summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/common/crypto/cipher-openssl.cpp
blob: 079af227eb35021e513ab367bf6a89107559c8bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/* $Id: cipher-openssl.cpp $ */
/** @file
 * IPRT - Crypto - Symmetric Cipher using OpenSSL.
 */

/*
 * Copyright (C) 2018-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#ifdef IPRT_WITH_OPENSSL
# include "internal/iprt.h"
# include <iprt/crypto/cipher.h>

# include <iprt/asm.h>
# include <iprt/assert.h>
# include <iprt/err.h>
# include <iprt/mem.h>
# include <iprt/string.h>

# include "internal/iprt-openssl.h"
# include "internal/openssl-pre.h"
# include <openssl/evp.h>
# include "internal/openssl-post.h"

# include "internal/magics.h"


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
#if defined(EVP_CTRL_AEAD_GET_TAG)
# define MY_EVP_CTRL_AEAD_GET_TAG EVP_CTRL_AEAD_GET_TAG
#else
# define MY_EVP_CTRL_AEAD_GET_TAG EVP_CTRL_GCM_GET_TAG
#endif

#if defined(EVP_CTRL_AEAD_SET_TAG)
# define MY_EVP_CTRL_AEAD_SET_TAG EVP_CTRL_AEAD_SET_TAG
#else
# define MY_EVP_CTRL_AEAD_SET_TAG EVP_CTRL_GCM_SET_TAG
#endif


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * OpenSSL cipher instance data.
 */
typedef struct RTCRCIPHERINT
{
    /** Magic value (RTCRCIPHERINT_MAGIC). */
    uint32_t            u32Magic;
    /** Reference count. */
    uint32_t volatile   cRefs;
    /** The cihper. */
    const EVP_CIPHER   *pCipher;
    /** The IPRT cipher type, if we know it. */
    RTCRCIPHERTYPE      enmType;
} RTCRCIPHERINT;


/**
 * OpenSSL cipher context data
 */
typedef struct RTCRCIPHERCTXINT
{
    /** Pointer to cipher instance data */
    RTCRCIPHERINT      *phCipher;
    /** Pointer to cipher context */
    EVP_CIPHER_CTX     *pCipherCtx;
    /** Is decryption */
    bool                fDecryption;
} RTCRCIPHERCTXINT;


RTDECL(int) RTCrCipherOpenByType(PRTCRCIPHER phCipher, RTCRCIPHERTYPE enmType, uint32_t fFlags)
{
    AssertPtrReturn(phCipher, VERR_INVALID_POINTER);
    *phCipher = NIL_RTCRCIPHER;
    AssertReturn(!fFlags, VERR_INVALID_FLAGS);

    /*
     * Translate the IPRT cipher type to EVP cipher.
     */
    const EVP_CIPHER *pCipher = NULL;
    switch (enmType)
    {
        case RTCRCIPHERTYPE_XTS_AES_128:
            pCipher = EVP_aes_128_xts();
            break;
        case RTCRCIPHERTYPE_XTS_AES_256:
            pCipher = EVP_aes_256_xts();
            break;
        case RTCRCIPHERTYPE_GCM_AES_128:
            pCipher = EVP_aes_128_gcm();
            break;
        case RTCRCIPHERTYPE_GCM_AES_256:
            pCipher = EVP_aes_256_gcm();
            break;
        case RTCRCIPHERTYPE_CTR_AES_128:
            pCipher = EVP_aes_128_ctr();
            break;
        case RTCRCIPHERTYPE_CTR_AES_256:
            pCipher = EVP_aes_256_ctr();
            break;

        /* no default! */
        case RTCRCIPHERTYPE_INVALID:
        case RTCRCIPHERTYPE_END:
        case RTCRCIPHERTYPE_32BIT_HACK:
            AssertFailedReturn(VERR_INVALID_PARAMETER);
    }
    AssertReturn(pCipher, VERR_CR_CIPHER_NOT_SUPPORTED);

    /*
     * Create the instance.
     */
    RTCRCIPHERINT *pThis = (RTCRCIPHERINT *)RTMemAllocZ(sizeof(*pThis));
    if (pThis)
    {
        pThis->u32Magic = RTCRCIPHERINT_MAGIC;
        pThis->cRefs    = 1;
        pThis->pCipher  = pCipher;
        pThis->enmType  = enmType;
        *phCipher = pThis;
        return VINF_SUCCESS;
    }
    return VERR_NO_MEMORY;
}


RTDECL(uint32_t) RTCrCipherRetain(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, UINT32_MAX);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, UINT32_MAX);

    uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs);
    Assert(cRefs > 1 && cRefs < 1024);
    return cRefs;
}


