/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla. * * The Initial Developer of the Original Code is IBM Corporation. * Portions created by IBM Corporation are Copyright (C) 2003 * IBM Corporation. All Rights Reserved. * * Contributor(s): * Darin Fisher * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /** * nsTSubstring * * The base string type. This type is not instantiated directly. A sub- * class is instantiated instead. For example, see nsTString. * * This type works like nsTAString except that it does not have the ABI * requirements of that interface. Like nsTAString, nsTSubstring * represents a single contiguous array of characters that may or may not * be null-terminated. * * Many of the accessors on nsTSubstring are inlined as an optimization. * * This class is also known as "nsASingleFragmentC?String". */ class nsTSubstring_CharT : public nsTAString_CharT { public: typedef nsTSubstring_CharT self_type; typedef nsTString_CharT string_type; typedef char_type* char_iterator; typedef const char_type* const_char_iterator; public: /** * reading iterators */ const_char_iterator BeginReading() const { return mData; } const_char_iterator EndReading() const { return mData + mLength; } /** * deprecated reading iterators */ const_iterator& BeginReading( const_iterator& iter ) const { iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mStart; return iter; } const_iterator& EndReading( const_iterator& iter ) const { iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mEnd; return iter; } const_char_iterator& BeginReading( const_char_iterator& iter ) const { return iter = mData; } const_char_iterator& EndReading( const_char_iterator& iter ) const { return iter = mData + mLength; } /** * writing iterators */ char_iterator BeginWriting() { EnsureMutable(); return mData; } char_iterator EndWriting() { EnsureMutable(); return mData + mLength; } /** * deprecated writing iterators */ iterator& BeginWriting( iterator& iter ) { EnsureMutable(); iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mStart; return iter; } iterator& EndWriting( iterator& iter ) { EnsureMutable(); iter.mStart = mData; iter.mEnd = mData + mLength; iter.mPosition = iter.mEnd; return iter; } char_iterator& BeginWriting( char_iterator& iter ) { EnsureMutable(); return iter = mData; } char_iterator& EndWriting( char_iterator& iter ) { EnsureMutable(); return iter = mData + mLength; } /** * accessors */ // returns pointer to string data (not necessarily null-terminated) const char_type *Data() const { return mData; } size_type Length() const { return mLength; } PRBool IsEmpty() const { return mLength == 0; } PRBool IsVoid() const { return mFlags & F_VOIDED; } PRBool IsTerminated() const { return mFlags & F_TERMINATED; } char_type CharAt( index_type i ) const { NS_ASSERTION(i < mLength, "index exceeds allowable range"); return mData[i]; } char_type operator[]( index_type i ) const { return CharAt(i); } char_type First() const { NS_ASSERTION(mLength > 0, "|First()| called on an empty string"); return mData[0]; } inline char_type Last() const { NS_ASSERTION(mLength > 0, "|Last()| called on an empty string"); return mData[mLength - 1]; } NS_COM size_type NS_FASTCALL CountChar( char_type ) const; NS_COM PRInt32 NS_FASTCALL FindChar( char_type, index_type offset = 0 ) const; /** * equality */ NS_COM PRBool NS_FASTCALL Equals( const self_type& ) const; NS_COM PRBool NS_FASTCALL Equals( const self_type&, const comparator_type& ) const; NS_COM PRBool NS_FASTCALL Equals( const abstract_string_type& readable ) const; NS_COM PRBool NS_FASTCALL Equals( const abstract_string_type& readable, const comparator_type& comp ) const; NS_COM PRBool NS_FASTCALL Equals( const char_type* data ) const; NS_COM PRBool NS_FASTCALL Equals( const char_type* data, const comparator_type& comp ) const; /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when you know the * length of 'data'. */ NS_COM PRBool NS_FASTCALL EqualsASCII( const char* data, size_type len ) const; /** * An efficient comparison with ASCII that can be used