summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h
blob: efd44121c63231537f2c1fdbb635eadd8245c61b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
/* $Id: VMXAllTemplate.cpp.h $ */
/** @file
 * HM VMX (Intel VT-x) - Code template for our own hypervisor and the NEM darwin backend using Apple's Hypervisor.framework.
 */

/*
 * Copyright (C) 2012-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * SPDX-License-Identifier: GPL-3.0-only
 */


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
#if !defined(VMX_VMCS_WRITE_16) || !defined(VMX_VMCS_WRITE_32) || !defined(VMX_VMCS_WRITE_64) || !defined(VMX_VMCS_WRITE_64)
# error "At least one of the VMX_VMCS_WRITE_16, VMX_VMCS_WRITE_32, VMX_VMCS_WRITE_64 or VMX_VMCS_WRITE_64 is missing"
#endif


#if !defined(VMX_VMCS_READ_16) || !defined(VMX_VMCS_READ_32) || !defined(VMX_VMCS_READ_64) || !defined(VMX_VMCS_READ_64)
# error "At least one of the VMX_VMCS_READ_16, VMX_VMCS_READ_32, VMX_VMCS_READ_64 or VMX_VMCS_READ_64 is missing"
#endif

/** Enables condensing of VMREAD instructions, see vmxHCReadToTransient(). */
#define HMVMX_WITH_CONDENSED_VMREADS

/** Use the function table. */
#define HMVMX_USE_FUNCTION_TABLE

/** Determine which tagged-TLB flush handler to use. */
#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID             0
#define HMVMX_FLUSH_TAGGED_TLB_EPT                  1
#define HMVMX_FLUSH_TAGGED_TLB_VPID                 2
#define HMVMX_FLUSH_TAGGED_TLB_NONE                 3

/** Assert that all the given fields have been read from the VMCS. */
#ifdef VBOX_STRICT
# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
        do { \
            uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
            Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
        } while (0)
#else
# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
#endif

/**
 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
 * guest using hardware-assisted VMX.
 *
 * This excludes state like GPRs (other than RSP) which are always are
 * swapped and restored across the world-switch and also registers like EFER,
 * MSR which cannot be modified by the guest without causing a VM-exit.
 */
#define HMVMX_CPUMCTX_EXTRN_ALL      (  CPUMCTX_EXTRN_RIP             \
                                      | CPUMCTX_EXTRN_RFLAGS          \
                                      | CPUMCTX_EXTRN_RSP             \
                                      | CPUMCTX_EXTRN_SREG_MASK       \
                                      | CPUMCTX_EXTRN_TABLE_MASK      \
                                      | CPUMCTX_EXTRN_KERNEL_GS_BASE  \
                                      | CPUMCTX_EXTRN_SYSCALL_MSRS    \
                                      | CPUMCTX_EXTRN_SYSENTER_MSRS   \
                                      | CPUMCTX_EXTRN_TSC_AUX         \
                                      | CPUMCTX_EXTRN_OTHER_MSRS      \
                                      | CPUMCTX_EXTRN_CR0             \
                                      | CPUMCTX_EXTRN_CR3             \
                                      | CPUMCTX_EXTRN_CR4             \
                                      | CPUMCTX_EXTRN_DR7             \
                                      | CPUMCTX_EXTRN_HWVIRT          \
                                      | CPUMCTX_EXTRN_INHIBIT_INT     \
                                      | CPUMCTX_EXTRN_INHIBIT_NMI)

/**
 * Exception bitmap mask for real-mode guests (real-on-v86).
 *
 * We need to intercept all exceptions manually except:
 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
 *   due to bugs in Intel CPUs.
 * - \#PF need not be intercepted even in real-mode if we have nested paging
 * support.
 */
#define HMVMX_REAL_MODE_XCPT_MASK    (  RT_BIT(X86_XCPT_DE)  /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI)   \
                                      | RT_BIT(X86_XCPT_BP)             | RT_BIT(X86_XCPT_OF)    | RT_BIT(X86_XCPT_BR)    \
                                      | RT_BIT(X86_XCPT_UD)             | RT_BIT(X86_XCPT_NM)    | RT_BIT(X86_XCPT_DF)    \
                                      | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS)    | RT_BIT(X86_XCPT_NP)    \
                                      | RT_BIT(X86_XCPT_SS)             | RT_BIT(X86_XCPT_GP)   /* RT_BIT(X86_XCPT_PF) */ \
                                      | RT_BIT(X86_XCPT_MF)  /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC)    \
                                      | RT_BIT(X86_XCPT_XF))

/** Maximum VM-instruction error number. */
#define HMVMX_INSTR_ERROR_MAX        28

/** Profiling macro. */
#ifdef HM_PROFILE_EXIT_DISPATCH
# define HMVMX_START_EXIT_DISPATCH_PROF()           STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed)
# define HMVMX_STOP_EXIT_DISPATCH_PROF()            STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed)
#else
# define HMVMX_START_EXIT_DISPATCH_PROF()           do { } while (0)
# define HMVMX_STOP_EXIT_DISPATCH_PROF()            do { } while (0)
#endif

#ifndef IN_NEM_DARWIN
/** Assert that preemption is disabled or covered by thread-context hooks. */
# define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu)          Assert(   VMMR0ThreadCtxHookIsEnabled((a_pVCpu))   \
                                                            || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))

/** Assert that we haven't migrated CPUs when thread-context hooks are not
 *  used. */
# define HMVMX_ASSERT_CPU_SAFE(a_pVCpu)              AssertMsg(   VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
                                                               || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
                                                               ("Illegal migration! Entered on CPU %u Current %u\n", \
                                                               (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()))
#else
# define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu)          do { } while (0)
# define HMVMX_ASSERT_CPU_SAFE(a_pVCpu)              do { } while (0)
#endif

/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
 *  context. */
#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz)  AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
                                                              ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
                                                              (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))

/** Log the VM-exit reason with an easily visible marker to identify it in a
 *  potential sea of logging data. */
#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
    do { \
        Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
             HMGetVmxExitName(a_uExitReason))); \
    } while (0) \


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * Memory operand read or write access.
 */
typedef enum VMXMEMACCESS
{
    VMXMEMACCESS_READ  = 0,
    VMXMEMACCESS_WRITE = 1
} VMXMEMACCESS;


/**
 * VMX VM-exit handler.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
#ifndef HMVMX_USE_FUNCTION_TABLE
typedef VBOXSTRICTRC               FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
#else
typedef DECLCALLBACKTYPE(VBOXSTRICTRC, FNVMXEXITHANDLER,(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient));
/** Pointer to VM-exit handler. */
typedef FNVMXEXITHANDLER          *PFNVMXEXITHANDLER;
#endif

/**
 * VMX VM-exit handler, non-strict status code.
 *
 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
 *
 * @returns VBox status code, no informational status code returned.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
 *          use of that status code will be replaced with VINF_EM_SOMETHING
 *          later when switching over to IEM.
 */
#ifndef HMVMX_USE_FUNCTION_TABLE
typedef int                        FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
#else
typedef FNVMXEXITHANDLER           FNVMXEXITHANDLERNSRC;
#endif


