1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
/* $Id: PGMAllShw.h $ */
/** @file
* VBox - Page Manager, Shadow Paging Template - All context code.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
#undef SHWUINT
#undef SHWPT
#undef PSHWPT
#undef SHWPTE
#undef PSHWPTE
#undef SHWPD
#undef PSHWPD
#undef SHWPDE
#undef PSHWPDE
#undef SHW_PDE_PG_MASK
#undef SHW_PD_SHIFT
#undef SHW_PD_MASK
#undef SHW_PDE_ATOMIC_SET
#undef SHW_PDE_ATOMIC_SET2
#undef SHW_PDE_IS_P
#undef SHW_PDE_IS_A
#undef SHW_PDE_IS_BIG
#undef SHW_PTE_PG_MASK
#undef SHW_PTE_IS_P
#undef SHW_PTE_IS_RW
#undef SHW_PTE_IS_US
#undef SHW_PTE_IS_A
#undef SHW_PTE_IS_D
#undef SHW_PTE_IS_P_RW
#undef SHW_PTE_IS_TRACK_DIRTY
#undef SHW_PTE_GET_HCPHYS
#undef SHW_PTE_GET_U
#undef SHW_PTE_LOG64
#undef SHW_PTE_SET
#undef SHW_PTE_ATOMIC_SET
#undef SHW_PTE_ATOMIC_SET2
#undef SHW_PTE_SET_RO
#undef SHW_PTE_SET_RW
#undef SHW_PT_SHIFT
#undef SHW_PT_MASK
#undef SHW_TOTAL_PD_ENTRIES
#undef SHW_PDPT_SHIFT
#undef SHW_PDPT_MASK
#undef SHW_PDPE_PG_MASK
#if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT
# define SHWUINT uint32_t
# define SHWPT X86PT
# define PSHWPT PX86PT
# define SHWPTE X86PTE
# define PSHWPTE PX86PTE
# define SHWPD X86PD
# define PSHWPD PX86PD
# define SHWPDE X86PDE
# define PSHWPDE PX86PDE
# define SHW_PDE_PG_MASK X86_PDE_PG_MASK
# define SHW_PD_SHIFT X86_PD_SHIFT
# define SHW_PD_MASK X86_PD_MASK
# define SHW_TOTAL_PD_ENTRIES X86_PG_ENTRIES
# define SHW_PDE_IS_P(Pde) ( (Pde).u & X86_PDE_P )
# define SHW_PDE_IS_A(Pde) ( (Pde).u & X86_PDE_A )
# define SHW_PDE_IS_BIG(Pde) ( (Pde).u & X86_PDE_PS )
# define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU32(&(Pde).u, (uNew)); } while (0)
# define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU32(&(Pde).u, (Pde2).u); } while (0)
# define SHW_PTE_PG_MASK X86_PTE_PG_MASK
# define SHW_PTE_IS_P(Pte) ( (Pte).u & X86_PTE_P )
# define SHW_PTE_IS_RW(Pte) ( (Pte).u & X86_PTE_RW )
# define SHW_PTE_IS_US(Pte) ( (Pte).u & X86_PTE_US )
# define SHW_PTE_IS_A(Pte) ( (Pte).u & X86_PTE_A )
# define SHW_PTE_IS_D(Pte) ( (Pte).u & X86_PTE_D )
# define SHW_PTE_IS_P_RW(Pte) ( ((Pte).u & (X86_PTE_P | X86_PTE_RW)) == (X86_PTE_P | X86_PTE_RW) )
# define SHW_PTE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) )
# define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK )
# define SHW_PTE_LOG64(Pte) ( (uint64_t)(Pte).u )
