1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
|
/* $Id: DBGPlugInFreeBsd.cpp $ */
/** @file
* DBGPlugInFreeBsd - Debugger and Guest OS Digger Plugin For FreeBSD.
*/
/*
* Copyright (C) 2016-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_DBGF /// @todo add new log group.
#include "DBGPlugIns.h"
#include "DBGPlugInCommonELF.h"
#include <VBox/vmm/vmmr3vtable.h>
#include <iprt/asm.h>
#include <iprt/ctype.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/stream.h>
#include <iprt/string.h>
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** FreeBSD on little endian ASCII systems. */
#define DIG_FBSD_MOD_TAG UINT64_C(0x0044534265657246)
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* FreeBSD .dynstr and .dynsym location probing state.
*/
typedef enum FBSDPROBESTATE
{
/** Invalid state. */
FBSDPROBESTATE_INVALID = 0,
/** Searching for the end of the .dynstr section (terminator). */
FBSDPROBESTATE_DYNSTR_END,
/** Last symbol was a symbol terminator character. */
FBSDPROBESTATE_DYNSTR_SYM_TERMINATOR,
/** Last symbol was a symbol character. */
FBSDPROBESTATE_DYNSTR_SYM_CHAR
} FBSDPROBESTATE;
/**
* ELF headers union.
*/
typedef union ELFEHDRS
{
/** 32bit version of the ELF header. */
Elf32_Ehdr Hdr32;
/** 64bit version of the ELF header. */
Elf64_Ehdr Hdr64;
} ELFEHDRS;
/** Pointer to a ELF header union. */
typedef ELFEHDRS *PELFEHDRS;
/** Pointer to const ELF header union. */
typedef ELFEHDRS const *PCELFEHDRS;
/**
* ELF symbol entry union.
*/
typedef union ELFSYMS
{
/** 32bit version of the ELF section header. */
Elf32_Sym Hdr32;
/** 64bit version of the ELF section header. */
Elf64_Sym Hdr64;
} ELFSYMS;
/** Pointer to a ELF symbol entry union. */
typedef ELFSYMS *PELFSYMS;
/** Pointer to const ELF symbol entry union. */
typedef ELFSYMS const *PCELFSYMS;
/**
* Message buffer structure.
*/
typedef union FBSDMSGBUF
{
/** 32bit version. */
struct
{
/** Message buffer pointer. */
uint32_t msg_ptr;
/** Magic value to identify the structure. */
uint32_t msg_magic;
/** Size of the buffer area. */
uint32_t msg_size;
/** Write sequence number. */
uint32_t msg_wseq;
/** Read sequence number. */
uint32_t msg_rseq;
/** @todo More fields which are not required atm. */
} Hdr32;
/** 64bit version. */
struct
{
/** Message buffer pointer. */
uint64_t msg_ptr;
/** Magic value to identify the structure. */
uint32_t msg_magic;
/** Size of the buffer area. */
uint32_t msg_size;
/** Write sequence number. */
uint32_t msg_wseq;
/** Read sequence number. */
uint32_t msg_rseq;
/** @todo More fields which are not required atm. */
} Hdr64;
} FBSDMSGBUF;
/** Pointer to a message buffer structure. */
typedef FBSDMSGBUF *PFBSDMSGBUF;
/** Pointer to a const message buffer structure. */
typedef FBSDMSGBUF const *PCFBSDMSGBUF;
/** Magic value to identify the message buffer structure. */
#define FBSD_MSGBUF_MAGIC UINT32_C(0x063062)
/**
* FreeBSD guest OS digger instance data.
*/
typedef struct DBGDIGGERFBSD
{
/** Whether the information is valid or not.
