1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
|
/* $Id: CPUMAllRegs.cpp $ */
/** @file
* CPUM - CPU Monitor(/Manager) - Getters and Setters.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_CPUM
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/apic.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/nem.h>
#include <VBox/vmm/hm.h>
#include "CPUMInternal.h"
#include <VBox/vmm/vmcc.h>
#include <VBox/err.h>
#include <VBox/dis.h>
#include <VBox/log.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/tm.h>
#include <iprt/assert.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#ifdef IN_RING3
# include <iprt/thread.h>
#endif
/** Disable stack frame pointer generation here. */
#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
# pragma optimize("y", off)
#endif
AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/**
* Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
*
* @returns Pointer to the Virtual CPU.
* @param a_pGuestCtx Pointer to the guest context.
*/
#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
/**
* Lazily loads the hidden parts of a selector register when using raw-mode.
*/
#define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg))
/** @def CPUM_INT_ASSERT_NOT_EXTRN
* Macro for asserting that @a a_fNotExtrn are present.
*
* @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
* @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
*/
#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
{
pVCpu->cpum.s.Hyper.cr3 = cr3;
}
VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.cr3;
}
/** @def MAYBE_LOAD_DRx
* Macro for updating DRx values in raw-mode and ring-0 contexts.
*/
#ifdef IN_RING0
# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0)
#else
# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
#endif
VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
{
pVCpu->cpum.s.Hyper.dr[0] = uDr0;
MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
}
VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
{
pVCpu->cpum.s.Hyper.dr[1] = uDr1;
MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
}
VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
{
pVCpu->cpum.s.Hyper.dr[2] = uDr2;
MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
}
VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
{
pVCpu->cpum.s.Hyper.dr[3] = uDr3;
MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
}
VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
{
pVCpu->cpum.s.Hyper.dr[6] = uDr6;
}
VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
{
pVCpu->cpum.s.Hyper.dr[7] = uDr7;
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[0];
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[1];
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[2];
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[3];
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[6];
}
VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
{
return pVCpu->cpum.s.Hyper.dr[7];
}
/**
* Checks that the special cookie stored in unused reserved RFLAGS bits
*
* @retval true if cookie is ok.
* @retval false if cookie is not ok.
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(bool) CPUMAssertGuestRFlagsCookie(PVM pVM, PVMCPU pVCpu)
{
AssertLogRelMsgReturn( ( pVCpu->cpum.s.Guest.rflags.uBoth
& ~(uint64_t)(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64))
== pVM->cpum.s.fReservedRFlagsCookie
&& (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK
&& (pVCpu->cpum.s.Guest.rflags.uBoth & X86_EFL_RAZ_MASK & CPUMX86EFLAGS_HW_MASK_64) == 0,
("rflags=%#RX64 vs fReservedRFlagsCookie=%#RX64\n",
pVCpu->cpum.s.Guest.rflags.uBoth, pVM->cpum.s.fReservedRFlagsCookie),
false);
return true;
}
/**
* Queries the pointer to the internal CPUMCTX structure.
*
* @returns The CPUMCTX pointer.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
{
return &pVCpu->cpum.s.Guest;
}
/**
* Queries the pointer to the internal CPUMCTXMSRS structure.
*
* This is for NEM only.
*
* @returns The CPUMCTX pointer.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
{
return &pVCpu->cpum.s.GuestMsrs;
}
VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
{
pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
return VINF_SUCCESS; /* formality, consider it void. */
}
VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
{
pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
return VINF_SUCCESS; /* formality, consider it void. */
}
VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
{
pVCpu->cpum.s.Guest.tr.Sel = tr;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
return VINF_SUCCESS; /* formality, consider it void. */
}
VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
{
pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
/* The caller will set more hidden bits if it has them. */
pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
return VINF_SUCCESS; /* formality, consider it void. */
}
/**
* Set the guest CR0.
*
* When called in GC, the hyper CR0 may be updated if that is
* required. The caller only has to take special action if AM,
* WP, PG or PE changes.
*
* @returns VINF_SUCCESS (consider it void).
* @param pVCpu The cross context virtual CPU structure.
* @param cr0 The new CR0 value.
*/
VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0)
{
/*
* Check for changes causing TLB flushes (for REM).
* The caller is responsible for calling PGM when appropriate.
*/
if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
!= (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
/*
* Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
*/
if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
PGMCr0WpEnabled(pVCpu);
/* The ET flag is settable on a 386 and hardwired on 486+. */
if ( !(cr0 & X86_CR0_ET)
&& pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
cr0 |= X86_CR0_ET;
pVCpu->cpum.s.Guest.cr0 = cr0;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
{
pVCpu->cpum.s.Guest.cr2 = cr2;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
{
pVCpu->cpum.s.Guest.cr3 = cr3;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
{
/* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
!= (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
pVCpu->cpum.s.Guest.cr4 = cr4;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
{
pVCpu->cpum.s.Guest.eflags.u = eflags;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
{
pVCpu->cpum.s.Guest.eip = eip;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
{
pVCpu->cpum.s.Guest.eax = eax;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
{
pVCpu->cpum.s.Guest.ebx = ebx;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
{
pVCpu->cpum.s.Guest.ecx = ecx;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
{
pVCpu->cpum.s.Guest.edx = edx;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
{
pVCpu->cpum.s.Guest.esp = esp;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
{
pVCpu->cpum.s.Guest.ebp = ebp;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
{
pVCpu->cpum.s.Guest.esi = esi;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
{
pVCpu->cpum.s.Guest.edi = edi;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
{
pVCpu->cpum.s.Guest.ss.Sel = ss;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
{
pVCpu->cpum.s.Guest.cs.Sel = cs;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
{
pVCpu->cpum.s.Guest.ds.Sel = ds;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
{
pVCpu->cpum.s.Guest.es.Sel = es;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
{
pVCpu->cpum.s.Guest.fs.Sel = fs;
return VINF_SUCCESS;
}
VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
{
pVCpu->cpum.s.Guest.gs.Sel = gs;
return VINF_SUCCESS;
}
VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
{
pVCpu->cpum.s.Guest.msrEFER = val;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
}
VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
if (pcbLimit)
*pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
return pVCpu->cpum.s.Guest.idtr.pIdt;
}
VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
if (pHidden)
*pHidden = pVCpu->cpum.s.Guest.tr;
return pVCpu->cpum.s.Guest.tr.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
return pVCpu->cpum.s.Guest.cs.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
return pVCpu->cpum.s.Guest.ds.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
return pVCpu->cpum.s.Guest.es.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
return pVCpu->cpum.s.Guest.fs.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
return pVCpu->cpum.s.Guest.gs.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
return pVCpu->cpum.s.Guest.ss.Sel;
}
VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
if ( !CPUMIsGuestInLongMode(pVCpu)
|| !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
}
VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
if ( !CPUMIsGuestInLongMode(pVCpu)
|| !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
}
VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