# define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU32(&(Pte).u, (uNew)); } while (0)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU32(&(Pte).u, (Pte2).u); } while (0)
# define SHW_PTE_SET_RO(Pte) do { (Pte).u &= ~(X86PGUINT)X86_PTE_RW; } while (0)
# define SHW_PTE_SET_RW(Pte) do { (Pte).u |= X86_PTE_RW; } while (0)
# define SHW_PT_SHIFT X86_PT_SHIFT
# define SHW_PT_MASK X86_PT_MASK
#elif PGM_SHW_TYPE == PGM_TYPE_EPT
# define SHWUINT uint64_t
# define SHWPT EPTPT
# define PSHWPT PEPTPT
# define SHWPTE EPTPTE
# define PSHWPTE PEPTPTE
# define SHWPD EPTPD
# define PSHWPD PEPTPD
# define SHWPDE EPTPDE
# define PSHWPDE PEPTPDE
# define SHW_PDE_PG_MASK EPT_PDE_PG_MASK
# define SHW_PD_SHIFT EPT_PD_SHIFT
# define SHW_PD_MASK EPT_PD_MASK
# define SHW_PDE_IS_P(Pde) ( (Pde).u & EPT_E_READ /* always set*/ )
# define SHW_PDE_IS_A(Pde) ( 1 ) /* We don't use EPT_E_ACCESSED, use with care! */
# define SHW_PDE_IS_BIG(Pde) ( (Pde).u & EPT_E_LEAF )
# define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU64(&(Pde).u, (uNew)); } while (0)
# define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU64(&(Pde).u, (Pde2).u); } while (0)
# define SHW_PTE_PG_MASK EPT_PTE_PG_MASK
# define SHW_PTE_IS_P(Pte) ( (Pte).u & EPT_E_READ ) /* Approximation, works for us. */
# define SHW_PTE_IS_RW(Pte) ( (Pte).u & EPT_E_WRITE )
# define SHW_PTE_IS_US(Pte) ( true )
# define SHW_PTE_IS_A(Pte) ( true )
# define SHW_PTE_IS_D(Pte) ( true )
# define SHW_PTE_IS_P_RW(Pte) ( ((Pte).u & (EPT_E_READ | EPT_E_WRITE)) == (EPT_E_READ | EPT_E_WRITE) )
# define SHW_PTE_IS_TRACK_DIRTY(Pte) ( false )
# define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & EPT_PTE_PG_MASK )
# define SHW_PTE_LOG64(Pte) ( (Pte).u )
# define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU64(&(Pte).u, (uNew)); } while (0)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0)
# define SHW_PTE_SET_RO(Pte) do { (Pte).u &= ~(uint64_t)EPT_E_WRITE; } while (0)
# define SHW_PTE_SET_RW(Pte) do { (Pte).u |= EPT_E_WRITE; } while (0)
# define SHW_PT_SHIFT EPT_PT_SHIFT
# define SHW_PT_MASK EPT_PT_MASK
# define SHW_PDPT_SHIFT EPT_PDPT_SHIFT
# define SHW_PDPT_MASK EPT_PDPT_MASK
# define SHW_PDPE_PG_MASK EPT_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (EPT_PG_AMD64_ENTRIES * EPT_PG_AMD64_PDPE_ENTRIES)
#else