even * for wide strings. Call this version when 'data' is * null-terminated. */ NS_COM PRBool NS_FASTCALL EqualsASCII( const char* data ) const; // EqualsLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. // The template trick to acquire the array length at compile time without // using a macro is due to Corey Kosak, with much thanks. #ifdef NS_DISABLE_LITERAL_TEMPLATE inline PRBool EqualsLiteral( const char* str ) const { return EqualsASCII(str); } #else template inline PRBool EqualsLiteral( const char (&str)[N] ) const { return EqualsASCII(str, N-1); } template inline PRBool EqualsLiteral( char (&str)[N] ) const { const char* s = str; return EqualsASCII(s, N-1); } #endif // The LowerCaseEquals methods compare the lower case version of // this string to some ASCII/Literal string. The ASCII string is // *not* lowercased for you. If you compare to an ASCII or literal // string that contains an uppercase character, it is guaranteed to // return false. We will throw assertions too. NS_COM PRBool NS_FASTCALL LowerCaseEqualsASCII( const char* data, size_type len ) const; NS_COM PRBool NS_FASTCALL LowerCaseEqualsASCII( const char* data ) const; // LowerCaseEqualsLiteral must ONLY be applied to an actual // literal string. Do not attempt to use it with a regular char* // pointer, or with a char array variable. Use // LowerCaseEqualsASCII for them. #ifdef NS_DISABLE_LITERAL_TEMPLATE inline PRBool LowerCaseEqualsLiteral( const char* str ) const { return LowerCaseEqualsASCII(str); } #else template inline PRBool LowerCaseEqualsLiteral( const char (&str)[N] ) const { return LowerCaseEqualsASCII(str, N-1); } template inline PRBool LowerCaseEqualsLiteral( char (&str)[N] ) const { const char* s = str; return LowerCaseEqualsASCII(s, N-1); } #endif /** * assignment */ void Assign( char_type c ) { Assign(&c, 1); } NS_COM void NS_FASTCALL Assign( const char_type* data, size_type length = size_type(-1) ); NS_COM void NS_FASTCALL Assign( const self_type& ); NS_COM void NS_FASTCALL Assign( const substring_tuple_type& ); NS_COM void NS_FASTCALL Assign( const abstract_string_type& ); NS_COM void NS_FASTCALL AssignASCII( const char* data, size_type length ); NS_COM void NS_FASTCALL AssignASCII( const char* data ); // AssignLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use AssignASCII for those. #ifdef NS_DISABLE_LITERAL_TEMPLATE void AssignLiteral( const char* str ) { AssignASCII(str); } #else template void AssignLiteral( const char (&str)[N] ) { AssignASCII(str, N-1); } template void AssignLiteral( char (&str)[N] ) { AssignASCII(str, N-1); } #endif self_type& operator=( char_type c ) { Assign(c); return *this; } self_type& operator=( const char_type* data ) { Assign(data); return *this; } self_type& operator=( const self_type& str ) { Assign(str); return *this; } self_type& operator=( const substring_tuple_type& tuple ) { Assign(tuple); return *this; } self_type& operator=( const abstract_string_type& readable ) { Assign(readable); return *this; } NS_COM void NS_FASTCALL Adopt( char_type* data, size_type length = size_type(-1) ); /** * buffer manipulation */ void Replace( index_type cutStart, size_type cutLength, char_type c ) { Replace(cutStart, cutLength, &c, 1); } NS_COM void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, const char_type* data, size_type length = size_type(-1) ); void Replace( index_type cutStart, size_type cutLength, const self_type& str ) { Replace(cutStart, cutLength, str.Data(), str.Length()); } NS_COM void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, const substring_tuple_type& tuple ); NS_COM void NS_FASTCALL Replace( index_type cutStart, size_type cutLength, const abstract_string_type& readable ); NS_COM void NS_FASTCALL ReplaceASCII( index_type cutStart, size_type cutLength, const char* data, size_type length = size_type(-1) ); void Append( char_type c ) { Replace(mLength, 0, c); } void Append( const char_type* data, size_type length = size_type(-1) ) { Replace(mLength, 0, data, length); } void Append( const self_type& str ) { Replace(mLength, 