summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/nt/mp-r0drv-nt.cpp
blob: a2b27be27292763b150c3f3c33a58e52441f063c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
/* $Id: mp-r0drv-nt.cpp $ */
/** @file
 * IPRT - Multiprocessor, Ring-0 Driver, NT.
 */

/*
 * Copyright (C) 2008-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "the-nt-kernel.h"

#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include <iprt/err.h>
#include <iprt/asm.h>
#include <iprt/log.h>
#include <iprt/mem.h>
#include <iprt/time.h>
#include "r0drv/mp-r0drv.h"
#include "symdb.h"
#include "internal-r0drv-nt.h"
#include "internal/mp.h"


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
typedef enum
{
    RT_NT_CPUID_SPECIFIC,
    RT_NT_CPUID_PAIR,
    RT_NT_CPUID_OTHERS,
    RT_NT_CPUID_ALL
} RT_NT_CPUID;


/**
 * Used by the RTMpOnSpecific.
 */
typedef struct RTMPNTONSPECIFICARGS
{
    /** Set if we're executing. */
    bool volatile       fExecuting;
    /** Set when done executing. */
    bool volatile       fDone;
    /** Number of references to this heap block. */
    uint32_t volatile   cRefs;
    /** Event that the calling thread is waiting on. */
    KEVENT              DoneEvt;
    /** The deferred procedure call object. */
    KDPC                Dpc;
    /** The callback argument package. */
    RTMPARGS            CallbackArgs;
} RTMPNTONSPECIFICARGS;
/** Pointer to an argument/state structure for RTMpOnSpecific on NT. */
typedef RTMPNTONSPECIFICARGS *PRTMPNTONSPECIFICARGS;


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/** Inactive bit for g_aidRtMpNtByCpuSetIdx. */
#define RTMPNT_ID_F_INACTIVE    RT_BIT_32(31)


/*********************************************************************************************************************************
*   Global Variables                                                                                                             *
*********************************************************************************************************************************/
/** Maximum number of processor groups. */
uint32_t                                g_cRtMpNtMaxGroups;
/** Maximum number of processors. */
uint32_t                                g_cRtMpNtMaxCpus;
/** Number of active processors. */
uint32_t volatile                       g_cRtMpNtActiveCpus;
/** The NT CPU set.
 * KeQueryActiveProcssors() cannot be called at all IRQLs and therefore we'll
 * have to cache it.  Fortunately, NT doesn't really support taking CPUs offline,
 * and taking them online was introduced with W2K8 where it is intended for virtual
 * machines and not real HW.  We update this, g_cRtMpNtActiveCpus and
 * g_aidRtMpNtByCpuSetIdx from the rtR0NtMpProcessorChangeCallback.
 */
RTCPUSET                                g_rtMpNtCpuSet;

/** Static per group info.
 * @remarks  With 256 groups this takes up 33KB.  */
static struct
{
    /** The max CPUs in the group. */
    uint16_t    cMaxCpus;
    /** The number of active CPUs at the time of initialization. */
    uint16_t    cActiveCpus;
    /** CPU set indexes for each CPU in the group. */
    int16_t     aidxCpuSetMembers[64];
}                                       g_aRtMpNtCpuGroups[256];
/** Maps CPU set indexes to RTCPUID.
 * Inactive CPUs has bit 31 set (RTMPNT_ID_F_INACTIVE) so we can identify them
 * and shuffle duplicates during CPU hotplugging.  We assign temporary IDs to
 * the inactive CPUs starting at g_cRtMpNtMaxCpus - 1, ASSUMING that active
 * CPUs has IDs from 0 to g_cRtMpNtActiveCpus. */
RTCPUID                                 g_aidRtMpNtByCpuSetIdx[RTCPUSET_MAX_CPUS];
/** The handle of the rtR0NtMpProcessorChangeCallback registration. */
static PVOID                            g_pvMpCpuChangeCallback = NULL;
/** Size of the KAFFINITY_EX structure.
 * This increased from 20 to 32 bitmap words in the 2020 H2 windows 10 release
 * (i.e. 1280 to 2048 CPUs).  We expect this to increase in the future. */
static size_t                           g_cbRtMpNtKaffinityEx = RT_UOFFSETOF(KAFFINITY_EX, Bitmap)
                                                              + RT_SIZEOFMEMB(KAFFINITY_EX, Bitmap[0]) * 256;
/** The size value of the KAFFINITY_EX structure. */
static uint16_t                         g_cRtMpNtKaffinityExEntries = 256;


/*********************************************************************************************************************************
*   Internal Functions                                                                                                           *
*********************************************************************************************************************************/
static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
                                                      PNTSTATUS prcOperationStatus);
static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo);



/**
 * Initalizes multiprocessor globals (called by rtR0InitNative).
 *
 * @returns IPRT status code.
 * @param   pOsVerInfo          Version information.
 */
DECLHIDDEN(int) rtR0MpNtInit(RTNTSDBOSVER const *pOsVerInfo)
{
#define MY_CHECK_BREAK(a_Check, a_DbgPrintArgs) \
        AssertMsgBreakStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )
#define MY_CHECK_RETURN(a_Check, a_DbgPrintArgs, a_rcRet) \
        AssertMsgReturnStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs, a_rcRet)
#define MY_CHECK(a_Check, a_DbgPrintArgs) \
        AssertMsgStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )

    /*
     * API combination checks.
     */
    MY_CHECK_RETURN(!g_pfnrtKeSetTargetProcessorDpcEx || g_pfnrtKeGetProcessorNumberFromIndex,
                    ("IPRT: Fatal: Missing KeSetTargetProcessorDpcEx without KeGetProcessorNumberFromIndex!\n"),
                    VERR_SYMBOL_NOT_FOUND);

    /*
     * Get max number of processor groups.
     *
     * We may need to upadjust this number below, because windows likes to keep
     * all options open when it comes to hotplugged CPU group assignments.  A
     * server advertising up to 64 CPUs in the ACPI table will get a result of
     * 64 from KeQueryMaximumGroupCount.  That makes sense.  However, when windows
     * server 2012 does a two processor group setup for it, the sum of the
     * GroupInfo[*].MaximumProcessorCount members below is 128.  This is probably
     * because windows doesn't want to make decisions grouping of hotpluggable CPUs.
     * So, we need to bump the maximum count to 128 below do deal with this as we
     * want to have valid CPU set indexes for all potential CPUs - how could we
     * otherwise use the RTMpGetSet() result and also RTCpuSetCount(RTMpGetSet())
     * should equal RTMpGetCount().
     */
    if (g_pfnrtKeQueryMaximumGroupCount)
    {
        g_cRtMpNtMaxGroups = g_pfnrtKeQueryMaximumGroupCount();
        MY_CHECK_RETURN(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
                        ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
                        VERR_MP_TOO_MANY_CPUS);
    }
    else
        g_cRtMpNtMaxGroups = 1;

    /*
     * Get max number CPUs.
     * This also defines the range of NT CPU indexes, RTCPUID and index into RTCPUSET.
     */
    if (g_pfnrtKeQueryMaximumProcessorCountEx)
    {
        g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS);
        MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
                        ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCountEx]\n",
                         g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
                        VERR_MP_TOO_MANY_CPUS);
    }
    else if (g_pfnrtKeQueryMaximumProcessorCount)
    {
        g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCount();
        MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
                        ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCount]\n",
                         g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
                        VERR_MP_TOO_MANY_CPUS);
    }
    else if (g_pfnrtKeQueryActiveProcessors)
    {
        KAFFINITY fActiveProcessors = g_pfnrtKeQueryActiveProcessors();
        MY_CHECK_RETURN(fActiveProcessors != 0,
                        ("IPRT: Fatal: KeQueryActiveProcessors returned 0!\n"),
                        VERR_INTERNAL_ERROR_2);
        g_cRtMpNtMaxCpus = 0;
        do
        {
            g_cRtMpNtMaxCpus++;
            fActiveProcessors >>= 1;
        } while (fActiveProcessors);
    }
    else
        g_cRtMpNtMaxCpus = KeNumberProcessors;

    /*
     * Just because we're a bit paranoid about getting something wrong wrt to the
     * kernel interfaces, we try 16 times to get the KeQueryActiveProcessorCountEx
     * and KeQueryLogicalProcessorRelationship information to match up.
     */
    for (unsigned cTries = 0;; cTries++)
    {
        /*
         * Get number of active CPUs.
         */
        if (g_pfnrtKeQueryActiveProcessorCountEx)
        {
            g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS);
            MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
                            ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCountEx]\n",
                             g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
                            VERR_MP_TOO_MANY_CPUS);
        }
        else if (g_pfnrtKeQueryActiveProcessorCount)
        {
            g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCount(NULL);
            MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
                            ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCount]\n",
                             g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
                            VERR_MP_TOO_MANY_CPUS);
        }
        else
            g_cRtMpNtActiveCpus = g_cRtMpNtMaxCpus;

