1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/* $Id: PDMAllNetShaper.cpp $ */
/** @file
* PDM Network Shaper - Limit network traffic according to bandwidth group settings.
*/
/*
* Copyright (C) 2011-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_NET_SHAPER
#include <VBox/vmm/pdmnetshaper.h>
#include "PDMInternal.h"
#include <VBox/vmm/vmcc.h>
#include <VBox/log.h>
#include <iprt/time.h>
#include <iprt/asm-math.h>
/**
* Obtain bandwidth in a bandwidth group.
*
* @returns True if bandwidth was allocated, false if not.
* @param pVM The cross context VM structure.
* @param pFilter Pointer to the filter that allocates bandwidth.
* @param cbTransfer Number of bytes to allocate.
*/
VMM_INT_DECL(bool) PDMNetShaperAllocateBandwidth(PVMCC pVM, PPDMNSFILTER pFilter, size_t cbTransfer)
{
AssertPtrReturn(pFilter, true);
/*
* If we haven't got a valid bandwidth group, we always allow the traffic.
*/
bool fAllowed = true;
uint32_t iGroup = ASMAtomicUoReadU32(&pFilter->iGroup);
if (iGroup != 0)
{
if (iGroup <= RT_MIN(pVM->pdm.s.cNsGroups, RT_ELEMENTS(pVM->pdm.s.aNsGroups)))
{
PPDMNSBWGROUP pGroup = &pVM->pdm.s.aNsGroups[iGroup - 1];
int rc = PDMCritSectEnter(pVM, &pGroup->Lock, VINF_TRY_AGAIN);
if (rc == VINF_SUCCESS)
{
uint64_t const cbPerSecMax = pGroup->cbPerSecMax;
if (cbPerSecMax > 0)
{
/*
* Re-fill the bucket first
*
* Note! We limit the cTokensAdded calculation to 1 second, since it's really
* pointless to calculate much beyond PDM_NETSHAPER_MAX_LATENCY (100ms)
* let alone 1 sec. This makes it possible to use ASMMultU64ByU32DivByU32
* as the cNsDelta is less than 30 bits wide now, which means we don't get
* into overflow issues when multiplying two 64-bit values.
*/
uint64_t const nsNow = RTTimeSystemNanoTS();
uint64_t const cNsDelta = nsNow - pGroup->tsUpdatedLast;
uint64_t const cTokensAdded = cNsDelta < RT_NS_1SEC
? ASMMultU64ByU32DivByU32(cbPerSecMax, (uint32_t)cNsDelta, RT_NS_1SEC)
: cbPerSecMax;
uint32_t const cbBucket = pGroup->cbBucket;
uint32_t const cbTokensLast = pGroup->cbTokensLast;
uint32_t const cTokens = (uint32_t)RT_MIN(cbBucket, cTokensAdded + cbTokensLast);
/*
* Allowed?
*/
if (cbTransfer <= cTokens)
{
pGroup->cbTokensLast = cTokens - (uint32_t)cbTransfer;
pGroup->tsUpdatedLast = nsNow;
Log2(("pdmNsAllocateBandwidth/%s: allowed - cbTransfer=%#zx cTokens=%#x cTokensAdded=%#x\n",
pGroup->szName, cbTransfer, cTokens, cTokensAdded));
}
else
{
/*
* No, we're choked. Arm the unchoke timer for the next period.
* Just do this on a simple PDM_NETSHAPER_MAX_LATENCY clock granularity.
* ASSUMES the timer uses millisecond resolution clock.
*/
ASMAtomicWriteBool(&pFilter->fChoked, true);
if (ASMAtomicCmpXchgBool(&pVM->pdm.s.fNsUnchokeTimerArmed, true, false))
{
Assert(TMTimerGetFreq(pVM, pVM->pdm.s.hNsUnchokeTimer) == RT_MS_1SEC);
uint64_t const msNow = TMTimerGet(pVM, pVM->pdm.s.hNsUnchokeTimer);
uint64_t const msExpire = (msNow / PDM_NETSHAPER_MAX_LATENCY + 1) * PDM_NETSHAPER_MAX_LATENCY;
rc = TMTimerSet(pVM, pVM->pdm.s.hNsUnchokeTimer, msExpire);
AssertRC(rc);
Log2(("pdmNsAllocateBandwidth/%s: refused - cbTransfer=%#zx cTokens=%#x cTokensAdded=%#x cMsExpire=%u\n",
pGroup->szName, cbTransfer, cTokens, cTokensAdded, msExpire - msNow));
}
else
Log2(("pdmNsAllocateBandwidth/%s: refused - cbTransfer=%#zx cTokens=%#x cTokensAdded=%#x\n",
pGroup->szName, cbTransfer, cTokens, cTokensAdded));
ASMAtomicIncU64(&pGroup->cTotalChokings);
fAllowed = false;
}
}
else
Log2(("pdmNsAllocateBandwidth/%s: disabled\n", pGroup->szName));
rc = PDMCritSectLeave(pVM, &pGroup->Lock);
AssertRCSuccess(rc);
}
else if (rc == VINF_TRY_AGAIN) /* (accounted for by the critsect stats) */
Log2(("pdmNsAllocateBandwidth/%s: allowed - lock contention\n", pGroup->szName));
else
PDM_CRITSECT_RELEASE_ASSERT_RC(pVM, &pGroup->Lock, rc);
}
else
AssertMsgFailed(("Invalid iGroup=%d\n", iGroup));
}
return fAllowed;
}
|