1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
; $Id: sin.asm $
;; @file
; IPRT - No-CRT sin - AMD64 & X86.
;
;
; Copyright (C) 2006-2023 Oracle and/or its affiliates.
;
; This file is part of VirtualBox base platform packages, as
; available from https://www.virtualbox.org.
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; as published by the Free Software Foundation, in version 3 of the
; License.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, see <https://www.gnu.org/licenses>.
;
; The contents of this file may alternatively be used under the terms
; of the Common Development and Distribution License Version 1.0
; (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
; in the VirtualBox distribution, in which case the provisions of the
; CDDL are applicable instead of those of the GPL.
;
; You may elect to license modified versions of this file under the
; terms and conditions of either the GPL or the CDDL or both.
;
; SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
;
%define RT_ASM_WITH_SEH64
%include "iprt/asmdefs.mac"
%include "iprt/x86.mac"
BEGINCODE
;;
; Compute the sine of rf, measured in radians.
;
; @returns st(0) / xmm0
; @param rf [rbp + xCB*2] / xmm0
;
RT_NOCRT_BEGINPROC sin
push xBP
SEH64_PUSH_xBP
mov xBP, xSP
SEH64_SET_FRAME_xBP 0
sub xSP, 20h
SEH64_ALLOCATE_STACK 20h
SEH64_END_PROLOGUE
%ifdef RT_OS_WINDOWS
;
; Make sure we use full precision and not the windows default of 53 bits.
;
fnstcw [xBP - 20h]
mov ax, [xBP - 20h]
or ax, X86_FCW_PC_64 ; includes both bits, so no need to clear the mask.
mov [xBP - 1ch], ax
fldcw [xBP - 1ch]
%endif
;
; Load the input into st0.
;
%ifdef RT_ARCH_AMD64
movsd [xBP - 10h], xmm0
fld qword [xBP - 10h]
%else
fld qword [xBP + xCB*2]
%endif
;
; We examin the input and weed out non-finit numbers first.
;
fxam
fnstsw ax
and ax, X86_FSW_C3 | X86_FSW_C2 | X86_FSW_C0
cmp ax, X86_FSW_C2 ; Normal finite number (excluding zero)
je .finite
cmp ax, X86_FSW_C3 ; Zero
je .zero
cmp ax, X86_FSW_C3 | X86_FSW_C2 ; Denormals - treat them as zero.
je .zero
cmp ax, X86_FSW_C0 ; NaN - must handle it special,
je .nan
; Pass infinities and unsupported inputs to fsin, assuming it does the right thing.
.do_sin:
fsin
jmp .return_val
;
; Finite number.
;
.finite:
; For very tiny numbers, 0 < abs(input) < 2**-25, we can return the
; input value directly.
fld st0 ; duplicate st0
fabs ; make it an absolute (positive) value.
fld qword [.s_r64Tiny xWrtRIP]
fcomip st1 ; compare s_r64Tiny and fabs(input)
ja .return_tiny_number_as_is ; jump if fabs(input) is smaller
; FSIN is documented to be reasonable for the range ]-3pi/4,3pi/4[, so
; while we have fabs(input) loaded already, check for that here and
; allow rtNoCrtMathSinCore to assume it won't see values very close to
; zero, except by cos -> sin conversion where they won't be relevant to
; any assumpttions about precision approximation.
fld qword [.s_r64FSinOkay xWrtRIP]
fcomip st1
ffreep st0 ; drop the fabs(input) value
ja .do_sin
;
; Call common sine/cos worker.
;
mov ecx, 1 ; double
extern NAME(rtNoCrtMathSinCore)
call NAME(rtNoCrtMathSinCore)
;
; Run st0.
;
.return_val:
%ifdef RT_ARCH_AMD64
fstp qword [xBP - 10h]
movsd xmm0, [xBP - 10h]
%endif
%ifdef RT_OS_WINDOWS
fldcw [xBP - 20h] ; restore original
%endif
.return:
leave
ret
;
; As explained already, we can return tiny numbers directly too as the
; output from sin(input) = input given our precision.
; We can skip the st0 -> xmm0 translation here, so follow the same path
; as .zero & .nan, after we've removed the fabs(input) value.
;
.return_tiny_number_as_is:
ffreep st0
;
; sin(+/-0.0) = +/-0.0 (preserve the sign)
; We can skip the st0 -> xmm0 translation here, so follow the .nan code path.
;
.zero:
;
; Input is NaN, output it unmodified as far as we can (FLD changes SNaN
; to QNaN when masked).
;
.nan:
%ifdef RT_ARCH_AMD64
ffreep st0
%endif
jmp .return
ALIGNCODE(8)
; Ca. 2**-17, absolute value. Inputs closer to zero than this can be
; returns directly as the sin(input) value should be basically the same
; given the precision we're working with and FSIN probably won't even
; manage that.
;; @todo experiment when FSIN gets better than this.
.s_r64Tiny:
dq 0.00000762939453125
; The absolute limit of FSIN "good" range.
.s_r64FSinOkay:
dq 2.356194490192344928845 ; 3pi/4
;dq 1.57079632679489661923 ; pi/2 - alternative.
ENDPROC RT_NOCRT(sin)
|