        /*
         * Query the details for the groups to figure out which CPUs are online as
         * well as the NT index limit.
         */
        for (unsigned i = 0; i < RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx); i++)
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
            g_aidRtMpNtByCpuSetIdx[i] = NIL_RTCPUID;
#else
            g_aidRtMpNtByCpuSetIdx[i] = i < g_cRtMpNtMaxCpus ? i : NIL_RTCPUID;
#endif
        for (unsigned idxGroup = 0; idxGroup < RT_ELEMENTS(g_aRtMpNtCpuGroups); idxGroup++)
        {
            g_aRtMpNtCpuGroups[idxGroup].cMaxCpus    = 0;
            g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
            for (unsigned idxMember = 0; idxMember < RT_ELEMENTS(g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers); idxMember++)
                g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = -1;
        }

        if (g_pfnrtKeQueryLogicalProcessorRelationship)
        {
            MY_CHECK_RETURN(g_pfnrtKeGetProcessorIndexFromNumber,
                            ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
                            VERR_SYMBOL_NOT_FOUND);
            MY_CHECK_RETURN(g_pfnrtKeGetProcessorNumberFromIndex,
                            ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
                            VERR_SYMBOL_NOT_FOUND);
            MY_CHECK_RETURN(g_pfnrtKeSetTargetProcessorDpcEx,
                            ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeSetTargetProcessorDpcEx!\n"),
                            VERR_SYMBOL_NOT_FOUND);

            SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = NULL;
            int rc = rtR0NtInitQueryGroupRelations(&pInfo);
            if (RT_FAILURE(rc))
                return rc;

            MY_CHECK(pInfo->Group.MaximumGroupCount == g_cRtMpNtMaxGroups,
                     ("IPRT: Fatal: MaximumGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
                      pInfo->Group.MaximumGroupCount, g_cRtMpNtMaxGroups));
            MY_CHECK(pInfo->Group.ActiveGroupCount > 0 && pInfo->Group.ActiveGroupCount <= g_cRtMpNtMaxGroups,
                     ("IPRT: Fatal: ActiveGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
                      pInfo->Group.ActiveGroupCount, g_cRtMpNtMaxGroups));

            /*
             * First we need to recalc g_cRtMpNtMaxCpus (see above).
             */
            uint32_t cMaxCpus = 0;
            uint32_t idxGroup;
            for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
            {
                const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
                MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
                               ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
                MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
                               ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
                                pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));
                cMaxCpus += pGrpInfo->MaximumProcessorCount;
            }
            if (cMaxCpus > g_cRtMpNtMaxCpus && RT_SUCCESS(rc))
            {
                DbgPrint("IPRT: g_cRtMpNtMaxCpus=%u -> %u\n", g_cRtMpNtMaxCpus, cMaxCpus);
#ifndef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
                uint32_t i = RT_MIN(cMaxCpus, RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx));
                while (i-- > g_cRtMpNtMaxCpus)
                    g_aidRtMpNtByCpuSetIdx[i] = i;
#endif
                g_cRtMpNtMaxCpus = cMaxCpus;
                if (g_cRtMpNtMaxGroups > RTCPUSET_MAX_CPUS)
                {
                    MY_CHECK(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
                             ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS));
                    rc = VERR_MP_TOO_MANY_CPUS;
                }
            }

            /*
             * Calc online mask, partition IDs and such.
             *
             * Also check ASSUMPTIONS:
             *
             *      1. Processor indexes going from 0 and up to
             *         KeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
             *
             *      2. Currently valid processor indexes, i.e. accepted by
             *         KeGetProcessorIndexFromNumber & KeGetProcessorNumberFromIndex, goes
             *         from 0 thru KeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
             *
             *      3. PROCESSOR_GROUP_INFO::MaximumProcessorCount gives the number of
             *         relevant bits in the ActiveProcessorMask (from LSB).
             *
             *      4. Active processor count found in KeQueryLogicalProcessorRelationship
             *         output matches what KeQueryActiveProcessorCountEx(ALL) returns.
             *
             *      5. Active + inactive processor counts in same does not exceed
             *         KeQueryMaximumProcessorCountEx(ALL).
             *
             * Note! Processor indexes are assigned as CPUs come online and are not
             *       preallocated according to group maximums.  Since CPUS are only taken
             *       online and never offlined, this means that internal CPU bitmaps are
             *       never sparse and no time is wasted scanning unused bits.
             *
             *       Unfortunately, it means that ring-3 cannot easily guess the index
             *       assignments when hotswapping is used, and must use GIP when available.
             */
            RTCpuSetEmpty(&g_rtMpNtCpuSet);
            uint32_t cInactive = 0;
            uint32_t cActive   = 0;
            uint32_t idxCpuMax = 0;
            uint32_t idxCpuSetNextInactive = g_cRtMpNtMaxCpus - 1;
            for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
            {
                const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
                MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
                               ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
                MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
                               ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
                                pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));

                g_aRtMpNtCpuGroups[idxGroup].cMaxCpus    = pGrpInfo->MaximumProcessorCount;
                g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = pGrpInfo->ActiveProcessorCount;

                for (uint32_t idxMember = 0; idxMember < pGrpInfo->MaximumProcessorCount; idxMember++)
                {
                    PROCESSOR_NUMBER ProcNum;
                    ProcNum.Group    = (USHORT)idxGroup;
                    ProcNum.Number   = (UCHAR)idxMember;
                    ProcNum.Reserved = 0;
                    ULONG idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
                    if (idxCpu != INVALID_PROCESSOR_INDEX)
                    {
                        MY_CHECK_BREAK(idxCpu < g_cRtMpNtMaxCpus && idxCpu < RTCPUSET_MAX_CPUS, /* ASSUMPTION #1 */
                                       ("IPRT: Fatal: idxCpu=%u >= g_cRtMpNtMaxCpus=%u (RTCPUSET_MAX_CPUS=%u)\n",
                                        idxCpu, g_cRtMpNtMaxCpus, RTCPUSET_MAX_CPUS));
                        if (idxCpu > idxCpuMax)
                            idxCpuMax = idxCpu;
                        g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpu;
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
                        g_aidRtMpNtByCpuSetIdx[idxCpu] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember);
#endif

                        ProcNum.Group    = UINT16_MAX;
                        ProcNum.Number   = UINT8_MAX;
                        ProcNum.Reserved = UINT8_MAX;
                        NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(idxCpu, &ProcNum);
                        MY_CHECK_BREAK(NT_SUCCESS(rcNt),
                                       ("IPRT: Fatal: KeGetProcessorNumberFromIndex(%u,) -> %#x!\n", idxCpu, rcNt));
                        MY_CHECK_BREAK(ProcNum.Group == idxGroup && ProcNum.Number == idxMember,
                                       ("IPRT: Fatal: KeGetProcessorXxxxFromYyyy roundtrip error for %#x! Group: %u vs %u, Number: %u vs %u\n",
                                        idxCpu, ProcNum.Group, idxGroup, ProcNum.Number, idxMember));

                        if (pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember))
                        {
                            RTCpuSetAddByIndex(&g_rtMpNtCpuSet, idxCpu);
                            cActive++;
                        }
                        else
                            cInactive++; /* (This is a little unexpected, but not important as long as things add up below.) */
                    }
                    else
                    {
                        /* Must be not present / inactive when KeGetProcessorIndexFromNumber fails. */
                        MY_CHECK_BREAK(!(pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember)),
                                       ("IPRT: Fatal: KeGetProcessorIndexFromNumber(%u/%u) failed but CPU is active! cMax=%u cActive=%u fActive=%p\n",
                                        idxGroup, idxMember, pGrpInfo->MaximumProcessorCount, pGrpInfo->ActiveProcessorCount,
                                        pGrpInfo->ActiveProcessorMask));
                        cInactive++;
                        if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
                        {
                            g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
                            g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
                                                                          | RTMPNT_ID_F_INACTIVE;
#endif
                            idxCpuSetNextInactive--;
                        }
                    }
                }
            }

            MY_CHECK(cInactive + cActive <= g_cRtMpNtMaxCpus, /* ASSUMPTION #5 (not '==' because of inactive groups) */
                     ("IPRT: Fatal: cInactive=%u + cActive=%u > g_cRtMpNtMaxCpus=%u\n", cInactive, cActive, g_cRtMpNtMaxCpus));