/*********************************************************************************************************************************
*   Internal Functions                                                                                                           *
*********************************************************************************************************************************/
#ifndef HMVMX_USE_FUNCTION_TABLE
DECLINLINE(VBOXSTRICTRC)           vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
# define HMVMX_EXIT_DECL           DECLINLINE(VBOXSTRICTRC)
# define HMVMX_EXIT_NSRC_DECL      DECLINLINE(int)
#else
# define HMVMX_EXIT_DECL           static DECLCALLBACK(VBOXSTRICTRC)
# define HMVMX_EXIT_NSRC_DECL      HMVMX_EXIT_DECL
#endif
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
DECLINLINE(VBOXSTRICTRC)           vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
#endif

static int vmxHCImportGuestStateEx(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);

/** @name VM-exit handler prototypes.
 * @{
 */
static FNVMXEXITHANDLER            vmxHCExitXcptOrNmi;
static FNVMXEXITHANDLER            vmxHCExitExtInt;
static FNVMXEXITHANDLER            vmxHCExitTripleFault;
static FNVMXEXITHANDLERNSRC        vmxHCExitIntWindow;
static FNVMXEXITHANDLERNSRC        vmxHCExitNmiWindow;
static FNVMXEXITHANDLER            vmxHCExitTaskSwitch;
static FNVMXEXITHANDLER            vmxHCExitCpuid;
static FNVMXEXITHANDLER            vmxHCExitGetsec;
static FNVMXEXITHANDLER            vmxHCExitHlt;
static FNVMXEXITHANDLERNSRC        vmxHCExitInvd;
static FNVMXEXITHANDLER            vmxHCExitInvlpg;
static FNVMXEXITHANDLER            vmxHCExitRdpmc;
static FNVMXEXITHANDLER            vmxHCExitVmcall;
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
static FNVMXEXITHANDLER            vmxHCExitVmclear;
static FNVMXEXITHANDLER            vmxHCExitVmlaunch;
static FNVMXEXITHANDLER            vmxHCExitVmptrld;
static FNVMXEXITHANDLER            vmxHCExitVmptrst;
static FNVMXEXITHANDLER            vmxHCExitVmread;
static FNVMXEXITHANDLER            vmxHCExitVmresume;
static FNVMXEXITHANDLER            vmxHCExitVmwrite;
static FNVMXEXITHANDLER            vmxHCExitVmxoff;
static FNVMXEXITHANDLER            vmxHCExitVmxon;
static FNVMXEXITHANDLER            vmxHCExitInvvpid;
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
static FNVMXEXITHANDLER            vmxHCExitInvept;
# endif
#endif
static FNVMXEXITHANDLER            vmxHCExitRdtsc;
static FNVMXEXITHANDLER            vmxHCExitMovCRx;
static FNVMXEXITHANDLER            vmxHCExitMovDRx;
static FNVMXEXITHANDLER            vmxHCExitIoInstr;
static FNVMXEXITHANDLER            vmxHCExitRdmsr;
static FNVMXEXITHANDLER            vmxHCExitWrmsr;
static FNVMXEXITHANDLER            vmxHCExitMwait;
static FNVMXEXITHANDLER            vmxHCExitMtf;
static FNVMXEXITHANDLER            vmxHCExitMonitor;
static FNVMXEXITHANDLER            vmxHCExitPause;
static FNVMXEXITHANDLERNSRC        vmxHCExitTprBelowThreshold;
static FNVMXEXITHANDLER            vmxHCExitApicAccess;
static FNVMXEXITHANDLER            vmxHCExitEptViolation;
static FNVMXEXITHANDLER            vmxHCExitEptMisconfig;
static FNVMXEXITHANDLER            vmxHCExitRdtscp;
static FNVMXEXITHANDLER            vmxHCExitPreemptTimer;
static FNVMXEXITHANDLERNSRC        vmxHCExitWbinvd;
static FNVMXEXITHANDLER            vmxHCExitXsetbv;
static FNVMXEXITHANDLER            vmxHCExitInvpcid;
#ifndef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
static FNVMXEXITHANDLERNSRC        vmxHCExitSetPendingXcptUD;
#endif
static FNVMXEXITHANDLERNSRC        vmxHCExitErrInvalidGuestState;
static FNVMXEXITHANDLERNSRC        vmxHCExitErrUnexpected;
/** @} */

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/** @name Nested-guest VM-exit handler prototypes.
 * @{
 */
static FNVMXEXITHANDLER            vmxHCExitXcptOrNmiNested;
static FNVMXEXITHANDLER            vmxHCExitTripleFaultNested;
static FNVMXEXITHANDLERNSRC        vmxHCExitIntWindowNested;
static FNVMXEXITHANDLERNSRC        vmxHCExitNmiWindowNested;
static FNVMXEXITHANDLER            vmxHCExitTaskSwitchNested;
static FNVMXEXITHANDLER            vmxHCExitHltNested;
static FNVMXEXITHANDLER            vmxHCExitInvlpgNested;
static FNVMXEXITHANDLER            vmxHCExitRdpmcNested;
static FNVMXEXITHANDLER            vmxHCExitVmreadVmwriteNested;
static FNVMXEXITHANDLER            vmxHCExitRdtscNested;
static FNVMXEXITHANDLER            vmxHCExitMovCRxNested;
static FNVMXEXITHANDLER            vmxHCExitMovDRxNested;
static FNVMXEXITHANDLER            vmxHCExitIoInstrNested;
static FNVMXEXITHANDLER            vmxHCExitRdmsrNested;
static FNVMXEXITHANDLER            vmxHCExitWrmsrNested;
static FNVMXEXITHANDLER            vmxHCExitMwaitNested;
static FNVMXEXITHANDLER            vmxHCExitMtfNested;
static FNVMXEXITHANDLER            vmxHCExitMonitorNested;
static FNVMXEXITHANDLER            vmxHCExitPauseNested;
static FNVMXEXITHANDLERNSRC        vmxHCExitTprBelowThresholdNested;
static FNVMXEXITHANDLER            vmxHCExitApicAccessNested;
static FNVMXEXITHANDLER            vmxHCExitApicWriteNested;
static FNVMXEXITHANDLER            vmxHCExitVirtEoiNested;
static FNVMXEXITHANDLER            vmxHCExitRdtscpNested;
static FNVMXEXITHANDLERNSRC        vmxHCExitWbinvdNested;
static FNVMXEXITHANDLER            vmxHCExitInvpcidNested;
static FNVMXEXITHANDLERNSRC        vmxHCExitErrInvalidGuestStateNested;
static FNVMXEXITHANDLER            vmxHCExitInstrNested;
static FNVMXEXITHANDLER            vmxHCExitInstrWithInfoNested;
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
static FNVMXEXITHANDLER            vmxHCExitEptViolationNested;
static FNVMXEXITHANDLER            vmxHCExitEptMisconfigNested;
# endif
/** @} */
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/*********************************************************************************************************************************
*   Global Variables                                                                                                             *
*********************************************************************************************************************************/
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
 * Array of all VMCS fields.
 * Any fields added to the VT-x spec. should be added here.
 *
 * Currently only used to derive shadow VMCS fields for hardware-assisted execution
 * of nested-guests.
 */
static const uint32_t g_aVmcsFields[] =
{
    /* 16-bit control fields. */
    VMX_VMCS16_VPID,
    VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
    VMX_VMCS16_EPTP_INDEX,
    VMX_VMCS16_HLAT_PREFIX_SIZE,

    /* 16-bit guest-state fields. */
    VMX_VMCS16_GUEST_ES_SEL,
    VMX_VMCS16_GUEST_CS_SEL,
    VMX_VMCS16_GUEST_SS_SEL,
    VMX_VMCS16_GUEST_DS_SEL,
    VMX_VMCS16_GUEST_FS_SEL,
    VMX_VMCS16_GUEST_GS_SEL,
    VMX_VMCS16_GUEST_LDTR_SEL,
    VMX_VMCS16_GUEST_TR_SEL,
    VMX_VMCS16_GUEST_INTR_STATUS,
    VMX_VMCS16_GUEST_PML_INDEX,