* (For fending off illegal interface method calls.) */
bool fValid;
/** 64-bit/32-bit indicator. */
bool f64Bit;
/** Address of the start of the kernel ELF image,
* set during probing. */
DBGFADDRESS AddrKernelElfStart;
/** Address of the interpreter content aka "/red/herring". */
DBGFADDRESS AddrKernelInterp;
/** Address of the start of the text section. */
DBGFADDRESS AddrKernelText;
/** The kernel message log interface. */
DBGFOSIDMESG IDmesg;
} DBGDIGGERFBSD;
/** Pointer to the FreeBSD guest OS digger instance data. */
typedef DBGDIGGERFBSD *PDBGDIGGERFBSD;
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** Min kernel address (32bit). */
#define FBSD32_MIN_KRNL_ADDR UINT32_C(0x80000000)
/** Max kernel address (32bit). */
#define FBSD32_MAX_KRNL_ADDR UINT32_C(0xfffff000)
/** Min kernel address (64bit). */
#define FBSD64_MIN_KRNL_ADDR UINT64_C(0xFFFFF80000000000)
/** Max kernel address (64bit). */
#define FBSD64_MAX_KRNL_ADDR UINT64_C(0xFFFFFFFFFFF00000)
/** Validates a 32-bit FreeBSD kernel address */
#define FBSD32_VALID_ADDRESS(Addr) ( (Addr) > FBSD32_MIN_KRNL_ADDR \
&& (Addr) < FBSD32_MAX_KRNL_ADDR)
/** Validates a 64-bit FreeBSD kernel address */
#define FBSD64_VALID_ADDRESS(Addr) ( (Addr) > FBSD64_MIN_KRNL_ADDR \
&& (Addr) < FBSD64_MAX_KRNL_ADDR)
/** Validates a FreeBSD kernel address. */
#define FBSD_VALID_ADDRESS(a_pThis, a_Addr) ((a_pThis)->f64Bit ? FBSD64_VALID_ADDRESS(a_Addr) : FBSD32_VALID_ADDRESS(a_Addr))
/** Maximum offset from the start of the ELF image we look for the /red/herring .interp section content. */
#define FBSD_MAX_INTERP_OFFSET _16K
/** The max kernel size. */
#define FBSD_MAX_KERNEL_SIZE UINT32_C(0x0f000000)
/** Versioned and bitness wrapper. */
#define FBSD_UNION(a_pThis, a_pUnion, a_Member) ((a_pThis)->f64Bit ? (a_pUnion)->Hdr64. a_Member : (a_pUnion)->Hdr32. a_Member )
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static DECLCALLBACK(int) dbgDiggerFreeBsdInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData);
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** Table of common FreeBSD kernel addresses. */
static uint64_t g_au64FreeBsdKernelAddresses[] =
{
UINT64_C(0xc0100000),
UINT64_C(0xffffffff80100000)
};
/** Magic string which resides in the .interp section of the image. */
static const uint8_t g_abNeedleInterp[] = "/red/herring";
/**
* Load the symbols from the .dynsym and .dynstr sections given
* by their address in guest memory.
*
* @returns VBox status code.
* @param pThis The instance data.
* @param pUVM The user mode VM handle.
* @param pVMM The VMM function table.
* @param pszName The image name.
* @param uKernelStart The kernel start address.
* @param cbKernel Size of the kernel image.
* @param pAddrDynsym Start address of the .dynsym section.
* @param cSymbols Number of symbols in the .dynsym section.
* @param pAddrDynstr Start address of the .dynstr section containing the symbol names.
* @param cbDynstr Size of the .dynstr section.
*/
static int dbgDiggerFreeBsdLoadSymbols(PDBGDIGGERFBSD pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, const char *pszName,
RTGCUINTPTR uKernelStart, size_t cbKernel, PDBGFADDRESS pAddrDynsym, uint32_t cSymbols,
PDBGFADDRESS pAddrDynstr, size_t cbDynstr)
{
LogFlowFunc(("pThis=%#p pszName=%s uKernelStart=%RGv cbKernel=%zu pAddrDynsym=%#p{%RGv} cSymbols=%u pAddrDynstr=%#p{%RGv} cbDynstr=%zu\n",
pThis, pszName, uKernelStart, cbKernel, pAddrDynsym, pAddrDynsym->FlatPtr, cSymbols, pAddrDynstr, pAddrDynstr->FlatPtr, cbDynstr));
char *pbDynstr = (char *)RTMemAllocZ(cbDynstr + 1); /* Extra terminator. */
int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pAddrDynstr, pbDynstr, cbDynstr);
if (RT_SUCCESS(rc))
{
uint32_t cbDynsymEnt = pThis->f64Bit ? sizeof(Elf64_Sym) : sizeof(Elf32_Sym);
uint8_t *pbDynsym = (uint8_t *)RTMemAllocZ(cSymbols * cbDynsymEnt);
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pAddrDynsym, pbDynsym, cSymbols * cbDynsymEnt);
if (RT_SUCCESS(rc))
{
/*
* Create a module for the kernel.
*/
RTDBGMOD hMod;
rc = RTDbgModCreate(&hMod, pszName, cbKernel, 0 /*fFlags*/);
if (RT_SUCCESS(rc))
{
rc = RTDbgModSetTag(hMod, DIG_FBSD_MOD_TAG); AssertRC(rc);
rc = VINF_SUCCESS;
/*
* Enumerate the symbols.