            /* Deal with inactive groups using KeQueryMaximumProcessorCountEx or as
               best as we can by as best we can by stipulating maximum member counts
               from the previous group. */
            if (   RT_SUCCESS(rc)
                && idxGroup < pInfo->Group.MaximumGroupCount)
            {
                uint16_t cInactiveLeft = g_cRtMpNtMaxCpus - (cInactive + cActive);
                while (idxGroup < pInfo->Group.MaximumGroupCount)
                {
                    uint32_t cMaxMembers = 0;
                    if (g_pfnrtKeQueryMaximumProcessorCountEx)
                        cMaxMembers = g_pfnrtKeQueryMaximumProcessorCountEx(idxGroup);
                    if (cMaxMembers != 0 || cInactiveLeft == 0)
                        AssertStmt(cMaxMembers <= cInactiveLeft, cMaxMembers = cInactiveLeft);
                    else
                    {
                        uint16_t cGroupsLeft = pInfo->Group.MaximumGroupCount - idxGroup;
                        cMaxMembers = pInfo->Group.GroupInfo[idxGroup - 1].MaximumProcessorCount;
                        while (cMaxMembers * cGroupsLeft < cInactiveLeft)
                            cMaxMembers++;
                        if (cMaxMembers > cInactiveLeft)
                            cMaxMembers = cInactiveLeft;
                    }

                    g_aRtMpNtCpuGroups[idxGroup].cMaxCpus    = (uint16_t)cMaxMembers;
                    g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
                    for (uint16_t idxMember = 0; idxMember < cMaxMembers; idxMember++)
                        if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
                        {
                            g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
                            g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
                                                                          | RTMPNT_ID_F_INACTIVE;
#endif
                            idxCpuSetNextInactive--;
                        }
                    cInactiveLeft -= cMaxMembers;
                    idxGroup++;
                }
            }

            /* We're done with pInfo now, free it so we can start returning when assertions fail. */
            RTMemFree(pInfo);
            if (RT_FAILURE(rc)) /* MY_CHECK_BREAK sets rc. */
                return rc;
            MY_CHECK_RETURN(cActive >= g_cRtMpNtActiveCpus,
                            ("IPRT: Fatal: cActive=%u < g_cRtMpNtActiveCpus=%u - CPUs removed?\n", cActive, g_cRtMpNtActiveCpus),
                            VERR_INTERNAL_ERROR_3);
            MY_CHECK_RETURN(idxCpuMax < cActive, /* ASSUMPTION #2 */
                            ("IPRT: Fatal: idCpuMax=%u >= cActive=%u! Unexpected CPU index allocation. CPUs removed?\n",
                             idxCpuMax, cActive),
                            VERR_INTERNAL_ERROR_4);

            /* Retry if CPUs were added. */
            if (   cActive != g_cRtMpNtActiveCpus
                && cTries < 16)
                continue;
            MY_CHECK_RETURN(cActive == g_cRtMpNtActiveCpus, /* ASSUMPTION #4 */
                            ("IPRT: Fatal: cActive=%u != g_cRtMpNtActiveCpus=%u\n", cActive, g_cRtMpNtActiveCpus),
                            VERR_INTERNAL_ERROR_5);
        }
        else
        {
            /* Legacy: */
            MY_CHECK_RETURN(g_cRtMpNtMaxGroups == 1, ("IPRT: Fatal: Missing KeQueryLogicalProcessorRelationship!\n"),
                            VERR_SYMBOL_NOT_FOUND);

            /** @todo Is it possible that the affinity mask returned by
             *        KeQueryActiveProcessors is sparse? */
            if (g_pfnrtKeQueryActiveProcessors)
                RTCpuSetFromU64(&g_rtMpNtCpuSet, g_pfnrtKeQueryActiveProcessors());
            else if (g_cRtMpNtMaxCpus < 64)
                RTCpuSetFromU64(&g_rtMpNtCpuSet, (UINT64_C(1) << g_cRtMpNtMaxCpus) - 1);
            else
            {
                MY_CHECK_RETURN(g_cRtMpNtMaxCpus == 64, ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, expect 64 or less\n", g_cRtMpNtMaxCpus),
                                VERR_MP_TOO_MANY_CPUS);
                RTCpuSetFromU64(&g_rtMpNtCpuSet, UINT64_MAX);
            }

            g_aRtMpNtCpuGroups[0].cMaxCpus    = g_cRtMpNtMaxCpus;
            g_aRtMpNtCpuGroups[0].cActiveCpus = g_cRtMpNtMaxCpus;
            for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
            {
                g_aRtMpNtCpuGroups[0].aidxCpuSetMembers[i] = i;
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
                g_aidRtMpNtByCpuSetIdx[i] = RTMPCPUID_FROM_GROUP_AND_NUMBER(0, i);
#endif
            }
        }

        /*
         * Register CPU hot plugging callback (it also counts active CPUs).
         */
        Assert(g_pvMpCpuChangeCallback == NULL);
        if (g_pfnrtKeRegisterProcessorChangeCallback)
        {
            MY_CHECK_RETURN(g_pfnrtKeDeregisterProcessorChangeCallback,
                            ("IPRT: Fatal: KeRegisterProcessorChangeCallback without KeDeregisterProcessorChangeCallback!\n"),
                            VERR_SYMBOL_NOT_FOUND);

            RTCPUSET const ActiveSetCopy = g_rtMpNtCpuSet;
            RTCpuSetEmpty(&g_rtMpNtCpuSet);
            uint32_t const cActiveCpus   = g_cRtMpNtActiveCpus;
            g_cRtMpNtActiveCpus = 0;

            g_pvMpCpuChangeCallback = g_pfnrtKeRegisterProcessorChangeCallback(rtR0NtMpProcessorChangeCallback, NULL /*pvUser*/,
                                                                               KE_PROCESSOR_CHANGE_ADD_EXISTING);
            if (g_pvMpCpuChangeCallback)
            {
                if (cActiveCpus == g_cRtMpNtActiveCpus)
                { /* likely */ }
                else
                {
                    g_pfnrtKeDeregisterProcessorChangeCallback(g_pvMpCpuChangeCallback);
                    if (cTries < 16)
                    {
                        /* Retry if CPUs were added. */
                        MY_CHECK_RETURN(g_cRtMpNtActiveCpus >= cActiveCpus,
                                        ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u < cActiveCpus=%u! CPUs removed?\n",
                                         g_cRtMpNtActiveCpus, cActiveCpus),
                                        VERR_INTERNAL_ERROR_2);
                        MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus,
                                        ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u > g_cRtMpNtMaxCpus=%u!\n",
                                         g_cRtMpNtActiveCpus, g_cRtMpNtMaxCpus),
                                        VERR_INTERNAL_ERROR_2);
                        continue;
                    }
                    MY_CHECK_RETURN(0, ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u cActiveCpus=%u\n", g_cRtMpNtActiveCpus, cActiveCpus),
                                    VERR_INTERNAL_ERROR_3);
                }
            }
            else
            {
                AssertFailed();
                g_rtMpNtCpuSet      = ActiveSetCopy;
                g_cRtMpNtActiveCpus = cActiveCpus;
            }
        }
        break;
    } /* Retry loop for stable active CPU count. */

#undef MY_CHECK_RETURN

    /*
     * Special IPI fun for RTMpPokeCpu.
     *
     * On Vista and later the DPC method doesn't seem to reliably send IPIs,
     * so we have to use alternative methods.
     *
     * On AMD64 We used to use the HalSendSoftwareInterrupt API (also x86 on
     * W10+), it looks faster and more convenient to use, however we're either
     * using it wrong or it doesn't reliably do what we want (see @bugref{8343}).
     *
     * The HalRequestIpip API is thus far the only alternative to KeInsertQueueDpc
     * for doing targetted IPIs.  Trouble with this API is that it changed
     * fundamentally in Window 7 when they added support for lots of processors.
     *
     * If we really think we cannot use KeInsertQueueDpc, we use the broadcast IPI
     * API KeIpiGenericCall.
     */
    if (   pOsVerInfo->uMajorVer > 6
        || (pOsVerInfo->uMajorVer == 6 && pOsVerInfo->uMinorVer > 0))
        g_pfnrtHalRequestIpiPreW7 = NULL;
    else
        g_pfnrtHalRequestIpiW7Plus = NULL;

    if (   g_pfnrtHalRequestIpiW7Plus
        && g_pfnrtKeInitializeAffinityEx
        && g_pfnrtKeAddProcessorAffinityEx
        && g_pfnrtKeGetProcessorIndexFromNumber)
    {
        /* Determine the real size of the KAFFINITY_EX structure. */
        size_t const  cbAffinity = _8K;
        PKAFFINITY_EX pAffinity  = (PKAFFINITY_EX)RTMemAllocZ(cbAffinity);
        AssertReturn(pAffinity, VERR_NO_MEMORY);
        size_t const cMaxEntries = (cbAffinity - RT_UOFFSETOF(KAFFINITY_EX, Bitmap[0])) / sizeof(pAffinity->Bitmap[0]);
        g_pfnrtKeInitializeAffinityEx(pAffinity);
        if (pAffinity->Size > 1 && pAffinity->Size <= cMaxEntries)
        {
            g_cRtMpNtKaffinityExEntries = pAffinity->Size;
            g_cbRtMpNtKaffinityEx       = pAffinity->Size * sizeof(pAffinity->Bitmap[0]) + RT_UOFFSETOF(KAFFINITY_EX, Bitmap[0]);
            g_pfnrtMpPokeCpuWorker      = rtMpPokeCpuUsingHalRequestIpiW7Plus;
            RTMemFree(pAffinity);
            DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingHalRequestIpiW7Plus\n");
            return VINF_SUCCESS;
        }
        DbgPrint("IPRT: RTMpPoke can't use rtMpPokeCpuUsingHalRequestIpiW7Plus! pAffinity->Size=%u\n", pAffinity->Size);
        AssertReleaseMsg(pAffinity->Size <= cMaxEntries, ("%#x\n", pAffinity->Size)); /* stack is toast if larger (32768 CPUs). */
        RTMemFree(pAffinity);
    }