    /* 16-bits host-state fields. */
    VMX_VMCS16_HOST_ES_SEL,
    VMX_VMCS16_HOST_CS_SEL,
    VMX_VMCS16_HOST_SS_SEL,
    VMX_VMCS16_HOST_DS_SEL,
    VMX_VMCS16_HOST_FS_SEL,
    VMX_VMCS16_HOST_GS_SEL,
    VMX_VMCS16_HOST_TR_SEL,

    /* 64-bit control fields. */
    VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
    VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
    VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
    VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
    VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
    VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
    VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
    VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
    VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
    VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
    VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
    VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
    VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
    VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
    VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
    VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
    VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
    VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
    VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
    VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
    VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
    VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
    VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
    VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
    VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
    VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
    VMX_VMCS64_CTRL_EPTP_FULL,
    VMX_VMCS64_CTRL_EPTP_HIGH,
    VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
    VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
    VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
    VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
    VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
    VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
    VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
    VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
    VMX_VMCS64_CTRL_EPTP_LIST_FULL,
    VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
    VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
    VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
    VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
    VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
    VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL,
    VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH,
    VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
    VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
    VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
    VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
    VMX_VMCS64_CTRL_SPPTP_FULL,
    VMX_VMCS64_CTRL_SPPTP_HIGH,
    VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
    VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
    VMX_VMCS64_CTRL_PROC_EXEC3_FULL,
    VMX_VMCS64_CTRL_PROC_EXEC3_HIGH,
    VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL,
    VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH,
    VMX_VMCS64_CTRL_PCONFIG_EXITING_BITMAP_FULL,
    VMX_VMCS64_CTRL_PCONFIG_EXITING_BITMAP_HIGH,
    VMX_VMCS64_CTRL_HLAT_PTR_FULL,
    VMX_VMCS64_CTRL_HLAT_PTR_HIGH,
    VMX_VMCS64_CTRL_EXIT2_FULL,
    VMX_VMCS64_CTRL_EXIT2_HIGH,

    /* 64-bit read-only data fields. */
    VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
    VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,

    /* 64-bit guest-state fields. */
    VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
    VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
    VMX_VMCS64_GUEST_DEBUGCTL_FULL,
    VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
    VMX_VMCS64_GUEST_PAT_FULL,
    VMX_VMCS64_GUEST_PAT_HIGH,
    VMX_VMCS64_GUEST_EFER_FULL,
    VMX_VMCS64_GUEST_EFER_HIGH,
    VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
    VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
    VMX_VMCS64_GUEST_PDPTE0_FULL,
    VMX_VMCS64_GUEST_PDPTE0_HIGH,
    VMX_VMCS64_GUEST_PDPTE1_FULL,
    VMX_VMCS64_GUEST_PDPTE1_HIGH,
    VMX_VMCS64_GUEST_PDPTE2_FULL,
    VMX_VMCS64_GUEST_PDPTE2_HIGH,
    VMX_VMCS64_GUEST_PDPTE3_FULL,
    VMX_VMCS64_GUEST_PDPTE3_HIGH,
    VMX_VMCS64_GUEST_BNDCFGS_FULL,
    VMX_VMCS64_GUEST_BNDCFGS_HIGH,
    VMX_VMCS64_GUEST_RTIT_CTL_FULL,
    VMX_VMCS64_GUEST_RTIT_CTL_HIGH,
    VMX_VMCS64_GUEST_PKRS_FULL,
    VMX_VMCS64_GUEST_PKRS_HIGH,

    /* 64-bit host-state fields. */
    VMX_VMCS64_HOST_PAT_FULL,
    VMX_VMCS64_HOST_PAT_HIGH,
    VMX_VMCS64_HOST_EFER_FULL,
    VMX_VMCS64_HOST_EFER_HIGH,
    VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
    VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
    VMX_VMCS64_HOST_PKRS_FULL,
    VMX_VMCS64_HOST_PKRS_HIGH,

    /* 32-bit control fields. */
    VMX_VMCS32_CTRL_PIN_EXEC,
    VMX_VMCS32_CTRL_PROC_EXEC,
    VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
    VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
    VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
    VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
    VMX_VMCS32_CTRL_EXIT,
    VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
    VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
    VMX_VMCS32_CTRL_ENTRY,
    VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
    VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
    VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
    VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
    VMX_VMCS32_CTRL_TPR_THRESHOLD,
    VMX_VMCS32_CTRL_PROC_EXEC2,
    VMX_VMCS32_CTRL_PLE_GAP,
    VMX_VMCS32_CTRL_PLE_WINDOW,

    /* 32-bits read-only fields. */
    VMX_VMCS32_RO_VM_INSTR_ERROR,
    VMX_VMCS32_RO_EXIT_REASON,
    VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
    VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
    VMX_VMCS32_RO_IDT_VECTORING_INFO,
    VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
    VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
    VMX_VMCS32_RO_EXIT_INSTR_INFO,

    /* 32-bit guest-state fields. */
    VMX_VMCS32_GUEST_ES_LIMIT,
    VMX_VMCS32_GUEST_CS_LIMIT,
    VMX_VMCS32_GUEST_SS_LIMIT,
    VMX_VMCS32_GUEST_DS_LIMIT,
    VMX_VMCS32_GUEST_FS_LIMIT,
    VMX_VMCS32_GUEST_GS_LIMIT,
    VMX_VMCS32_GUEST_LDTR_LIMIT,
    VMX_VMCS32_GUEST_TR_LIMIT,
    VMX_VMCS32_GUEST_GDTR_LIMIT,
    VMX_VMCS32_GUEST_IDTR_LIMIT,
    VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
    VMX_VMCS32_GUEST_INT_STATE,
    VMX_VMCS32_GUEST_ACTIVITY_STATE,
    VMX_VMCS32_GUEST_SMBASE,
    VMX_VMCS32_GUEST_SYSENTER_CS,
    VMX_VMCS32_PREEMPT_TIMER_VALUE,

    /* 32-bit host-state fields. */
    VMX_VMCS32_HOST_SYSENTER_CS,

    /* Natural-width control fields. */
    VMX_VMCS_CTRL_CR0_MASK,
    VMX_VMCS_CTRL_CR4_MASK,
    VMX_VMCS_CTRL_CR0_READ_SHADOW,
    VMX_VMCS_CTRL_CR4_READ_SHADOW,
    VMX_VMCS_CTRL_CR3_TARGET_VAL0,
    VMX_VMCS_CTRL_CR3_TARGET_VAL1,
    VMX_VMCS_CTRL_CR3_TARGET_VAL2,
    VMX_VMCS_CTRL_CR3_TARGET_VAL3,

    /* Natural-width read-only data fields. */
    VMX_VMCS_RO_EXIT_QUALIFICATION,
    VMX_VMCS_RO_IO_RCX,
    VMX_VMCS_RO_IO_RSI,
    VMX_VMCS_RO_IO_RDI,
    VMX_VMCS_RO_IO_RIP,
    VMX_VMCS_RO_GUEST_LINEAR_ADDR,

