summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/asn1/asn1-ut-time-decode.cpp
blob: 5df4b73d5c4bfc2a017a33327a0bc49558a94b48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/* $Id: asn1-ut-time-decode.cpp $ */
/** @file
 * IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding.
 */

/*
 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>

#include <iprt/alloca.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/ctype.h>

#include <iprt/formats/asn1.h>


/**
 * Common code for UTCTime and GeneralizedTime converters that normalizes the
 * converted time and checks that the input values doesn't change.
 *
 * @returns IPRT status code.
 * @param   pCursor             The cursor to use when reporting an error.
 * @param   pThis               The time to normalize and check.
 * @param   pszType             The type name.
 * @param   pszErrorTag         The error tag.
 */
static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag)
{
    int rc;
    if (   pThis->Time.u8Month  >  0
        && pThis->Time.u8Month  <= 12
        && pThis->Time.u8Hour   <  24
        && pThis->Time.u8Minute <  60
        && pThis->Time.u8Second <= 60)
    {
        /* Work around clever rounding error in DER_CFDateToUTCTime() on OS X.  This also
           supresses any attempt at feeding us leap seconds.  If we pass 60 to the
           normalization code will move on to the next min/hour/day, which is wrong both
           for the OS X issue and for unwanted leap seconds.  Leap seconds are not valid
           ASN.1 by the by according to the specs available to us.  */
        if (pThis->Time.u8Second < 60)
        { /* likely */ }
        else
            pThis->Time.u8Second = 59;

        /* Normalize and move on. */
        RTTIME const TimeCopy = pThis->Time;
        if (RTTimeNormalize(&pThis->Time))
        {
            if (   TimeCopy.u8MonthDay  ==  pThis->Time.u8MonthDay
                && TimeCopy.u8Month     ==  pThis->Time.u8Month
                && TimeCopy.i32Year     ==  pThis->Time.i32Year
                && TimeCopy.u8Hour      ==  pThis->Time.u8Hour
                && TimeCopy.u8Minute    ==  pThis->Time.u8Minute
                && TimeCopy.u8Second    ==  pThis->Time.u8Second)
                return VINF_SUCCESS;

            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH,
                                     "%s: Normalized result not the same as %s: '%.*s' / %04u-%02u-%02uT%02u:%02u:%02u vs %04u-%02u-%02uT%02u:%02u:%02u",
                                     pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
                                     TimeCopy.i32Year, TimeCopy.u8Month, TimeCopy.u8MonthDay,
                                     TimeCopy.u8Hour, TimeCopy.u8Minute, TimeCopy.u8Second,
                                     pThis->Time.i32Year, pThis->Time.u8Month, pThis->Time.u8MonthDay,
                                     pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
        }
        else
            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR,
                                     "%s: RTTimeNormalize failed on %s: '%.*s'",
                                     pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
    }
    else
        rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT,
                                 "%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u",
                                 pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
                                 pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
    return rc;
}


/**
 * Converts the UTCTime string into an the RTTIME member of RTASN1TIME.
 *
 * @returns IPRT status code.
 * @param   pCursor             The cursor to use when reporting an error.
 * @param   pThis               The time to parse.
 * @param   pszErrorTag         The error tag.
 */
static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
    /*
     * While the current spec says the seconds field is not optional, this
     * restriction was added later on.  So, when parsing UTCTime we must deal
     * with it being absent.
     */
    int rc;
    bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1;
    if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1)
    {
        const char *pachTime = pThis->Asn1Core.uData.pch;