    if (pOsVerInfo->uMajorVer >= 6 && g_pfnrtKeIpiGenericCall)
    {
        DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingBroadcastIpi\n");
        g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingBroadcastIpi;
    }
    else if (g_pfnrtKeSetTargetProcessorDpc)
    {
        DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingDpc\n");
        g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingDpc;
        /* Windows XP should send always send an IPI -> VERIFY */
    }
    else
    {
        DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingFailureNotSupported\n");
        Assert(pOsVerInfo->uMajorVer == 3 && pOsVerInfo->uMinorVer <= 50);
        g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingFailureNotSupported;
    }

    return VINF_SUCCESS;
}


/**
 * Called by rtR0TermNative.
 */
DECLHIDDEN(void) rtR0MpNtTerm(void)
{
    /*
     * Deregister the processor change callback.
     */
    PVOID pvMpCpuChangeCallback = g_pvMpCpuChangeCallback;
    g_pvMpCpuChangeCallback = NULL;
    if (pvMpCpuChangeCallback)
    {
        AssertReturnVoid(g_pfnrtKeDeregisterProcessorChangeCallback);
        g_pfnrtKeDeregisterProcessorChangeCallback(pvMpCpuChangeCallback);
    }
}


DECLHIDDEN(int) rtR0MpNotificationNativeInit(void)
{
    return VINF_SUCCESS;
}


DECLHIDDEN(void) rtR0MpNotificationNativeTerm(void)
{
}


/**
 * Implements the NT PROCESSOR_CALLBACK_FUNCTION callback function.
 *
 * This maintains the g_rtMpNtCpuSet and works MP notification callbacks.  When
 * registered, it's called for each active CPU in the system, avoiding racing
 * CPU hotplugging (as well as testing the callback).
 *
 * @param   pvUser              User context (not used).
 * @param   pChangeCtx          Change context (in).
 * @param   prcOperationStatus  Operation status (in/out).
 *
 * @remarks ASSUMES no concurrent execution of KeProcessorAddCompleteNotify
 *          notification callbacks.  At least during callback registration
 *          callout, we're owning KiDynamicProcessorLock.
 *
 * @remarks When registering the handler, we first get KeProcessorAddStartNotify
 *          callbacks for all active CPUs, and after they all succeed we get the
 *          KeProcessorAddCompleteNotify callbacks.
 */
static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
                                                      PNTSTATUS prcOperationStatus)
{
    RT_NOREF(pvUser, prcOperationStatus);
    switch (pChangeCtx->State)
    {
        /*
         * Check whether we can deal with the CPU, failing the start operation if we
         * can't.  The checks we are doing here are to avoid complicated/impossible
         * cases in KeProcessorAddCompleteNotify.  They are really just verify specs.
         */
        case KeProcessorAddStartNotify:
        {
            NTSTATUS rcNt = STATUS_SUCCESS;
            if (pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS)
            {
                if (pChangeCtx->NtNumber >= g_cRtMpNtMaxCpus)
                {
                    DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is higher than the max CPU count (%u)!\n",
                             pChangeCtx->NtNumber, g_cRtMpNtMaxCpus);
                    rcNt = STATUS_INTERNAL_ERROR;
                }

                /* The ProcessNumber field was introduced in Windows 7. */
                PROCESSOR_NUMBER ProcNum;
                if (g_pfnrtKeGetProcessorIndexFromNumber)
                {
                    ProcNum = pChangeCtx->ProcNumber;
                    KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
                    if (idxCpu != pChangeCtx->NtNumber)
                    {
                        DbgPrint("IPRT: KeProcessorAddStartNotify failure: g_pfnrtKeGetProcessorIndexFromNumber(%u.%u) -> %u, expected %u!\n",
                                 ProcNum.Group, ProcNum.Number, idxCpu, pChangeCtx->NtNumber);
                        rcNt = STATUS_INTERNAL_ERROR;
                    }
                }
                else
                {
                    ProcNum.Group  = 0;
                    ProcNum.Number = pChangeCtx->NtNumber;
                }

                if (   ProcNum.Group  < RT_ELEMENTS(g_aRtMpNtCpuGroups)
                    && ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers))
                {
                    if (ProcNum.Group >= g_cRtMpNtMaxGroups)
                    {
                        DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range - max groups: %u!\n",
                                 ProcNum.Group, ProcNum.Number, g_cRtMpNtMaxGroups);
                        rcNt = STATUS_INTERNAL_ERROR;
                    }

                    if (ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
                    {
                        Assert(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
                        if (g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == -1)
                        {
                            DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u.%u was assigned -1 as set index!\n",
                                     ProcNum.Group, ProcNum.Number);
                            rcNt = STATUS_INTERNAL_ERROR;
                        }

                        Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);
                        if (g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == NIL_RTCPUID)
                        {
                            DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u (%u.%u) translates to NIL_RTCPUID!\n",
                                     pChangeCtx->NtNumber, ProcNum.Group, ProcNum.Number);
                            rcNt = STATUS_INTERNAL_ERROR;
                        }
                    }
                    else
                    {
                        DbgPrint("IPRT: KeProcessorAddStartNotify failure: max processors in group %u is %u, cannot add %u to it!\n",
                                 ProcNum.Group, g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus, ProcNum.Group, ProcNum.Number);
                        rcNt = STATUS_INTERNAL_ERROR;
                    }
                }
                else
                {
                    DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range (max %u.%u)!\n",
                             ProcNum.Group, ProcNum.Number, RT_ELEMENTS(g_aRtMpNtCpuGroups), RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers));
                    rcNt = STATUS_INTERNAL_ERROR;
                }
            }
            else
            {
                DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is outside RTCPUSET_MAX_CPUS (%u)!\n",
                         pChangeCtx->NtNumber, RTCPUSET_MAX_CPUS);
                rcNt = STATUS_INTERNAL_ERROR;
            }
            if (!NT_SUCCESS(rcNt))
                *prcOperationStatus = rcNt;
            break;
        }

        /*
         * Update the globals.  Since we've checked out range limits and other
         * limitations already we just AssertBreak here.
         */
        case KeProcessorAddCompleteNotify:
        {
            /*
             * Calc the processor number and assert conditions checked in KeProcessorAddStartNotify.
             */
            AssertBreak(pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS);
            AssertBreak(pChangeCtx->NtNumber < g_cRtMpNtMaxCpus);
            Assert(pChangeCtx->NtNumber == g_cRtMpNtActiveCpus); /* light assumption */
            PROCESSOR_NUMBER ProcNum;
            if (g_pfnrtKeGetProcessorIndexFromNumber)
            {
                ProcNum = pChangeCtx->ProcNumber;
                AssertBreak(g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum) == pChangeCtx->NtNumber);
                AssertBreak(ProcNum.Group < RT_ELEMENTS(g_aRtMpNtCpuGroups));
                AssertBreak(ProcNum.Group < g_cRtMpNtMaxGroups);
            }
            else
            {
                ProcNum.Group  = 0;
                ProcNum.Number = pChangeCtx->NtNumber;
            }
            AssertBreak(ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers));
            AssertBreak(ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus);
            AssertBreak(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
            AssertBreak(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);

            /*
             * Add ourselves to the online CPU set and update the active CPU count.
             */
            RTCpuSetAddByIndex(&g_rtMpNtCpuSet, pChangeCtx->NtNumber);
            ASMAtomicIncU32(&g_cRtMpNtActiveCpus);

            /*
             * Update the group info.
             *
             * If the index prediction failed (real hotplugging callbacks only) we
             * have to switch it around.  This is particularly annoying when we
             * use the index as the ID.
             */
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
            RTCPUID idCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
            RTCPUID idOld = g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber];
            if ((idOld & ~RTMPNT_ID_F_INACTIVE) != idCpu)
            {
                Assert(idOld & RTMPNT_ID_F_INACTIVE);
                int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
                g_aRtMpNtCpuGroups[rtMpCpuIdGetGroup(idOld)].aidxCpuSetMembers[rtMpCpuIdGetGroupMember(idOld)] = idxDest;
                g_aidRtMpNtByCpuSetIdx[idxDest] = idOld;
            }
            g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] = idCpu;
#else
            Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == pChangeCtx->NtNumber);
            int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
            if ((ULONG)idxDest != pChangeCtx->NtNumber)
            {
                bool     fFound = false;
                uint32_t idxOldGroup = g_cRtMpNtMaxGroups;
                while (idxOldGroup-- > 0 && !fFound)
                {
                    uint32_t idxMember = g_aRtMpNtCpuGroups[idxOldGroup].cMaxCpus;
                    while (idxMember-- > 0)
                        if (g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] == (int)pChangeCtx->NtNumber)
                        {
                            g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] = idxDest;
                            fFound = true;
                            break;
                        }
                }
                Assert(fFound);
            }
#endif
            g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] = pChangeCtx->NtNumber;