*/
uint32_t cLeft = cSymbols;
while (cLeft-- > 0 && RT_SUCCESS(rc))
{
PCELFSYMS pSym = (PCELFSYMS)&pbDynsym[cLeft * cbDynsymEnt];
uint32_t idxSymStr = FBSD_UNION(pThis, pSym, st_name);
uint8_t uType = FBSD_UNION(pThis, pSym, st_info);
RTGCUINTPTR AddrVal = FBSD_UNION(pThis, pSym, st_value);
size_t cbSymVal = FBSD_UNION(pThis, pSym, st_size);
/* Add it without the type char. */
RT_NOREF(uType);
if ( AddrVal <= uKernelStart + cbKernel
&& idxSymStr < cbDynstr)
{
rc = RTDbgModSymbolAdd(hMod, &pbDynstr[idxSymStr], RTDBGSEGIDX_RVA, AddrVal - uKernelStart,
cbSymVal, 0 /*fFlags*/, NULL);
if (RT_FAILURE(rc))
{
if ( rc == VERR_DBG_SYMBOL_NAME_OUT_OF_RANGE
|| rc == VERR_DBG_INVALID_RVA
|| rc == VERR_DBG_ADDRESS_CONFLICT
|| rc == VERR_DBG_DUPLICATE_SYMBOL)
{
Log2(("dbgDiggerFreeBsdLoadSymbols: RTDbgModSymbolAdd(,%s,) failed %Rrc (ignored)\n",
&pbDynstr[idxSymStr], rc));
rc = VINF_SUCCESS;
}
else
Log(("dbgDiggerFreeBsdLoadSymbols: RTDbgModSymbolAdd(,%s,) failed %Rrc\n",
&pbDynstr[idxSymStr], rc));
}
}
}
/*
* Link the module into the address space.
*/
if (RT_SUCCESS(rc))
{
RTDBGAS hAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL);
if (hAs != NIL_RTDBGAS)
rc = RTDbgAsModuleLink(hAs, hMod, uKernelStart, RTDBGASLINK_FLAGS_REPLACE);
else
rc = VERR_INTERNAL_ERROR;
RTDbgAsRelease(hAs);
}
else
Log(("dbgDiggerFreeBsdLoadSymbols: Failed: %Rrc\n", rc));
RTDbgModRelease(hMod);
}
else
Log(("dbgDiggerFreeBsdLoadSymbols: RTDbgModCreate failed: %Rrc\n", rc));
}
else
Log(("dbgDiggerFreeBsdLoadSymbols: Reading symbol table at %RGv failed: %Rrc\n",
pAddrDynsym->FlatPtr, rc));
RTMemFree(pbDynsym);
}
else
Log(("dbgDiggerFreeBsdLoadSymbols: Reading symbol string table at %RGv failed: %Rrc\n",
pAddrDynstr->FlatPtr, rc));
RTMemFree(pbDynstr);
LogFlowFunc(("returns %Rrc\n", rc));
return rc;
}
/**
* Process the kernel image.
*
* @param pThis The instance data.
* @param pUVM The user mode VM handle.
* @param pVMM The VMM function table.
* @param pszName The image name.
*/
static void dbgDiggerFreeBsdProcessKernelImage(PDBGDIGGERFBSD pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, const char *pszName)
{
/*
* FreeBSD has parts of the kernel ELF image in guest memory, starting with the
* ELF header and the content of the sections which are indicated to be loaded
* into memory (text, rodata, etc.) of course. Whats missing are the section headers
* which is understandable but unfortunate because it would make our life easier.
*
* All checked FreeBSD kernels so far have the following layout in the kernel:
* [.interp] - contains the /red/herring string we used for probing earlier
* [.hash] - contains the hashes of the symbol names, 8 byte alignment on 64bit, 4 byte on 32bit
* [.gnu.hash] - GNU hash section. (introduced somewhere between 10.0 and 12.0 @todo Find out when exactly)
* [.dynsym] - contains the ELF symbol descriptors, 8 byte alignment, 4 byte on 32bit
* [.dynstr] - contains the symbol names as a string table, 1 byte alignmnt
* [.text] - contains the executable code, 16 byte alignment.
*
* To find the start of the .dynsym and .dynstr sections we scan backwards from the start of the .text section
* and check for all characters allowed for symbol names and count the amount of symbols found. When the start of the
* .dynstr section is reached the number of entries in .dynsym is known and we can deduce the start address.
*
* This applied to the old code before the FreeBSD kernel introduced the .gnu.hash section
* (keeping it here for informational pruposes):
* The sections are always adjacent (sans alignment) so we just parse the .hash section right after
* .interp, ELF states that it can contain 32bit or 64bit words but all observed kernels
* always use 32bit words. It contains two counters at the beginning which we can use to
* deduct the .hash section size and the beginning of .dynsym.
* .dynsym contains an array of symbol descriptors which have a fixed size depending on the
* guest bitness.
* Finding the end of .dynsym is not easily doable as there is no counter available (it lives
* in the section headers) at this point so we just have to check whether the record is valid
* and if not check if it contains an ASCII string which marks the start of the .dynstr section.