    /* Natural-width guest-state field */
    VMX_VMCS_GUEST_CR0,
    VMX_VMCS_GUEST_CR3,
    VMX_VMCS_GUEST_CR4,
    VMX_VMCS_GUEST_ES_BASE,
    VMX_VMCS_GUEST_CS_BASE,
    VMX_VMCS_GUEST_SS_BASE,
    VMX_VMCS_GUEST_DS_BASE,
    VMX_VMCS_GUEST_FS_BASE,
    VMX_VMCS_GUEST_GS_BASE,
    VMX_VMCS_GUEST_LDTR_BASE,
    VMX_VMCS_GUEST_TR_BASE,
    VMX_VMCS_GUEST_GDTR_BASE,
    VMX_VMCS_GUEST_IDTR_BASE,
    VMX_VMCS_GUEST_DR7,
    VMX_VMCS_GUEST_RSP,
    VMX_VMCS_GUEST_RIP,
    VMX_VMCS_GUEST_RFLAGS,
    VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
    VMX_VMCS_GUEST_SYSENTER_ESP,
    VMX_VMCS_GUEST_SYSENTER_EIP,
    VMX_VMCS_GUEST_S_CET,
    VMX_VMCS_GUEST_SSP,
    VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR,

    /* Natural-width host-state fields */
    VMX_VMCS_HOST_CR0,
    VMX_VMCS_HOST_CR3,
    VMX_VMCS_HOST_CR4,
    VMX_VMCS_HOST_FS_BASE,
    VMX_VMCS_HOST_GS_BASE,
    VMX_VMCS_HOST_TR_BASE,
    VMX_VMCS_HOST_GDTR_BASE,
    VMX_VMCS_HOST_IDTR_BASE,
    VMX_VMCS_HOST_SYSENTER_ESP,
    VMX_VMCS_HOST_SYSENTER_EIP,
    VMX_VMCS_HOST_RSP,
    VMX_VMCS_HOST_RIP,
    VMX_VMCS_HOST_S_CET,
    VMX_VMCS_HOST_SSP,
    VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR
};
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */

#ifdef HMVMX_USE_FUNCTION_TABLE
/**
 * VMX_EXIT dispatch table.
 */
static const struct CLANG11NOTHROWWEIRDNESS { PFNVMXEXITHANDLER pfn; } g_aVMExitHandlers[VMX_EXIT_MAX + 1] =
{
    /*  0  VMX_EXIT_XCPT_OR_NMI             */  { vmxHCExitXcptOrNmi },
    /*  1  VMX_EXIT_EXT_INT                 */  { vmxHCExitExtInt },
    /*  2  VMX_EXIT_TRIPLE_FAULT            */  { vmxHCExitTripleFault },
    /*  3  VMX_EXIT_INIT_SIGNAL             */  { vmxHCExitErrUnexpected },
    /*  4  VMX_EXIT_SIPI                    */  { vmxHCExitErrUnexpected },
    /*  5  VMX_EXIT_IO_SMI                  */  { vmxHCExitErrUnexpected },
    /*  6  VMX_EXIT_SMI                     */  { vmxHCExitErrUnexpected },
    /*  7  VMX_EXIT_INT_WINDOW              */  { vmxHCExitIntWindow },
    /*  8  VMX_EXIT_NMI_WINDOW              */  { vmxHCExitNmiWindow },
    /*  9  VMX_EXIT_TASK_SWITCH             */  { vmxHCExitTaskSwitch },
    /* 10  VMX_EXIT_CPUID                   */  { vmxHCExitCpuid },
    /* 11  VMX_EXIT_GETSEC                  */  { vmxHCExitGetsec },
    /* 12  VMX_EXIT_HLT                     */  { vmxHCExitHlt },
    /* 13  VMX_EXIT_INVD                    */  { vmxHCExitInvd },
    /* 14  VMX_EXIT_INVLPG                  */  { vmxHCExitInvlpg },
    /* 15  VMX_EXIT_RDPMC                   */  { vmxHCExitRdpmc },
    /* 16  VMX_EXIT_RDTSC                   */  { vmxHCExitRdtsc },
    /* 17  VMX_EXIT_RSM                     */  { vmxHCExitErrUnexpected },
    /* 18  VMX_EXIT_VMCALL                  */  { vmxHCExitVmcall },
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
    /* 19  VMX_EXIT_VMCLEAR                 */  { vmxHCExitVmclear },
    /* 20  VMX_EXIT_VMLAUNCH                */  { vmxHCExitVmlaunch },
    /* 21  VMX_EXIT_VMPTRLD                 */  { vmxHCExitVmptrld },
    /* 22  VMX_EXIT_VMPTRST                 */  { vmxHCExitVmptrst },
    /* 23  VMX_EXIT_VMREAD                  */  { vmxHCExitVmread },
    /* 24  VMX_EXIT_VMRESUME                */  { vmxHCExitVmresume },
    /* 25  VMX_EXIT_VMWRITE                 */  { vmxHCExitVmwrite },
    /* 26  VMX_EXIT_VMXOFF                  */  { vmxHCExitVmxoff },
    /* 27  VMX_EXIT_VMXON                   */  { vmxHCExitVmxon },
#else
    /* 19  VMX_EXIT_VMCLEAR                 */  { vmxHCExitSetPendingXcptUD },
    /* 20  VMX_EXIT_VMLAUNCH                */  { vmxHCExitSetPendingXcptUD },
    /* 21  VMX_EXIT_VMPTRLD                 */  { vmxHCExitSetPendingXcptUD },
    /* 22  VMX_EXIT_VMPTRST                 */  { vmxHCExitSetPendingXcptUD },
    /* 23  VMX_EXIT_VMREAD                  */  { vmxHCExitSetPendingXcptUD },
    /* 24  VMX_EXIT_VMRESUME                */  { vmxHCExitSetPendingXcptUD },
    /* 25  VMX_EXIT_VMWRITE                 */  { vmxHCExitSetPendingXcptUD },
    /* 26  VMX_EXIT_VMXOFF                  */  { vmxHCExitSetPendingXcptUD },
    /* 27  VMX_EXIT_VMXON                   */  { vmxHCExitSetPendingXcptUD },
#endif
    /* 28  VMX_EXIT_MOV_CRX                 */  { vmxHCExitMovCRx },
    /* 29  VMX_EXIT_MOV_DRX                 */  { vmxHCExitMovDRx },
    /* 30  VMX_EXIT_IO_INSTR                */  { vmxHCExitIoInstr },
    /* 31  VMX_EXIT_RDMSR                   */  { vmxHCExitRdmsr },
    /* 32  VMX_EXIT_WRMSR                   */  { vmxHCExitWrmsr },
    /* 33  VMX_EXIT_ERR_INVALID_GUEST_STATE */  { vmxHCExitErrInvalidGuestState },
    /* 34  VMX_EXIT_ERR_MSR_LOAD            */  { vmxHCExitErrUnexpected },
    /* 35  UNDEFINED                        */  { vmxHCExitErrUnexpected },
    /* 36  VMX_EXIT_MWAIT                   */  { vmxHCExitMwait },
    /* 37  VMX_EXIT_MTF                     */  { vmxHCExitMtf },
    /* 38  UNDEFINED                        */  { vmxHCExitErrUnexpected },
    /* 39  VMX_EXIT_MONITOR                 */  { vmxHCExitMonitor },
    /* 40  VMX_EXIT_PAUSE                   */  { vmxHCExitPause },
    /* 41  VMX_EXIT_ERR_MACHINE_CHECK       */  { vmxHCExitErrUnexpected },
    /* 42  UNDEFINED                        */  { vmxHCExitErrUnexpected },
    /* 43  VMX_EXIT_TPR_BELOW_THRESHOLD     */  { vmxHCExitTprBelowThreshold },
    /* 44  VMX_EXIT_APIC_ACCESS             */  { vmxHCExitApicAccess },
    /* 45  VMX_EXIT_VIRTUALIZED_EOI         */  { vmxHCExitErrUnexpected },
    /* 46  VMX_EXIT_GDTR_IDTR_ACCESS        */  { vmxHCExitErrUnexpected },
    /* 47  VMX_EXIT_LDTR_TR_ACCESS          */  { vmxHCExitErrUnexpected },
    /* 48  VMX_EXIT_EPT_VIOLATION           */  { vmxHCExitEptViolation },
    /* 49  VMX_EXIT_EPT_MISCONFIG           */  { vmxHCExitEptMisconfig },
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
    /* 50  VMX_EXIT_INVEPT                  */  { vmxHCExitInvept },
#else
    /* 50  VMX_EXIT_INVEPT                  */  { vmxHCExitSetPendingXcptUD },
#endif
    /* 51  VMX_EXIT_RDTSCP                  */  { vmxHCExitRdtscp },
    /* 52  VMX_EXIT_PREEMPT_TIMER           */  { vmxHCExitPreemptTimer },
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
    /* 53  VMX_EXIT_INVVPID                 */  { vmxHCExitInvvpid },
#else
    /* 53  VMX_EXIT_INVVPID                 */  { vmxHCExitSetPendingXcptUD },
#endif
    /* 54  VMX_EXIT_WBINVD                  */  { vmxHCExitWbinvd },
    /* 55  VMX_EXIT_XSETBV                  */  { vmxHCExitXsetbv },
    /* 56  VMX_EXIT_APIC_WRITE              */  { vmxHCExitErrUnexpected },
    /* 57  VMX_EXIT_RDRAND                  */  { vmxHCExitErrUnexpected },
    /* 58  VMX_EXIT_INVPCID                 */  { vmxHCExitInvpcid },
    /* 59  VMX_EXIT_VMFUNC                  */  { vmxHCExitErrUnexpected },
    /* 60  VMX_EXIT_ENCLS                   */  { vmxHCExitErrUnexpected },
    /* 61  VMX_EXIT_RDSEED                  */  { vmxHCExitErrUnexpected },
    /* 62  VMX_EXIT_PML_FULL                */  { vmxHCExitErrUnexpected },
    /* 63  VMX_EXIT_XSAVES                  */  { vmxHCExitErrUnexpected },
    /* 64  VMX_EXIT_XRSTORS                 */  { vmxHCExitErrUnexpected },
    /* 65  UNDEFINED                        */  { vmxHCExitErrUnexpected },
    /* 66  VMX_EXIT_SPP_EVENT               */  { vmxHCExitErrUnexpected },
    /* 67  VMX_EXIT_UMWAIT                  */  { vmxHCExitErrUnexpected },
    /* 68  VMX_EXIT_TPAUSE                  */  { vmxHCExitErrUnexpected },
    /* 69  VMX_EXIT_LOADIWKEY               */  { vmxHCExitErrUnexpected },
};
#endif /* HMVMX_USE_FUNCTION_TABLE */