# define SHWUINT uint64_t
# define SHWPT PGMSHWPTPAE
# define PSHWPT PPGMSHWPTPAE
# define SHWPTE PGMSHWPTEPAE
# define PSHWPTE PPGMSHWPTEPAE
# define SHWPD X86PDPAE
# define PSHWPD PX86PDPAE
# define SHWPDE X86PDEPAE
# define PSHWPDE PX86PDEPAE
# define SHW_PDE_PG_MASK X86_PDE_PAE_PG_MASK
# define SHW_PD_SHIFT X86_PD_PAE_SHIFT
# define SHW_PD_MASK X86_PD_PAE_MASK
# define SHW_PDE_IS_P(Pde) ( (Pde).u & X86_PDE_P )
# define SHW_PDE_IS_A(Pde) ( (Pde).u & X86_PDE_A )
# define SHW_PDE_IS_BIG(Pde) ( (Pde).u & X86_PDE_PS )
# define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU64(&(Pde).u, (uNew)); } while (0)
# define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU64(&(Pde).u, (Pde2).u); } while (0)
# define SHW_PTE_PG_MASK X86_PTE_PAE_PG_MASK
# define SHW_PTE_IS_P(Pte) PGMSHWPTEPAE_IS_P(Pte)
# define SHW_PTE_IS_RW(Pte) PGMSHWPTEPAE_IS_RW(Pte)
# define SHW_PTE_IS_US(Pte) PGMSHWPTEPAE_IS_US(Pte)
# define SHW_PTE_IS_A(Pte) PGMSHWPTEPAE_IS_A(Pte)
# define SHW_PTE_IS_D(Pte) PGMSHWPTEPAE_IS_D(Pte)
# define SHW_PTE_IS_P_RW(Pte) PGMSHWPTEPAE_IS_P_RW(Pte)
# define SHW_PTE_IS_TRACK_DIRTY(Pte) PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte)
# define SHW_PTE_GET_HCPHYS(Pte) PGMSHWPTEPAE_GET_HCPHYS(Pte)
# define SHW_PTE_LOG64(Pte) PGMSHWPTEPAE_GET_LOG(Pte)
# define SHW_PTE_GET_U(Pte) PGMSHWPTEPAE_GET_U(Pte) /**< Use with care. */
# define SHW_PTE_SET(Pte, uNew) PGMSHWPTEPAE_SET(Pte, uNew)
# define SHW_PTE_ATOMIC_SET(Pte, uNew) PGMSHWPTEPAE_ATOMIC_SET(Pte, uNew)
# define SHW_PTE_ATOMIC_SET2(Pte, Pte2) PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2)
# define SHW_PTE_SET_RO(Pte) PGMSHWPTEPAE_SET_RO(Pte)
# define SHW_PTE_SET_RW(Pte) PGMSHWPTEPAE_SET_RW(Pte)
# define SHW_PT_SHIFT X86_PT_PAE_SHIFT
# define SHW_PT_MASK X86_PT_PAE_MASK
# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 || /* whatever: */ PGM_SHW_TYPE == PGM_TYPE_NONE
# define SHW_PDPT_SHIFT X86_PDPT_SHIFT
# define SHW_PDPT_MASK X86_PDPT_MASK_AMD64
# define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (X86_PG_AMD64_ENTRIES * X86_PG_AMD64_PDPE_ENTRIES)
# elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE
# define SHW_PDPT_SHIFT X86_PDPT_SHIFT
# define SHW_PDPT_MASK X86_PDPT_MASK_PAE
# define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK
# define SHW_TOTAL_PD_ENTRIES (X86_PG_PAE_ENTRIES * X86_PG_PAE_PDPE_ENTRIES)
# else
# error "Misconfigured PGM_SHW_TYPE or something..."
# endif
#endif
#if PGM_SHW_TYPE == PGM_TYPE_NONE && PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