            /*
             * Do MP notification callbacks.
             */
            rtMpNotificationDoCallbacks(RTMPEVENT_ONLINE, pChangeCtx->NtNumber);
            break;
        }

        case KeProcessorAddFailureNotify:
            /* ignore */
            break;

        default:
            AssertMsgFailed(("State=%u\n", pChangeCtx->State));
    }
}


/**
 * Wrapper around KeQueryLogicalProcessorRelationship.
 *
 * @returns IPRT status code.
 * @param   ppInfo  Where to return the info. Pass to RTMemFree when done.
 */
static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo)
{
    ULONG    cbInfo = sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)
                    + g_cRtMpNtMaxGroups * sizeof(GROUP_RELATIONSHIP);
    NTSTATUS rcNt;
    do
    {
        SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)RTMemAlloc(cbInfo);
        if (pInfo)
        {
            rcNt = g_pfnrtKeQueryLogicalProcessorRelationship(NULL /*pProcNumber*/, RelationGroup, pInfo, &cbInfo);
            if (NT_SUCCESS(rcNt))
            {
                *ppInfo = pInfo;
                return VINF_SUCCESS;
            }

            RTMemFree(pInfo);
            pInfo = NULL;
        }
        else
            rcNt = STATUS_NO_MEMORY;
    } while (rcNt == STATUS_INFO_LENGTH_MISMATCH);
    DbgPrint("IPRT: Fatal: KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt);
    AssertMsgFailed(("KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt));
    return RTErrConvertFromNtStatus(rcNt);
}





RTDECL(RTCPUID) RTMpCpuId(void)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    PROCESSOR_NUMBER ProcNum;
    ProcNum.Group = 0;
    if (g_pfnrtKeGetCurrentProcessorNumberEx)
    {
        ProcNum.Number = 0;
        g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
    }
    else
        ProcNum.Number = KeGetCurrentProcessorNumber(); /* Number is 8-bit, so we're not subject to BYTE -> WORD upgrade in WDK.  */
    return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);

#else

    if (g_pfnrtKeGetCurrentProcessorNumberEx)
    {
        KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
        Assert(idxCpu < RTCPUSET_MAX_CPUS);
        return idxCpu;
    }

    return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
#endif
}


RTDECL(int) RTMpCurSetIndex(void)
{
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    if (g_pfnrtKeGetCurrentProcessorNumberEx)
    {
        KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
        Assert(idxCpu < RTCPUSET_MAX_CPUS);
        return idxCpu;
    }
    return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
#else
    return (int)RTMpCpuId();
#endif
}


RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu)
{
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    PROCESSOR_NUMBER ProcNum = { 0 , 0,  0 };
    KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
    Assert(idxCpu < RTCPUSET_MAX_CPUS);
    *pidCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
    return idxCpu;
#else
    return *pidCpu = RTMpCpuId();
#endif
}


RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu)
{
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    if (idCpu != NIL_RTCPUID)
    {
        if (g_pfnrtKeGetProcessorIndexFromNumber)
        {
            PROCESSOR_NUMBER ProcNum;
            ProcNum.Group    = rtMpCpuIdGetGroup(idCpu);
            ProcNum.Number   = rtMpCpuIdGetGroupMember(idCpu);
            ProcNum.Reserved = 0;
            KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
            if (idxCpu != INVALID_PROCESSOR_INDEX)
            {
                Assert(idxCpu < g_cRtMpNtMaxCpus);
                Assert((ULONG)g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == idxCpu);
                return idxCpu;
            }

            /* Since NT assigned indexes as the CPUs come online, we cannot produce an ID <-> index
               mapping for not-yet-onlined CPUS that is consistent.  We just have to do our best... */
            if (   ProcNum.Group < g_cRtMpNtMaxGroups
                && ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
                return g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
        }
        else if (rtMpCpuIdGetGroup(idCpu) == 0)
            return rtMpCpuIdGetGroupMember(idCpu);
    }
    return -1;
#else
    /* 1:1 mapping, just do range checks. */
    return idCpu < RTCPUSET_MAX_CPUS ? (int)idCpu : -1;
#endif
}


RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu)
{
#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    if ((unsigned)iCpu < g_cRtMpNtMaxCpus)
    {
        if (g_pfnrtKeGetProcessorIndexFromNumber)
        {
            PROCESSOR_NUMBER ProcNum = { 0, 0, 0 };
            NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(iCpu, &ProcNum);
            if (NT_SUCCESS(rcNt))
            {
                Assert(ProcNum.Group <= g_cRtMpNtMaxGroups);
                Assert(   (g_aidRtMpNtByCpuSetIdx[iCpu] & ~RTMPNT_ID_F_INACTIVE)
                       == RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number));
                return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
            }
        }
        return g_aidRtMpNtByCpuSetIdx[iCpu];
    }
    return NIL_RTCPUID;
#else
    /* 1:1 mapping, just do range checks. */
    return (unsigned)iCpu < RTCPUSET_MAX_CPUS ? iCpu : NIL_RTCPUID;
#endif
}


RTDECL(int) RTMpSetIndexFromCpuGroupMember(uint32_t idxGroup, uint32_t idxMember)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    if (idxGroup < g_cRtMpNtMaxGroups)
        if (idxMember < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus)
            return g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember];
    return -1;
}


RTDECL(uint32_t) RTMpGetCpuGroupCounts(uint32_t idxGroup, uint32_t *pcActive)
{
    if (idxGroup < g_cRtMpNtMaxGroups)
    {
        if (pcActive)
            *pcActive = g_aRtMpNtCpuGroups[idxGroup].cActiveCpus;
        return g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
    }
    if (pcActive)
        *pcActive = 0;
    return 0;
}


RTDECL(uint32_t) RTMpGetMaxCpuGroupCount(void)
{
    return g_cRtMpNtMaxGroups;
}


RTDECL(RTCPUID) RTMpGetMaxCpuId(void)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    return RTMPCPUID_FROM_GROUP_AND_NUMBER(g_cRtMpNtMaxGroups - 1, g_aRtMpNtCpuGroups[g_cRtMpNtMaxGroups - 1].cMaxCpus - 1);
#else
    /* According to MSDN the processor indexes goes from 0 to the maximum
       number of CPUs in the system.  We've check this in initterm-r0drv-nt.cpp. */
    return g_cRtMpNtMaxCpus - 1;
#endif
}


RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
    return RTCpuSetIsMember(&g_rtMpNtCpuSet, idCpu);
}


RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

#ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
    if (idCpu != NIL_RTCPUID)
    {
        unsigned idxGroup = rtMpCpuIdGetGroup(idCpu);
        if (idxGroup < g_cRtMpNtMaxGroups)
            return rtMpCpuIdGetGroupMember(idCpu) < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
    }
    return false;

#else
    /* A possible CPU ID is one with a value lower than g_cRtMpNtMaxCpus (see
       comment in RTMpGetMaxCpuId). */
    return idCpu < g_cRtMpNtMaxCpus;
#endif
}



RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    /* The set of possible CPU IDs(/indexes) are from 0 up to
       g_cRtMpNtMaxCpus (see comment in RTMpGetMaxCpuId). */
    RTCpuSetEmpty(pSet);
    int idxCpu = g_cRtMpNtMaxCpus;
    while (idxCpu-- > 0)
        RTCpuSetAddByIndex(pSet, idxCpu);
    return pSet;
}


RTDECL(RTCPUID) RTMpGetCount(void)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
    return g_cRtMpNtMaxCpus;
}


RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    *pSet = g_rtMpNtCpuSet;
    return pSet;
}


RTDECL(RTCPUID) RTMpGetOnlineCount(void)
{
    RTCPUSET Set;
    RTMpGetOnlineSet(&Set);
    return RTCpuSetCount(&Set);
}


RTDECL(RTCPUID) RTMpGetOnlineCoreCount(void)
{
    /** @todo fix me */
    return RTMpGetOnlineCount();
}



#if 0
/* Experiment with checking the undocumented KPRCB structure
 * 'dt nt!_kprcb 0xaddress' shows the layout
 */
typedef struct
{
    LIST_ENTRY     DpcListHead;
    ULONG_PTR      DpcLock;
    volatile ULONG DpcQueueDepth;
    ULONG          DpcQueueCount;
} KDPC_DATA, *PKDPC_DATA;

RTDECL(bool) RTMpIsCpuWorkPending(void)
{
    uint8_t *pkprcb;
    PKDPC_DATA pDpcData;

    _asm {
        mov eax, fs:0x20
        mov pkprcb, eax
    }
    pDpcData = (PKDPC_DATA)(pkprcb + 0x19e0);
    if (pDpcData->DpcQueueDepth)
        return true;

    pDpcData++;
    if (pDpcData->DpcQueueDepth)
        return true;
    return false;
}
#else
RTDECL(bool) RTMpIsCpuWorkPending(void)
{
    /** @todo not implemented */
    return false;
}
#endif