*/
#if 0
DBGFADDRESS AddrInterpEnd = pThis->AddrKernelInterp;
DBGFR3AddrAdd(&AddrInterpEnd, sizeof(g_abNeedleInterp));
DBGFADDRESS AddrCur = pThis->AddrKernelText;
int rc = VINF_SUCCESS;
uint32_t cSymbols = 0;
size_t cbKernel = 512 * _1M;
RTGCUINTPTR uKernelStart = pThis->AddrKernelElfStart.FlatPtr;
FBSDPROBESTATE enmState = FBSDPROBESTATE_DYNSTR_END; /* Start searching for the end of the .dynstr section. */
while (AddrCur.FlatPtr > AddrInterpEnd.FlatPtr)
{
char achBuf[_16K];
size_t cbToRead = RT_MIN(sizeof(achBuf), AddrCur.FlatPtr - AddrInterpEnd.FlatPtr);
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrSub(&AddrCur, cbToRead), &achBuf[0], cbToRead);
if (RT_FAILURE(rc))
break;
for (unsigned i = cbToRead; i > 0; i--)
{
char ch = achBuf[i - 1];
switch (enmState)
{
case FBSDPROBESTATE_DYNSTR_END:
{
if (ch != '\0')
enmState = FBSDPROBESTATE_DYNSTR_SYM_CHAR;
break;
}
case FBSDPROBESTATE_DYNSTR_SYM_TERMINATOR:
{
if ( RT_C_IS_ALNUM(ch)
|| ch == '_'
|| ch == '.')
enmState = FBSDPROBESTATE_DYNSTR_SYM_CHAR;
else
{
/* Two consecutive terminator symbols mean end of .dynstr section. */
pVMM->pfnDBGFR3AddrAdd(&AddrCur, i);
DBGFADDRESS AddrDynstrStart = AddrCur;
DBGFADDRESS AddrDynsymStart = AddrCur;
pVMM->pfnDBGFR3AddrSub(&AddrDynsymStart, cSymbols * (pThis->f64Bit ? sizeof(Elf64_Sym) : sizeof(Elf64_Sym)));
LogFlowFunc(("Found all required section start addresses (.dynsym=%RGv cSymbols=%u, .dynstr=%RGv cb=%u)\n",
AddrDynsymStart.FlatPtr, cSymbols, AddrDynstrStart.FlatPtr,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr));
dbgDiggerFreeBsdLoadSymbols(pThis, pUVM, pVMM, pszName, uKernelStart, cbKernel,
&AddrDynsymStart, cSymbols, &AddrDynstrStart,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr);
return;
}
break;
}
case FBSDPROBESTATE_DYNSTR_SYM_CHAR:
{
if ( !RT_C_IS_ALNUM(ch)
&& ch != '_'
&& ch != '.')
{
/* Non symbol character. */
if (ch == '\0')
{
enmState = FBSDPROBESTATE_DYNSTR_SYM_TERMINATOR;
cSymbols++;
}
else
{
/* Indicates the end of the .dynstr section. */
pVMM->pfnDBGFR3AddrAdd(&AddrCur, i);
DBGFADDRESS AddrDynstrStart = AddrCur;
DBGFADDRESS AddrDynsymStart = AddrCur;
pVMM->pfnDBGFR3AddrSub(&AddrDynsymStart, cSymbols * (pThis->f64Bit ? sizeof(Elf64_Sym) : sizeof(Elf32_Sym)));
LogFlowFunc(("Found all required section start addresses (.dynsym=%RGv cSymbols=%u, .dynstr=%RGv cb=%u)\n",
AddrDynsymStart.FlatPtr, cSymbols, AddrDynstrStart.FlatPtr,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr));
dbgDiggerFreeBsdLoadSymbols(pThis, pUVM, pVMM, pszName, uKernelStart, cbKernel,
&AddrDynsymStart, cSymbols, &AddrDynstrStart,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr);
return;
}
}
break;
}
default:
AssertFailedBreak();
}
}
}
LogFlow(("Failed to find valid .dynsym and .dynstr sections (%Rrc), can't load kernel symbols\n", rc));
#else
/* Calculate the start of the .hash section. */
DBGFADDRESS AddrHashStart = pThis->AddrKernelInterp;
pVMM->pfnDBGFR3AddrAdd(&AddrHashStart, sizeof(g_abNeedleInterp));
AddrHashStart.FlatPtr = RT_ALIGN_GCPT(AddrHashStart.FlatPtr, pThis->f64Bit ? 8 : 4, RTGCUINTPTR);
uint32_t au32Counters[2];
int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &AddrHashStart, &au32Counters[0], sizeof(au32Counters));
if (RT_SUCCESS(rc))
{
size_t cbHash = (au32Counters[0] + au32Counters[1] + 2) * sizeof(uint32_t);
if (AddrHashStart.FlatPtr + cbHash < pThis->AddrKernelText.FlatPtr) /* Should be much smaller */
{
DBGFADDRESS AddrDynsymStart = AddrHashStart;
uint32_t cSymbols = 0;
size_t cbKernel = 0;
RTGCUINTPTR uKernelStart = pThis->AddrKernelElfStart.FlatPtr;
pVMM->pfnDBGFR3AddrAdd(&AddrDynsymStart, cbHash);
AddrDynsymStart.FlatPtr = RT_ALIGN_GCPT(AddrDynsymStart.FlatPtr, pThis->f64Bit ? 8 : 4, RTGCUINTPTR);
DBGFADDRESS AddrDynstrStart = AddrDynsymStart;
while (AddrDynstrStart.FlatPtr < pThis->AddrKernelText.FlatPtr)
{
size_t cbDynSymEnt = pThis->f64Bit ? sizeof(Elf64_Sym) : sizeof(Elf32_Sym);
uint8_t abBuf[_16K];
size_t cbToRead = RT_MIN(sizeof(abBuf), pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr);
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &AddrDynstrStart, &abBuf[0], cbToRead);
if (RT_FAILURE(rc))
break;
for (unsigned i = 0; i < cbToRead / cbDynSymEnt; i++)
{
PCELFSYMS pSym = (PCELFSYMS)&abBuf[i * cbDynSymEnt];
uint32_t idxSymStr = FBSD_UNION(pThis, pSym, st_name);
uint8_t uType = FBSD_UNION(pThis, pSym, st_info);
RTGCUINTPTR AddrVal = FBSD_UNION(pThis, pSym, st_value);
size_t cbSymVal = FBSD_UNION(pThis, pSym, st_size);
/*
* If the entry doesn't look valid check whether it contains an ASCII string,
* we then found the start of the .dynstr section.