#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
{
    /*  0 */ "(Not Used)",
    /*  1 */ "VMCALL executed in VMX root operation.",
    /*  2 */ "VMCLEAR with invalid physical address.",
    /*  3 */ "VMCLEAR with VMXON pointer.",
    /*  4 */ "VMLAUNCH with non-clear VMCS.",
    /*  5 */ "VMRESUME with non-launched VMCS.",
    /*  6 */ "VMRESUME after VMXOFF",
    /*  7 */ "VM-entry with invalid control fields.",
    /*  8 */ "VM-entry with invalid host state fields.",
    /*  9 */ "VMPTRLD with invalid physical address.",
    /* 10 */ "VMPTRLD with VMXON pointer.",
    /* 11 */ "VMPTRLD with incorrect revision identifier.",
    /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
    /* 13 */ "VMWRITE to read-only VMCS component.",
    /* 14 */ "(Not Used)",
    /* 15 */ "VMXON executed in VMX root operation.",
    /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
    /* 17 */ "VM-entry with non-launched executing VMCS.",
    /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
    /* 19 */ "VMCALL with non-clear VMCS.",
    /* 20 */ "VMCALL with invalid VM-exit control fields.",
    /* 21 */ "(Not Used)",
    /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
    /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
    /* 24 */ "VMCALL with invalid SMM-monitor features.",
    /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
    /* 26 */ "VM-entry with events blocked by MOV SS.",
    /* 27 */ "(Not Used)",
    /* 28 */ "Invalid operand to INVEPT/INVVPID."
};
#endif /* VBOX_STRICT && LOG_ENABLED */


/**
 * Gets the CR0 guest/host mask.
 *
 * These bits typically does not change through the lifetime of a VM. Any bit set in
 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
 * by the guest.
 *
 * @returns The CR0 guest/host mask.
 * @param   pVCpu   The cross context virtual CPU structure.
 */
static uint64_t vmxHCGetFixedCr0Mask(PCVMCPUCC pVCpu)
{
    /*
     * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
     * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
     *
     * Furthermore, modifications to any bits that are reserved/unspecified currently
     * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
     * when future CPUs specify and use currently reserved/unspecified bits.
     */
    /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
     *        enmGuestMode to be in-sync with the current mode. See @bugref{6398}
     *        and @bugref{6944}. */
    PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
    AssertCompile(RT_HI_U32(VMX_EXIT_HOST_CR0_IGNORE_MASK) == UINT32_C(0xffffffff));    /* Paranoia. */
    return (  X86_CR0_PE
            | X86_CR0_NE
            | (VM_IS_VMX_NESTED_PAGING(pVM) ? 0 : X86_CR0_WP)
            | X86_CR0_PG
            | VMX_EXIT_HOST_CR0_IGNORE_MASK);
}


/**
 * Gets the CR4 guest/host mask.
 *
 * These bits typically does not change through the lifetime of a VM. Any bit set in
 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
 * by the guest.
 *
 * @returns The CR4 guest/host mask.
 * @param   pVCpu   The cross context virtual CPU structure.
 */
static uint64_t vmxHCGetFixedCr4Mask(PCVMCPUCC pVCpu)
{
    /*
     * We construct a mask of all CR4 bits that the guest can modify without causing
     * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
     * a VM-exit when the guest attempts to modify them when executing using
     * hardware-assisted VMX.
     *
     * When a feature is not exposed to the guest (and may be present on the host),
     * we want to intercept guest modifications to the bit so we can emulate proper
     * behavior (e.g., #GP).
     *
     * Furthermore, only modifications to those bits that don't require immediate
     * emulation is allowed. For e.g., PCIDE is excluded because the behavior
     * depends on CR3 which might not always be the guest value while executing
     * using hardware-assisted VMX.
     */
    PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
    bool fFsGsBase    = pVM->cpum.ro.GuestFeatures.fFsGsBase;
#ifdef IN_NEM_DARWIN
    bool fXSaveRstor  = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
#endif
    bool fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;