        /* Basic encoding validation. */
        if (   RT_C_IS_DIGIT(pachTime[0]) /* Y */
            && RT_C_IS_DIGIT(pachTime[1]) /* Y */
            && RT_C_IS_DIGIT(pachTime[2]) /* M */
            && RT_C_IS_DIGIT(pachTime[3]) /* M */
            && RT_C_IS_DIGIT(pachTime[4]) /* D */
            && RT_C_IS_DIGIT(pachTime[5]) /* D */
            && RT_C_IS_DIGIT(pachTime[6]) /* H */
            && RT_C_IS_DIGIT(pachTime[7]) /* H */
            && RT_C_IS_DIGIT(pachTime[8]) /* M */
            && RT_C_IS_DIGIT(pachTime[9]) /* M */
            && (   !fHaveSeconds
                || (   RT_C_IS_DIGIT(pachTime[10]) /* S */
                    && RT_C_IS_DIGIT(pachTime[11]) /* S */ ) )
            && pachTime[fHaveSeconds ? 12 : 10] == 'Z'
           )
        {
            /* Basic conversion. */
            pThis->Time.i32Year         = (pachTime[0] - '0') * 10  +  (pachTime[1] - '0');
            pThis->Time.i32Year        += pThis->Time.i32Year < 50 ? 2000 : 1900;
            pThis->Time.u8Month         = (pachTime[2] - '0') * 10  +  (pachTime[3] - '0');
            pThis->Time.u8WeekDay       = 0;
            pThis->Time.u16YearDay      = 0;
            pThis->Time.u8MonthDay      = (pachTime[4] - '0') * 10  +  (pachTime[5] - '0');
            pThis->Time.u8Hour          = (pachTime[6] - '0') * 10  +  (pachTime[7] - '0');
            pThis->Time.u8Minute        = (pachTime[8] - '0') * 10  +  (pachTime[9] - '0');
            if (fHaveSeconds)
                pThis->Time.u8Second    = (pachTime[10] - '0') * 10 +  (pachTime[11] - '0');
            else
                pThis->Time.u8Second    = 0;
            pThis->Time.u32Nanosecond   = 0;
            pThis->Time.fFlags          = RTTIME_FLAGS_TYPE_UTC;
            pThis->Time.offUTC          = 0;

            /* Check the convered data and normalize the time structure. */
            rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag);
            if (RT_SUCCESS(rc))
                return rc;
        }
        else
            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'",
                                     pszErrorTag, pThis->Asn1Core.cb, pachTime);
    }
    else
        rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x",
                                 pszErrorTag, pThis->Asn1Core.cb);
    RT_ZERO(*pThis);
    return rc;
}


/**
 * Converts the fraction part of a generalized time into nanoseconds.
 *
 * @returns IPRT status code.
 * @param   pCursor         The cursor to use when reporting an error.
 * @param   pchFraction     Pointer to the start of the fraction (dot).
 * @param   cchFraction     The length of the fraction.
 * @param   pThis           The time object we're working on,
 *                          Time.u32Nanoseconds will be update.
 * @param   pszErrorTag     The error tag.
 */
static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction,
                                                      PRTASN1TIME pThis, const char *pszErrorTag)
{
    pThis->Time.u32Nanosecond = 0;

    /*
     * Check the dot.
     */
    if (*pchFraction != '.')
        return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                   "%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')",
                                   pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
    pchFraction++;
    cchFraction--;
    if (!cchFraction)
        return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                   "%s: No digit following GeneralizedTime fraction dot: '%.*s'",
                                   pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core);

    /*
     * Do the conversion.
     */
    char chLastDigit;
    uint32_t uMult = 100000000;
    do
    {
        char chDigit = chLastDigit = *pchFraction;
        if (!RT_C_IS_DIGIT(chDigit))
            return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                       "%s: Bad GeneralizedTime fraction digit: '%.*s'",
                                       pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
        pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0');

        /* Advance */
        cchFraction--;
        pchFraction++;
        uMult /= 10;
    } while (cchFraction > 0 && uMult > 0);

    /*
     * Lazy bird: For now, we don't permit higher resolution than we can
     * internally represent.  Deal with this if it ever becomes an issue.
     */
    if (cchFraction > 0)
        return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                   "%s: Bad GeneralizedTime fraction too long: '%.*s'",
                                   pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
    if (chLastDigit == '0')
        return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                   "%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'",
                                   pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
    return VINF_SUCCESS;
}


/**
 * Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME.
 *
 * @returns IPRT status code.
 * @param   pCursor             The cursor to use when reporting an error.
 * @param   pThis               The time to parse.
 * @param   pszErrorTag         The error tag.
 */
static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
    int rc;
    if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1)
    {
        const char *pachTime = pThis->Asn1Core.uData.pch;

