1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
; $Id: log2.asm $
;; @file
; IPRT - No-CRT log2 - AMD64 & X86.
;
;
; Copyright (C) 2006-2023 Oracle and/or its affiliates.
;
; This file is part of VirtualBox base platform packages, as
; available from https://www.virtualbox.org.
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; as published by the Free Software Foundation, in version 3 of the
; License.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, see <https://www.gnu.org/licenses>.
;
; The contents of this file may alternatively be used under the terms
; of the Common Development and Distribution License Version 1.0
; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
; in the VirtualBox distribution, in which case the provisions of the
; CDDL are applicable instead of those of the GPL.
;
; You may elect to license modified versions of this file under the
; terms and conditions of either the GPL or the CDDL or both.
;
; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
;
%define RT_ASM_WITH_SEH64
%include "iprt/asmdefs.mac"
%include "iprt/x86.mac"
BEGINCODE
extern NAME(RT_NOCRT(feraiseexcept))
;;
; Compute the log2 of rd
; @returns st(0) / xmm0
; @param rd [xSP + xCB*2] / xmm0
RT_NOCRT_BEGINPROC log2
push xBP
SEH64_PUSH_xBP
mov xBP, xSP
SEH64_SET_FRAME_xBP 0
sub xSP, 20h
SEH64_ALLOCATE_STACK 20h
SEH64_END_PROLOGUE
;
; Load the input into st0.
;
%ifdef RT_ARCH_AMD64
movsd [xBP - 10h], xmm0
fld qword [xBP - 10h]
%else
fld qword [xBP + xCB*2]
%endif
;
; Weed out non-normal values.
;
fxam
fnstsw ax
mov cx, ax
and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0
cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero)
je .finite
cmp ax, X86_FSW_C3 ; Zero
je .zero
cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals
je .finite
cmp ax, X86_FSW_C0 | X86_FSW_C2 ; Infinity.
je .inf
jmp .nan
.finite:
; Negative number?
test cx, X86_FSW_C1
jnz .negative
; Is it +1.0?
fld1
fcomip st1
jz .plus_one
;
; The fyl2xp1 instruction (ST1=ST1*log2(ST0+1.0), popping ST0) has a
; valid ST0 range of 1(1-sqrt(0.5)) (approx 0.29289321881) on both
; sides of zero. We try use it if we can.
;
.above_one:
; For both fyl2xp1 and fyl2xp1 we need st1=1.0.
fld1
fxch st0, st1 ; -> st0=input; st1=1.0
; Check if the input is within the fyl2xp1 range.
fld qword [.s_r64AbsFyL2xP1InputMax xWrtRIP]
fcomip st0, st1
jbe .cannot_use_fyl2xp1
fld qword [.s_r64AbsFyL2xP1InputMin xWrtRIP]
fcomip st0, st1
jae .cannot_use_fyl2xp1
; Do the calculation.
.use_fyl2xp1:
fsub st0, st1 ; -> st0=input-1; st1=1.0
fyl2xp1 ; -> st0=1.0*log2(st0+1.0)
jmp .return_val
.cannot_use_fyl2xp1:
fyl2x ; -> st0=1.0*log2(st0)
;
; Return st0.
;
.return_val:
%ifdef RT_ARCH_AMD64
fstp qword [xBP - 10h]
movsd xmm0, [xBP - 10h]
%endif
.return:
leave
ret
;
; +1.0: Return +0.0.
;
.plus_one:
ffreep st0
fldz
jmp .return_val
;
; Negative numbers: Return NaN and raise invalid operation.
;
.negative:
.minus_inf:
; Raise invalid operation
%ifdef RT_ARCH_X86
mov dword [xSP], X86_FSW_IE
%elifdef ASM_CALL64_GCC
mov edi, X86_FSW_IE
%elifdef ASM_CALL64_MSC
mov ecx, X86_FSW_IE
%else
%error calling conv.
%endif
call NAME(RT_NOCRT(feraiseexcept))
; Load NaN
%ifdef RT_ARCH_AMD64
movsd xmm0, [.s_r64NaN xWrtRIP]
%else
fld qword [.s_r64NaN xWrtRIP]
%endif
jmp .return
;
; +/-0.0: Return inf and raise divide by zero error.
;
.zero:
ffreep st0
; Raise div/0
%ifdef RT_ARCH_X86
mov dword [xSP], X86_FSW_ZE
%elifdef ASM_CALL64_GCC
mov edi, X86_FSW_ZE
%elifdef ASM_CALL64_MSC
mov ecx, X86_FSW_ZE
%else
%error calling conv.
%endif
call NAME(RT_NOCRT(feraiseexcept))
; Load +Inf
%ifdef RT_ARCH_AMD64
movsd xmm0, [.s_r64MinusInf xWrtRIP]
%else
fld qword [.s_r64MinusInf xWrtRIP]
%endif
jmp .return
;
; -Inf: Same as other negative numbers
; +Inf: return +Inf. Join path with NaN.
;
.inf:
test cx, X86_FSW_C1 ; sign bit
jnz .minus_inf
;
; NaN: Return the input NaN value as is, if we can.
;
.nan:
%ifdef RT_ARCH_AMD64
ffreep st0
%endif
jmp .return
ALIGNCODE(8)
;; The fyl2xp1 instruction only works between +/-1(1-sqrt(0.5)).
; These two variables is that range + 1.0, so we can compare directly
; with the input w/o any extra fsub and fabs work.
.s_r64AbsFyL2xP1InputMin:
dq 0.708 ; -0.292 + 1.0
.s_r64AbsFyL2xP1InputMax:
dq 1.292
;.s_r64AbsFyL2xP1Range:
; dq 0.292
.s_r64MinusInf:
dq RTFLOAT64U_INF_MINUS
.s_r64NaN:
dq RTFLOAT64U_QNAN_MINUS
ENDPROC RT_NOCRT(log2)
|