*/
RT_NOREF(uType);
if ( ELF32_ST_TYPE(uType) != STT_NOTYPE
&& ( !FBSD_VALID_ADDRESS(pThis, AddrVal)
|| cbSymVal > FBSD_MAX_KERNEL_SIZE
|| idxSymStr > pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr))
{
LogFlowFunc(("Invalid symbol table entry found at %RGv\n",
AddrDynstrStart.FlatPtr + i * cbDynSymEnt));
uint8_t *pbBuf = &abBuf[i * cbDynSymEnt];
size_t cbLeft = cbToRead - i * cbDynSymEnt;
/*
* Check to the end of the buffer whether it contains only a certain set of
* ASCII characters and 0 terminators.
*/
while ( cbLeft > 0
&& ( RT_C_IS_ALNUM(*pbBuf)
|| *pbBuf == '_'
|| *pbBuf == '\0'
|| *pbBuf == '.'))
{
cbLeft--;
pbBuf++;
}
if (!cbLeft)
{
pVMM->pfnDBGFR3AddrAdd(&AddrDynstrStart, i * cbDynSymEnt);
LogFlowFunc(("Found all required section start addresses (.dynsym=%RGv cSymbols=%u, .dynstr=%RGv cb=%u)\n",
AddrDynsymStart.FlatPtr, cSymbols, AddrDynstrStart.FlatPtr,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr));
dbgDiggerFreeBsdLoadSymbols(pThis, pUVM, pVMM, pszName, uKernelStart, cbKernel,
&AddrDynsymStart, cSymbols, &AddrDynstrStart,
pThis->AddrKernelText.FlatPtr - AddrDynstrStart.FlatPtr);
return;
}
else
LogFlowFunc(("Found invalid ASCII character in .dynstr section candidate: %#x\n", *pbBuf));
}
else
{
cSymbols++;
if ( ELF32_ST_TYPE(uType) != STT_NOTYPE
&& FBSD_VALID_ADDRESS(pThis, AddrVal))
{
uKernelStart = RT_MIN(uKernelStart, AddrVal);
cbKernel = RT_MAX(cbKernel, AddrVal + cbSymVal - uKernelStart);
}
}
}
/* Don't account incomplete entries. */
pVMM->pfnDBGFR3AddrAdd(&AddrDynstrStart, (cbToRead / cbDynSymEnt) * cbDynSymEnt);
}
}
else
LogFlowFunc((".hash section overlaps with .text section: %zu (expected much less than %u)\n", cbHash,
pThis->AddrKernelText.FlatPtr - AddrHashStart.FlatPtr));
}
#endif
}
/**
* @interface_method_impl{DBGFOSIDMESG,pfnQueryKernelLog}
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdIDmsg_QueryKernelLog(PDBGFOSIDMESG pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, uint32_t fFlags,
uint32_t cMessages, char *pszBuf, size_t cbBuf, size_t *pcbActual)
{
PDBGDIGGERFBSD pData = RT_FROM_MEMBER(pThis, DBGDIGGERFBSD, IDmesg);
RT_NOREF(fFlags);
if (cMessages < 1)
return VERR_INVALID_PARAMETER;
/* Resolve the message buffer address from the msgbufp symbol. */
RTDBGSYMBOL SymInfo;
int rc = pVMM->pfnDBGFR3AsSymbolByName(pUVM, DBGF_AS_KERNEL, "kernel!msgbufp", &SymInfo, NULL);
if (RT_SUCCESS(rc))
{
DBGFADDRESS AddrMsgBuf;
/* Read the message buffer pointer. */
RTGCPTR GCPtrMsgBufP = 0;
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrMsgBuf, SymInfo.Value),
&GCPtrMsgBufP, pData->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t));
if (RT_FAILURE(rc))
{
Log(("dbgDiggerFreeBsdIDmsg_QueryKernelLog: failed to read msgbufp at %RGv: %Rrc\n", AddrMsgBuf.FlatPtr, rc));
return VERR_NOT_FOUND;
}
if (!FBSD_VALID_ADDRESS(pData, GCPtrMsgBufP))
{
Log(("dbgDiggerFreeBsdIDmsg_QueryKernelLog: Invalid address for msgbufp: %RGv\n", GCPtrMsgBufP));
return VERR_NOT_FOUND;
}
/* Read the structure. */
FBSDMSGBUF MsgBuf;