        /* Basic encoding validation. */
        if (   RT_C_IS_DIGIT(pachTime[0]) /* Y */
            && RT_C_IS_DIGIT(pachTime[1]) /* Y */
            && RT_C_IS_DIGIT(pachTime[2]) /* Y */
            && RT_C_IS_DIGIT(pachTime[3]) /* Y */
            && RT_C_IS_DIGIT(pachTime[4]) /* M */
            && RT_C_IS_DIGIT(pachTime[5]) /* M */
            && RT_C_IS_DIGIT(pachTime[6]) /* D */
            && RT_C_IS_DIGIT(pachTime[7]) /* D */
            && RT_C_IS_DIGIT(pachTime[8]) /* H */
            && RT_C_IS_DIGIT(pachTime[9]) /* H */
            && RT_C_IS_DIGIT(pachTime[10]) /* M */
            && RT_C_IS_DIGIT(pachTime[11]) /* M */
            && RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */
            && RT_C_IS_DIGIT(pachTime[13]) /* S */
            && pachTime[pThis->Asn1Core.cb - 1] == 'Z'
           )
        {
            /* Basic conversion. */
            pThis->Time.i32Year         = 1000 * (pachTime[0] - '0')
                                        +  100 * (pachTime[1] - '0')
                                        +   10 * (pachTime[2] - '0')
                                        +        (pachTime[3] - '0');
            pThis->Time.u8Month         = (pachTime[4]  - '0') * 10  +  (pachTime[5]  - '0');
            pThis->Time.u8WeekDay       = 0;
            pThis->Time.u16YearDay      = 0;
            pThis->Time.u8MonthDay      = (pachTime[6]  - '0') * 10  +  (pachTime[7]  - '0');
            pThis->Time.u8Hour          = (pachTime[8]  - '0') * 10  +  (pachTime[9]  - '0');
            pThis->Time.u8Minute        = (pachTime[10] - '0') * 10  +  (pachTime[11] - '0');
            pThis->Time.u8Second        = (pachTime[12] - '0') * 10  +  (pachTime[13] - '0');
            pThis->Time.u32Nanosecond   = 0;
            pThis->Time.fFlags          = RTTIME_FLAGS_TYPE_UTC;
            pThis->Time.offUTC          = 0;

            /* Optional fraction part. */
            rc = VINF_SUCCESS;
            uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1;
            if (cchLeft > 0)
                rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag);

            /* Check the convered data and normalize the time structure. */
            if (RT_SUCCESS(rc))
            {
                rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag);
                if (RT_SUCCESS(rc))
                    return VINF_SUCCESS;
            }
        }
        else
            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                     "%s: Bad GeneralizedTime encoding: '%.*s'",
                                     pszErrorTag, pThis->Asn1Core.cb, pachTime);
    }
    else
        rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
                                 "%s: Bad GeneralizedTime length: %#x",
                                 pszErrorTag, pThis->Asn1Core.cb);
    RT_ZERO(*pThis);
    return rc;
}


RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
    Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT)); RT_NOREF_PV(fFlags);
    int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
    if (RT_SUCCESS(rc))
    {
        if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) )
        {
            if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME)
            {
                RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
                pThis->Asn1Core.pOps    = &g_RTAsn1Time_Vtable;
                pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
                return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
            }

            if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME)
            {
                RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
                pThis->Asn1Core.pOps    = &g_RTAsn1Time_Vtable;
                pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
                return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
            }

            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x",
                                     pszErrorTag, pThis->Asn1Core.uTag);
        }
        else
            rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH,
                                     "%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x",
                                     pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag);
    }
    RT_ZERO(*pThis);
    return rc;
}


RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
    int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
    if (RT_SUCCESS(rc))
    {
        rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME,
                                            ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
                                            fFlags, pszErrorTag, "UTC TIME");
        if (RT_SUCCESS(rc))
        {
            RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
            pThis->Asn1Core.pOps    = &g_RTAsn1Time_Vtable;
            pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
            return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
        }
    }
    RT_ZERO(*pThis);
    return rc;
}


RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
    int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
    if (RT_SUCCESS(rc))
    {
        rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME,
                                            ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
                                            fFlags, pszErrorTag, "GENERALIZED TIME");
        if (RT_SUCCESS(rc))
        {
            RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
            pThis->Asn1Core.pOps    = &g_RTAsn1Time_Vtable;
            pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
            return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
        }
    }
    RT_ZERO(*pThis);
    return rc;
}


/*
 * Generate code for the associated collection types.
 */
#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h"
#include <iprt/asn1-generator-internal-header.h>
#include <iprt/asn1-generator-asn1-decoder.h>