/**
 * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
 * the RTMpOnAll case.
 *
 * @param   uUserCtx            The user context argument (PRTMPARGS).
 */
static ULONG_PTR rtmpNtOnAllBroadcastIpiWrapper(ULONG_PTR uUserCtx)
{
    PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
    /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
    pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
    return 0;
}


/**
 * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
 * the RTMpOnOthers case.
 *
 * @param   uUserCtx            The user context argument (PRTMPARGS).
 */
static ULONG_PTR rtmpNtOnOthersBroadcastIpiWrapper(ULONG_PTR uUserCtx)
{
    PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
    RTCPUID idCpu = RTMpCpuId();
    if (pArgs->idCpu != idCpu)
    {
        /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
        pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
    }
    return 0;
}


/**
 * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
 * the RTMpOnPair case.
 *
 * @param   uUserCtx            The user context argument (PRTMPARGS).
 */
static ULONG_PTR rtmpNtOnPairBroadcastIpiWrapper(ULONG_PTR uUserCtx)
{
    PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
    RTCPUID idCpu = RTMpCpuId();
    if (   pArgs->idCpu  == idCpu
        || pArgs->idCpu2 == idCpu)
    {
        ASMAtomicIncU32(&pArgs->cHits);
        pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
    }
    return 0;
}


/**
 * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
 * the RTMpOnSpecific case.
 *
 * @param   uUserCtx            The user context argument (PRTMPARGS).
 */
static ULONG_PTR rtmpNtOnSpecificBroadcastIpiWrapper(ULONG_PTR uUserCtx)
{
    PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
    RTCPUID idCpu = RTMpCpuId();
    if (pArgs->idCpu == idCpu)
    {
        ASMAtomicIncU32(&pArgs->cHits);
        pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
    }
    return 0;
}


/**
 * Internal worker for the RTMpOn* APIs using KeIpiGenericCall.
 *
 * @returns VINF_SUCCESS.
 * @param   pfnWorker           The callback.
 * @param   pvUser1             User argument 1.
 * @param   pvUser2             User argument 2.
 * @param   pfnNativeWrapper    The wrapper between the NT and IPRT callbacks.
 * @param   idCpu               First CPU to match, ultimately specific to the
 *                              pfnNativeWrapper used.
 * @param   idCpu2              Second CPU to match, ultimately specific to the
 *                              pfnNativeWrapper used.
 * @param   pcHits              Where to return the number of this. Optional.
 */
static int rtMpCallUsingBroadcastIpi(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
                                     PKIPI_BROADCAST_WORKER pfnNativeWrapper, RTCPUID idCpu, RTCPUID idCpu2,
                                     uint32_t *pcHits)
{
    RTMPARGS Args;
    Args.pfnWorker = pfnWorker;
    Args.pvUser1   = pvUser1;
    Args.pvUser2   = pvUser2;
    Args.idCpu     = idCpu;
    Args.idCpu2    = idCpu2;
    Args.cRefs     = 0;
    Args.cHits     = 0;

    AssertPtr(g_pfnrtKeIpiGenericCall);
    g_pfnrtKeIpiGenericCall(pfnNativeWrapper, (uintptr_t)&Args);
    if (pcHits)
        *pcHits = Args.cHits;
    return VINF_SUCCESS;
}


/**
 * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
 *
 * @param   Dpc                 DPC object
 * @param   DeferredContext     Context argument specified by KeInitializeDpc
 * @param   SystemArgument1     Argument specified by KeInsertQueueDpc
 * @param   SystemArgument2     Argument specified by KeInsertQueueDpc
 */
static VOID rtmpNtDPCWrapper(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
    PRTMPARGS pArgs = (PRTMPARGS)DeferredContext;
    RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);

    ASMAtomicIncU32(&pArgs->cHits);
    pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);

    /* Dereference the argument structure. */
    int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
    Assert(cRefs >= 0);
    if (cRefs == 0)
        RTMemFree(pArgs);
}


/**
 * Wrapper around KeSetTargetProcessorDpcEx / KeSetTargetProcessorDpc.
 *
 * This is shared with the timer code.
 *
 * @returns IPRT status code (errors are asserted).
 * @retval  VERR_CPU_NOT_FOUND if impossible CPU. Not asserted.
 * @param   pDpc                The DPC.
 * @param   idCpu               The ID of the new target CPU.
 * @note    Callable at any IRQL.
 */
DECLHIDDEN(int) rtMpNtSetTargetProcessorDpc(KDPC *pDpc, RTCPUID idCpu)
{
    if (g_pfnrtKeSetTargetProcessorDpcEx)
    {
        /* Convert to stupid process number (bet KeSetTargetProcessorDpcEx does
           the reverse conversion internally). */
        PROCESSOR_NUMBER ProcNum;
        NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(RTMpCpuIdToSetIndex(idCpu), &ProcNum);
        if (NT_SUCCESS(rcNt))
        {
            rcNt = g_pfnrtKeSetTargetProcessorDpcEx(pDpc, &ProcNum);
            AssertLogRelMsgReturn(NT_SUCCESS(rcNt),
                                  ("KeSetTargetProcessorDpcEx(,%u(%u/%u)) -> %#x\n", idCpu, ProcNum.Group, ProcNum.Number, rcNt),
                                  RTErrConvertFromNtStatus(rcNt));
        }
        else if (rcNt == STATUS_INVALID_PARAMETER)
            return VERR_CPU_NOT_FOUND;
        else
            AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("KeGetProcessorNumberFromIndex(%u) -> %#x\n", idCpu, rcNt),
                                  RTErrConvertFromNtStatus(rcNt));

    }
    else if (g_pfnrtKeSetTargetProcessorDpc)
        g_pfnrtKeSetTargetProcessorDpc(pDpc, RTMpCpuIdToSetIndex(idCpu));
    else
        return VERR_NOT_SUPPORTED;
    return VINF_SUCCESS;
}


/**
 * Internal worker for the RTMpOn* APIs.
 *
 * @returns IPRT status code.
 * @param   pfnWorker   The callback.
 * @param   pvUser1     User argument 1.
 * @param   pvUser2     User argument 2.
 * @param   enmCpuid    What to do / is idCpu valid.
 * @param   idCpu       Used if enmCpuid is RT_NT_CPUID_SPECIFIC or
 *                      RT_NT_CPUID_PAIR, otherwise ignored.
 * @param   idCpu2      Used if enmCpuid is RT_NT_CPUID_PAIR, otherwise ignored.
 * @param   pcHits      Where to return the number of this. Optional.
 */
static int rtMpCallUsingDpcs(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
                             RT_NT_CPUID enmCpuid, RTCPUID idCpu, RTCPUID idCpu2, uint32_t *pcHits)
{
#if 0
    /* KeFlushQueuedDpcs must be run at IRQL PASSIVE_LEVEL according to MSDN, but the
     * driver verifier doesn't complain...
     */
    AssertMsg(KeGetCurrentIrql() == PASSIVE_LEVEL, ("%d != %d (PASSIVE_LEVEL)\n", KeGetCurrentIrql(), PASSIVE_LEVEL));
#endif
    /* KeFlushQueuedDpcs is not present in Windows 2000; import it dynamically so we can just fail this call. */
    if (!g_pfnrtNtKeFlushQueuedDpcs)
        return VERR_NOT_SUPPORTED;

    /*
     * Make a copy of the active CPU set and figure out how many KDPCs we really need.
     * We must not try setup DPCs for CPUs which aren't there, because that may fail.
     */
    RTCPUSET  OnlineSet = g_rtMpNtCpuSet;
    uint32_t  cDpcsNeeded;
    switch (enmCpuid)
    {
        case RT_NT_CPUID_SPECIFIC:
            cDpcsNeeded = 1;
            break;
        case RT_NT_CPUID_PAIR:
            cDpcsNeeded = 2;
            break;
        default:
            do
            {
                cDpcsNeeded = g_cRtMpNtActiveCpus;
                OnlineSet   = g_rtMpNtCpuSet;
            } while (cDpcsNeeded != g_cRtMpNtActiveCpus);
            break;
    }

    /*
     * Allocate an RTMPARGS structure followed by cDpcsNeeded KDPCs
     * and initialize them.
     */
    PRTMPARGS pArgs = (PRTMPARGS)RTMemAllocZ(sizeof(RTMPARGS) + cDpcsNeeded * sizeof(KDPC));
    if (!pArgs)
        return VERR_NO_MEMORY;

    pArgs->pfnWorker = pfnWorker;
    pArgs->pvUser1   = pvUser1;
    pArgs->pvUser2   = pvUser2;
    pArgs->idCpu     = NIL_RTCPUID;
    pArgs->idCpu2    = NIL_RTCPUID;
    pArgs->cHits     = 0;
    pArgs->cRefs     = 1;

    int rc;
    KDPC *paExecCpuDpcs = (KDPC *)(pArgs + 1);
    if (enmCpuid == RT_NT_CPUID_SPECIFIC)
    {
        KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
        if (g_pfnrtKeSetImportanceDpc)
            g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
        rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
        pArgs->idCpu = idCpu;
    }
    else if (enmCpuid == RT_NT_CPUID_PAIR)
    {
        KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
        if (g_pfnrtKeSetImportanceDpc)
            g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
        rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
        pArgs->idCpu = idCpu;