/**
 * Destroys the cipher instance.
 */
static uint32_t rtCrCipherDestroy(RTCRCIPHER pThis)
{
    pThis->u32Magic= ~RTCRCIPHERINT_MAGIC;
    pThis->pCipher = NULL;
    RTMemFree(pThis);
    return 0;
}


RTDECL(uint32_t) RTCrCipherRelease(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    if (pThis == NIL_RTCRCIPHER)
        return 0;
    AssertPtrReturn(pThis, UINT32_MAX);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, UINT32_MAX);

    uint32_t cRefs = ASMAtomicDecU32(&pThis->cRefs);
    Assert(cRefs < 1024);
    if (cRefs == 0)
        return rtCrCipherDestroy(pThis);
    return cRefs;
}


RTDECL(uint32_t) RTCrCipherGetKeyLength(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_key_length(pThis->pCipher);
}


RTDECL(uint32_t) RTCrCipherGetInitializationVectorLength(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_iv_length(pThis->pCipher);
}


RTDECL(uint32_t) RTCrCipherGetBlockSize(RTCRCIPHER hCipher)
{
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, 0);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, 0);

    return EVP_CIPHER_block_size(pThis->pCipher);
}


RTDECL(int) RTCrCipherCtxFree(RTCRCIPHERCTX hCipherCtx)
{
    AssertReturn(hCipherCtx, VERR_INVALID_PARAMETER);
    RTCRCIPHERCTXINT *pCtx = hCipherCtx;

# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
        EVP_CIPHER_CTX_free(pCtx->pCipherCtx);
# else
        EVP_CIPHER_CTX_cleanup(pCtx->pCipherCtx);
        RTMemFree(pCtx->pCipherCtx);
# endif
        RTMemFree(pCtx);

    return VINF_SUCCESS;
}


RTDECL(int) RTCrCipherCtxEncryptInit(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                                     void const *pvInitVector, size_t cbInitVector,
                                     void const *pvAuthData, size_t cbAuthData,
                                     PRTCRCIPHERCTX phCipherCtx)
{
     /*
     * Validate input.
     */
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, VERR_INVALID_HANDLE);
    AssertMsgReturn((ssize_t)cbKey == EVP_CIPHER_key_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbKey, EVP_CIPHER_key_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_KEY_LENGTH);
    AssertMsgReturn((ssize_t)cbInitVector == EVP_CIPHER_iv_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbInitVector, EVP_CIPHER_iv_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_INITIALIZATION_VECTOR_LENGTH);

    Assert(EVP_CIPHER_block_size(pThis->pCipher) <= 1); /** @todo more complicated ciphers later */

    /*
     * Allocate and initialize the cipher context.
     */
    int rc = VERR_NO_MEMORY;
    /*
     * Create the instance.
     */
    RTCRCIPHERCTXINT *pCtx = (RTCRCIPHERCTXINT *)RTMemAlloc(sizeof(RTCRCIPHERCTXINT));
    if (pCtx)
    {
        pCtx->phCipher = hCipher;
        pCtx->fDecryption = false;
# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
        pCtx->pCipherCtx = EVP_CIPHER_CTX_new();
        if (pCtx->pCipherCtx)
# else
        pCtx->pCipherCtx = (EVP_CIPHER_CTX *)RTMemAllocZ(sizeof(EVP_CIPHER_CTX));
# endif
        {
            if (EVP_EncryptInit(pCtx->pCipherCtx, pCtx->phCipher->pCipher, (unsigned char const *)pvKey,
                                (unsigned char const *)pvInitVector))
            {
                if (pvAuthData && cbAuthData)
                {
                    /* Add auth data. */
                    int cbEncryptedAuth = 0;
                    rc = EVP_EncryptUpdate(pCtx->pCipherCtx, NULL, &cbEncryptedAuth,
                                           (unsigned char const *)pvAuthData, (int)cbAuthData) ? VINF_SUCCESS
                         : VERR_CR_CIPHER_OSSL_ENCRYPT_UPDATE_FAILED;
                }
                else
                    rc = VINF_SUCCESS;
            }
            else
                rc = VERR_CR_CIPHER_OSSL_ENCRYPT_INIT_FAILED;
        }
    }

    if (RT_SUCCESS(rc))
        *phCipherCtx = pCtx;
    else
        RTCrCipherCtxFree(pCtx);
    return rc;
}