return pVCpu->cpum.s.Guest.ldtr.Sel;
}
VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
*pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
*pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
return pVCpu->cpum.s.Guest.ldtr.Sel;
}
VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return pVCpu->cpum.s.Guest.cr0;
}
VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
return pVCpu->cpum.s.Guest.cr2;
}
VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
return pVCpu->cpum.s.Guest.cr3;
}
VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
return pVCpu->cpum.s.Guest.cr4;
}
VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu)
{
uint64_t u64;
int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
if (RT_FAILURE(rc))
u64 = 0;
return u64;
}
VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
*pGDTR = pVCpu->cpum.s.Guest.gdtr;
}
VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
return pVCpu->cpum.s.Guest.eip;
}
VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
return pVCpu->cpum.s.Guest.rip;
}
VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
return pVCpu->cpum.s.Guest.eax;
}
VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
return pVCpu->cpum.s.Guest.ebx;
}
VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
return pVCpu->cpum.s.Guest.ecx;
}
VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
return pVCpu->cpum.s.Guest.edx;
}
VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
return pVCpu->cpum.s.Guest.esi;
}
VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
return pVCpu->cpum.s.Guest.edi;
}
VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
return pVCpu->cpum.s.Guest.esp;
}
VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
return pVCpu->cpum.s.Guest.ebp;
}
VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
return pVCpu->cpum.s.Guest.eflags.u;
}
VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue)
{
switch (iReg)
{
case DISCREG_CR0:
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
*pValue = pVCpu->cpum.s.Guest.cr0;
break;
case DISCREG_CR2:
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
*pValue = pVCpu->cpum.s.Guest.cr2;
break;
case DISCREG_CR3:
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
*pValue = pVCpu->cpum.s.Guest.cr3;
break;
case DISCREG_CR4:
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
*pValue = pVCpu->cpum.s.Guest.cr4;
break;
case DISCREG_CR8:
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
uint8_t u8Tpr;
int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
if (RT_FAILURE(rc))
{
AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
*pValue = 0;
return rc;
}
*pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
break;
}
default:
return VERR_INVALID_PARAMETER;
}
return VINF_SUCCESS;
}
VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
return pVCpu->cpum.s.Guest.dr[0];
}
VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
return pVCpu->cpum.s.Guest.dr[1];
}
VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
return pVCpu->cpum.s.Guest.dr[2];
}
VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
return pVCpu->cpum.s.Guest.dr[3];
}
VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
return pVCpu->cpum.s.Guest.dr[6];
}
VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
return pVCpu->cpum.s.Guest.dr[7];
}
VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
/* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
if (iReg == 4 || iReg == 5)
iReg += 2;
*pValue = pVCpu->cpum.s.Guest.dr[iReg];
return VINF_SUCCESS;
}
VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
return pVCpu->cpum.s.Guest.msrEFER;
}
/**
* Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
*
* @returns Pointer to the leaf if found, NULL if not.
*
* @param pVM The cross context VM structure.
* @param uLeaf The leaf to get.
*/
PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
{
unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
if (iEnd)
{
unsigned iStart = 0;
PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
for (;;)
{
unsigned i = iStart + (iEnd - iStart) / 2U;
if (uLeaf < paLeaves[i].uLeaf)
{
if (i <= iStart)
return NULL;
iEnd = i;
}
else if (uLeaf > paLeaves[i].uLeaf)
{
i += 1;
if (i >= iEnd)
return NULL;
iStart = i;
}
else
{
if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
return &paLeaves[i];
/* This shouldn't normally happen. But in case the it does due
to user configuration overrids or something, just return the
first sub-leaf. */
AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
while ( paLeaves[i].uSubLeaf != 0
&& i > 0
&& uLeaf == paLeaves[i - 1].uLeaf)
i--;
return &paLeaves[i];
}
}
}
return NULL;
}
/**
* Looks up a CPUID leaf in the CPUID leaf array.
*
* @returns Pointer to the leaf if found, NULL if not.
*
* @param pVM The cross context VM structure.
* @param uLeaf The leaf to get.
* @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
* isn't.
* @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
*/
PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
{
unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
if (iEnd)
{
unsigned iStart = 0;
PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
for (;;)
{
unsigned i = iStart + (iEnd - iStart) / 2U;
if (uLeaf < paLeaves[i].uLeaf)
{
if (i <= iStart)
return NULL;
iEnd = i;
}
else if (uLeaf > paLeaves[i].uLeaf)
{
i += 1;
if (i >= iEnd)
return NULL;
iStart = i;
}
else
{
uSubLeaf &= paLeaves[i].fSubLeafMask;
if (uSubLeaf == paLeaves[i].uSubLeaf)
*pfExactSubLeafHit = true;
else
{
/* Find the right subleaf. We return the last one before
uSubLeaf if we don't find an exact match. */
if (uSubLeaf < paLeaves[i].uSubLeaf)
while ( i > 0
&& uLeaf == paLeaves[i - 1].uLeaf
&& uSubLeaf <= paLeaves[i - 1].uSubLeaf)
i--;
else
while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
&& uLeaf == paLeaves[i + 1].uLeaf
&& uSubLeaf >= paLeaves[i + 1].uSubLeaf)
i++;
*pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
}
return &paLeaves[i];
}
}
}
*pfExactSubLeafHit = false;
return NULL;
}
/**
* Gets a CPUID leaf.
*
* @param pVCpu The cross context virtual CPU structure.
* @param uLeaf The CPUID leaf to get.
* @param uSubLeaf The CPUID sub-leaf to get, if applicable.
* @param f64BitMode A tristate indicate if the caller is in 64-bit mode or
* not: 1=true, 0=false, 1=whatever. This affect how the
* X86_CPUID_EXT_FEATURE_EDX_SYSCALL flag is returned on
* Intel CPUs, where it's only returned in 64-bit mode.
* @param pEax Where to store the EAX value.
* @param pEbx Where to store the EBX value.
* @param pEcx Where to store the ECX value.
* @param pEdx Where to store the EDX value.
*/
VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, int f64BitMode,
uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
{
bool fExactSubLeafHit;
PVM pVM = pVCpu->CTX_SUFF(pVM);
PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
if (pLeaf)
{
AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
if (fExactSubLeafHit)
{
*pEax = pLeaf->uEax;
*pEbx = pLeaf->uEbx;
*pEcx = pLeaf->uEcx;
*pEdx = pLeaf->uEdx;
/*
* Deal with CPU specific information.
*/
if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
| CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
| CPUMCPUIDLEAF_F_CONTAINS_APIC ))
{
if (uLeaf == 1)
{
/* EBX: Bits 31-24: Initial APIC ID. */
Assert(pVCpu->idCpu <= 255);
AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
*pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
/* EDX: Bit 9: AND with APICBASE.EN. */
if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
*pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
/* ECX: Bit 27: CR4.OSXSAVE mirror. */
*pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
| (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
}
else if (uLeaf == 0xb)
{
/* EDX: Initial extended APIC ID. */
AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
*pEdx = pVCpu->idCpu;
Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
}
else if (uLeaf == UINT32_C(0x8000001e))
{
/* EAX: Initial extended APIC ID. */
AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
*pEax = pVCpu->idCpu;
Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
}
else if (uLeaf == UINT32_C(0x80000001))
{
/* EDX: Bit 9: AND with APICBASE.EN. */
if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
*pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
}
else
AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
}
/* Intel CPUs supresses the SYSCALL bit when not executing in 64-bit mode: */
if ( uLeaf == UINT32_C(0x80000001)
&& f64BitMode == false
&& (*pEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
&& ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
|| pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA /*?*/
|| pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_SHANGHAI /*?*/ ) )
*pEdx &= ~X86_CPUID_EXT_FEATURE_EDX_SYSCALL;
}
/*
* Out of range sub-leaves aren't quite as easy and pretty as we emulate
* them here, but we do the best we can here...
