): """ Returns a random general register number, excluding the SP register. """ iReg = randU16() % self.getGRegCount(cbEffBytes); while iReg == X86_GREG_xSP: iReg = randU16() % self.getGRegCount(cbEffBytes); return iReg; def randGRegNoSpList(self, cItems, cbEffBytes = 4): """ List of randGRegNoSp values. """ aiRegs = []; for _ in range(cItems): aiRegs.append(self.randGRegNoSp(cbEffBytes)); return aiRegs; def getAddrModes(self): """ Gets a list of addressing mode (16, 32, or/and 64). """ if self.sInstrSet == self.ksInstrSet_16: return [16, 32]; if self.sInstrSet == self.ksInstrSet_32: return [32, 16]; return [64, 32]; def is8BitHighGReg(self, cbEffOp, iGReg): """ Checks if the given register is a high 8-bit general register (AH, CH, DH or BH). """ assert cbEffOp in [1, 2, 4, 8]; if cbEffOp == 1: if iGReg >= 16: return True; if iGReg >= 4 and not self.is64Bit(): return True; return False; def gregNameBits(self, iReg, cBits): """ Gets the name of the given register for the specified width (bits). """ return gregName(iReg, cBits, self.is64Bit()); def gregNameBytes(self, iReg, cbWidth): """ Gets the name of the given register for the specified with (in bytes). """ return gregName(iReg, cbWidth * 8, self.is64Bit()); ## Target environments. g_dTargetEnvs = { 'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3), 'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3), 'bs2-r0-64': TargetEnv('bs2-r0-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), 'bs2-r0-64-big': TargetEnv('bs2-r0-64-big', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), 'bs2-r0-32-big': TargetEnv('bs2-r0-32-big', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 0), }; class InstrTestBase(object): """ Base class for testing one instruction. """ def __init__(self, sName, sInstr = None): self.sName = sName; self.sInstr = sInstr if sInstr else sName.split()[0]; def isApplicable(self, oGen): """ Tests if the instruction test is applicable to the selected environment. """ _ = oGen; return True; def generateTest(self, oGen, sTestFnName): """ Emits the test assembly code. """ oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName)); return True; def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False): """ Generate a list of inputs. """ if fLong: # # Try do extremes as well as different ranges of random numbers. # auRet = [0, 1, ]; if cbMaxOp >= 1: auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ]; if cbMaxOp >= 2: auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ]; if cbMaxOp >= 4: auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ]; if cbMaxOp >= 8: auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ]; if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 16; elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 64; else: for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 168; if len(auRet) < cWanted: auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet)); else: # # Short list, just do some random numbers. # auRet = []; if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: auRet += randUxxList(cbMaxOp, 1); elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: auRet += randUxxList(cbMaxOp, 2); else: auRet = []; for cBits in (8, 16, 32, 64): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, 1); return auRet; class InstrTest_MemOrGreg_2_Greg(InstrTestBase): """ Instruction reading memory or general register and writing the result to a general register. """ def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None): InstrTestBase.__init__(self, sName, sInstr); self.fnCalcResult = fnCalcResult; self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars); self.fTestRegForm = True; self.fTestMemForm = True; ## @name Test Instruction Writers ## @{ def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): """ Writes the instruction with two general registers as operands. """ oGen.write(' %s %s, %s\n' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); return True; def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen): """ Writes the instruction with two general registers as operands. """ oGen.write(' '); if iOp2 == 13 and iMod == 0 and cAddrBits == 64: oGen.write('altrexb '); # Alternative encoding for rip relative addressing. oGen.write('%s %s, [' % (self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),)); if (iOp2 == 5 or iOp2 == 13) and iMod == 0: oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,)) if oGen.oTarget.is64Bit(): oGen.write(' wrt rip'); else: if iMod == 1: oGen.write('byte %d + ' % (offDisp,)); elif iMod == 2: oGen.write('dword %d + ' % (offDisp,)); else: assert iMod == 0; if cAddrBits == 64: oGen.write(g_asGRegs64[iOp2]); elif cAddrBits == 32: oGen.write(g_asGRegs32[iOp2]); elif cAddrBits == 16: assert False; ## @todo implement 16-bit addressing. else: assert False, str(cAddrBits); oGen.write(']\n'); return True; def writeInstrGregSibLabel(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and a label (base only w/o reg), SIB form. """ assert offDisp is None; assert iBaseReg in [5, 13]; assert iIndexReg == 4; assert cAddrBits != 16; if cAddrBits == 64: # Note! Cannot test this in 64-bit mode in any sensible way because the disp is 32-bit # and we cannot (yet) make assumtions about where we're loaded. ## @todo Enable testing this in environments where we can make assumptions (boot sector). oGen.write(' %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP]\n' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8,)); else: oGen.write(' altsibx%u %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP] ; iOp1=%s cbEffOp=%s\n' % ( iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8, iOp1, cbEffOp)); return True; def writeInstrGregSibScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and disp+scaled register (no base reg), SIB form. """ assert iBaseReg in [5, 13]; assert iIndexReg != 4; assert cAddrBits != 16; # Note! Using altsibxN to force scaled encoding. This is only really a # necessity for iScale=1, but doesn't hurt for the rest. oGen.write(' altsibx%u %s %s, [%s * %#x' % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); _ = iBaseReg; return True; def writeInstrGregSibBase(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and base only (with reg), SIB form. """ oGen.write(' altsibx%u %s %s, [%s' % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits),)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); _ = iIndexReg; return True; def writeInstrGregSibBaseAndScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes tinstruction taking a register and full featured SIB form address. """ # Note! From the looks of things, yasm will encode the following instructions the same way: # mov eax, [rsi*1 + rbx] # mov eax, [rbx + rsi*1] # So, when there are two registers involved, the '*1' selects # which is index and which is base. oGen.write(' %s %s, [%s + %s * %u' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); return True; ## @} ## @name Memory setups ## @{ def generateMemSetupReadByLabel(self, oGen, cbEffOp, uInput): """ Sets up memory for a memory read. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); return True; def generateMemSetupReadByReg(self, oGen, cAddrBits, cbEffOp, iReg1, uInput, offDisp = None): """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iReg1, offDisp = offDisp),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iReg1],)); return True; def generateMemSetupReadByScaledReg(self, oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp = None): """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); return True; def generateMemSetupReadByBaseAndScaledReg(self, oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp): """ Sets up memory for a memory read indirectly addressed thru two registers with optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iBaseReg, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iBaseReg],)); return True; def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None): """ Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """ oGen.pushConst(uInput); assert offDisp is None or iMod != 0; if (iOp2 != 5 and iOp2 != 13) or iMod != 0: oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),)); else: oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); return True; ## @} def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult): """ Generate one standard instr greg,greg test. """ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uInput,)); if iOp1X != iOp2X: oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1X, iOp2X if iOp1X != iOp2X else None),)); _ = cbMaxOp; return True; def generateOneStdTestGregGreg8BitHighPain(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput): """ High 8-bit registers are a real pain! """ assert oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) or oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2); # Figure out the register indexes of the max op sized regs involved. iOp1X = iOp1 & 3; iOp2X = iOp2 & 3; oGen.write(' ; iOp1=%u iOp1X=%u iOp2=%u iOp2X=%u\n' % (iOp1, iOp1X, iOp2, iOp2X,)); # Calculate unshifted result. if iOp1X != iOp2X: uCur = oGen.auRegValues[iOp1X]; if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); else: uCur = uInput; if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) != oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); else: uCur = rotateLeftUxx(cbMaxOp * 8, uCur, 8); uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); # Rotate the input and/or result to match their max-op-sized registers. if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): uInput = rotateLeftUxx(cbMaxOp * 8, uInput, 8); if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uResult = rotateLeftUxx(cbMaxOp * 8, uResult, 8); # Hand it over to an overridable worker method. return self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult); def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult): """ Generate mode 0, 1 and 2 test for the R/M=iOp2. """ if cAddrBits == 16: _ = cbMaxOp; else: iMod = 0; # No disp, except for i=5. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); if iOp2 != 5 and iOp2 != 13: iMod = 1; for offDisp in oGen.getDispForMod(iMod): oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); iMod = 2; for offDisp in oGen.getDispForMod(iMod): oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); return True; def generateOneStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, # pylint: disable=R0913 iBaseReg, iIndexReg, iScale, uInput, uResult): """ Generate one SIB variations. """ for offDisp in oGen.getDispForMod(iMod, cbEffOp): if ((iBaseReg == 5 or iBaseReg == 13) and iMod == 0): if iIndexReg == 4: if cAddrBits == 64: continue; # skipping. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupReadByLabel(oGen, cbEffOp, uInput); self.writeInstrGregSibLabel(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1); else: oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupReadByScaledReg(oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp); self.writeInstrGregSibScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iIndexReg); else: oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); if iIndexReg == 4: self.generateMemSetupReadByReg(oGen, cAddrBits, cbEffOp, iBaseReg, uInput, offDisp); self.writeInstrGregSibBase(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iBaseReg); else: if iIndexReg == iBaseReg and iScale == 1 and offDisp is not None and (offDisp & 1): if offDisp < 0: offDisp += 1; else: offDisp -= 1; self.generateMemSetupReadByBaseAndScaledReg(oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp); self.writeInstrGregSibBaseAndScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iBaseReg, iIndexReg); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (sChecker,)); _ = cbMaxOp; return True; def generateStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, auInputs): """ Generate all SIB variations for the given iOp1 (reg) value. """ assert cAddrBits in [32, 64]; i = oGen.cSibBasePerRun; while i > 0: oGen.iSibBaseReg = (oGen.iSibBaseReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); if oGen.iSibBaseReg == X86_GREG_xSP: # no RSP testing atm. continue; j = oGen.getSibIndexPerRun(); while j > 0: oGen.iSibIndexReg = (oGen.iSibIndexReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); if oGen.iSibIndexReg == iOp1 and oGen.iSibIndexReg != 4 and cAddrBits != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. for iMod in [0, 1, 2]: if oGen.iSibBaseReg == iOp1 \ and ((oGen.iSibBaseReg != 5 and oGen.iSibBaseReg != 13) or iMod != 0) \ and cAddrBits != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. for _ in oGen.oSibScaleRange: oGen.iSibScale *= 2; if oGen.iSibScale > 8: oGen.iSibScale = 1; for uInput in auInputs: oGen.newSubTest(); uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen); self.generateOneStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, oGen.iSibBaseReg, oGen.iSibIndexReg, oGen.iSibScale, uInput, uResult); j -= 1; i -= 1; return True; def generateStandardTests(self, oGen): """ Generate standard tests. """ # Parameters. cbDefOp = oGen.oTarget.getDefOpBytes(); cbMaxOp = oGen.oTarget.getMaxOpBytes(); auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen); auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True); iLongOp1 = oGen.oTarget.randGRegNoSp(); iLongOp2 = oGen.oTarget.randGRegNoSp(); # Register tests if self.fTestRegForm: for cbEffOp in self.acbOpVars: if cbEffOp > cbMaxOp: continue; oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: oOp2Range = [iLongOp2,]; oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); for iOp1 in range(oGen.oTarget.getGRegCount(cbEffOp)): if iOp1 == X86_GREG_xSP: continue; # Cannot test xSP atm. for iOp2 in oOp2Range: if (iOp2 >= 16 and iOp1 in range(4, 16)) \ or (iOp1 >= 16 and iOp2 in range(4, 16)): continue; # Any REX encoding turns AH,CH,DH,BH regs into SPL,BPL,SIL,DIL. if iOp2 == X86_GREG_xSP: continue; # Cannot test xSP atm. oGen.write('; iOp2=%u cbEffOp=%u\n' % (iOp2, cbEffOp)); for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs): oGen.newSubTest(); if not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) and not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): uCur = oGen.auRegValues[iOp1 & 15] if iOp1 != iOp2 else uInput; uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1 & 15, iOp2, iOp2 & 15, uInput, uResult); else: self.generateOneStdTestGregGreg8BitHighPain(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput); # Memory test. if self.fTestMemForm: for cAddrBits in oGen.oTarget.getAddrModes(): for cbEffOp in self.acbOpVars: if cbEffOp > cbMaxOp: continue; for _ in oGen.getModRegRange(cbEffOp): oGen.iModReg = (oGen.iModReg + 1) % oGen.oTarget.getGRegCount(cbEffOp); if oGen.iModReg == X86_GREG_xSP: continue; # Cannot test xSP atm. if oGen.iModReg > 15: continue; ## TODO AH,CH,DH,BH auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; for _ in oGen.oModRmRange: oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); if oGen.iModRm != 4 or cAddrBits == 16: for uInput in auInputs: oGen.newSubTest(); if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 \ and oGen.iModRm != 13 and cbEffOp != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, oGen.iModRm, uInput, uResult); else: # SIB - currently only short list of inputs or things may get seriously out of hand. self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); return True; def generateTest(self, oGen, sTestFnName): oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); self.generateStandardTests(oGen); oGen.write(' ret\n'); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg): """ Tests MOV Gv,Ev. """ def __init__(self): InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov); @staticmethod def calc_mov(cbEffOp, uInput, uCur, oGen): """ Calculates the result of a mov instruction.""" if cbEffOp == 8: return uInput & UINT64_MAX; if cbEffOp == 4: return uInput & UINT32_MAX; if cbEffOp == 2: return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX); assert cbEffOp == 1; _ = oGen; return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX); class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg): """ Tests MOVSXD Gv,Ev. """ def __init__(self): InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]); self.fTestMemForm = False; # drop this... def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): """ Writes the instruction with two general registers as operands. """ if cbEffOp == 8: oGen.write(' movsxd %s, %s\n' % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp / 2),)); else: oGen.write(' oddmovsxd %s, %s\n' % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); return True; def isApplicable(self, oGen): return oGen.oTarget.is64Bit(); @staticmethod def calc_movsxd(cbEffOp, uInput, uCur, oGen): """ Calculates the result of a movxsd instruction. Returns the result value (cbMaxOp sized). """ _ = oGen; if cbEffOp == 8 and (uInput & RT_BIT_32(31)): return (UINT32_MAX << 32) | (uInput & UINT32_MAX); if cbEffOp == 2: return (uCur & 0xffffffffffff0000) | (uInput & 0xffff); return uInput & UINT32_MAX; class InstrTest_DivIDiv(InstrTestBase): """ Tests IDIV and DIV instructions. """ def __init__(self, fIsIDiv): if not fIsIDiv: InstrTestBase.__init__(self, 'div Gv,Ev', 'div'); else: InstrTestBase.__init__(self, 'idiv Gv,Ev', 'idiv'); self.fIsIDiv = fIsIDiv; def generateInputEdgeCases(self, cbEffOp, fLong, fXcpt): """ Generate edge case inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = []; uDivisor = 1 if fLong else 3; uDividend = uStep * uDivisor - 1; for i in range(5 if fLong else 3): auRet.append([uDividend + fXcpt, uDivisor]); if self.fIsIDiv: auRet.append([-uDividend - fXcpt, -uDivisor]); auRet.append([-(uDividend + uDivisor + fXcpt), uDivisor]); auRet.append([ (uDividend + uDivisor + fXcpt), -uDivisor]); if i <= 3 and fLong: auRet.append([uDividend - 1 + fXcpt*3, uDivisor]); if self.fIsIDiv: auRet.append([-(uDividend - 1 + fXcpt*3), -uDivisor]); uDivisor += 1; uDividend += uStep; uDivisor = uStep - 1; uDividend = uStep * uDivisor - 1; for _ in range(3 if fLong else 1): auRet.append([uDividend + fXcpt, uDivisor]); if self.fIsIDiv: auRet.append([-uDividend - fXcpt, -uDivisor]); uDivisor -= 1; uDividend -= uStep; if self.fIsIDiv: uDivisor = -uStep; for _ in range(3 if fLong else 1): auRet.append([uDivisor * (-uStep - 1) - (not fXcpt), uDivisor]); uDivisor += 1 uDivisor = uStep - 1; for _ in range(3 if fLong else 1): auRet.append([-(uDivisor * (uStep + 1) - (not fXcpt)), uDivisor]); uDivisor -= 1 return auRet; def generateInputsNoXcpt(self, cbEffOp, fLong = False): """ Generate inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = self.generateInputEdgeCases(cbEffOp, fLong, False) # random tests. if self.fIsIDiv: for _ in range(6 if fLong else 2): while True: uDivisor = randSxx(cbEffOp * 8); if uDivisor == 0 or uDivisor >= uStep or uDivisor < -uStep: continue; uDividend = randSxx(cbEffOp * 16); uResult = uDividend / uDivisor; if uResult >= uStep or uResult <= -uStep: # exclude difficulties continue; break; auRet.append([uDividend, uDivisor]); else: for _ in range(6 if fLong else 2): while True: uDivisor = randUxx(cbEffOp * 8); if uDivisor == 0 or uDivisor >= uStep: continue; uDividend = randUxx(cbEffOp * 16); uResult = uDividend / uDivisor; if uResult >= uStep: continue; break; auRet.append([uDividend, uDivisor]); return auRet; def generateOneStdTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV rDX:rAX,' test. """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fEffOp = ((1 << (cbEffOp *8) ) - 1); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; fTopOp = fMaxOp - fEffOp; fFullOp1 = ((1 << (cbEffOp*16)) - 1); uAX = iDividend & fFullOp1; # full with unsigned uDX = uAX >> (cbEffOp*8); uAX &= fEffOp; uOp2Val = iDivisor & fEffOp; iQuotient = iDividend / iDivisor; iReminder = iDividend % iDivisor; if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. iQuotient += 1; iReminder -= iDivisor; uAXResult = iQuotient & fEffOp; uDXResult = iReminder & fEffOp; if cbEffOp < cbMaxOp: uAX |= randUxx(cbMaxOp * 8) & fTopOp; uDX |= randUxx(cbMaxOp * 8) & fTopOp; uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; if cbEffOp < 4: uAXResult |= uAX & fTopOp; uDXResult |= uDX & fTopOp; oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor, iQuotient & fEffOp, iQuotient, iReminder & fEffOp, iReminder, )); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); oGen.pushConst(uDXResult); oGen.pushConst(uAXResult); oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); return True; def generateOneStdTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV AX,' test (8-bit). """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; assert iOp2X != X86_GREG_xAX; uAX = iDividend & UINT16_MAX; # full with unsigned uOp2Val = iDivisor & UINT8_MAX; iQuotient = iDividend / iDivisor; iReminder = iDividend % iDivisor; if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. iQuotient += 1; iReminder -= iDivisor; uAXResult = (iQuotient & UINT8_MAX) | ((iReminder & UINT8_MAX) << 8); uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); uAXResult |= uAX & (fMaxOp - UINT16_MAX); uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); if iOp2X != iOp2: uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor, iQuotient & UINT8_MAX, iQuotient, iReminder & UINT8_MAX, iReminder, )); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); oGen.pushConst(uAXResult); oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); return; def generateStandardTests(self, oGen): """ Generates test that causes no exceptions. """ # Parameters. iLongOp2 = oGen.oTarget.randGRegNoSp(); # Register tests if True: for cbEffOp in ( 8, 4, 2, 1 ): if cbEffOp > oGen.oTarget.getMaxOpBytes(): continue; oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: oOp2Range = [iLongOp2,]; for iOp2 in oOp2Range: if iOp2 == X86_GREG_xSP: continue; # Cannot test xSP atm. if iOp2 == X86_GREG_xAX or (cbEffOp > 1 and iOp2 == X86_GREG_xDX): continue; # Will overflow or be too complicated to get right. if cbEffOp == 1 and iOp2 == (16 if oGen.oTarget.is64Bit() else 4): continue; # Avoid dividing by AH, same reasons as above. for iDividend, iDivisor in self.generateInputsNoXcpt(cbEffOp, iOp2 == iLongOp2): oGen.newSubTest(); if cbEffOp > 1: self.generateOneStdTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); else: self.generateOneStdTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); ## Memory test. #if False: # for cAddrBits in oGen.oTarget.getAddrModes(): # for cbEffOp in self.acbOpVars: # if cbEffOp > cbMaxOp: # continue; # # auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; # for _ in oGen.oModRmRange: # oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); # if oGen.iModRm != 4 or cAddrBits == 16: # for uInput in auInputs: # oGen.newSubTest(); # if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 and oGen.iModRm != 13 and cbEffOp != cbMaxOp: # continue; # Don't know the high bit of the address ending up the result - skip it for now. # uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); # self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, # oGen.iModReg, oGen.iModRm, uInput, uResult); # else: # # SIB - currently only short list of inputs or things may get seriously out of hand. # self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); # return True; def generateInputsXcpt(self, cbEffOp, fLong = False): """ Generate inputs for cbEffOp that will overflow or underflow. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = self.generateInputEdgeCases(cbEffOp, fLong, True); auRet.extend([[0, 0], [1, 0], [ uStep * uStep / 2 - 1, 0]]); # random tests. if self.fIsIDiv: for _ in range(6 if fLong else 2): while True: uDivisor = randSxx(cbEffOp * 8); uDividend = randSxx(cbEffOp * 16); if uDivisor >= uStep or uDivisor < -uStep: continue; if uDivisor != 0: uResult = uDividend / uDivisor; if (uResult <= uStep and uResult >= 0) or (uResult >= -uStep and uResult < 0): continue; # exclude difficulties break; auRet.append([uDividend, uDivisor]); else: for _ in range(6 if fLong else 2): while True: uDivisor = randUxx(cbEffOp * 8); uDividend = randUxx(cbEffOp * 16); if uDivisor >= uStep: continue; if uDivisor != 0: uResult = uDividend / uDivisor; if uResult < uStep: continue; break; auRet.append([uDividend, uDivisor]); return auRet; def generateOneDivideErrorTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV rDX:rAX,' test that causes #DE. """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fEffOp = ((1 << (cbEffOp *8) ) - 1); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; fTopOp = fMaxOp - fEffOp; fFullOp1 = ((1 << (cbEffOp*16)) - 1); uAX = iDividend & fFullOp1; # full with unsigned uDX = uAX >> (cbEffOp*8); uAX &= fEffOp; uOp2Val = iDivisor & fEffOp; if cbEffOp < cbMaxOp: uAX |= randUxx(cbMaxOp * 8) & fTopOp; uDX |= randUxx(cbMaxOp * 8) & fTopOp; uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,)); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX],)); oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); return True; def generateOneDivideErrorTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV AX,' test that causes #DE (8-bit). """ if not oGen.oTarget.is64Bit() and iOp2 == 4: # Avoid AH. iOp2 = 5; cbMaxOp = oGen.oTarget.getMaxOpBytes(); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; assert iOp2X != X86_GREG_xAX; uAX = iDividend & UINT16_MAX; # full with unsigned uOp2Val = iDivisor & UINT8_MAX; uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); if iOp2X != iOp2: uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,)); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); oGen.write(' push sAX\n'); oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); return; def generateDivideErrorTests(self, oGen): """ Generate divide error tests (raises X86_XCPT_DE). """ oGen.write('%ifdef VBINSTST_CAN_DO_TRAPS\n'); # We do one register variation here, assuming the standard test has got them covered. # Register tests if True: iOp2 = oGen.oTarget.randGRegNoSp(); while iOp2 == X86_GREG_xAX or iOp2 == X86_GREG_xDX: iOp2 = oGen.oTarget.randGRegNoSp(); for cbEffOp in ( 8, 4, 2, 1 ): if cbEffOp > oGen.oTarget.getMaxOpBytes(): continue; oGen.write('; cbEffOp=%u iOp2=%u\n' % (cbEffOp, iOp2,)); for iDividend, iDivisor in self.generateInputsXcpt(cbEffOp, fLong = not oGen.isTiny()): oGen.newSubTest(); if cbEffOp > 1: self.generateOneDivideErrorTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); else: self.generateOneDivideErrorTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); oGen.write('%endif ; VBINSTST_CAN_DO_TRAPS\n'); return True; def generateTest(self, oGen, sTestFnName): oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); #oGen.write(' int3\n'); self.generateStandardTests(oGen); self.generateDivideErrorTests(oGen); #oGen.write(' int3\n'); oGen.write(' ret\n'); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; class InstrTest_DaaDas(InstrTestBase): """ Tests the DAA and DAS instructions. """ def __init__(self, fIsDas): InstrTestBase.