        KeInitializeDpc(&paExecCpuDpcs[1], rtmpNtDPCWrapper, pArgs);
        if (g_pfnrtKeSetImportanceDpc)
            g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[1], HighImportance);
        if (RT_SUCCESS(rc))
            rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[1], (int)idCpu2);
        pArgs->idCpu2 = idCpu2;
    }
    else
    {
        rc = VINF_SUCCESS;
        for (uint32_t i = 0; i < cDpcsNeeded && RT_SUCCESS(rc); i++)
            if (RTCpuSetIsMemberByIndex(&OnlineSet, i))
            {
                KeInitializeDpc(&paExecCpuDpcs[i], rtmpNtDPCWrapper, pArgs);
                if (g_pfnrtKeSetImportanceDpc)
                    g_pfnrtKeSetImportanceDpc(&paExecCpuDpcs[i], HighImportance);
                rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[i], RTMpCpuIdFromSetIndex(i));
            }
    }
    if (RT_FAILURE(rc))
    {
        RTMemFree(pArgs);
        return rc;
    }

    /*
     * Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
     * KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL.
     */
    KIRQL oldIrql;
    KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);

    /*
     * We cannot do other than assume a 1:1 relationship between the
     * affinity mask and the process despite the warnings in the docs.
     * If someone knows a better way to get this done, please let bird know.
     */
    ASMCompilerBarrier(); /* paranoia */
    if (enmCpuid == RT_NT_CPUID_SPECIFIC)
    {
        ASMAtomicIncS32(&pArgs->cRefs);
        BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
        Assert(fRc); NOREF(fRc);
    }
    else if (enmCpuid == RT_NT_CPUID_PAIR)
    {
        ASMAtomicIncS32(&pArgs->cRefs);
        BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
        Assert(fRc); NOREF(fRc);

        ASMAtomicIncS32(&pArgs->cRefs);
        fRc = KeInsertQueueDpc(&paExecCpuDpcs[1], 0, 0);
        Assert(fRc); NOREF(fRc);
    }
    else
    {
        uint32_t iSelf = RTMpCurSetIndex();
        for (uint32_t i = 0; i < cDpcsNeeded; i++)
        {
            if (   (i != iSelf)
                && RTCpuSetIsMemberByIndex(&OnlineSet, i))
            {
                ASMAtomicIncS32(&pArgs->cRefs);
                BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[i], 0, 0);
                Assert(fRc); NOREF(fRc);
            }
        }
        if (enmCpuid != RT_NT_CPUID_OTHERS)
            pfnWorker(iSelf, pvUser1, pvUser2);
    }

    KeLowerIrql(oldIrql);

    /*
     * Flush all DPCs and wait for completion. (can take long!)
     */
    /** @todo Consider changing this to an active wait using some atomic inc/dec
     *  stuff (and check for the current cpu above in the specific case). */
    /** @todo Seems KeFlushQueuedDpcs doesn't wait for the DPCs to be completely
     *        executed. Seen pArgs being freed while some CPU was using it before
     *        cRefs was added. */
    if (g_pfnrtNtKeFlushQueuedDpcs)
        g_pfnrtNtKeFlushQueuedDpcs();

    if (pcHits)
        *pcHits = pArgs->cHits;

    /* Dereference the argument structure. */
    int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
    Assert(cRefs >= 0);
    if (cRefs == 0)
        RTMemFree(pArgs);

    return VINF_SUCCESS;
}


RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    if (g_pfnrtKeIpiGenericCall)
        return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnAllBroadcastIpiWrapper,
                                         NIL_RTCPUID, NIL_RTCPUID, NULL);
    return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_ALL, NIL_RTCPUID, NIL_RTCPUID, NULL);
}


RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    if (g_pfnrtKeIpiGenericCall)
        return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnOthersBroadcastIpiWrapper,
                                         NIL_RTCPUID, NIL_RTCPUID, NULL);
    return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_OTHERS, NIL_RTCPUID, NIL_RTCPUID, NULL);
}


RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    int rc;
    AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER);
    AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS);
    if ((fFlags & RTMPON_F_CONCURRENT_EXEC) && !g_pfnrtKeIpiGenericCall)
        return VERR_NOT_SUPPORTED;

    /*
     * Check that both CPUs are online before doing the broadcast call.
     */
    if (   RTMpIsCpuOnline(idCpu1)
        && RTMpIsCpuOnline(idCpu2))
    {
        /*
         * The broadcast IPI isn't quite as bad as it could have been, because
         * it looks like windows doesn't synchronize CPUs on the way out, they
         * seems to get back to normal work while the pair is still busy.
         */
        uint32_t cHits = 0;
        if (g_pfnrtKeIpiGenericCall)
            rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnPairBroadcastIpiWrapper, idCpu1, idCpu2, &cHits);
        else
            rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_PAIR, idCpu1, idCpu2, &cHits);
        if (RT_SUCCESS(rc))
        {
            Assert(cHits <= 2);
            if (cHits == 2)
                rc = VINF_SUCCESS;
            else if (cHits == 1)
                rc = VERR_NOT_ALL_CPUS_SHOWED;
            else if (cHits == 0)
                rc = VERR_CPU_OFFLINE;
            else
                rc = VERR_CPU_IPE_1;
        }
    }
    /*
     * A CPU must be present to be considered just offline.
     */
    else if (   RTMpIsCpuPresent(idCpu1)
             && RTMpIsCpuPresent(idCpu2))
        rc = VERR_CPU_OFFLINE;
    else
        rc = VERR_CPU_NOT_FOUND;
    return rc;
}


RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void)
{
    return g_pfnrtKeIpiGenericCall != NULL;
}


/**
 * Releases a reference to a RTMPNTONSPECIFICARGS heap allocation, freeing it
 * when the last reference is released.
 */
DECLINLINE(void) rtMpNtOnSpecificRelease(PRTMPNTONSPECIFICARGS pArgs)
{
    uint32_t cRefs = ASMAtomicDecU32(&pArgs->cRefs);
    AssertMsg(cRefs <= 1, ("cRefs=%#x\n", cRefs));
    if (cRefs == 0)
        RTMemFree(pArgs);
}


/**
 * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
 *
 * @param   Dpc                 DPC object
 * @param   DeferredContext     Context argument specified by KeInitializeDpc
 * @param   SystemArgument1     Argument specified by KeInsertQueueDpc
 * @param   SystemArgument2     Argument specified by KeInsertQueueDpc
 */
static VOID rtMpNtOnSpecificDpcWrapper(IN PKDPC Dpc, IN PVOID DeferredContext,
                                       IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
    PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)DeferredContext;
    RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);

    ASMAtomicWriteBool(&pArgs->fExecuting, true);

    pArgs->CallbackArgs.pfnWorker(RTMpCpuId(), pArgs->CallbackArgs.pvUser1, pArgs->CallbackArgs.pvUser2);

    ASMAtomicWriteBool(&pArgs->fDone, true);
    KeSetEvent(&pArgs->DoneEvt, 1 /*PriorityIncrement*/, FALSE /*Wait*/);

    rtMpNtOnSpecificRelease(pArgs);
}


RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
{
    /*
     * Don't try mess with an offline CPU.
     */
    if (!RTMpIsCpuOnline(idCpu))
        return !RTMpIsCpuPossible(idCpu)
              ? VERR_CPU_NOT_FOUND
              : VERR_CPU_OFFLINE;

    /*
     * Use the broadcast IPI routine if there are no more than two CPUs online,
     * or if the current IRQL is unsuitable for KeWaitForSingleObject.
     */
    int rc;
    uint32_t cHits = 0;
    if (   g_pfnrtKeIpiGenericCall
        && (   RTMpGetOnlineCount() <= 2
            || KeGetCurrentIrql()   > APC_LEVEL)
       )
    {
        rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnSpecificBroadcastIpiWrapper,
                                       idCpu, NIL_RTCPUID, &cHits);
        if (RT_SUCCESS(rc))
        {
            if (cHits == 1)
                return VINF_SUCCESS;
            rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
        }
        return rc;
    }

#if 0
    rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_SPECIFIC, idCpu, NIL_RTCPUID, &cHits);
    if (RT_SUCCESS(rc))
    {
        if (cHits == 1)
            return VINF_SUCCESS;
        rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
    }
    return rc;