# error "PGM_TYPE_IS_NESTED_OR_EPT is true for PGM_TYPE_NONE!"
#endif
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
RT_C_DECLS_BEGIN
PGM_SHW_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys);
PGM_SHW_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags);
PGM_SHW_DECL(int, Exit)(PVMCPUCC pVCpu);
#ifdef IN_RING3
PGM_SHW_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta);
#endif
RT_C_DECLS_END
/**
* Enters the shadow mode.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
PGM_SHW_DECL(int, Enter)(PVMCPUCC pVCpu)
{
#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
RTGCPHYS GCPhysCR3;
PGMPOOLKIND enmKind;
if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_EPT)
{
GCPhysCR3 = RT_BIT_64(63);
enmKind = PGMPOOLKIND_ROOT_NESTED;
}
else
{
GCPhysCR3 = pVCpu->pgm.s.uEptPtr & EPT_EPTP_PG_MASK;
enmKind = PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4;
}
# else
RTGCPHYS const GCPhysCR3 = RT_BIT_64(63);
PGMPOOLKIND const enmKind = PGMPOOLKIND_ROOT_NESTED;
# endif
PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
Assert(HMIsNestedPagingActive(pVM));
Assert(pVM->pgm.s.fNestedPaging);
Assert(!pVCpu->pgm.s.pShwPageCR3R3);
PGM_LOCK_VOID(pVM);
PPGMPOOLPAGE pNewShwPageCR3;
int rc = pgmPoolAlloc(pVM, GCPhysCR3, enmKind, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu),
NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/,
&pNewShwPageCR3);
AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pVM->pgm.s.CTX_SUFF(pPool), pNewShwPageCR3);
pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pVM->pgm.s.CTX_SUFF(pPool), pNewShwPageCR3);
PGM_UNLOCK(pVM);
Log(("Enter nested shadow paging mode: root %RHv phys %RHp\n", pVCpu->pgm.s.pShwPageCR3R3, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key));
#else
NOREF(pVCpu);
#endif
return VINF_SUCCESS;
}
/**
* Exits the shadow mode.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
PGM_SHW_DECL(int, Exit)(PVMCPUCC pVCpu)
{
#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE)
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3))
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
PGM_LOCK_VOID(pVM);
# if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT
if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT)
pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
# endif
/* Do *not* unlock this page as we have two of them floating around in the 32-bit host & 64-bit guest case.
* We currently assert when you try to free one of them; don't bother to really allow this.
*
* Note that this is two nested paging root pages max. This isn't a leak. They are reused.
*/
/* pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); */
pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX);
pVCpu->pgm.s.pShwPageCR3R3 = 0;
pVCpu->pgm.s.pShwPageCR3R0 = 0;
PGM_UNLOCK(pVM);
Log(("Leave nested shadow paging mode\n"));
}
#else
RT_NOREF_PV(pVCpu);
#endif
return VINF_SUCCESS;
}
/**
* Gets effective page information (from the VMM page directory).
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPtr Guest Context virtual address of the page.
* @param pfFlags Where to store the flags. These are X86_PTE_*.
* @param pHCPhys Where to store the HC physical address of the page.
* This is page aligned.
* @remark You should use PGMMapGetPage() for pages in a mapping.
*/
PGM_SHW_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
{
#if PGM_SHW_TYPE == PGM_TYPE_NONE
RT_NOREF(pVCpu, GCPtr);
AssertFailed();
*pfFlags = 0;
*pHCPhys = NIL_RTHCPHYS;
return VERR_PGM_SHW_NONE_IPE;
#else /* PGM_SHW_TYPE != PGM_TYPE_NONE */
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
PGM_LOCK_ASSERT_OWNER(pVM);
/*
* Get the PDE.
*/
# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64
X86PDEPAE Pde;
/* PML4 */
X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr);
if (!(Pml4e.u & X86_PML4E_P))
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PDPT */
PX86PDPT pPDPT;
int rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT);
if (RT_FAILURE(rc))
return rc;
const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
X86PDPE Pdpe = pPDPT->a[iPDPT];
if (!(Pdpe.u & X86_PDPE_P))
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PD */
PX86PDPAE pPd;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd);
if (RT_FAILURE(rc))
return rc;
const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
Pde = pPd->a[iPd];
/* Merge accessed, write, user and no-execute bits into the PDE. */
AssertCompile(X86_PML4E_A == X86_PDPE_A && X86_PML4E_A == X86_PDE_A);
AssertCompile(X86_PML4E_RW == X86_PDPE_RW && X86_PML4E_RW == X86_PDE_RW);
AssertCompile(X86_PML4E_US == X86_PDPE_US && X86_PML4E_US == X86_PDE_US);
AssertCompile(X86_PML4E_NX == X86_PDPE_LM_NX && X86_PML4E_NX == X86_PDE_PAE_NX);
Pde.u &= (Pml4e.u & Pdpe.u) | ~(X86PGPAEUINT)(X86_PML4E_A | X86_PML4E_RW | X86_PML4E_US);
Pde.u |= (Pml4e.u | Pdpe.u) & X86_PML4E_NX;
# elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE
X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT);
PEPTPD pPDDst;
int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst);
if (rc == VINF_SUCCESS) /** @todo this function isn't expected to return informational status codes. Check callers / fix. */
{ /* likely */ }
else
{
AssertRC(rc);
return rc;
}
Assert(pPDDst);
const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK);
EPTPDE Pde = pPDDst->a[iPd];
# elif PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT
X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr);