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrMsgBuf, GCPtrMsgBufP),
&MsgBuf, sizeof(MsgBuf));
if (RT_SUCCESS(rc))
{
RTGCUINTPTR AddrBuf = FBSD_UNION(pData, &MsgBuf, msg_ptr);
uint32_t cbMsgBuf = FBSD_UNION(pData, &MsgBuf, msg_size);
uint32_t uMsgBufSeqR = FBSD_UNION(pData, &MsgBuf, msg_rseq);
uint32_t uMsgBufSeqW = FBSD_UNION(pData, &MsgBuf, msg_wseq);
/*
* Validate the structure.
*/
if ( FBSD_UNION(pData, &MsgBuf, msg_magic) != FBSD_MSGBUF_MAGIC
|| cbMsgBuf < UINT32_C(4096)
|| cbMsgBuf > 16*_1M
|| FBSD_UNION(pData, &MsgBuf, msg_rseq) > cbMsgBuf
|| FBSD_UNION(pData, &MsgBuf, msg_wseq) > cbMsgBuf
|| !FBSD_VALID_ADDRESS(pData, AddrBuf) )
{
Log(("dbgDiggerFreeBsdIDmsg_QueryKernelLog: Invalid MsgBuf data: msg_magic=%#x msg_size=%#x msg_rseq=%#x msg_wseq=%#x msg_ptr=%RGv\n",
FBSD_UNION(pData, &MsgBuf, msg_magic), cbMsgBuf, uMsgBufSeqR, uMsgBufSeqW, AddrBuf));
return VERR_INVALID_STATE;
}
/*
* Read the buffer.
*/
char *pchMsgBuf = (char *)RTMemAlloc(cbMsgBuf);
if (!pchMsgBuf)
{
Log(("dbgDiggerFreeBsdIDmsg_QueryKernelLog: Failed to allocate %#x bytes of memory for the log buffer\n",
cbMsgBuf));
return VERR_INVALID_STATE;
}
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrMsgBuf, AddrBuf),
pchMsgBuf, cbMsgBuf);
if (RT_SUCCESS(rc))
{
/*
* Copy it out raw.
*/
uint32_t offDst = 0;
if (uMsgBufSeqR < uMsgBufSeqW)
{
/* Single chunk between the read and write offsets. */
uint32_t cbToCopy = uMsgBufSeqW - uMsgBufSeqR;
if (cbToCopy < cbBuf)
{
memcpy(pszBuf, &pchMsgBuf[uMsgBufSeqR], cbToCopy);
pszBuf[cbToCopy] = '\0';
rc = VINF_SUCCESS;
}
else
{
if (cbBuf)
{
memcpy(pszBuf, &pchMsgBuf[uMsgBufSeqR], cbBuf - 1);
pszBuf[cbBuf - 1] = '\0';
}
rc = VERR_BUFFER_OVERFLOW;
}
offDst = cbToCopy + 1;
}
else
{
/* Two chunks, read offset to end, start to write offset. */
uint32_t cbFirst = cbMsgBuf - uMsgBufSeqR;
uint32_t cbSecond = uMsgBufSeqW;
if (cbFirst + cbSecond < cbBuf)
{
memcpy(pszBuf, &pchMsgBuf[uMsgBufSeqR], cbFirst);
memcpy(&pszBuf[cbFirst], pchMsgBuf, cbSecond);
offDst = cbFirst + cbSecond;
pszBuf[offDst++] = '\0';
rc = VINF_SUCCESS;
}
else
{
offDst = cbFirst + cbSecond + 1;
if (cbFirst < cbBuf)
{
memcpy(pszBuf, &pchMsgBuf[uMsgBufSeqR], cbFirst);
memcpy(&pszBuf[cbFirst], pchMsgBuf, cbBuf - cbFirst);
pszBuf[cbBuf - 1] = '\0';
}
else if (cbBuf)
{
memcpy(pszBuf, &pchMsgBuf[uMsgBufSeqR], cbBuf - 1);
pszBuf[cbBuf - 1] = '\0';
}
rc = VERR_BUFFER_OVERFLOW;
}
}
if (pcbActual)
*pcbActual = offDst;
}
else
Log(("dbgDiggerFreeBsdIDmsg_QueryKernelLog: Error reading %#x bytes at %RGv: %Rrc\n", cbBuf, AddrBuf, rc));
RTMemFree(pchMsgBuf);
}
else
LogFlowFunc(("Failed to read message buffer header: %Rrc\n", rc));
}
return rc;
}
/**
* @copydoc DBGFOSREG::pfnStackUnwindAssist
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdStackUnwindAssist(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, VMCPUID idCpu,
PDBGFSTACKFRAME pFrame, PRTDBGUNWINDSTATE pState,
PCCPUMCTX pInitialCtx, RTDBGAS hAs, uint64_t *puScratch)
{
RT_NOREF(pUVM, pVMM, pvData, idCpu, pFrame, pState, pInitialCtx, hAs, puScratch);