#else
    /*
     * Initialize the argument package and the objects within it.
     * The package is referenced counted to avoid unnecessary spinning to
     * synchronize cleanup and prevent stack corruption.
     */
    PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)RTMemAllocZ(sizeof(*pArgs));
    if (!pArgs)
        return VERR_NO_MEMORY;
    pArgs->cRefs                  = 2;
    pArgs->fExecuting             = false;
    pArgs->fDone                  = false;
    pArgs->CallbackArgs.pfnWorker = pfnWorker;
    pArgs->CallbackArgs.pvUser1   = pvUser1;
    pArgs->CallbackArgs.pvUser2   = pvUser2;
    pArgs->CallbackArgs.idCpu     = idCpu;
    pArgs->CallbackArgs.cHits     = 0;
    pArgs->CallbackArgs.cRefs     = 2;
    KeInitializeEvent(&pArgs->DoneEvt, SynchronizationEvent, FALSE /* not signalled */);
    KeInitializeDpc(&pArgs->Dpc, rtMpNtOnSpecificDpcWrapper, pArgs);
    if (g_pfnrtKeSetImportanceDpc)
        g_pfnrtKeSetImportanceDpc(&pArgs->Dpc, HighImportance);
    rc = rtMpNtSetTargetProcessorDpc(&pArgs->Dpc, idCpu);
    if (RT_FAILURE(rc))
    {
        RTMemFree(pArgs);
        return rc;
    }

    /*
     * Disable preemption while we check the current processor and inserts the DPC.
     */
    KIRQL bOldIrql;
    KeRaiseIrql(DISPATCH_LEVEL, &bOldIrql);
    ASMCompilerBarrier(); /* paranoia */

    if (RTMpCpuId() == idCpu)
    {
        /* Just execute the callback on the current CPU. */
        pfnWorker(idCpu, pvUser1, pvUser2);
        KeLowerIrql(bOldIrql);

        RTMemFree(pArgs);
        return VINF_SUCCESS;
    }

    /* Different CPU, so queue it if the CPU is still online. */
    if (RTMpIsCpuOnline(idCpu))
    {
        BOOLEAN fRc = KeInsertQueueDpc(&pArgs->Dpc, 0, 0);
        Assert(fRc); NOREF(fRc);
        KeLowerIrql(bOldIrql);

        uint64_t const nsRealWaitTS = RTTimeNanoTS();

        /*
         * Wait actively for a while in case the CPU/thread responds quickly.
         */
        uint32_t cLoopsLeft = 0x20000;
        while (cLoopsLeft-- > 0)
        {
            if (pArgs->fDone)
            {
                rtMpNtOnSpecificRelease(pArgs);
                return VINF_SUCCESS;
            }
            ASMNopPause();
        }

        /*
         * It didn't respond, so wait on the event object, poking the CPU if it's slow.
         */
        LARGE_INTEGER Timeout;
        Timeout.QuadPart = -10000; /* 1ms */
        NTSTATUS rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
        if (rcNt == STATUS_SUCCESS)
        {
            rtMpNtOnSpecificRelease(pArgs);
            return VINF_SUCCESS;
        }

        /* If it hasn't respondend yet, maybe poke it and wait some more. */
        if (rcNt == STATUS_TIMEOUT)
        {
            if (   !pArgs->fExecuting
                && (   g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalRequestIpiW7Plus
                    || g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalRequestIpiPreW7))
                RTMpPokeCpu(idCpu);

            Timeout.QuadPart = -1280000; /* 128ms */
            rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
            if (rcNt == STATUS_SUCCESS)
            {
                rtMpNtOnSpecificRelease(pArgs);
                return VINF_SUCCESS;
            }
        }

        /*
         * Something weird is happening, try bail out.
         */
        if (KeRemoveQueueDpc(&pArgs->Dpc))
        {
            RTMemFree(pArgs); /* DPC was still queued, so we can return without further ado. */
            LogRel(("RTMpOnSpecific(%#x): Not processed after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
        }
        else
        {
            /* DPC is running, wait a good while for it to complete. */
            LogRel(("RTMpOnSpecific(%#x): Still running after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));

            Timeout.QuadPart = -30*1000*1000*10; /* 30 seconds */
            rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
            if (rcNt != STATUS_SUCCESS)
                LogRel(("RTMpOnSpecific(%#x): Giving up on running worker after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
        }
        rc = RTErrConvertFromNtStatus(rcNt);
    }
    else
    {
        /* CPU is offline.*/
        KeLowerIrql(bOldIrql);
        rc = !RTMpIsCpuPossible(idCpu) ? VERR_CPU_NOT_FOUND : VERR_CPU_OFFLINE;
    }

    rtMpNtOnSpecificRelease(pArgs);
    return rc;
#endif
}




static VOID rtMpNtPokeCpuDummy(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
{
    NOREF(Dpc);
    NOREF(DeferredContext);
    NOREF(SystemArgument1);
    NOREF(SystemArgument2);
}


/** Callback used by rtMpPokeCpuUsingBroadcastIpi. */
static ULONG_PTR rtMpIpiGenericCall(ULONG_PTR Argument)
{
    NOREF(Argument);
    return 0;
}


/**
 * RTMpPokeCpu worker that uses broadcast IPIs for doing the work.
 *
 * @returns VINF_SUCCESS
 * @param   idCpu           The CPU identifier.
 */
int rtMpPokeCpuUsingBroadcastIpi(RTCPUID idCpu)
{
    NOREF(idCpu);
    g_pfnrtKeIpiGenericCall(rtMpIpiGenericCall, 0);
    return VINF_SUCCESS;
}


/**
 * RTMpPokeCpu worker that uses the Windows 7 and later version of
 * HalRequestIpip to get the job done.
 *
 * @returns VINF_SUCCESS
 * @param   idCpu           The CPU identifier.
 */
int rtMpPokeCpuUsingHalRequestIpiW7Plus(RTCPUID idCpu)
{
    /* idCpu is an HAL processor index, so we can use it directly. */
    PKAFFINITY_EX pTarget = (PKAFFINITY_EX)alloca(g_cbRtMpNtKaffinityEx);
    pTarget->Size = g_cRtMpNtKaffinityExEntries; /* (just in case KeInitializeAffinityEx starts using it) */
    g_pfnrtKeInitializeAffinityEx(pTarget);
    g_pfnrtKeAddProcessorAffinityEx(pTarget, idCpu);

    g_pfnrtHalRequestIpiW7Plus(0, pTarget);
    return VINF_SUCCESS;
}


/**
 * RTMpPokeCpu worker that uses the Vista and earlier version of HalRequestIpip
 * to get the job done.
 *
 * @returns VINF_SUCCESS
 * @param   idCpu           The CPU identifier.
 */
int rtMpPokeCpuUsingHalRequestIpiPreW7(RTCPUID idCpu)
{
    __debugbreak(); /** @todo this code needs testing!!  */
    KAFFINITY Target = 1;
    Target <<= idCpu;
    g_pfnrtHalRequestIpiPreW7(Target);
    return VINF_SUCCESS;
}


int rtMpPokeCpuUsingFailureNotSupported(RTCPUID idCpu)
{
    NOREF(idCpu);
    return VERR_NOT_SUPPORTED;
}


int rtMpPokeCpuUsingDpc(RTCPUID idCpu)
{
    Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */

    /*
     * APC fallback.
     */
    static KDPC s_aPokeDpcs[RTCPUSET_MAX_CPUS] = {{0}};
    static bool s_fPokeDPCsInitialized = false;

    if (!s_fPokeDPCsInitialized)
    {
        for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
        {
            KeInitializeDpc(&s_aPokeDpcs[i], rtMpNtPokeCpuDummy, NULL);
            if (g_pfnrtKeSetImportanceDpc)
                g_pfnrtKeSetImportanceDpc(&s_aPokeDpcs[i], HighImportance);
            int rc = rtMpNtSetTargetProcessorDpc(&s_aPokeDpcs[i], idCpu);
            if (RT_FAILURE(rc) && rc != VERR_CPU_NOT_FOUND)
                return rc;
        }

        s_fPokeDPCsInitialized = true;
    }

    /* Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
       KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL. */
    KIRQL oldIrql;
    KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);

    if (g_pfnrtKeSetImportanceDpc)
        g_pfnrtKeSetImportanceDpc(&s_aPokeDpcs[idCpu], HighImportance);
    g_pfnrtKeSetTargetProcessorDpc(&s_aPokeDpcs[idCpu], (int)idCpu);

    /* Assuming here that high importance DPCs will be delivered immediately; or at least an IPI will be sent immediately.
       Note! Not true on at least Vista & Windows 7 */
    BOOLEAN fRet = KeInsertQueueDpc(&s_aPokeDpcs[idCpu], 0, 0);

    KeLowerIrql(oldIrql);
    return fRet == TRUE ? VINF_SUCCESS : VERR_ACCESS_DENIED /* already queued */;
}


RTDECL(int) RTMpPokeCpu(RTCPUID idCpu)
{
    if (!RTMpIsCpuOnline(idCpu))
        return !RTMpIsCpuPossible(idCpu)
              ? VERR_CPU_NOT_FOUND
              : VERR_CPU_OFFLINE;
    /* Calls rtMpPokeCpuUsingDpc, rtMpPokeCpuUsingHalRequestIpiW7Plus or rtMpPokeCpuUsingBroadcastIpi. */
    return g_pfnrtMpPokeCpuWorker(idCpu);
}


RTDECL(bool) RTMpOnAllIsConcurrentSafe(void)
{
    return false;
}