*/
else
{
*pEax = *pEbx = *pEcx = *pEdx = 0;
if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
{
*pEcx = uSubLeaf & 0xff;
*pEdx = pVCpu->idCpu;
}
}
}
else
{
/*
* Different CPUs have different ways of dealing with unknown CPUID leaves.
*/
switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
{
default:
AssertFailed();
RT_FALL_THRU();
case CPUMUNKNOWNCPUID_DEFAULTS:
case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
*pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
*pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
*pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
*pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
break;
case CPUMUNKNOWNCPUID_PASSTHRU:
*pEax = uLeaf;
*pEbx = 0;
*pEcx = uSubLeaf;
*pEdx = 0;
break;
}
}
Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
}
/**
* Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
* X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
*
* @returns Previous value.
* @param pVCpu The cross context virtual CPU structure to make the
* change on. Usually the calling EMT.
* @param fVisible Whether to make it visible (true) or hide it (false).
*
* @remarks This is "VMMDECL" so that it still links with
* the old APIC code which is in VBoxDD2 and not in
* the VMM module.
*/
VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
{
bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
return fOld;
}
/**
* Gets the host CPU vendor.
*
* @returns CPU vendor.
* @param pVM The cross context VM structure.
*/
VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
{
return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
}
/**
* Gets the host CPU microarchitecture.
*
* @returns CPU microarchitecture.
* @param pVM The cross context VM structure.
*/
VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM)
{
return pVM->cpum.s.HostFeatures.enmMicroarch;
}
/**
* Gets the guest CPU vendor.
*
* @returns CPU vendor.
* @param pVM The cross context VM structure.
*/
VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
{
return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
}
/**
* Gets the guest CPU microarchitecture.
*
* @returns CPU microarchitecture.
* @param pVM The cross context VM structure.
*/
VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM)
{
return pVM->cpum.s.GuestFeatures.enmMicroarch;
}
/**
* Gets the maximum number of physical and linear address bits supported by the
* guest.
*
* @param pVM The cross context VM structure.
* @param pcPhysAddrWidth Where to store the physical address width.
* @param pcLinearAddrWidth Where to store the linear address width.
*/
VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth)
{
AssertPtr(pVM);
AssertReturnVoid(pcPhysAddrWidth);
AssertReturnVoid(pcLinearAddrWidth);
*pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
*pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth;
}
VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0)
{
pVCpu->cpum.s.Guest.dr[0] = uDr0;
return CPUMRecalcHyperDRx(pVCpu, 0);
}
VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1)
{
pVCpu->cpum.s.Guest.dr[1] = uDr1;
return CPUMRecalcHyperDRx(pVCpu, 1);
}
VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2)
{
pVCpu->cpum.s.Guest.dr[2] = uDr2;
return CPUMRecalcHyperDRx(pVCpu, 2);
}
VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3)
{
pVCpu->cpum.s.Guest.dr[3] = uDr3;
return CPUMRecalcHyperDRx(pVCpu, 3);
}
VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
{
pVCpu->cpum.s.Guest.dr[6] = uDr6;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
return VINF_SUCCESS; /* No need to recalc. */
}
VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7)
{
pVCpu->cpum.s.Guest.dr[7] = uDr7;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
return CPUMRecalcHyperDRx(pVCpu, 7);
}
VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value)
{
AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
/* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
if (iReg == 4 || iReg == 5)
iReg += 2;
pVCpu->cpum.s.Guest.dr[iReg] = Value;
return CPUMRecalcHyperDRx(pVCpu, iReg);
}
/**
* Recalculates the hypervisor DRx register values based on current guest
* registers and DBGF breakpoints, updating changed registers depending on the
* context.
*
* This is called whenever a guest DRx register is modified (any context) and
* when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
*
* In raw-mode context this function will reload any (hyper) DRx registers which
* comes out with a different value. It may also have to save the host debug
* registers if that haven't been done already. In this context though, we'll
* be intercepting and emulating all DRx accesses, so the hypervisor DRx values
* are only important when breakpoints are actually enabled.
*
* In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
* reloaded by the HM code if it changes. Further more, we will only use the
* combined register set when the VBox debugger is actually using hardware BPs,
* when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
* concern us here).
*
* In ring-3 we won't be loading anything, so well calculate hypervisor values
* all the time.
*
* @returns VINF_SUCCESS.
* @param pVCpu The cross context virtual CPU structure.
* @param iGstReg The guest debug register number that was modified.
* UINT8_MAX if not guest register.
*/
VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg)
{
PVM pVM = pVCpu->CTX_SUFF(pVM);
#ifndef IN_RING0
RT_NOREF_PV(iGstReg);
#endif
/*
* Compare the DR7s first.
*
* We only care about the enabled flags. GD is virtualized when we
* dispatch the #DB, we never enable it. The DBGF DR7 value is will
* always have the LE and GE bits set, so no need to check and disable
* stuff if they're cleared like we have to for the guest DR7.
*/
RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
/** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
uGstDr7 = 0;
else if (!(uGstDr7 & X86_DR7_LE))
uGstDr7 &= ~X86_DR7_LE_ALL;
else if (!(uGstDr7 & X86_DR7_GE))
uGstDr7 &= ~X86_DR7_GE_ALL;
const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
{
Assert(!CPUMIsGuestDebugStateActive(pVCpu));
/*
* Ok, something is enabled. Recalc each of the breakpoints, taking
* the VM debugger ones of the guest ones. In raw-mode context we will
* not allow breakpoints with values inside the hypervisor area.
*/
RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
/* bp 0 */
RTGCUINTREG uNewDr0;
if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
{
uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
uNewDr0 = DBGFBpGetDR0(pVM);
}
else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
{
uNewDr0 = CPUMGetGuestDR0(pVCpu);
uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
}
else
uNewDr0 = 0;
/* bp 1 */
RTGCUINTREG uNewDr1;
if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
{
uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
uNewDr1 = DBGFBpGetDR1(pVM);
}
else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
{
uNewDr1 = CPUMGetGuestDR1(pVCpu);
uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
}
else
uNewDr1 = 0;
/* bp 2 */
RTGCUINTREG uNewDr2;
if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
{
uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
uNewDr2 = DBGFBpGetDR2(pVM);
}
else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
{
uNewDr2 = CPUMGetGuestDR2(pVCpu);
uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
}
else
uNewDr2 = 0;
/* bp 3 */
RTGCUINTREG uNewDr3;
if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
{
uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
uNewDr3 = DBGFBpGetDR3(pVM);
}
else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
{
uNewDr3 = CPUMGetGuestDR3(pVCpu);
uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
}
else
uNewDr3 = 0;
/*
* Apply the updates.
*/
pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
CPUMSetHyperDR3(pVCpu, uNewDr3);
if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
CPUMSetHyperDR2(pVCpu, uNewDr2);
if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
CPUMSetHyperDR1(pVCpu, uNewDr1);
if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
CPUMSetHyperDR0(pVCpu, uNewDr0);
if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
CPUMSetHyperDR7(pVCpu, uNewDr7);
}
#ifdef IN_RING0
else if (CPUMIsGuestDebugStateActive(pVCpu))
{
/*
* Reload the register that was modified. Normally this won't happen
* as we won't intercept DRx writes when not having the hyper debug
* state loaded, but in case we do for some reason we'll simply deal
* with it.