RTDECL(int) RTCrCipherCtxEncryptProcess(RTCRCIPHERCTX hCipherCtx, void const *pvPlainText, size_t cbPlainText,
                                        void *pvEncrypted, size_t cbEncrypted, size_t *pcbEncrypted)
{
    AssertReturn(hCipherCtx, VERR_INVALID_PARAMETER);
    AssertReturn(cbPlainText > 0, VERR_NO_DATA);
    AssertReturn((size_t)(int)cbPlainText == cbPlainText && (int)cbPlainText > 0, VERR_OUT_OF_RANGE);
    AssertReturn(cbEncrypted >= cbPlainText, VERR_BUFFER_OVERFLOW);

    RTCRCIPHERCTXINT *pCtx = hCipherCtx;
    AssertReturn(!pCtx->fDecryption, VERR_INVALID_STATE);
    int cbEncrypted1 = 0;
    int rc = VERR_CR_CIPHER_OSSL_ENCRYPT_UPDATE_FAILED;
    if (EVP_EncryptUpdate(pCtx->pCipherCtx, (unsigned char *)pvEncrypted, &cbEncrypted1,
                          (unsigned char const *)pvPlainText, (int)cbPlainText))
    {
        *pcbEncrypted = cbEncrypted1;
        rc = VINF_SUCCESS;
    }
    return rc;
}


RTDECL(int) RTCrCipherCtxEncryptFinish(RTCRCIPHERCTX hCipherCtx,
                                       void *pvEncrypted, size_t *pcbEncrypted,
                                       void *pvTag, size_t cbTag, size_t *pcbTag)
{
    AssertReturn(hCipherCtx, VERR_INVALID_PARAMETER);
    RTCRCIPHERCTXINT *pCtx = hCipherCtx;
    AssertReturn(!pCtx->fDecryption, VERR_INVALID_STATE);
    AssertReturn(!pvTag || (pvTag && cbTag == 16), VERR_CR_CIPHER_INVALID_TAG_LENGTH);
    int cbEncrypted2 = 0;
    int rc = VERR_CR_CIPHER_OSSL_ENCRYPT_FINAL_FAILED;
    if (EVP_EncryptFinal(pCtx->pCipherCtx, (uint8_t *)pvEncrypted, &cbEncrypted2))
    {
        if (pvTag && cbTag)
        {
            if (EVP_CIPHER_CTX_ctrl(pCtx->pCipherCtx, MY_EVP_CTRL_AEAD_GET_TAG, (int)cbTag, pvTag))
            {
                *pcbTag = cbTag;
                rc = VINF_SUCCESS;
            }
            else
                rc = VERR_CR_CIPHER_OSSL_GET_TAG_FAILED;
        }
        else
            rc = VINF_SUCCESS;

        if (RT_SUCCESS(rc) && pcbEncrypted)
            *pcbEncrypted = cbEncrypted2;
    }

    return rc;
}


RTDECL(int) RTCrCipherCtxDecryptInit(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                                     void const *pvInitVector, size_t cbInitVector,
                                     void const *pvAuthData, size_t cbAuthData,
                                     void *pvTag, size_t cbTag, PRTCRCIPHERCTX phCipherCtx)
{
    /*
     * Validate input.
     */
    RTCRCIPHERINT *pThis = hCipher;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    AssertReturn(pThis->u32Magic == RTCRCIPHERINT_MAGIC, VERR_INVALID_HANDLE);
    AssertMsgReturn((ssize_t)cbKey == EVP_CIPHER_key_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbKey, EVP_CIPHER_key_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_KEY_LENGTH);
    AssertMsgReturn((ssize_t)cbInitVector == EVP_CIPHER_iv_length(pThis->pCipher),
                    ("%zu, expected %d\n", cbInitVector, EVP_CIPHER_iv_length(pThis->pCipher)),
                    VERR_CR_CIPHER_INVALID_INITIALIZATION_VECTOR_LENGTH);
    AssertReturn(!pvTag || (pvTag && cbTag == 16), VERR_CR_CIPHER_INVALID_TAG_LENGTH);

    Assert(EVP_CIPHER_block_size(pThis->pCipher) <= 1); /** @todo more complicated ciphers later */