0, str); } void Append( const substring_tuple_type& tuple ) { Replace(mLength, 0, tuple); } void Append( const abstract_string_type& readable ) { Replace(mLength, 0, readable); } void AppendASCII( const char* data, size_type length = size_type(-1) ) { ReplaceASCII(mLength, 0, data, length); } // AppendLiteral must ONLY be applied to an actual literal string. // Do not attempt to use it with a regular char* pointer, or with a char // array variable. Use AppendASCII for those. #ifdef NS_DISABLE_LITERAL_TEMPLATE void AppendLiteral( const char* str ) { AppendASCII(str); } #else template void AppendLiteral( const char (&str)[N] ) { AppendASCII(str, N-1); } template void AppendLiteral( char (&str)[N] ) { AppendASCII(str, N-1); } #endif self_type& operator+=( char_type c ) { Append(c); return *this; } self_type& operator+=( const char_type* data ) { Append(data); return *this; } self_type& operator+=( const self_type& str ) { Append(str); return *this; } self_type& operator+=( const substring_tuple_type& tuple ) { Append(tuple); return *this; } self_type& operator+=( const abstract_string_type& readable ) { Append(readable); return *this; } void Insert( char_type c, index_type pos ) { Replace(pos, 0, c); } void Insert( const char_type* data, index_type pos, size_type length = size_type(-1) ) { Replace(pos, 0, data, length); } void Insert( const self_type& str, index_type pos ) { Replace(pos, 0, str); } void Insert( const substring_tuple_type& tuple, index_type pos ) { Replace(pos, 0, tuple); } void Insert( const abstract_string_type& readable, index_type pos ) { Replace(pos, 0, readable); } void Cut( index_type cutStart, size_type cutLength ) { Replace(cutStart, cutLength, char_traits::sEmptyBuffer, 0); } /** * buffer sizing */ NS_COM void NS_FASTCALL SetCapacity( size_type capacity ); NS_COM void NS_FASTCALL SetLength( size_type ); void Truncate( size_type newLength = 0 ) { NS_ASSERTION(newLength <= mLength, "Truncate cannot make string longer"); SetLength(newLength); } /** * string data is never null, but can be marked void. if true, the * string will be truncated. @see nsTSubstring::IsVoid */ NS_COM void NS_FASTCALL SetIsVoid( PRBool ); public: /** * this is public to support automatic conversion of tuple to string * base type, which helps avoid converting to nsTAString. */ nsTSubstring_CharT(const substring_tuple_type& tuple) : abstract_string_type(nsnull, 0, F_NONE) { Assign(tuple); } protected: friend class nsTObsoleteAStringThunk_CharT; friend class nsTAString_CharT; friend class nsTSubstringTuple_CharT; // XXX GCC 3.4 needs this :-( friend class nsTPromiseFlatString_CharT; // default initialization nsTSubstring_CharT() : abstract_string_type( NS_CONST_CAST(char_type*, char_traits::sEmptyBuffer), 0, F_TERMINATED) {} // allow subclasses to initialize fields directly nsTSubstring_CharT( char_type *data, size_type length, PRUint32 flags ) : abstract_string_type(data, length, flags) {} // version of constructor that leaves mData and mLength uninitialized explicit nsTSubstring_CharT( PRUint32 flags ) : abstract_string_type(flags) {} // copy-constructor, constructs as dependent on given object // (NOTE: this is for internal use only) nsTSubstring_CharT( const self_type& str ) : abstract_string_type( str.mData, str.mLength, str.mFlags & (F_TERMINATED | F_VOIDED)) {} /** * this function releases mData and does not change the value of * any of its member variables. inotherwords, this function acts * like a destructor. */ void NS_FASTCALL Finalize(); /** * this function prepares mData to be mutated. * * @param capacity specifies the required capacity of mData * @param old_data returns null or the old value of mData * @param old_flags returns 0 or the old value of mFlags * * if mData is already mutable and of sufficient capacity, then this * function will return immediately. otherwise, it will either resize * mData or allocate a new shared buffer. if it needs to allocate a * new buffer, then it will return the old buffer and the corresponding * flags. this allows the caller to