    /*
     * Paranoia.
     * Ensure features exposed to the guest are present on the host.
     */
    AssertStmt(!fFsGsBase    || g_CpumHostFeatures.s.fFsGsBase,    fFsGsBase = 0);
#ifdef IN_NEM_DARWIN
    AssertStmt(!fXSaveRstor  || g_CpumHostFeatures.s.fXSaveRstor,  fXSaveRstor = 0);
#endif
    AssertStmt(!fFxSaveRstor || g_CpumHostFeatures.s.fFxSaveRstor, fFxSaveRstor = 0);

    uint64_t const fGstMask = X86_CR4_PVI
                            | X86_CR4_TSD
                            | X86_CR4_DE
                            | X86_CR4_MCE
                            | X86_CR4_PCE
                            | X86_CR4_OSXMMEEXCPT
                            | (fFsGsBase    ? X86_CR4_FSGSBASE : 0)
#ifdef IN_NEM_DARWIN /* On native VT-x setting OSXSAVE must exit as we need to load guest XCR0 (see
                        fLoadSaveGuestXcr0). These exits are not needed on Darwin as that's not our problem. */
                            | (fXSaveRstor  ? X86_CR4_OSXSAVE  : 0)
#endif
                            | (fFxSaveRstor ? X86_CR4_OSFXSR   : 0);
    return ~fGstMask;
}


/**
 * Adds one or more exceptions to the exception bitmap and commits it to the current
 * VMCS.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   uXcptMask       The exception(s) to add.
 */
static void vmxHCAddXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
{
    PVMXVMCSINFO pVmcsInfo   = pVmxTransient->pVmcsInfo;
    uint32_t     uXcptBitmap = pVmcsInfo->u32XcptBitmap;
    if ((uXcptBitmap & uXcptMask) != uXcptMask)
    {
        uXcptBitmap |= uXcptMask;
        int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
        AssertRC(rc);
        pVmcsInfo->u32XcptBitmap = uXcptBitmap;
    }
}


/**
 * Adds an exception to the exception bitmap and commits it to the current VMCS.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   uXcpt           The exception to add.
 */
static void vmxHCAddXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
{
    Assert(uXcpt <= X86_XCPT_LAST);
    vmxHCAddXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT_32(uXcpt));
}


/**
 * Remove one or more exceptions from the exception bitmap and commits it to the
 * current VMCS.
 *
 * This takes care of not removing the exception intercept if a nested-guest
 * requires the exception to be intercepted.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   uXcptMask       The exception(s) to remove.
 */
static int vmxHCRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
{
    PVMXVMCSINFO pVmcsInfo   = pVmxTransient->pVmcsInfo;
    uint32_t     uXcptBitmap = pVmcsInfo->u32XcptBitmap;
    if (uXcptBitmap & uXcptMask)
    {
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
        if (!pVmxTransient->fIsNestedGuest)
        { /* likely */ }
        else
            uXcptMask &= ~pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
#endif
#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
        uXcptMask &= ~(  RT_BIT(X86_XCPT_BP)
                       | RT_BIT(X86_XCPT_DE)
                       | RT_BIT(X86_XCPT_NM)
                       | RT_BIT(X86_XCPT_TS)
                       | RT_BIT(X86_XCPT_UD)
                       | RT_BIT(X86_XCPT_NP)
                       | RT_BIT(X86_XCPT_SS)
                       | RT_BIT(X86_XCPT_GP)
                       | RT_BIT(X86_XCPT_PF)
                       | RT_BIT(X86_XCPT_MF));
#elif defined(HMVMX_ALWAYS_TRAP_PF)
        uXcptMask &= ~RT_BIT(X86_XCPT_PF);
#endif
        if (uXcptMask)
        {
            /* Validate we are not removing any essential exception intercepts. */
#ifndef IN_NEM_DARWIN
            Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
#else
            Assert(!(uXcptMask & RT_BIT(X86_XCPT_PF)));
#endif
            NOREF(pVCpu);
            Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
            Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));

            /* Remove it from the exception bitmap. */
            uXcptBitmap &= ~uXcptMask;

            /* Commit and update the cache if necessary. */
            if (pVmcsInfo->u32XcptBitmap != uXcptBitmap)
            {
                int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
                AssertRC(rc);
                pVmcsInfo->u32XcptBitmap = uXcptBitmap;
            }
        }
    }
    return VINF_SUCCESS;
}


/**
 * Remove an exceptions from the exception bitmap and commits it to the current
 * VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   uXcpt           The exception to remove.
 */
static int vmxHCRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
{
    return vmxHCRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
}

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX

/**
 * Loads the shadow VMCS specified by the VMCS info. object.
 *
 * @returns VBox status code.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Can be called with interrupts disabled.
 */
static int vmxHCLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
{
    Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
    Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);

    int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
    if (RT_SUCCESS(rc))
        pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
    return rc;
}


/**
 * Clears the shadow VMCS specified by the VMCS info. object.
 *
 * @returns VBox status code.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Can be called with interrupts disabled.
 */
static int vmxHCClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
{
    Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
    Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);

    int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
    if (RT_SUCCESS(rc))
        pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
    return rc;
}


/**
 * Switches from and to the specified VMCSes.
 *
 * @returns VBox status code.
 * @param   pVmcsInfoFrom   The VMCS info. object we are switching from.
 * @param   pVmcsInfoTo     The VMCS info. object we are switching to.
 *
 * @remarks Called with interrupts disabled.
 */
static int vmxHCSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
{
    /*
     * Clear the VMCS we are switching out if it has not already been cleared.
     * This will sync any CPU internal data back to the VMCS.
     */
    if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
    {
        int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
        if (RT_SUCCESS(rc))
        {
            /*
             * The shadow VMCS, if any, would not be active at this point since we
             * would have cleared it while importing the virtual hardware-virtualization
             * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
             * clear the shadow VMCS here, just assert for safety.
             */
            Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
        }
        else
            return rc;
    }

    /*
     * Clear the VMCS we are switching to if it has not already been cleared.
     * This will initialize the VMCS launch state to "clear" required for loading it.
     *
     * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
     */
    if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
    {
        int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
        if (RT_SUCCESS(rc))
        { /* likely */ }
        else
            return rc;
    }

    /*
     * Finally, load the VMCS we are switching to.
     */
    return hmR0VmxLoadVmcs(pVmcsInfoTo);
}


/**
 * Switches between the guest VMCS and the nested-guest VMCS as specified by the
 * caller.
 *
 * @returns VBox status code.
 * @param   pVCpu                   The cross context virtual CPU structure.
 * @param   fSwitchToNstGstVmcs     Whether to switch to the nested-guest VMCS (pass
 *                                  true) or guest VMCS (pass false).
 */
static int vmxHCSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
{
    /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
    HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);

    PVMXVMCSINFO pVmcsInfoFrom;
    PVMXVMCSINFO pVmcsInfoTo;
    if (fSwitchToNstGstVmcs)
    {
        pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfo;
        pVmcsInfoTo   = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
    }
    else
    {
        pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
        pVmcsInfoTo   = &pVCpu->hmr0.s.vmx.VmcsInfo;
    }

    /*
     * Disable interrupts to prevent being preempted while we switch the current VMCS as the
     * preemption hook code path acquires the current VMCS.
     */
    RTCCUINTREG const fEFlags = ASMIntDisableFlags();

    int rc = vmxHCSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
    if (RT_SUCCESS(rc))
    {
        pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs           = fSwitchToNstGstVmcs;
        pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fSwitchToNstGstVmcs;

        /*
         * If we are switching to a VMCS that was executed on a different host CPU or was
         * never executed before, flag that we need to export the host state before executing
         * guest/nested-guest code using hardware-assisted VMX.
         *
         * This could probably be done in a preemptible context since the preemption hook
         * will flag the necessary change in host context. However, since preemption is
         * already disabled and to avoid making assumptions about host specific code in
         * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
         * disabled.
         */
        if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
        { /* likely */ }
        else
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);