*/
switch (iGstReg)
{
case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
default:
AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
}
}
#endif
else
{
/*
* No active debug state any more. In raw-mode this means we have to
* make sure DR7 has everything disabled now, if we armed it already.
* In ring-0 we might end up here when just single stepping.
*/
#ifdef IN_RING0
if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
{
if (pVCpu->cpum.s.Hyper.dr[0])
ASMSetDR0(0);
if (pVCpu->cpum.s.Hyper.dr[1])
ASMSetDR1(0);
if (pVCpu->cpum.s.Hyper.dr[2])
ASMSetDR2(0);
if (pVCpu->cpum.s.Hyper.dr[3])
ASMSetDR3(0);
pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
}
#endif
pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
/* Clear all the registers. */
pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
pVCpu->cpum.s.Hyper.dr[3] = 0;
pVCpu->cpum.s.Hyper.dr[2] = 0;
pVCpu->cpum.s.Hyper.dr[1] = 0;
pVCpu->cpum.s.Hyper.dr[0] = 0;
}
Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
pVCpu->cpum.s.Hyper.dr[7]));
return VINF_SUCCESS;
}
/**
* Set the guest XCR0 register.
*
* Will load additional state if the FPU state is already loaded (in ring-0 &
* raw-mode context).
*
* @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
* value.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param uNewValue The new value.
* @thread EMT(pVCpu)
*/
VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
/* The X87 bit cannot be cleared. */
&& (uNewValue & XSAVE_C_X87)
/* AVX requires SSE. */
&& (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
/* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
&& ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
|| (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
== (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
)
{
pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
/* If more state components are enabled, we need to take care to load
them if the FPU/SSE state is already loaded. May otherwise leak
host state to the guest. */
uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
if (fNewComponents)
{
#ifdef IN_RING0
if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
{
if (pVCpu->cpum.s.Guest.fXStateMask != 0)
/* Adding more components. */
ASMXRstor(&pVCpu->cpum.s.Guest.XState, fNewComponents);
else
{
/* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
ASMXRstor(&pVCpu->cpum.s.Guest.XState, uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
}
}
#endif
pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
}
return VINF_SUCCESS;
}
return VERR_CPUM_RAISE_GP_0;
}
/**
* Tests if the guest has No-Execute Page Protection Enabled (NXE).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
}
/**
* Tests if the guest has the Page Size Extension enabled (PSE).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
/* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
}
/**
* Tests if the guest has the paging enabled (PG).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
}
/**
* Tests if the guest has the paging enabled (PG).
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
}
/**
* Tests if the guest is running in real mode or not.
*
* @returns true if in real mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
}
/**
* Tests if the guest is running in real or virtual 8086 mode.
*
* @returns @c true if it is, @c false if not.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|| pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
}
/**
* Tests if the guest is running in protected or not.
*
* @returns true if in protected mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
}
/**
* Tests if the guest is running in paged protected or not.
*
* @returns true if in paged protected mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
}
/**
* Tests if the guest is running in long mode or not.
*
* @returns true if in long mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
}
/**
* Tests if the guest is running in PAE mode or not.
*
* @returns true if in PAE mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
/* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
&& (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
&& !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
}
/**
* Tests if the guest is running in 64 bits mode or not.
*
* @returns true if in 64 bits protected mode, otherwise false.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*/
VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
if (!CPUMIsGuestInLongMode(pVCpu))
return false;
CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
}
/**
* Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
* registers.
*
* @returns true if in 64 bits protected mode, otherwise false.
* @param pCtx Pointer to the current guest CPU context.
*/
VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
{
return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
}
/**
* Sets the specified changed flags (CPUM_CHANGED_*).
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param fChangedAdd The changed flags to add.
*/
VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
{
pVCpu->cpum.s.fChanged |= fChangedAdd;
}
/**
* Checks if the CPU supports the XSAVE and XRSTOR instruction.
*
* @returns true if supported.
* @returns false if not supported.
* @param pVM The cross context VM structure.
*/
VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
{
return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
}
/**
* Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
* @returns true if used.
* @returns false if not used.
* @param pVM The cross context VM structure.
*/
VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
{
return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
}
/**
* Checks if the host OS uses the SYSCALL / SYSRET instructions.
* @returns true if used.
* @returns false if not used.
* @param pVM The cross context VM structure.
*/
VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
{
return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
}
/**
* Checks if we activated the FPU/XMM state of the guest OS.
*
* Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to
* the next time we'll be executing guest code, so it may return true for
* 64-on-32 when we still haven't actually loaded the FPU status, just scheduled
* it to be loaded the next time we go thru the world switcher
* (CPUM_SYNC_FPU_STATE).
*
* @returns true / false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
{
bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
return fRet;
}
/**
* Checks if we've really loaded the FPU/XMM state of the guest OS.
*
* @returns true / false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
{
bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
return fRet;
}
/**
* Checks if we saved the FPU/XMM state of the host OS.
*
* @returns true / false.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
{
return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
}
/**
* Checks if the guest debug state is active.
*
* @returns boolean
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*/
VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
{
return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
}
/**
* Checks if the hyper debug state is active.
*
* @returns boolean
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*/
VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
{
return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
}
/**
* Mark the guest's debug state as inactive.
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @todo This API doesn't make sense any more.
*/
VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
{
Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
NOREF(pVCpu);
}
/**
* Get the current privilege level of the guest.
*
* @returns CPL
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*/
VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
{
/*
* CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
*
* Note! We used to check CS.DPL here, assuming it was always equal to
* CPL even if a conforming segment was loaded. But this turned out to
* only apply to older AMD-V. With VT-x we had an ACP2 regression
* during install after a far call to ring 2 with VT-x. Then on newer
* AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
* as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
*
* So, forget CS.DPL, always use SS.DPL.
*
* Note! The SS RPL is always equal to the CPL, while the CS RPL
* isn't necessarily equal if the segment is conforming.
* See section 4.11.1 in the AMD manual.
*
* Update: Where the heck does it say CS.RPL can differ from CPL other than
* right after real->prot mode switch and when in V8086 mode? That
* section says the RPL specified in a direct transfere (call, jmp,
* ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
* it would be impossible for an exception handle or the iret
* instruction to figure out whether SS:ESP are part of the frame
* or not. VBox or qemu bug must've lead to this misconception.
*
* Update2: On an AMD bulldozer system here, I've no trouble loading a null
* selector into SS with an RPL other than the CPL when CPL != 3 and
* we're in 64-bit mode. The intel dev box doesn't allow this, on
* RPL = CPL. Weird.
*/
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
uint32_t uCpl;
if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
{
if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
{
if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
else
uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
}
else
uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
}
else
uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
return uCpl;
}
/**
* Gets the current guest CPU mode.
*
* If paging mode is what you need, check out PGMGetGuestMode().
*
* @returns The CPU mode.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
CPUMMODE enmMode;
if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
enmMode = CPUMMODE_REAL;
else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
enmMode = CPUMMODE_PROTECTED;
else
enmMode = CPUMMODE_LONG;
return enmMode;
}
/**
* Figure whether the CPU is currently executing 16, 32 or 64 bit code.