decide when to free the old data. * * XXX we should expose a way for subclasses to free old_data. */ PRBool NS_FASTCALL MutatePrep( size_type capacity, char_type** old_data, PRUint32* old_flags ); /** * this function prepares a section of mData to be modified. if * necessary, this function will reallocate mData and possibly move * existing data to open up the specified section. * * @param cutStart specifies the starting offset of the section * @param cutLength specifies the length of the section to be replaced * @param newLength specifies the length of the new section * * for example, suppose mData contains the string "abcdef" then * * ReplacePrep(2, 3, 4); * * would cause mData to look like "ab____f" where the characters * indicated by '_' have an unspecified value and can be freely * modified. this function will null-terminate mData upon return. */ void NS_FASTCALL ReplacePrep( index_type cutStart, size_type cutLength, size_type newLength ); /** * returns the number of writable storage units starting at mData. * the value does not include space for the null-terminator character. * * NOTE: this function returns size_type(-1) if mData is immutable. */ size_type NS_FASTCALL Capacity() const; /** * this helper function can be called prior to directly manipulating * the contents of mData. see, for example, BeginWriting. */ NS_COM void NS_FASTCALL EnsureMutable(); /** * returns true if this string overlaps with the given string fragment. */ PRBool IsDependentOn( const char_type *start, const char_type *end ) const { /** * if it _isn't_ the case that one fragment starts after the other ends, * or ends before the other starts, then, they conflict: * * !(f2.begin >= f1.end || f2.end <= f1.begin) * * Simplified, that gives us: */ return ( start < (mData + mLength) && end > mData ); } /** * this helper function stores the specified dataFlags in mFlags */ void SetDataFlags(PRUint32 dataFlags) { NS_ASSERTION((dataFlags & 0xFFFF0000) == 0, "bad flags"); mFlags = dataFlags | (mFlags & 0xFFFF0000); } public: // mFlags is a bitwise combination of the following flags. the meaning // and interpretation of these flags is an implementation detail. // // NOTE: these flags are declared public _only_ for convenience inside // the string implementation. enum { F_NONE = 0, // no flags // data flags are in the lower 16-bits F_TERMINATED = 1 << 0, // IsTerminated returns true F_VOIDED = 1 << 1, // IsVoid returns true F_SHARED = 1 << 2, // mData points to a heap-allocated, shared buffer F_OWNED = 1 << 3, // mData points to a heap-allocated, raw buffer F_FIXED = 1 << 4, // mData points to a fixed-size writable, dependent buffer // class flags are in the upper 16-bits F_CLASS_FIXED = 1 << 16 // indicates that |this| is of type nsTFixedString }; // // Some terminology: // // "dependent buffer" A dependent buffer is one that the string class // does not own. The string class relies on some // external code to ensure the lifetime of the // dependent buffer. // // "shared buffer" A shared buffer is one that the string class // allocates. When it allocates a shared string // buffer, it allocates some additional space at // the beginning of the buffer for additional // fields, including a reference count and a // buffer length. See nsStringHeader. // // "adopted buffer" An adopted buffer is a raw string buffer // allocated on the heap (using nsMemory::Alloc) // of which the string class subsumes ownership. // // Some comments about the string flags: // // F_SHARED, F_OWNED, and F_FIXED are all mutually exlusive. They // indicate the allocation type of mData. If none of these flags // are set, then the string buffer is dependent. // // F_SHARED, F_OWNED, or F_FIXED imply F_TERMINATED. This is because // the string classes always allocate null-terminated buffers, and // non-terminated substrings are always dependent. // // F_VOIDED implies F_TERMINATED, and moreover it implies that mData // points to char_traits::sEmptyBuffer. Therefore, F_VOIDED is // mutually exclusive with F_SHARED, F_OWNED, and F_FIXED. // };