    /*
     * Allocate and initialize the cipher context.
     */
    int rc = VERR_NO_MEMORY;
    /*
     * Create the instance.
     */
    RTCRCIPHERCTXINT *pCtx = (RTCRCIPHERCTXINT *)RTMemAlloc(sizeof(RTCRCIPHERCTXINT));
    if (pCtx)
    {
        pCtx->phCipher = hCipher;
        pCtx->fDecryption = true;
# if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
        pCtx->pCipherCtx = EVP_CIPHER_CTX_new();
# else
        pCtx->pCipherCtx = (EVP_CIPHER_CTX *)RTMemAllocZ(sizeof(EVP_CIPHER_CTX));
# endif

        if (EVP_DecryptInit(pCtx->pCipherCtx, pThis->pCipher, (unsigned char const *)pvKey,
                            (unsigned char const *)pvInitVector))
        {
            rc = VINF_SUCCESS;
            if (pvTag && cbTag && !EVP_CIPHER_CTX_ctrl(pCtx->pCipherCtx, MY_EVP_CTRL_AEAD_SET_TAG, (int)cbTag, pvTag))
                rc = VERR_CR_CIPHER_OSSL_SET_TAG_FAILED;

            if (RT_SUCCESS(rc) && pvAuthData && cbAuthData)
            {
                /* Add auth data. */
                int cbDecryptedAuth = 0;
                if (!EVP_DecryptUpdate(pCtx->pCipherCtx, NULL, &cbDecryptedAuth,
                                        (unsigned char const *)pvAuthData, (int)cbAuthData))
                    rc = VERR_CR_CIPHER_OSSL_DECRYPT_UPDATE_FAILED;
            }
        }
        else
            rc = VERR_CR_CIPHER_OSSL_DECRYPT_INIT_FAILED;
    }

    if (RT_SUCCESS(rc))
        *phCipherCtx = pCtx;
    else
        RTCrCipherCtxFree(pCtx);

    return rc;
}


RTDECL(int) RTCrCipherCtxDecryptProcess(RTCRCIPHERCTX hCipherCtx,
                                        void const *pvEncrypted, size_t cbEncrypted,
                                        void *pvPlainText, size_t cbPlainText, size_t *pcbPlainText)
{
    AssertReturn(hCipherCtx, VERR_INVALID_PARAMETER);
    AssertReturn(cbEncrypted > 0, VERR_NO_DATA);
    AssertReturn((size_t)(int)cbEncrypted == cbEncrypted && (int)cbEncrypted > 0, VERR_OUT_OF_RANGE);
    AssertReturn(cbPlainText >= cbEncrypted, VERR_BUFFER_OVERFLOW);

    RTCRCIPHERCTXINT *pCtx = hCipherCtx;
    AssertReturn(pCtx->fDecryption, VERR_INVALID_STATE);
    int rc = VERR_CR_CIPHER_OSSL_DECRYPT_UPDATE_FAILED;
    int cbDecrypted1 = 0;
    if (EVP_DecryptUpdate(pCtx->pCipherCtx, (unsigned char *)pvPlainText, &cbDecrypted1,
                          (unsigned char const *)pvEncrypted, (int)cbEncrypted))
    {
        *pcbPlainText = cbDecrypted1;
        rc = VINF_SUCCESS;
    }
    return rc;
}


RTDECL(int) RTCrCipherCtxDecryptFinish(RTCRCIPHERCTX hCipherCtx,
                                       void *pvPlainText, size_t *pcbPlainText)
{
    AssertReturn(hCipherCtx, VERR_INVALID_PARAMETER);
    RTCRCIPHERCTXINT *pCtx = hCipherCtx;
    AssertReturn(pCtx->fDecryption, VERR_INVALID_STATE);
    int cbDecrypted2 = 0;
    int rc = VERR_CR_CIPHER_OSSL_ENCRYPT_FINAL_FAILED;
    if (EVP_DecryptFinal(pCtx->pCipherCtx, (uint8_t *)pvPlainText, &cbDecrypted2))
    {
        rc = VINF_SUCCESS;
        if (pcbPlainText)
            *pcbPlainText = cbDecrypted2;
    }

    return rc;
}


RTDECL(int) RTCrCipherEncrypt(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                              void const *pvInitVector, size_t cbInitVector,
                              void const *pvPlainText, size_t cbPlainText,
                              void *pvEncrypted, size_t cbEncrypted, size_t *pcbEncrypted)
{
    return RTCrCipherEncryptEx(hCipher, pvKey, cbKey, pvInitVector, cbInitVector,
                               NULL, 0, pvPlainText, cbPlainText, pvEncrypted, cbEncrypted,
                               pcbEncrypted, NULL, 0, NULL);
}


RTDECL(int) RTCrCipherDecrypt(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                              void const *pvInitVector, size_t cbInitVector,
                              void const *pvEncrypted, size_t cbEncrypted,
                              void *pvPlainText, size_t cbPlainText, size_t *pcbPlainText)
{
    return RTCrCipherDecryptEx(hCipher, pvKey, cbKey, pvInitVector, cbInitVector,
                               NULL, 0, NULL, 0, pvEncrypted, cbEncrypted,
                               pvPlainText, cbPlainText, pcbPlainText);
}