        ASMSetFlags(fEFlags);

        /*
         * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
         * flag that we need to update the host MSR values there. Even if we decide in the
         * future to share the VM-exit MSR-store area page between the guest and nested-guest,
         * if its content differs, we would have to update the host MSRs anyway.
         */
        pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
    }
    else
        ASMSetFlags(fEFlags);
    return rc;
}

#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
#ifdef VBOX_STRICT

/**
 * Reads the VM-entry interruption-information field from the VMCS into the VMX
 * transient structure.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
DECLINLINE(void) vmxHCReadEntryIntInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
    AssertRC(rc);
}


/**
 * Reads the VM-entry exception error code field from the VMCS into
 * the VMX transient structure.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
DECLINLINE(void) vmxHCReadEntryXcptErrorCodeVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
    AssertRC(rc);
}


/**
 * Reads the VM-entry exception error code field from the VMCS into
 * the VMX transient structure.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
DECLINLINE(void) vmxHCReadEntryInstrLenVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
    AssertRC(rc);
}

#endif /* VBOX_STRICT */


/**
 * Reads VMCS fields into the VMXTRANSIENT structure, slow path version.
 *
 * Don't call directly unless the it's likely that some or all of the fields
 * given in @a a_fReadMask have already been read.
 *
 * @tparam  a_fReadMask     The fields to read.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
template<uint32_t const a_fReadMask>
static void vmxHCReadToTransientSlow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    AssertCompile((a_fReadMask & ~(  HMVMX_READ_EXIT_QUALIFICATION
                                   | HMVMX_READ_EXIT_INSTR_LEN
                                   | HMVMX_READ_EXIT_INSTR_INFO
                                   | HMVMX_READ_IDT_VECTORING_INFO
                                   | HMVMX_READ_IDT_VECTORING_ERROR_CODE
                                   | HMVMX_READ_EXIT_INTERRUPTION_INFO
                                   | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                                   | HMVMX_READ_GUEST_LINEAR_ADDR
                                   | HMVMX_READ_GUEST_PHYSICAL_ADDR
                                   | HMVMX_READ_GUEST_PENDING_DBG_XCPTS
                                   )) == 0);

    if ((pVmxTransient->fVmcsFieldsRead & a_fReadMask) != a_fReadMask)
    {
        uint32_t const fVmcsFieldsRead = pVmxTransient->fVmcsFieldsRead;

        if (   (a_fReadMask      & HMVMX_READ_EXIT_QUALIFICATION)
            && !(fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION,          &pVmxTransient->uExitQual);
            AssertRC(rc);
        }
        if (    (a_fReadMask     & HMVMX_READ_EXIT_INSTR_LEN)
            && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH,         &pVmxTransient->cbExitInstr);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_EXIT_INSTR_INFO)
            && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO,           &pVmxTransient->ExitInstrInfo.u);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_IDT_VECTORING_INFO)
            && !(fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO,        &pVmxTransient->uIdtVectoringInfo);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_IDT_VECTORING_ERROR_CODE)
            && !(fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,  &pVmxTransient->uIdtVectoringErrorCode);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_EXIT_INTERRUPTION_INFO)
            && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,    &pVmxTransient->uExitIntInfo);
            AssertRC(rc);
        }
        if (    (a_fReadMask     & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE)
            && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_GUEST_LINEAR_ADDR)
            && !(fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR,           &pVmxTransient->uGuestLinearAddr);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_GUEST_PHYSICAL_ADDR)
            && !(fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
        {
            int const rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,      &pVmxTransient->uGuestPhysicalAddr);
            AssertRC(rc);
        }
        if (   (a_fReadMask      & HMVMX_READ_GUEST_PENDING_DBG_XCPTS)
            && !(fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,      &pVmxTransient->uGuestPendingDbgXcpts);
            AssertRC(rc);
        }

        pVmxTransient->fVmcsFieldsRead |= a_fReadMask;
    }
}


/**
 * Reads VMCS fields into the VMXTRANSIENT structure.
 *
 * This optimizes for the case where none of @a a_fReadMask has been read yet,
 * generating an optimized read sequences w/o any conditionals between in
 * non-strict builds.
 *
 * @tparam  a_fReadMask     The fields to read.  One or more of the
 *                          HMVMX_READ_XXX fields ORed together.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
template<uint32_t const a_fReadMask>
DECLINLINE(void) vmxHCReadToTransient(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    AssertCompile((a_fReadMask & ~(  HMVMX_READ_EXIT_QUALIFICATION
                                   | HMVMX_READ_EXIT_INSTR_LEN
                                   | HMVMX_READ_EXIT_INSTR_INFO
                                   | HMVMX_READ_IDT_VECTORING_INFO
                                   | HMVMX_READ_IDT_VECTORING_ERROR_CODE
                                   | HMVMX_READ_EXIT_INTERRUPTION_INFO
                                   | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                                   | HMVMX_READ_GUEST_LINEAR_ADDR
                                   | HMVMX_READ_GUEST_PHYSICAL_ADDR
                                   | HMVMX_READ_GUEST_PENDING_DBG_XCPTS
                                   )) == 0);

    if (RT_LIKELY(!(pVmxTransient->fVmcsFieldsRead & a_fReadMask)))
    {
        if (a_fReadMask & HMVMX_READ_EXIT_QUALIFICATION)
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION,          &pVmxTransient->uExitQual);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_EXIT_INSTR_LEN)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH,         &pVmxTransient->cbExitInstr);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_EXIT_INSTR_INFO)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO,           &pVmxTransient->ExitInstrInfo.u);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_IDT_VECTORING_INFO)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO,        &pVmxTransient->uIdtVectoringInfo);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_IDT_VECTORING_ERROR_CODE)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,  &pVmxTransient->uIdtVectoringErrorCode);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_INFO)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,    &pVmxTransient->uExitIntInfo);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE)
        {
            int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_GUEST_LINEAR_ADDR)
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR,           &pVmxTransient->uGuestLinearAddr);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_GUEST_PHYSICAL_ADDR)
        {
            int const rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,      &pVmxTransient->uGuestPhysicalAddr);
            AssertRC(rc);
        }
        if (a_fReadMask & HMVMX_READ_GUEST_PENDING_DBG_XCPTS)
        {
            int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,      &pVmxTransient->uGuestPendingDbgXcpts);
            AssertRC(rc);
        }

        pVmxTransient->fVmcsFieldsRead |= a_fReadMask;
    }
    else
    {
        STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatReadToTransientFallback);
        Log11Func(("a_fReadMask=%#x fVmcsFieldsRead=%#x => %#x - Taking inefficient code path!\n",
                   a_fReadMask, pVmxTransient->fVmcsFieldsRead, a_fReadMask & pVmxTransient->fVmcsFieldsRead));
        vmxHCReadToTransientSlow<a_fReadMask>(pVCpu, pVmxTransient);
    }
}


#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
/**
 * Reads all relevant read-only VMCS fields into the VMX transient structure.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
static void vmxHCReadAllRoFieldsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION,             &pVmxTransient->uExitQual);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH,            &pVmxTransient->cbExitInstr);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO,              &pVmxTransient->ExitInstrInfo.u);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO,           &pVmxTransient->uIdtVectoringInfo);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,     &pVmxTransient->uIdtVectoringErrorCode);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,       &pVmxTransient->uExitIntInfo);
    rc    |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
    rc    |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR,              &pVmxTransient->uGuestLinearAddr);
    rc    |= VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,         &pVmxTransient->uGuestPhysicalAddr);
    AssertRC(rc);
    pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
                                   |  HMVMX_READ_EXIT_INSTR_LEN
                                   |  HMVMX_READ_EXIT_INSTR_INFO
                                   |  HMVMX_READ_IDT_VECTORING_INFO
                                   |  HMVMX_READ_IDT_VECTORING_ERROR_CODE
                                   |  HMVMX_READ_EXIT_INTERRUPTION_INFO
                                   |  HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                                   |  HMVMX_READ_GUEST_LINEAR_ADDR
                                   |  HMVMX_READ_GUEST_PHYSICAL_ADDR;
}
#endif