*
* @returns 16, 32 or 64.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*/
VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
return 16;
if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
{
Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
return 16;
}
CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
&& (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
return 64;
if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
return 32;
return 16;
}
VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
{
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
return DISCPUMODE_16BIT;
if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
{
Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
return DISCPUMODE_16BIT;
}
CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
&& (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
return DISCPUMODE_64BIT;
if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
return DISCPUMODE_32BIT;
return DISCPUMODE_16BIT;
}
/**
* Gets the guest MXCSR_MASK value.
*
* This does not access the x87 state, but the value we determined at VM
* initialization.
*
* @returns MXCSR mask.
* @param pVM The cross context VM structure.
*/
VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
{
return pVM->cpum.s.GuestInfo.fMxCsrMask;
}
/**
* Returns whether the guest has physical interrupts enabled.
*
* @returns @c true if interrupts are enabled, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks Warning! This function does -not- take into account the global-interrupt
* flag (GIF).
*/
VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
{
switch (CPUMGetGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
{
case CPUMHWVIRT_NONE:
default:
return pVCpu->cpum.s.Guest.eflags.Bits.u1IF;
case CPUMHWVIRT_VMX:
return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest);
case CPUMHWVIRT_SVM:
return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
}
}
/**
* Returns whether the nested-guest has virtual interrupts enabled.
*
* @returns @c true if interrupts are enabled, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks Warning! This function does -not- take into account the global-interrupt
* flag (GIF).
*/
VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
{
PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
Assert(CPUMIsGuestInNestedHwvirtMode(pCtx));
if (CPUMIsGuestInVmxNonRootMode(pCtx))
return CPUMIsGuestVmxVirtIntrEnabled(pCtx);
Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
}
/**
* Calculates the interruptiblity of the guest.
*
* @returns Interruptibility level.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
{
#if 1
/* Global-interrupt flag blocks pretty much everything we care about here. */
if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
{
/*
* Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
* it directly here. If and how EFLAGS are used depends on the context (nested-guest
* or raw-mode). Hence we use the function below which handles the details.
*/
if ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_ALL_MASK)
|| ( !(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI)
&& pVCpu->cpum.s.Guest.uRipInhibitInt != pVCpu->cpum.s.Guest.rip))
{
/** @todo OPT: this next call should be inlined! */
if (CPUMIsGuestPhysIntrEnabled(pVCpu))
{
/** @todo OPT: type this out as it repeats tests. */
if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
|| CPUMIsGuestVirtIntrEnabled(pVCpu))
return CPUMINTERRUPTIBILITY_UNRESTRAINED;
/* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
}
return CPUMINTERRUPTIBILITY_INT_DISABLED;
}
/*
* Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
* specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
* However, there is some uncertainity regarding the converse, i.e. whether
* NMI-blocking until IRET blocks delivery of physical interrupts.
*
* See Intel spec. 25.4.1 "Event Blocking".
*/
/** @todo r=bird: The above comment mixes up VMX root-mode and non-root. Section
* 25.4.1 is only applicable to VMX non-root mode. In root mode /
* non-VMX mode, I have not see any evidence in the intel manuals that
* NMIs are not blocked when in an interrupt shadow. Section "6.7
* NONMASKABLE INTERRUPT (NMI)" in SDM 3A seems pretty clear to me.
*/
if (!(pVCpu->cpum.s.Guest.eflags.uBoth & CPUMCTX_INHIBIT_NMI))
return CPUMINTERRUPTIBILITY_INT_INHIBITED;
return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
}
return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
#else
if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
{
if (pVCpu->cpum.s.Guest.hwvirt.fGif)
{
if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
return CPUMINTERRUPTIBILITY_UNRESTRAINED;
/** @todo does blocking NMIs mean interrupts are also inhibited? */
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
{
if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
return CPUMINTERRUPTIBILITY_INT_INHIBITED;
return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
}
AssertFailed();
return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
}
return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
}
else
{
if (pVCpu->cpum.s.Guest.hwvirt.fGif)
{
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
return CPUMINTERRUPTIBILITY_INT_DISABLED;
}
return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
}
#endif
}
/**
* Checks whether the SVM nested-guest has physical interrupts enabled.
*
* @returns true if interrupts are enabled, false otherwise.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param pCtx The guest-CPU context.
*
* @remarks This does -not- take into account the global-interrupt flag.
*/
VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
{
/** @todo Optimization: Avoid this function call and use a pointer to the
* relevant eflags instead (setup during VMRUN instruction emulation). */
Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
X86EFLAGS fEFlags;
if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
else
fEFlags.u = pCtx->eflags.u;
return fEFlags.Bits.u1IF;
}
/**
* Checks whether the SVM nested-guest is in a state to receive virtual (setup
* for injection by VMRUN instruction) interrupts.
*
* @returns VBox status code.
* @retval true if it's ready, false otherwise.
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param pCtx The guest-CPU context.
*/
VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
{
RT_NOREF(pVCpu);
Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.Vmcb.ctrl;
PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
if ( !pVmcbIntCtrl->n.u1IgnoreTPR
&& pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
return false;
return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
}
/**
* Gets the pending SVM nested-guest interruptvector.
*
* @returns The nested-guest interrupt to inject.
* @param pCtx The guest-CPU context.
*/
VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
{
return pCtx->hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VIntrVector;
}
/**
* Restores the host-state from the host-state save area as part of a \#VMEXIT.
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param pCtx The guest-CPU context.
*/
VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx)
{
/*
* Reload the guest's "host state".
*/
PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
pCtx->es = pHostState->es;
pCtx->cs = pHostState->cs;
pCtx->ss = pHostState->ss;
pCtx->ds = pHostState->ds;
pCtx->gdtr = pHostState->gdtr;
pCtx->idtr = pHostState->idtr;
CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
pCtx->cr3 = pHostState->uCr3;
CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
pCtx->rflags.u = pHostState->rflags.u;
pCtx->rflags.Bits.u1VM = 0;
pCtx->rip = pHostState->uRip;
pCtx->rsp = pHostState->uRsp;
pCtx->rax = pHostState->uRax;
pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
pCtx->dr[7] |= X86_DR7_RA1_MASK;
Assert(pCtx->ss.Attr.n.u2Dpl == 0);
/** @todo if RIP is not canonical or outside the CS segment limit, we need to
* raise \#GP(0) in the guest. */
/** @todo check the loaded host-state for consistency. Figure out what
* exactly this involves? */
}
/**
* Saves the host-state to the host-state save area as part of a VMRUN.
*
* @param pCtx The guest-CPU context.
* @param cbInstr The length of the VMRUN instruction in bytes.
*/
VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
{
PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
pHostState->es = pCtx->es;
pHostState->cs = pCtx->cs;
pHostState->ss = pCtx->ss;
pHostState->ds = pCtx->ds;
pHostState->gdtr = pCtx->gdtr;
pHostState->idtr = pCtx->idtr;
pHostState->uEferMsr = pCtx->msrEFER;
pHostState->uCr0 = pCtx->cr0;
pHostState->uCr3 = pCtx->cr3;
pHostState->uCr4 = pCtx->cr4;
pHostState->rflags.u = pCtx->rflags.u;
pHostState->uRip = pCtx->rip + cbInstr;
pHostState->uRsp = pCtx->rsp;
pHostState->uRax = pCtx->rax;
}
/**
* Applies the TSC offset of a nested-guest if any and returns the TSC value for the
* nested-guest.