RTDECL(int) RTCrCipherEncryptEx(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                                void const *pvInitVector, size_t cbInitVector,
                                void const *pvAuthData, size_t cbAuthData,
                                void const *pvPlainText, size_t cbPlainText,
                                void *pvEncrypted, size_t cbEncrypted, size_t *pcbEncrypted,
                                void *pvTag, size_t cbTag, size_t *pcbTag)
{
    size_t const cbNeeded = cbPlainText;
    if (pcbEncrypted)
    {
        *pcbEncrypted = cbNeeded;
        AssertReturn(cbEncrypted >= cbNeeded, VERR_BUFFER_OVERFLOW);
    }
    else
        AssertReturn(cbEncrypted == cbNeeded, VERR_INVALID_PARAMETER);
    AssertReturn((size_t)(int)cbPlainText == cbPlainText && (int)cbPlainText > 0, VERR_OUT_OF_RANGE);

    RTCRCIPHERCTXINT *pCtx = NIL_RTCRCIPHERCTX;

    int rc = RTCrCipherCtxEncryptInit(hCipher, pvKey, cbKey, pvInitVector, cbInitVector,
                                      pvAuthData, cbAuthData, &pCtx);
    if (RT_SUCCESS(rc))
    {
        size_t cbEncrypted1 = 0;
        rc = RTCrCipherCtxEncryptProcess(pCtx, pvPlainText, cbPlainText, pvEncrypted, cbEncrypted, &cbEncrypted1);
        if (RT_SUCCESS(rc))
        {
            size_t cbEncrypted2 = 0;
            rc = RTCrCipherCtxEncryptFinish(pCtx, (unsigned char *)pvEncrypted + cbEncrypted1,
                                            &cbEncrypted2, pvTag, cbTag, pcbTag);
            if (RT_SUCCESS(rc))
            {
                Assert(cbEncrypted1 + cbEncrypted2 == cbNeeded);
                if (pcbEncrypted)
                    *pcbEncrypted = cbEncrypted1 + cbEncrypted2;
            }
        }
    }

    if (pCtx != NIL_RTCRCIPHERCTX)
        RTCrCipherCtxFree(pCtx);

    return rc;
}


RTDECL(int) RTCrCipherDecryptEx(RTCRCIPHER hCipher, void const *pvKey, size_t cbKey,
                                void const *pvInitVector, size_t cbInitVector,
                                void const *pvAuthData, size_t cbAuthData,
                                void *pvTag, size_t cbTag,
                                void const *pvEncrypted, size_t cbEncrypted,
                                void *pvPlainText, size_t cbPlainText, size_t *pcbPlainText)
{
    size_t const cbNeeded = cbEncrypted;
    if (pcbPlainText)
    {
        *pcbPlainText = cbNeeded;
        AssertReturn(cbPlainText >= cbNeeded, VERR_BUFFER_OVERFLOW);
    }
    else
        AssertReturn(cbPlainText == cbNeeded, VERR_INVALID_PARAMETER);
    AssertReturn((size_t)(int)cbEncrypted == cbEncrypted && (int)cbEncrypted > 0, VERR_OUT_OF_RANGE);

    RTCRCIPHERCTXINT *pCtx = NIL_RTCRCIPHERCTX;

    int rc = RTCrCipherCtxDecryptInit(hCipher, pvKey, cbKey, pvInitVector, cbInitVector,
                                      pvAuthData, cbAuthData, pvTag, cbTag, &pCtx);
    if (RT_SUCCESS(rc))
    {
        size_t cbDecrypted1 = 0;
        rc = RTCrCipherCtxDecryptProcess(pCtx, pvEncrypted, cbEncrypted, pvPlainText, cbPlainText, &cbDecrypted1);
        if (RT_SUCCESS(rc))
        {
            size_t cbDecrypted2 = 0;
            rc = RTCrCipherCtxDecryptFinish(pCtx, (unsigned char *)pvPlainText + cbDecrypted1,
                                            &cbDecrypted2);
            if (RT_SUCCESS(rc))
            {
                Assert(cbDecrypted1 + cbDecrypted2 == cbNeeded);
                if (pcbPlainText)
                    *pcbPlainText = cbDecrypted1 + cbDecrypted2;
            }
        }
    }

    if (pCtx != NIL_RTCRCIPHERCTX)
        RTCrCipherCtxFree(pCtx);

    return rc;
}

#endif /* IPRT_WITH_OPENSSL */