# else
# error "Misconfigured PGM_SHW_TYPE or something..."
# endif
if (!SHW_PDE_IS_P(Pde))
return VERR_PAGE_TABLE_NOT_PRESENT;
/* Deal with large pages. */
if (SHW_PDE_IS_BIG(Pde))
{
/*
* Store the results.
* RW and US flags depend on the entire page translation hierarchy - except for
* legacy PAE which has a simplified PDPE.
*/
if (pfFlags)
{
*pfFlags = (Pde.u & ~SHW_PDE_PG_MASK);
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64
if ( (Pde.u & X86_PTE_PAE_NX)
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE)
&& CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */
# endif
)
*pfFlags |= X86_PTE_PAE_NX;
# endif
}
if (pHCPhys)
*pHCPhys = (Pde.u & SHW_PDE_PG_MASK) + (GCPtr & (RT_BIT(SHW_PD_SHIFT) - 1) & X86_PAGE_4K_BASE_MASK);
return VINF_SUCCESS;
}
/*
* Get PT entry.
*/
PSHWPT pPT;
int rc2 = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT);
if (RT_FAILURE(rc2))
return rc2;
const unsigned iPt = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK;
SHWPTE Pte = pPT->a[iPt];
if (!SHW_PTE_IS_P(Pte))
return VERR_PAGE_NOT_PRESENT;
/*
* Store the results.
* RW and US flags depend on the entire page translation hierarchy - except for
* legacy PAE which has a simplified PDPE.
*/
if (pfFlags)
{
*pfFlags = (SHW_PTE_GET_U(Pte) & ~SHW_PTE_PG_MASK)
& ((Pde.u & (X86_PTE_RW | X86_PTE_US)) | ~(uint64_t)(X86_PTE_RW | X86_PTE_US));
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64
/* The NX bit is determined by a bitwise OR between the PT and PD */
if ( ((SHW_PTE_GET_U(Pte) | Pde.u) & X86_PTE_PAE_NX)
# if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE)
&& CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */
# endif
)
*pfFlags |= X86_PTE_PAE_NX;
# endif
}
if (pHCPhys)
*pHCPhys = SHW_PTE_GET_HCPHYS(Pte);
return VINF_SUCCESS;
#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
}
/**
* Modify page flags for a range of pages in the shadow context.
*
* The existing flags are ANDed with the fMask and ORed with the fFlags.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPtr Virtual address of the first page in the range. Page aligned!
* @param cb Size (in bytes) of the range to apply the modification to. Page aligned!
* @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
* @param fMask The AND mask - page flags X86_PTE_*.
* Be extremely CAREFUL with ~'ing values because they can be 32-bit!
* @param fOpFlags A combination of the PGM_MK_PK_XXX flags.
* @remark You must use PGMMapModifyPage() for pages in a mapping.
*/
PGM_SHW_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)
{
#if PGM_SHW_TYPE == PGM_TYPE_NONE
RT_NOREF(pVCpu, GCPtr, cb, fFlags, fMask, fOpFlags);
AssertFailed();
return VERR_PGM_SHW_NONE_IPE;
#else /* PGM_SHW_TYPE != PGM_TYPE_NONE */
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
PGM_LOCK_ASSERT_OWNER(pVM);
/*
* Walk page tables and pages till we're done.
*/
int rc;
for (;;)
{
/*
* Get the PDE.