*
* @returns The TSC offset after applying any nested-guest TSC offset.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param uTscValue The guest TSC.
*
* @sa CPUMRemoveNestedGuestTscOffset.
*/
VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
{
PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
if (CPUMIsGuestInVmxNonRootMode(pCtx))
{
if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
return uTscValue + pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
return uTscValue;
}
if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
{
uint64_t offTsc;
if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
return uTscValue + offTsc;
}
return uTscValue;
}
/**
* Removes the TSC offset of a nested-guest if any and returns the TSC value for the
* guest.
*
* @returns The TSC offset after removing any nested-guest TSC offset.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param uTscValue The nested-guest TSC.
*
* @sa CPUMApplyNestedGuestTscOffset.
*/
VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
{
PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
if (CPUMIsGuestInVmxNonRootMode(pCtx))
{
if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
return uTscValue - pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
return uTscValue;
}
if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
{
uint64_t offTsc;
if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
return uTscValue - offTsc;
}
return uTscValue;
}
/**
* Used to dynamically imports state residing in NEM or HM.
*
* This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure of the calling thread.
* @param fExtrnImport The fields to import.
* @thread EMT(pVCpu)
*/
VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport)
{
VMCPU_ASSERT_EMT(pVCpu);
if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
{
switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
{
case CPUMCTX_EXTRN_KEEPER_NEM:
{
int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
return rc;
}
case CPUMCTX_EXTRN_KEEPER_HM:
{
#ifdef IN_RING0
int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
return rc;
#else
AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
return VINF_SUCCESS;
#endif
}
default:
AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
}
}
return VINF_SUCCESS;
}
/**
* Gets valid CR4 bits for the guest.
*
* @returns Valid CR4 bits.
* @param pVM The cross context VM structure.
*/
VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
{
PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
| X86_CR4_TSD | X86_CR4_DE
| X86_CR4_MCE | X86_CR4_PCE;
if (pGuestFeatures->fPae)
fMask |= X86_CR4_PAE;
if (pGuestFeatures->fPge)
fMask |= X86_CR4_PGE;
if (pGuestFeatures->fPse)
fMask |= X86_CR4_PSE;
if (pGuestFeatures->fFxSaveRstor)
fMask |= X86_CR4_OSFXSR;
if (pGuestFeatures->fVmx)
fMask |= X86_CR4_VMXE;
if (pGuestFeatures->fXSaveRstor)
fMask |= X86_CR4_OSXSAVE;
if (pGuestFeatures->fPcid)
fMask |= X86_CR4_PCIDE;
if (pGuestFeatures->fFsGsBase)
fMask |= X86_CR4_FSGSBASE;
if (pGuestFeatures->fSse)
fMask |= X86_CR4_OSXMMEEXCPT;
return fMask;
}
/**
* Sets the PAE PDPEs for the guest.
*
* @param pVCpu The cross context virtual CPU structure of the calling thread.
* @param paPaePdpes The PAE PDPEs to set.
*/
VMM_INT_DECL(void) CPUMSetGuestPaePdpes(PVMCPU pVCpu, PCX86PDPE paPaePdpes)
{
Assert(paPaePdpes);
for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
pVCpu->cpum.s.Guest.aPaePdpes[i].u = paPaePdpes[i].u;
pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
}
/**
* Gets the PAE PDPTEs for the guest.
*
* @param pVCpu The cross context virtual CPU structure of the calling thread.
* @param paPaePdpes Where to store the PAE PDPEs.
*/
VMM_INT_DECL(void) CPUMGetGuestPaePdpes(PVMCPU pVCpu, PX86PDPE paPaePdpes)
{
Assert(paPaePdpes);
CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
paPaePdpes[i].u = pVCpu->cpum.s.Guest.aPaePdpes[i].u;
}
/**
* Starts a VMX-preemption timer to expire as specified by the nested hypervisor.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure of the calling thread.
* @param uTimer The VMCS preemption timer value.
* @param cShift The VMX-preemption timer shift (usually based on guest
* VMX MSR rate).
* @param pu64EntryTick Where to store the current tick when the timer is
* programmed.
* @thread EMT(pVCpu)
*/
VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick)
{
Assert(uTimer);
Assert(cShift <= 31);
Assert(pu64EntryTick);
VMCPU_ASSERT_EMT(pVCpu);
uint64_t const cTicksToNext = uTimer << cShift;
return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick);
}
/**
* Stops the VMX-preemption timer from firing.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure of the calling thread.
* @thread EMT.
*
* @remarks This can be called during VM reset, so we cannot assume it will be on
* the EMT corresponding to @c pVCpu.
*/
VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu)
{
/*
* CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted().
* However, we still get called during CPUMR3Init() and hence we need to check if we have
* a valid timer object before trying to stop it.
*/
int rc;
TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer;
if (hTimer != NIL_TMTIMERHANDLE)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
rc = TMTimerLock(pVM, hTimer, VERR_IGNORED);
if (rc == VINF_SUCCESS)
{
if (TMTimerIsActive(pVM, hTimer))
TMTimerStop(pVM, hTimer);
TMTimerUnlock(pVM, hTimer);
}
}
else
rc = VERR_NOT_FOUND;
return rc;
}
/**
* Gets the read and write permission bits for an MSR in an MSR bitmap.
*
* @returns VMXMSRPM_XXX - the MSR permission.
* @param pvMsrBitmap Pointer to the MSR bitmap.
* @param idMsr The MSR to get permissions for.
*
* @sa hmR0VmxSetMsrPermission.
*/
VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr)
{
AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
/*
* MSR Layout:
* Byte index MSR range Interpreted as
* 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
* 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
* 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
* 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
*
* A bit corresponding to an MSR within the above range causes a VM-exit
* if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
* the MSR range, it always cause a VM-exit.
*
* See Intel spec. 24.6.9 "MSR-Bitmap Address".
*/
uint32_t const offBitmapRead = 0;
uint32_t const offBitmapWrite = 0x800;
uint32_t offMsr;
uint32_t iBit;
if (idMsr <= UINT32_C(0x00001fff))
{
offMsr = 0;
iBit = idMsr;
}
else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
{
offMsr = 0x400;
iBit = idMsr - UINT32_C(0xc0000000);
}
else
{
LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr));
return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR;
}
/*
* Get the MSR read permissions.
*/
uint32_t fRet;
uint32_t const offMsrRead = offBitmapRead + offMsr;
Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
if (ASMBitTest(pbMsrBitmap, (offMsrRead << 3) + iBit))
fRet = VMXMSRPM_EXIT_RD;
else
fRet = VMXMSRPM_ALLOW_RD;
/*
* Get the MSR write permissions.
*/
uint32_t const offMsrWrite = offBitmapWrite + offMsr;
Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
if (ASMBitTest(pbMsrBitmap, (offMsrWrite << 3) + iBit))
fRet |= VMXMSRPM_EXIT_WR;
else
fRet |= VMXMSRPM_ALLOW_WR;
Assert(VMXMSRPM_IS_FLAG_VALID(fRet));
return fRet;
}
/**
* Checks the permission bits for the specified I/O port from the given I/O bitmap
* to see if causes a VM-exit.