return VINF_SUCCESS;
}
/**
* @copydoc DBGFOSREG::pfnQueryInterface
*/
static DECLCALLBACK(void *) dbgDiggerFreeBsdQueryInterface(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, DBGFOSINTERFACE enmIf)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
RT_NOREF(pUVM, pVMM);
switch (enmIf)
{
case DBGFOSINTERFACE_DMESG:
return &pThis->IDmesg;
default:
return NULL;
}
}
/**
* @copydoc DBGFOSREG::pfnQueryVersion
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdQueryVersion(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData,
char *pszVersion, size_t cchVersion)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
Assert(pThis->fValid); RT_NOREF(pThis);
RTDBGSYMBOL SymInfo;
int rc = pVMM->pfnDBGFR3AsSymbolByName(pUVM, DBGF_AS_KERNEL, "kernel!version", &SymInfo, NULL);
if (RT_SUCCESS(rc))
{
DBGFADDRESS AddrVersion;
pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrVersion, SymInfo.Value);
rc = pVMM->pfnDBGFR3MemReadString(pUVM, 0, &AddrVersion, pszVersion, cchVersion);
if (RT_SUCCESS(rc))
{
char *pszEnd = RTStrEnd(pszVersion, cchVersion);
AssertReturn(pszEnd, VERR_BUFFER_OVERFLOW);
while ( pszEnd > pszVersion
&& RT_C_IS_SPACE(pszEnd[-1]))
pszEnd--;
*pszEnd = '\0';
}
else
RTStrPrintf(pszVersion, cchVersion, "DBGFR3MemReadString -> %Rrc", rc);
}
return rc;
}
/**
* @copydoc DBGFOSREG::pfnTerm
*/
static DECLCALLBACK(void) dbgDiggerFreeBsdTerm(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
Assert(pThis->fValid);
RT_NOREF(pUVM, pVMM);
pThis->fValid = false;
}
/**
* @copydoc DBGFOSREG::pfnRefresh
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdRefresh(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
NOREF(pThis);
Assert(pThis->fValid);
dbgDiggerFreeBsdTerm(pUVM, pVMM, pvData);
return dbgDiggerFreeBsdInit(pUVM, pVMM, pvData);
}
/**
* @copydoc DBGFOSREG::pfnInit
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
Assert(!pThis->fValid);
RT_NOREF1(pUVM);
dbgDiggerFreeBsdProcessKernelImage(pThis, pUVM, pVMM, "kernel");
pThis->fValid = true;
return VINF_SUCCESS;
}
/**
* @copydoc DBGFOSREG::pfnProbe
*/
static DECLCALLBACK(bool) dbgDiggerFreeBsdProbe(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
/*
* Look for the magic ELF header near the known start addresses.
* If one is found look for the magic "/red/herring" string which is in the
* "interp" section not far away and then validate the start of the ELF header
* to be sure.
*/
for (unsigned i = 0; i < RT_ELEMENTS(g_au64FreeBsdKernelAddresses); i++)
{
static const uint8_t s_abNeedle[] = ELFMAG;
DBGFADDRESS KernelAddr;
pVMM->pfnDBGFR3AddrFromFlat(pUVM, &KernelAddr, g_au64FreeBsdKernelAddresses[i]);
DBGFADDRESS HitAddr;
uint32_t cbLeft = FBSD_MAX_KERNEL_SIZE;
while (cbLeft > X86_PAGE_4K_SIZE)
{
int rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &KernelAddr, cbLeft, 1,
s_abNeedle, sizeof(s_abNeedle) - 1, &HitAddr);
if (RT_FAILURE(rc))
break;
/*
* Look for the magic "/red/herring" near the header and verify the basic
* ELF header.