__init__(self, 'das' if fIsDas else 'daa'); self.fIsDas = fIsDas; def isApplicable(self, oGen): return not oGen.oTarget.is64Bit(); def generateTest(self, oGen, sTestFnName): if self.fIsDas: from itgTableDas import g_aItgDasResults as aItgResults; else: from itgTableDaa import g_aItgDaaResults as aItgResults; cMax = len(aItgResults); if oGen.isTiny(): cMax = 64; oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); oGen.write(' xor ebx, ebx\n'); oGen.write('.das_loop:\n'); # Save the loop variable so we can load known values. oGen.write(' push ebx\n'); oGen.newSubTestEx('ebx'); # Push the results. oGen.write(' movzx eax, byte [.abAlResults + ebx]\n'); oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); oGen.write(' push eax\n'); oGen.write(' movzx eax, byte [.aFlagsResults + ebx]\n'); oGen.write(' push eax\n'); # Calc and push the inputs. oGen.write(' mov eax, ebx\n'); oGen.write(' shr eax, 2\n'); oGen.write(' and eax, 0ffh\n'); oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); oGen.write(' push eax\n'); oGen.write(' pushfd\n') oGen.write(' and dword [xSP], ~(X86_EFL_CF | X86_EFL_AF)\n'); oGen.write(' mov al, bl\n'); oGen.write(' and al, 2\n'); oGen.write(' shl al, X86_EFL_AF_BIT - 1\n'); oGen.write(' or [xSP], al\n'); oGen.write(' mov al, bl\n'); oGen.write(' and al, X86_EFL_CF\n'); oGen.write(' or [xSP], al\n'); # Load register values and do the test. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' popfd\n'); oGen.write(' pop eax\n'); if self.fIsDas: oGen.write(' das\n'); else: oGen.write(' daa\n'); # Verify the results. fFlagsToCheck = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_ZF; oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needFlagsGRegChecker(fFlagsToCheck, X86_GREG_xAX),)); # Restore the loop variable and advance. oGen.write(' pop ebx\n'); oGen.write(' inc ebx\n'); oGen.write(' cmp ebx, %#x\n' % (cMax,)); oGen.write(' jb .das_loop\n'); oGen.write(' ret\n'); oGen.write('.abAlResults:\n'); for i in range(cMax): oGen.write(' db %#x\n' % (aItgResults[i][0],)); oGen.write('.aFlagsResults:\n'); for i in range(cMax): oGen.write(' db %#x\n' % (aItgResults[i][1],)); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; ## # Instruction Tests. # g_aoInstructionTests = [ InstrTest_Mov_Gv_Ev(), InstrTest_MovSxD_Gv_Ev(), InstrTest_DivIDiv(fIsIDiv = False), InstrTest_DivIDiv(fIsIDiv = True), InstrTest_DaaDas(fIsDas = False), InstrTest_DaaDas(fIsDas = True), ]; class InstructionTestGen(object): # pylint: disable=R0902 """ Instruction Test Generator. """ ## @name Test size ## @{ ksTestSize_Large = 'large'; ksTestSize_Medium = 'medium'; ksTestSize_Tiny = 'tiny'; ## @} kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny ); ## The prefix for the checker functions. ksCheckerPrefix = 'Common_Check_' def __init__(self, oOptions): self.oOptions = oOptions; self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv]; # Calculate the number of output files. self.cFiles = 1; if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile: self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile; if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests): self.cFiles += 1; # Fix the known register values. self.au64Regs = randUxxList(64, 16); self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)]; self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)]; self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs; # Declare state variables used while generating. self.oFile = sys.stderr; self.iFile = -1; self.sFile = ''; self._dCheckFns = dict(); self._dMemSetupFns = dict(); self._d64BitConsts = dict(); # State variables used while generating test convenientely placed here (lazy bird)... self.iModReg = 0; self.iModRm = 0; self.iSibBaseReg = 0; self.iSibIndexReg = 0; self.iSibScale = 1; if self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: self._oModRegRange = range(2); self._oModRegRange8 = range(2); self.oModRmRange = range(2); self.cSibBasePerRun = 1; self._cSibIndexPerRun = 2; self.oSibScaleRange = range(1); elif self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: self._oModRegRange = range( 5 if self.oTarget.is64Bit() else 4); self._oModRegRange8 = range( 6 if self.oTarget.is64Bit() else 4); self.oModRmRange = range(5); self.cSibBasePerRun = 5; self._cSibIndexPerRun = 4 self.oSibScaleRange = range(2); else: self._oModRegRange = range(16 if self.oTarget.is64Bit() else 8); self._oModRegRange8 = range(20 if self.oTarget.is64Bit() else 8); self.oModRmRange = range(16 if self.oTarget.is64Bit() else 8); self.cSibBasePerRun = 8; self._cSibIndexPerRun = 9; self.oSibScaleRange = range(4); self.iSibIndexRange = 0; # # Methods used by instruction tests. # def write(self, sText): """ Writes to the current output file. """ return self.oFile.write(unicode(sText)); def writeln(self, sText): """ Writes a line to the current output file. """ self.write(sText); return self.write('\n'); def writeInstrBytes(self, abInstr): """ Emits an instruction given as a sequence of bytes values. """ self.write(' db %#04x' % (abInstr[0],)); for i in range(1, len(abInstr)): self.write(', %#04x' % (abInstr[i],)); return self.write('\n'); def newSubTest(self): """ Indicates that a new subtest has started. """ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n'); return True; def newSubTestEx(self, sIndicator): """ Indicates that a new subtest has started. """ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], %s\n' % (sIndicator, )); return True; def needGRegChecker(self, iReg1, iReg2 = None, iReg3 = None): """ Records the need for a given register checker function, returning its label. """ if iReg2 is not None: if iReg3 is not None: sName = '%s_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2], self.oTarget.asGRegs[iReg3],); else: sName = '%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2],); else: sName = '%s' % (self.oTarget.asGRegs[iReg1],); assert iReg3 is None; if sName in self._dCheckFns: self._dCheckFns[sName] += 1; else: self._dCheckFns[sName] = 1; return self.ksCheckerPrefix + sName; def needFlagsGRegChecker(self, fFlagsToCheck, iReg1, iReg2 = None, iReg3 = None): """ Records the need for a given rFLAGS + register checker function, returning its label. """ sWorkerName = self.needGRegChecker(iReg1, iReg2, iReg3); sName = 'eflags_%#x_%s' % (fFlagsToCheck, sWorkerName[len(self.ksCheckerPrefix):]); if sName in self._dCheckFns: self._dCheckFns[sName] += 1; else: self._dCheckFns[sName] = 1; return self.ksCheckerPrefix + sName; def needGRegMemSetup(self, cAddrBits, cbEffOp, iBaseReg = None, offDisp = None, iIndexReg = None, iScale = 1): """ Records the need for a given register checker function, returning its label. """ assert cAddrBits in [64, 32, 16]; assert cbEffOp in [8, 4, 2, 1]; assert iScale in [1, 2, 4, 8]; sName = '%ubit_U%u' % (cAddrBits, cbEffOp * 8,); if iBaseReg is not None: sName += '_%s' % (gregName(iBaseReg, cAddrBits),); sName += '_x%u' % (iScale,); if iIndexReg is not None: sName += '_%s' % (gregName(iIndexReg, cAddrBits),); if offDisp is not None: sName += '_%#010x' % (offDisp & UINT32_MAX, ); if sName in self._dMemSetupFns: self._dMemSetupFns[sName] += 1; else: self._dMemSetupFns[sName] = 1; return 'Common_MemSetup_' + sName; def need64BitConstant(self, uVal): """ Records the need for a 64-bit constant, returning its label. These constants are pooled to attempt reduce the size of the whole thing. """ assert uVal >= 0 and uVal <= UINT64_MAX; if uVal in self._d64BitConsts: self._d64BitConsts[uVal] += 1; else: self._d64BitConsts[uVal] = 1; return 'g_u64Const_0x%016x' % (uVal, ); def pushConst(self, uResult): """ Emits a push constant value, taking care of high values on 64-bit hosts. """ if self.oTarget.is64Bit() and uResult >= 0x80000000: self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),)); else: self.write(' push dword 0x%x\n' % (uResult,)); return True; def getDispForMod(self, iMod, cbAlignment = 1): """ Get a set of address dispositions for a given addressing mode. The alignment restriction is for SIB scaling. """ assert cbAlignment in [1, 2, 4, 8]; if iMod == 0: aoffDisp = [ None, ]; elif iMod == 1: aoffDisp = [ 127 & ~(cbAlignment - 1), -128 ]; elif iMod == 2: aoffDisp = [ 2147483647 & ~(cbAlignment - 1), -2147483648 ]; else: assert False; return aoffDisp; def getModRegRange(self, cbEffOp): """ The Mod R/M register range varies with the effective operand size, for 8-bit registers we have 4 more. """ if cbEffOp == 1: return self._oModRegRange8; return self._oModRegRange; def getSibIndexPerRun(self): """ We vary the SIB index test range a little to try cover more operand combinations and avoid repeating the same ones. """ self.iSibIndexRange += 1; self.iSibIndexRange %= 3; if self.iSibIndexRange == 0: return self._cSibIndexPerRun - 1; return self._cSibIndexPerRun; def isTiny(self): """ Checks if we're in tiny mode.""" return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny; def isMedium(self): """ Checks if we're in medium mode.""" return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium; # # Forwarding calls for oTarget to shorted typing and lessen the attacks # on the right margin. # def gregNameBits(self, iReg, cBitsWide): """ Target: Get the name of a general register for the given size (in bits). """ return self.oTarget.gregNameBits(iReg, cBitsWide); def gregNameBytes(self, iReg, cbWide): """ Target: Get the name of a general register for the given size (in bytes). """ return self.oTarget.gregNameBytes(iReg, cbWide); def is64Bit(self): """ Target: Is the target 64-bit? """ return self.oTarget.is64Bit(); # # Internal machinery. # def _randInitIndexes(self): """ Initializes the Mod R/M and SIB state index with random numbers prior to generating a test. Note! As with all other randomness and variations we do, we cannot test all combinations for each and every instruction so we try get coverage over time. """ self.iModReg = randU8(); self.iModRm = randU8(); self.iSibBaseReg = randU8(); self.iSibIndexReg = randU8(); self.iSibScale = 1 << (randU8() & 3); self.iSibIndexRange = randU8(); return True; def _calcTestFunctionName(self, oInstrTest, iInstrTest): """ Calc a test function name for the given instruction test. """ sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName); return sName.replace(',', '_').replace(' ', '_').replace('%', '_'); def _generateFileHeader(self, ): """ Writes the file header. Raises exception on trouble. """ self.write('; $Id: InstructionTestGen.py $\n' ';; @file %s\n' '; Autogenerate by %s %s. DO NOT EDIT\n' ';\n' '\n' ';\n' '; Headers\n' ';\n' '%%include "env-%s.mac"\n' % ( os.path.basename(self.sFile), os.path.basename(__file__), __version__[11:-1], self.oTarget.sName, ) ); # Target environment specific init stuff. # # Global variables. # self.write('\n\n' ';\n' '; Globals\n' ';\n'); self.write('VBINSTST_BEGINDATA\n' 'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n' ' dd 0\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' 'VBINSTST_TRAP_RECS_BEGIN\n' '%endif\n' 'VBINSTST_BEGINCODE\n' ); self.write('%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64)): self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i])); self.write('%endif\n\n') # # Common functions. # # Loading common values. self.write('\n\n' 'VBINSTST_BEGINPROC Common_LoadKnownValues\n' '%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64NoSp)): if g_asGRegs64NoSp[i]: self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],)); self.write('%else\n'); for i in range(8): if g_asGRegs32NoSp[i]: self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],)); self.write('%endif\n' ' ret\n' 'VBINSTST_ENDPROC Common_LoadKnownValues\n' '\n'); self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n' '%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64NoSp)): if g_asGRegs64NoSp[i]: self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n' ' je .ok_%u\n' ' push %u ; register number\n' ' push %s ; actual\n' ' push qword [g_u64KnownValue_%s wrt rip] ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.ok_%u:\n' % ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,)); self.write('%else\n'); for i in range(8): if g_asGRegs32NoSp[i]: self.write(' cmp %s, 0x%x\n' ' je .ok_%u\n' ' push %u ; register number\n' ' push %s ; actual\n' ' push dword 0x%x ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.ok_%u:\n' % ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,)); self.write('%endif\n' ' ret\n' 'VBINSTST_ENDPROC Common_CheckKnownValues\n' '\n'); return True; def _generateMemSetupFunctions(self): # pylint: disable=R0915 """ Generates the memory setup functions. """ cDefAddrBits = self.oTarget.getDefAddrBits(); for sName in self._dMemSetupFns: # Unpack it. asParams = sName.split('_'); cAddrBits = int(asParams[0][:-3]); assert asParams[0][-3:] == 'bit'; cEffOpBits = int(asParams[1][1:]); assert asParams[1][0] == 'U'; if cAddrBits == 64: asAddrGRegs = g_asGRegs64; elif cAddrBits == 32: asAddrGRegs = g_asGRegs32; else: asAddrGRegs = g_asGRegs16; i = 2; iBaseReg = None; sBaseReg = None; if i < len(asParams) and asParams[i] in asAddrGRegs: sBaseReg = asParams[i]; iBaseReg = asAddrGRegs.index(sBaseReg); i += 1 assert i < len(asParams); assert asParams[i][0] == 'x'; iScale = iScale = int(asParams[i][1:]); assert iScale in [1, 2, 4, 8], '%u %s' % (iScale, sName); i += 1; sIndexReg = None; iIndexReg = None; if i < len(asParams) and asParams[i] in asAddrGRegs: sIndexReg = asParams[i]; iIndexReg = asAddrGRegs.index(sIndexReg); i += 1; u32Disp = None; if i < len(asParams) and len(asParams[i]) == 10: u32Disp = long(asParams[i], 16); i += 1; assert i == len(asParams), 'i=%d len=%d len[i]=%d (%s)' % (i, len(asParams), len(asParams[i]), asParams[i],); assert iScale == 1 or iIndexReg is not None; # Find a temporary register. iTmpReg1 = X86_GREG_xCX; while iTmpReg1 in [iBaseReg, iIndexReg]: iTmpReg1 += 1; # Prologue. self.write('\n\n' '; cAddrBits=%s cEffOpBits=%s iBaseReg=%s u32Disp=%s iIndexReg=%s iScale=%s\n' 'VBINSTST_BEGINPROC Common_MemSetup_%s\n' ' MY_PUSH_FLAGS\n' ' push %s\n' % ( cAddrBits, cEffOpBits, iBaseReg, u32Disp, iIndexReg, iScale, sName, self.oTarget.asGRegs[iTmpReg1], )); # Figure out what to use. if cEffOpBits == 64: sTmpReg1 = g_asGRegs64[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u64Data)'; elif cEffOpBits == 32: sTmpReg1 = g_asGRegs32[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u32Data)'; elif cEffOpBits == 16: sTmpReg1 = g_asGRegs16[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u16Data)'; else: assert cEffOpBits == 8; assert iTmpReg1 < 4; sTmpReg1 = g_asGRegs8Rex[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u8Data)'; # Special case: reg + reg * [2,4,8] if iBaseReg == iIndexReg and iBaseReg is not None and iScale != 1: iTmpReg2 = X86_GREG_xBP; while iTmpReg2 in [iBaseReg, iIndexReg, iTmpReg1]: iTmpReg2 += 1; sTmpReg2 = self.gregNameBits(iTmpReg2, cAddrBits); self.write(' push sAX\n' ' push %s\n' ' push sDX\n' % (self.oTarget.asGRegs[iTmpReg2],)); if cAddrBits == 16: self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sTmpReg2,)); else: self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sTmpReg2,)); self.write(' add %s, 0x200\n' % (sTmpReg2,)); self.write(' mov %s, %s\n' % (self.gregNameBits(X86_GREG_xAX, cAddrBits), sTmpReg2,)); if u32Disp is not None: self.write(' sub %s, %d\n' % ( self.gregNameBits(X86_GREG_xAX, cAddrBits), convU32ToSigned(u32Disp), )); self.write(' xor edx, edx\n' '%if xCB == 2\n' ' push 0\n' '%endif\n'); self.write(' push %u\n' % (iScale + 1,)); self.write(' div %s [xSP]\n' % ('qword' if cAddrBits == 64 else 'dword',)); self.write(' sub %s, %s\n' % (sTmpReg2, self.gregNameBits(X86_GREG_xDX, cAddrBits),)); self.write(' pop sDX\n' ' pop sDX\n'); # sTmpReg2 is eff address; sAX is sIndexReg value. # Note! sTmpReg1 can be xDX and that's no problem now. self.write(' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); self.write(' mov [%s], %s\n' % (sTmpReg2, sTmpReg1,)); # Value in place. self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg2],)); if iBaseReg == X86_GREG_xAX: self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg1],)); else: self.write(' mov %s, %s\n' % (sBaseReg, self.gregNameBits(X86_GREG_xAX, cAddrBits),)); self.write(' pop sAX\n'); else: # Load the value and mem address, storing the value there. # Note! ASSUMES that the scale and disposition works fine together. sAddrReg = sBaseReg if sBaseReg is not None else sIndexReg; self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); if cAddrBits >= cDefAddrBits: self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,)); self.write(' lea %s, [%s xWrtRIP]\n' % (sAddrReg, sDataVar,)); else: if cAddrBits == 16: self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sAddrReg,)); else: self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sAddrReg,)); self.write(' add %s, %s\n' % (sAddrReg, (randU16() << cEffOpBits) & 0xfff, )); self.write(' mov [%s], %s\n' % (sAddrReg, sTmpReg1, )); # Adjust for disposition and scaling. if u32Disp is not None: self.write(' sub %s, %d\n' % ( sAddrReg, convU32ToSigned(u32Disp), )); if iIndexReg is not None: if iBaseReg == iIndexReg: assert iScale == 1; assert u32Disp is None or (u32Disp & 1) == 0; self.write(' shr %s, 1\n' % (sIndexReg,)); elif sBaseReg is not None: uIdxRegVal = randUxx(cAddrBits); if cAddrBits == 64: self.write(' mov %s, %u\n' ' sub %s, %s\n' ' mov %s, %u\n' % ( sIndexReg, (uIdxRegVal * iScale) & UINT64_MAX, sBaseReg, sIndexReg, sIndexReg, uIdxRegVal, )); else: assert cAddrBits == 32; self.write(' mov %s, %u\n' ' sub %s, %#06x\n' % ( sIndexReg, uIdxRegVal, sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, )); elif iScale == 2: assert u32Disp is None or (u32Disp & 1) == 0; self.write(' shr %s, 1\n' % (sIndexReg,)); elif iScale == 4: assert u32Disp is None or (u32Disp & 3) == 0; self.write(' shr %s, 2\n' % (sIndexReg,)); elif iScale == 8: assert u32Disp is None or (u32Disp & 7) == 0; self.write(' shr %s, 3\n' % (sIndexReg,)); else: assert iScale == 1; # Set upper bits that's supposed to be unused. if cDefAddrBits > cAddrBits or cAddrBits == 16: if cDefAddrBits == 64: assert cAddrBits == 32; if iBaseReg is not None: self.write(' mov %s, %#018x\n' ' or %s, %s\n' % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],)); if iIndexReg is not None and iIndexReg != iBaseReg: self.write(' mov %s, %#018x\n' ' or %s, %s\n' % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],)); else: assert cDefAddrBits == 32; assert cAddrBits == 16; assert iIndexReg is None; if iBaseReg is not None: self.write(' or %s, %#010x\n' % ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, )); # Epilogue. self.write(' pop %s\n' ' MY_POP_FLAGS\n' ' ret sCB\n' 'VBINSTST_ENDPROC Common_MemSetup_%s\n' % ( self.oTarget.asGRegs[iTmpReg1], sName,)); def _generateFileFooter(self): """ Generates file footer. """ # Terminate the trap records. self.write('\n\n' ';\n' '; Terminate the trap records\n' ';\n' 'VBINSTST_BEGINDATA\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' 'VBINSTST_TRAP_RECS_END\n' '%endif\n' 'VBINSTST_BEGINCODE\n'); # Register checking functions. for sName in self._dCheckFns: asRegs = sName.split('_'); sPushSize = 'dword'; # Do we check eflags first. if asRegs[0] == 'eflags': asRegs.pop(0); sFlagsToCheck = asRegs.pop(0); self.write('\n\n' '; Check flags and then defers to the register-only checker\n' '; To save space, the callee cleans up the stack.' '; Ref count: %u\n' 'VBINSTST_BEGINPROC %s%s\n' ' MY_PUSH_FLAGS\n' ' push sAX\n' ' mov sAX, [xSP + sCB]\n' ' and sAX, %s\n' ' cmp sAX, [xSP + xCB + sCB*2]\n' ' je .equal\n' % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, sFlagsToCheck,)); self.write(' push dword 0xef ; register number\n' ' push sAX ; actual\n' ' mov sAX, [xSP + xCB + sCB*4]\n' ' push sAX ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n'); self.write('.equal:\n' ' mov xAX, [xSP + sCB*2]\n' # Remove the expected eflags value from the stack frame. ' mov [xSP + sCB*2 + xCB + sCB - xCB], xAX\n' ' pop sAX\n' ' MY_POP_FLAGS\n' ' lea xSP, [xSP + sCB]\n' ' jmp VBINSTST_NAME(Common_Check_%s)\n' 'VBINSTST_ENDPROC %s%s\n' % ( '_'.join(asRegs), self.ksCheckerPrefix, sName,) ); else: # Prologue self.write('\n\n' '; Checks 1 or more register values, expected values pushed on the stack.\n' '; To save space, the callee cleans up the stack.' '; Ref count: %u\n' 'VBINSTST_BEGINPROC %s%s\n' ' MY_PUSH_FLAGS\n' % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, ) ); # Register checks. for i in range(len(asRegs)): sReg = asRegs[i]; iReg = self.oTarget.asGRegs.index(sReg); if i == asRegs.index(sReg): # Only check once, i.e. input = output reg. self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' ' je .equal%u\n' ' push %s %u ; register number\n' ' push %s ; actual\n' ' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' ' push %s ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.equal%u:\n' % ( sReg, i, i, sPushSize, iReg, sReg, sReg, i, sReg, i, ) ); # Restore known register values and check the other registers. for sReg in asRegs: if self.oTarget.is64Bit(): self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg, sReg,)); else: iReg = self.oTarget.asGRegs.index(sReg) self.write(' mov %s, 0x%x\n' % (sReg, self.au32Regs[iReg],)); self.write(' MY_POP_FLAGS\n' ' call VBINSTST_NAME(Common_CheckKnownValues)\n' ' ret sCB*%u\n' 'VBINSTST_ENDPROC %s%s\n' % (len(asRegs), self.ksCheckerPrefix, sName,)); # memory setup functions self._generateMemSetupFunctions(); # 64-bit constants. if len(self._d64BitConsts) > 0: self.write('\n\n' ';\n' '; 64-bit constants\n' ';\n'); for uVal in self._d64BitConsts: self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self._d64BitConsts[uVal], ) ); return True; def _generateTests(self): """ Generate the test cases. """ for self.iFile in range(self.cFiles): if self.cFiles == 1: self.sFile = '%s.asm' % (self.oOptions.sOutputBase,) else: self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile) self.oFile = sys.stdout; if self.oOptions.sOutputBase != '-': self.oFile = io.open(self.sFile, 'w', buffering = 65536, encoding = 'utf-8'); self._generateFileHeader(); # Calc the range. iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile; iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile; if iInstrTestEnd > len(g_aoInstructionTests): iInstrTestEnd = len(g_aoInstructionTests); # Generate the instruction tests. for iInstrTest in range(iInstrTestStart, iInstrTestEnd): oInstrTest = g_aoInstructionTests[iInstrTest]; if oInstrTest.isApplicable(self): self.write('\n' '\n' ';\n' '; %s\n' ';\n' % (oInstrTest.sName,)); self._randInitIndexes(); oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest)); # Generate the main function. self.write('\n\n' 'VBINSTST_BEGINPROC TestInstrMain\n' ' MY_PUSH_ALL\n' ' sub xSP, 40h\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' ' VBINSTST_TRAP_RECS_INSTALL\n' '%endif\n' '\n'); for iInstrTest in range(iInstrTestStart, iInstrTestEnd): oInstrTest = g_aoInstructionTests[iInstrTest]; if oInstrTest.isApplicable(self): self.write('%%ifdef ASM_CALL64_GCC\n' ' lea rdi, [.szInstr%03u wrt rip]\n' '%%elifdef ASM_CALL64_MSC\n' ' lea rcx, [.szInstr%03u wrt rip]\n' '%%else\n' ' mov xAX, .szInstr%03u\n' ' mov [xSP], xAX\n' '%%endif\n' ' VBINSTST_CALL_FN_SUB_TEST\n' ' call VBINSTST_NAME(%s)\n' % ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest))); self.write('\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' ' VBINSTST_TRAP_RECS_UNINSTALL\n' '%endif\n' ' add xSP, 40h\n' ' MY_POP_ALL\n' ' ret\n\n'); for iInstrTest in range(iInstrTestStart, iInstrTestEnd): self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,)); self.write('VBINSTST_ENDPROC TestInstrMain\n\n'); self._generateFileFooter(); if self.oOptions.sOutputBase != '-': self.oFile.close(); self.oFile = None; self.sFile = ''; return RTEXITCODE_SUCCESS; def _runMakefileMode(self): """ Generate a list of output files on standard output. """ if self.cFiles == 1: print('%s.asm' % (self.oOptions.sOutputBase,)); else: print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles))); return RTEXITCODE_SUCCESS; def run(self): """ Generates the tests or whatever is required. """ if self.oOptions.fMakefileMode: return self._runMakefileMode(); sys.stderr.write('InstructionTestGen.py: Seed = %s\n' % (g_iMyRandSeed,)); return self._generateTests(); @staticmethod def main(): """ Main function a la C/C++. Returns exit code. """ # # Parse the command line. # oParser = OptionParser(version = __version__[11:-1].strip()); oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False, help = 'Special mode for use to output a list of output files for the benefit of ' 'the make program (kmk).'); oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '', type = 'int', default = 9999999, help = 'Number of instruction to test per output file.'); oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '', default = None, help = 'The output file base name, no suffix please. Required.'); oParser.add_option('--target', dest = 'sTargetEnv', metavar = '', default = 'iprt-r3-32', choices = g_dTargetEnvs.keys(), help = 'The target environment. Choices: %s' % (', '.join(sorted(g_dTargetEnvs.keys())),)); oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium, choices = InstructionTestGen.kasTestSizes, help = 'Selects the test size.'); (oOptions, asArgs) = oParser.parse_args(); if len(asArgs) > 0: oParser.print_help(); return RTEXITCODE_SYNTAX if oOptions.sOutputBase is None: print('syntax error: Missing required option --output-base.', file = sys.stderr); return RTEXITCODE_SYNTAX # # Instantiate the program class and run it. # oProgram = InstructionTestGen(oOptions); return oProgram.run(); if __name__ == '__main__': sys.exit(InstructionTestGen.main());