*
* @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise.
* @param pbIoBitmap Pointer to I/O bitmap.
* @param uPort The I/O port being accessed.
* @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes).
*/
static bool cpumGetVmxIoBitmapPermission(uint8_t const *pbIoBitmap, uint16_t uPort, uint8_t cbAccess)
{
Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
/*
* If the I/O port access wraps around the 16-bit port I/O space, we must cause a
* VM-exit.
*
* Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not
* constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes
* from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any
* access to -both- ports 0xffff and port 0 is a wrap around.
*
* See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
*/
uint32_t const uPortLast = uPort + cbAccess;
if (uPortLast > 0x10000)
return true;
/*
* If any bit corresponding to the I/O access is set, we must cause a VM-exit.
*/
uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */
uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */
Assert(idxPermBit < 8);
static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */
uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */
/* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */
RTUINT16U uPerm;
uPerm.s.Lo = pbIoBitmap[offPerm];
if (idxPermBit + cbAccess > 8)
uPerm.s.Hi = pbIoBitmap[offPerm + 1];
else
uPerm.s.Hi = 0;
/* If any bit for the access is 1, we must cause a VM-exit. */
if (uPerm.u & fMask)
return true;
return false;
}
/**
* Returns whether the given VMCS field is valid and supported for the guest.
*
* @param pVM The cross context VM structure.
* @param u64VmcsField The VMCS field.
*
* @remarks This takes into account the CPU features exposed to the guest.
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField)
{
uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField);
uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField);
if (!uFieldEncHi)
{ /* likely */ }
else
return false;
PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures;
switch (uFieldEncLo)
{
/*
* 16-bit fields.
*/
/* Control fields. */
case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
/* Guest-state fields. */
case VMX_VMCS16_GUEST_ES_SEL:
case VMX_VMCS16_GUEST_CS_SEL:
case VMX_VMCS16_GUEST_SS_SEL:
case VMX_VMCS16_GUEST_DS_SEL:
case VMX_VMCS16_GUEST_FS_SEL:
case VMX_VMCS16_GUEST_GS_SEL:
case VMX_VMCS16_GUEST_LDTR_SEL:
case VMX_VMCS16_GUEST_TR_SEL: return true;
case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
/* Host-state fields. */
case VMX_VMCS16_HOST_ES_SEL:
case VMX_VMCS16_HOST_CS_SEL:
case VMX_VMCS16_HOST_SS_SEL:
case VMX_VMCS16_HOST_DS_SEL:
case VMX_VMCS16_HOST_FS_SEL:
case VMX_VMCS16_HOST_GS_SEL:
case VMX_VMCS16_HOST_TR_SEL: return true;
/*
* 64-bit fields.
*/
/* Control fields. */
case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
case VMX_VMCS64_CTRL_EPTP_FULL:
case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
{
PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0];
uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc;
return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
}
case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL:
case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
case VMX_VMCS64_CTRL_PROC_EXEC3_FULL:
case VMX_VMCS64_CTRL_PROC_EXEC3_HIGH: return pFeat->fVmxTertiaryExecCtls;
/* Read-only data fields. */
case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
/* Guest-state fields. */
case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
case VMX_VMCS64_GUEST_PAT_FULL:
case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
case VMX_VMCS64_GUEST_EFER_FULL:
case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
case VMX_VMCS64_GUEST_PDPTE0_FULL:
case VMX_VMCS64_GUEST_PDPTE0_HIGH:
case VMX_VMCS64_GUEST_PDPTE1_FULL:
case VMX_VMCS64_GUEST_PDPTE1_HIGH:
case VMX_VMCS64_GUEST_PDPTE2_FULL:
case VMX_VMCS64_GUEST_PDPTE2_HIGH:
case VMX_VMCS64_GUEST_PDPTE3_FULL:
case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
/* Host-state fields. */
case VMX_VMCS64_HOST_PAT_FULL:
case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
case VMX_VMCS64_HOST_EFER_FULL:
case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
/*
* 32-bit fields.
*/
/* Control fields. */
case VMX_VMCS32_CTRL_PIN_EXEC:
case VMX_VMCS32_CTRL_PROC_EXEC:
case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
case VMX_VMCS32_CTRL_EXIT:
case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
case VMX_VMCS32_CTRL_ENTRY:
case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
case VMX_VMCS32_CTRL_PLE_GAP:
case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
/* Read-only data fields. */
case VMX_VMCS32_RO_VM_INSTR_ERROR:
case VMX_VMCS32_RO_EXIT_REASON:
case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
case VMX_VMCS32_RO_IDT_VECTORING_INFO:
case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
/* Guest-state fields. */
case VMX_VMCS32_GUEST_ES_LIMIT:
case VMX_VMCS32_GUEST_CS_LIMIT:
case VMX_VMCS32_GUEST_SS_LIMIT:
case VMX_VMCS32_GUEST_DS_LIMIT:
case VMX_VMCS32_GUEST_FS_LIMIT:
case VMX_VMCS32_GUEST_GS_LIMIT:
case VMX_VMCS32_GUEST_LDTR_LIMIT:
case VMX_VMCS32_GUEST_TR_LIMIT:
case VMX_VMCS32_GUEST_GDTR_LIMIT:
case VMX_VMCS32_GUEST_IDTR_LIMIT:
case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
case VMX_VMCS32_GUEST_INT_STATE:
case VMX_VMCS32_GUEST_ACTIVITY_STATE:
case VMX_VMCS32_GUEST_SMBASE:
case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
/* Host-state fields. */
case VMX_VMCS32_HOST_SYSENTER_CS: return true;
/*
* Natural-width fields.
*/
/* Control fields. */
case VMX_VMCS_CTRL_CR0_MASK:
case VMX_VMCS_CTRL_CR4_MASK:
case VMX_VMCS_CTRL_CR0_READ_SHADOW:
case VMX_VMCS_CTRL_CR4_READ_SHADOW:
case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
/* Read-only data fields. */
case VMX_VMCS_RO_EXIT_QUALIFICATION:
case VMX_VMCS_RO_IO_RCX:
case VMX_VMCS_RO_IO_RSI:
case VMX_VMCS_RO_IO_RDI:
case VMX_VMCS_RO_IO_RIP:
case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
/* Guest-state fields. */
case VMX_VMCS_GUEST_CR0:
case VMX_VMCS_GUEST_CR3:
case VMX_VMCS_GUEST_CR4:
case VMX_VMCS_GUEST_ES_BASE:
case VMX_VMCS_GUEST_CS_BASE:
case VMX_VMCS_GUEST_SS_BASE:
case VMX_VMCS_GUEST_DS_BASE:
case VMX_VMCS_GUEST_FS_BASE:
case VMX_VMCS_GUEST_GS_BASE:
case VMX_VMCS_GUEST_LDTR_BASE:
case VMX_VMCS_GUEST_TR_BASE:
case VMX_VMCS_GUEST_GDTR_BASE:
case VMX_VMCS_GUEST_IDTR_BASE:
case VMX_VMCS_GUEST_DR7:
case VMX_VMCS_GUEST_RSP:
case VMX_VMCS_GUEST_RIP:
case VMX_VMCS_GUEST_RFLAGS:
case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
case VMX_VMCS_GUEST_SYSENTER_ESP:
case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
/* Host-state fields. */
case VMX_VMCS_HOST_CR0:
case VMX_VMCS_HOST_CR3:
case VMX_VMCS_HOST_CR4:
case VMX_VMCS_HOST_FS_BASE:
case VMX_VMCS_HOST_GS_BASE:
case VMX_VMCS_HOST_TR_BASE:
case VMX_VMCS_HOST_GDTR_BASE:
case VMX_VMCS_HOST_IDTR_BASE:
case VMX_VMCS_HOST_SYSENTER_ESP:
case VMX_VMCS_HOST_SYSENTER_EIP:
case VMX_VMCS_HOST_RSP:
case VMX_VMCS_HOST_RIP: return true;
}
return false;
}
/**
* Checks whether the given I/O access should cause a nested-guest VM-exit.