*/
DBGFADDRESS HitAddrInterp;
rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &HitAddr, FBSD_MAX_INTERP_OFFSET, 1,
g_abNeedleInterp, sizeof(g_abNeedleInterp), &HitAddrInterp);
if (RT_SUCCESS(rc))
{
union
{
uint8_t ab[2 * X86_PAGE_4K_SIZE];
Elf32_Ehdr Hdr32;
Elf64_Ehdr Hdr64;
} ElfHdr;
AssertCompileMembersSameSizeAndOffset(Elf64_Ehdr, e_ident, Elf32_Ehdr, e_ident);
AssertCompileMembersSameSizeAndOffset(Elf64_Ehdr, e_type, Elf32_Ehdr, e_type);
AssertCompileMembersSameSizeAndOffset(Elf64_Ehdr, e_machine, Elf32_Ehdr, e_machine);
AssertCompileMembersSameSizeAndOffset(Elf64_Ehdr, e_version, Elf32_Ehdr, e_version);
rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &HitAddr, &ElfHdr.ab[0], X86_PAGE_4K_SIZE);
if (RT_SUCCESS(rc))
{
/* We verified the magic above already by scanning for it. */
if ( ( ElfHdr.Hdr32.e_ident[EI_CLASS] == ELFCLASS32
|| ElfHdr.Hdr32.e_ident[EI_CLASS] == ELFCLASS64)
&& ElfHdr.Hdr32.e_ident[EI_DATA] == ELFDATA2LSB
&& ElfHdr.Hdr32.e_ident[EI_VERSION] == EV_CURRENT
&& ElfHdr.Hdr32.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
&& ElfHdr.Hdr32.e_type == ET_EXEC
&& ( ElfHdr.Hdr32.e_machine == EM_386
|| ElfHdr.Hdr32.e_machine == EM_X86_64)
&& ElfHdr.Hdr32.e_version == EV_CURRENT)
{
pThis->f64Bit = ElfHdr.Hdr32.e_ident[EI_CLASS] == ELFCLASS64;
pThis->AddrKernelElfStart = HitAddr;
pThis->AddrKernelInterp = HitAddrInterp;
pVMM->pfnDBGFR3AddrFromFlat(pUVM, &pThis->AddrKernelText, FBSD_UNION(pThis, &ElfHdr, e_entry));
LogFunc(("Found %s FreeBSD kernel at %RGv (.interp section at %RGv, .text section at %RGv)\n",
pThis->f64Bit ? "amd64" : "i386", pThis->AddrKernelElfStart.FlatPtr,
pThis->AddrKernelInterp.FlatPtr, pThis->AddrKernelText.FlatPtr));
return true;
}
}
}
/*
* Advance.
*/
RTGCUINTPTR cbDistance = HitAddr.FlatPtr - KernelAddr.FlatPtr + sizeof(s_abNeedle) - 1;
if (RT_UNLIKELY(cbDistance >= cbLeft))
break;
cbLeft -= cbDistance;
pVMM->pfnDBGFR3AddrAdd(&KernelAddr, cbDistance);
}
}
return false;
}
/**
* @copydoc DBGFOSREG::pfnDestruct
*/
static DECLCALLBACK(void) dbgDiggerFreeBsdDestruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
RT_NOREF(pUVM, pVMM, pvData);
}
/**
* @copydoc DBGFOSREG::pfnConstruct
*/
static DECLCALLBACK(int) dbgDiggerFreeBsdConstruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
{
PDBGDIGGERFBSD pThis = (PDBGDIGGERFBSD)pvData;
RT_NOREF(pUVM, pVMM);
pThis->fValid = false;
pThis->f64Bit = false;
pThis->IDmesg.u32Magic = DBGFOSIDMESG_MAGIC;
pThis->IDmesg.pfnQueryKernelLog = dbgDiggerFreeBsdIDmsg_QueryKernelLog;
pThis->IDmesg.u32EndMagic = DBGFOSIDMESG_MAGIC;
return VINF_SUCCESS;
}
const DBGFOSREG g_DBGDiggerFreeBsd =
{
/* .u32Magic = */ DBGFOSREG_MAGIC,
/* .fFlags = */ 0,
/* .cbData = */ sizeof(DBGDIGGERFBSD),
/* .szName = */ "FreeBSD",
/* .pfnConstruct = */ dbgDiggerFreeBsdConstruct,
/* .pfnDestruct = */ dbgDiggerFreeBsdDestruct,
/* .pfnProbe = */ dbgDiggerFreeBsdProbe,
/* .pfnInit = */ dbgDiggerFreeBsdInit,
/* .pfnRefresh = */ dbgDiggerFreeBsdRefresh,
/* .pfnTerm = */ dbgDiggerFreeBsdTerm,
/* .pfnQueryVersion = */ dbgDiggerFreeBsdQueryVersion,
/* .pfnQueryInterface = */ dbgDiggerFreeBsdQueryInterface,
/* .pfnStackUnwindAssist = */ dbgDiggerFreeBsdStackUnwindAssist,
/* .u32EndMagic = */ DBGFOSREG_MAGIC
};
|