*/
# if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64
X86PDEPAE Pde;
/* PML4 */
X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr);
if (!(Pml4e.u & X86_PML4E_P))
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PDPT */
PX86PDPT pPDPT;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT);
if (RT_FAILURE(rc))
return rc;
const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK;
X86PDPE Pdpe = pPDPT->a[iPDPT];
if (!(Pdpe.u & X86_PDPE_P))
return VERR_PAGE_TABLE_NOT_PRESENT;
/* PD */
PX86PDPAE pPd;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd);
if (RT_FAILURE(rc))
return rc;
const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK;
Pde = pPd->a[iPd];
# elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE
X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr);
# elif PGM_SHW_TYPE == PGM_TYPE_EPT
Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT);
const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK);
PEPTPD pPDDst;
EPTPDE Pde;
rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst);
if (rc != VINF_SUCCESS)
{
AssertRC(rc);
return rc;
}
Assert(pPDDst);
Pde = pPDDst->a[iPd];
# else /* PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT */
X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr);
# endif
if (!SHW_PDE_IS_P(Pde))
return VERR_PAGE_TABLE_NOT_PRESENT;
AssertFatalMsg(!SHW_PDE_IS_BIG(Pde), ("Pde=%#RX64\n", (uint64_t)Pde.u));
/*
* Map the page table.
*/
PSHWPT pPT;
rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT);
if (RT_FAILURE(rc))
return rc;
unsigned iPTE = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK;
while (iPTE < RT_ELEMENTS(pPT->a))
{
if (SHW_PTE_IS_P(pPT->a[iPTE]))
{
SHWPTE const OrgPte = pPT->a[iPTE];
SHWPTE NewPte;
SHW_PTE_SET(NewPte, (SHW_PTE_GET_U(OrgPte) & (fMask | SHW_PTE_PG_MASK)) | (fFlags & ~SHW_PTE_PG_MASK));
if (!SHW_PTE_IS_P(NewPte))
{
/** @todo Some CSAM code path might end up here and upset
* the page pool. */
AssertMsgFailed(("NewPte=%#RX64 OrgPte=%#RX64 GCPtr=%#RGv\n", SHW_PTE_LOG64(NewPte), SHW_PTE_LOG64(OrgPte), GCPtr));
}
else if ( SHW_PTE_IS_RW(NewPte)
&& !SHW_PTE_IS_RW(OrgPte)
&& !(fOpFlags & PGM_MK_PG_IS_MMIO2) )
{
/** @todo Optimize \#PF handling by caching data. We can
* then use this when PGM_MK_PG_IS_WRITE_FAULT is
* set instead of resolving the guest physical
* address yet again. */
PGMPTWALK GstWalk;
rc = PGMGstGetPage(pVCpu, GCPtr, &GstWalk);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
Assert((GstWalk.fEffective & X86_PTE_RW) || !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP /* allow netware hack */));
PPGMPAGE pPage = pgmPhysGetPage(pVM, GstWalk.GCPhys);
Assert(pPage);
if (pPage)
{
rc = pgmPhysPageMakeWritable(pVM, pPage, GstWalk.GCPhys);
AssertRCReturn(rc, rc);
Log(("%s: pgmPhysPageMakeWritable on %RGv / %RGp %R[pgmpage]\n", __PRETTY_FUNCTION__, GCPtr, GstWalk.GCPhys, pPage));
}
}
}
SHW_PTE_ATOMIC_SET2(pPT->a[iPTE], NewPte);
# if PGM_SHW_TYPE == PGM_TYPE_EPT
HMInvalidatePhysPage(pVM, (RTGCPHYS)GCPtr);
# else
PGM_INVL_PG_ALL_VCPU(pVM, GCPtr);
# endif
}
/* next page */
cb -= HOST_PAGE_SIZE;
if (!cb)
return VINF_SUCCESS;
GCPtr += HOST_PAGE_SIZE;
iPTE++;
}
}
#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */
}
#ifdef IN_RING3
/**
* Relocate any GC pointers related to shadow mode paging.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param offDelta The relocation offset.
*/
PGM_SHW_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta)
{
RT_NOREF(pVCpu, offDelta);
return VINF_SUCCESS;
}
#endif
|