*
* @returns @c true if it causes a VM-exit, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param u16Port The I/O port being accessed.
* @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
{
PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT))
return true;
if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS))
return cpumGetVmxIoBitmapPermission(pCtx->hwvirt.vmx.abIoBitmap, u16Port, cbAccess);
return false;
}
/**
* Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit.
*
* @returns @c true if it causes a VM-exit, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* @param uNewCr3 The CR3 value being written.
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3)
{
/*
* If the CR3-load exiting control is set and the new CR3 value does not
* match any of the CR3-target values in the VMCS, we must cause a VM-exit.
*
* See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
*/
PCCPUMCTX const pCtx = &pVCpu->cpum.s.Guest;
if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT))
{
uint32_t const uCr3TargetCount = pCtx->hwvirt.vmx.Vmcs.u32Cr3TargetCount;
Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
/* If the CR3-target count is 0, cause a VM-exit. */
if (uCr3TargetCount == 0)
return true;
/* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */
AssertCompile(VMX_V_CR3_TARGET_COUNT == 4);
if ( uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target0.u
&& uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target1.u
&& uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target2.u
&& uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target3.u)
return true;
}
return false;
}
/**
* Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a
* VM-exit or not.
*
* @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure.
* @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
* VMX_EXIT_VMREAD).
* @param u64VmcsField The VMCS field.
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField)
{
Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest));
Assert( uExitReason == VMX_EXIT_VMREAD
|| uExitReason == VMX_EXIT_VMWRITE);
/*
* Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted.
*/
if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING))
return true;
/*
* If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE
* is intercepted. This excludes any reserved bits in the valid parts of the field
* encoding (i.e. bit 12).
*/
if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK)
return true;
/*
* Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not.
*/
uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField);
uint8_t const * const pbBitmap = uExitReason == VMX_EXIT_VMREAD
? &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmreadBitmap[0]
: &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmwriteBitmap[0];
Assert(pbBitmap);
Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
return ASMBitTest(pbBitmap, (u32VmcsField << 3) + (u32VmcsField & 7));
}
/**
* Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
*
* @param pvIoBitmap Pointer to the nested-guest IO bitmap.
* @param u16Port The IO port being accessed.
* @param enmIoType The type of IO access.
* @param cbReg The IO operand size in bytes.
* @param cAddrSizeBits The address size bits (for 16, 32 or 64).
* @param iEffSeg The effective segment number.
* @param fRep Whether this is a repeating IO instruction (REP prefix).
* @param fStrIo Whether this is a string IO instruction.
* @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
* Optional, can be NULL.
*/
VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
PSVMIOIOEXITINFO pIoExitInfo)
{
Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
/*
* The IOPM layout:
* Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
* two 4K pages.
*
* For IO instructions that access more than a single byte, the permission bits
* for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
*
* Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
* we need 3 extra bits beyond the second 4K page.
*/
static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
uint16_t const offIopm = u16Port >> 3;
uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
uint8_t const cShift = u16Port - (offIopm << 3);
uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
Assert(pbIopm);
pbIopm += offIopm;
uint16_t const u16Iopm = *(uint16_t *)pbIopm;
if (u16Iopm & fIopmMask)
{
if (pIoExitInfo)
{
static const uint32_t s_auIoOpSize[] =
{ SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
static const uint32_t s_auIoAddrSize[] =
{ 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
pIoExitInfo->n.u1Str = fStrIo;
pIoExitInfo->n.u1Rep = fRep;
pIoExitInfo->n.u3Seg = iEffSeg & 7;
pIoExitInfo->n.u1Type = enmIoType;
pIoExitInfo->n.u16Port = u16Port;
}
return true;
}
/** @todo remove later (for debugging as VirtualBox always traps all IO
* intercepts). */
AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
return false;
}
/**
* Gets the MSR permission bitmap byte and bit offset for the specified MSR.
*
* @returns VBox status code.
* @param idMsr The MSR being requested.
* @param pbOffMsrpm Where to store the byte offset in the MSR permission
* bitmap for @a idMsr.
* @param puMsrpmBit Where to store the bit offset starting at the byte
* returned in @a pbOffMsrpm.
*/
VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
{
Assert(pbOffMsrpm);
Assert(puMsrpmBit);
/*
* MSRPM Layout:
* Byte offset MSR range
* 0x000 - 0x7ff 0x00000000 - 0x00001fff
* 0x800 - 0xfff 0xc0000000 - 0xc0001fff
* 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
* 0x1800 - 0x1fff Reserved
*
* Each MSR is represented by 2 permission bits (read and write).
*/
if (idMsr <= 0x00001fff)
{
/* Pentium-compatible MSRs. */
uint32_t const bitoffMsr = idMsr << 1;
*pbOffMsrpm = bitoffMsr >> 3;
*puMsrpmBit = bitoffMsr & 7;
return VINF_SUCCESS;
}
if ( idMsr >= 0xc0000000
&& idMsr <= 0xc0001fff)
{
/* AMD Sixth Generation x86 Processor MSRs. */
uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
*pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
*puMsrpmBit = bitoffMsr & 7;
return VINF_SUCCESS;
}
if ( idMsr >= 0xc0010000
&& idMsr <= 0xc0011fff)
{
/* AMD Seventh and Eighth Generation Processor MSRs. */
uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
*pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
*puMsrpmBit = bitoffMsr & 7;
return VINF_SUCCESS;
}
*pbOffMsrpm = 0;
*puMsrpmBit = 0;
return VERR_OUT_OF_RANGE;
}
/**
* Checks whether the guest is in VMX non-root mode and using EPT paging.
*
* @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxEptPagingEnabled(PCVMCPUCC pVCpu)
{
return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest);
}
/**
* Checks whether the guest is in VMX non-root mode and using EPT paging and the
* nested-guest is in PAE mode.
*
* @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(bool) CPUMIsGuestVmxEptPaePagingEnabled(PCVMCPUCC pVCpu)
{
return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest)
&& CPUMIsGuestInPAEModeEx(&pVCpu->cpum.s.Guest);
}
/**
* Returns the guest-physical address of the APIC-access page when executing a
* nested-guest.
*
* @returns The APIC-access page guest-physical address.
* @param pVCpu The cross context virtual CPU structure.
*/
VMM_INT_DECL(uint64_t) CPUMGetGuestVmxApicAccessPageAddr(PCVMCPUCC pVCpu)
{
return CPUMGetGuestVmxApicAccessPageAddrEx(&pVCpu->cpum.s.Guest);
}
|