/**
 * Verifies that our cached values of the VMCS fields are all consistent with
 * what's actually present in the VMCS.
 *
 * @returns VBox status code.
 * @retval  VINF_SUCCESS if all our caches match their respective VMCS fields.
 * @retval  VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
 *                                            VMCS content. HMCPU error-field is
 *                                            updated, see VMX_VCI_XXX.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmcsInfo       The VMCS info. object.
 * @param   fIsNstGstVmcs   Whether this is a nested-guest VMCS.
 */
static int vmxHCCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
{
    const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";

    uint32_t u32Val;
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
                        ("%s entry controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_ENTRY,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXIT, &u32Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
                        ("%s exit controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_EXIT,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
                        ("%s pin controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PIN_EXEC,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
                        ("%s proc controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
    {
        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
        AssertRC(rc);
        AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
                            ("%s proc2 controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
                            VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
                            VERR_VMX_VMCS_FIELD_CACHE_INVALID);
    }

    uint64_t u64Val;
    if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
    {
        rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_PROC_EXEC3_FULL, &u64Val);
        AssertRC(rc);
        AssertMsgReturnStmt(pVmcsInfo->u64ProcCtls3 == u64Val,
                            ("%s proc3 controls mismatch: Cache=%#RX32 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64ProcCtls3, u64Val),
                            VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC3,
                            VERR_VMX_VMCS_FIELD_CACHE_INVALID);
    }

    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
                        ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
    AssertRC(rc);
    AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
                        ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
                        VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
                        VERR_VMX_VMCS_FIELD_CACHE_INVALID);

    NOREF(pcszVmcs);
    return VINF_SUCCESS;
}


/**
 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
 * VMCS.
 *
 * This is typically required when the guest changes paging mode.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks Requires EFER.
 * @remarks No-long-jump zone!!!
 */
static int vmxHCExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
    {
        PVMCC pVM = pVCpu->CTX_SUFF(pVM);
        PVMXVMCSINFO pVmcsInfo      = pVmxTransient->pVmcsInfo;

        /*
         * VM-entry controls.
         */
        {
            uint32_t       fVal = g_HmMsrs.u.vmx.EntryCtls.n.allowed0;    /* Bits set here must be set in the VMCS. */
            uint32_t const fZap = g_HmMsrs.u.vmx.EntryCtls.n.allowed1;    /* Bits cleared here must be cleared in the VMCS. */

            /*
             * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
             * The first VT-x capable CPUs only supported the 1-setting of this bit.
             *
             * For nested-guests, this is a mandatory VM-entry control. It's also
             * required because we do not want to leak host bits to the nested-guest.
             */
            fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;

            /*
             * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
             *
             * For nested-guests, the "IA-32e mode guest" control we initialize with what is
             * required to get the nested-guest working with hardware-assisted VMX execution.
             * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
             * can skip intercepting changes to the EFER MSR. This is why it needs to be done
             * here rather than while merging the guest VMCS controls.
             */
            if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
            {
                Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
                fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
            }
            else
                Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));

            /*
             * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
             *
             * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
             * regardless of whether the nested-guest VMCS specifies it because we are free to
             * load whatever MSRs we require and we do not need to modify the guest visible copy
             * of the VM-entry MSR load area.
             */
            if (   g_fHmVmxSupportsVmcsEfer
#ifndef IN_NEM_DARWIN
                && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient)
#endif
                )
                fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
            else
                Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));

            /*
             * The following should -not- be set (since we're not in SMM mode):
             * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
             * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
             */

            /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
             *        VMX_ENTRY_CTLS_LOAD_PAT_MSR. */

            if ((fVal & fZap) == fVal)
            { /* likely */ }
            else
            {
                Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
                          g_HmMsrs.u.vmx.EntryCtls.n.allowed0, fVal, fZap));
                VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_ENTRY;
                return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
            }

            /* Commit it to the VMCS. */
            if (pVmcsInfo->u32EntryCtls != fVal)
            {
                int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, fVal);
                AssertRC(rc);
                pVmcsInfo->u32EntryCtls = fVal;
            }
        }

        /*
         * VM-exit controls.
         */
        {
            uint32_t       fVal = g_HmMsrs.u.vmx.ExitCtls.n.allowed0;     /* Bits set here must be set in the VMCS. */
            uint32_t const fZap = g_HmMsrs.u.vmx.ExitCtls.n.allowed1;     /* Bits cleared here must be cleared in the VMCS. */

            /*
             * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
             * supported the 1-setting of this bit.
             *
             * For nested-guests, we set the "save debug controls" as the converse
             * "load debug controls" is mandatory for nested-guests anyway.
             */
            fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;

            /*
             * Set the host long mode active (EFER.LMA) bit (which Intel calls
             * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
             * host EFER.LMA and EFER.LME bit to this value. See assertion in
             * vmxHCExportHostMsrs().
             *
             * For nested-guests, we always set this bit as we do not support 32-bit
             * hosts.
             */
            fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;

#ifndef IN_NEM_DARWIN
            /*
             * If the VMCS EFER MSR fields are supported by the hardware, we use it.
             *
             * For nested-guests, we should use the "save IA32_EFER" control if we also
             * used the "load IA32_EFER" control while exporting VM-entry controls.
             */
            if (   g_fHmVmxSupportsVmcsEfer
                && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
            {
                fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
                     |  VMX_EXIT_CTLS_LOAD_EFER_MSR;
            }
#endif

            /*
             * Enable saving of the VMX-preemption timer value on VM-exit.
             * For nested-guests, currently not exposed/used.
             */
            /** @todo r=bird: Measure performance hit because of this vs. always rewriting
             *        the timer value. */
            if (VM_IS_VMX_PREEMPT_TIMER_USED(pVM))
            {
                Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
                fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
            }

            /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
            Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));

            /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
             *        VMX_EXIT_CTLS_SAVE_PAT_MSR,
             *        VMX_EXIT_CTLS_LOAD_PAT_MSR. */

            if ((fVal & fZap) == fVal)
            { /* likely */ }
            else
            {
                Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
                          g_HmMsrs.u.vmx.ExitCtls.n.allowed0, fVal, fZap));
                VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_EXIT;
                return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
            }

            /* Commit it to the VMCS. */
            if (pVmcsInfo->u32ExitCtls != fVal)
            {
                int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXIT, fVal);
                AssertRC(rc);
                pVmcsInfo->u32ExitCtls = fVal;
            }
        }

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
    }
    return VINF_SUCCESS;
}


/**
 * Sets the TPR threshold in the VMCS.
 *
 * @param   pVCpu               The cross context virtual CPU structure.
 * @param   pVmcsInfo           The VMCS info. object.
 * @param   u32TprThreshold     The TPR threshold (task-priority class only).
 */
DECLINLINE(void) vmxHCApicSetTprThreshold(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
{
    Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK));         /* Bits 31:4 MBZ. */
    Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
    RT_NOREF(pVmcsInfo);
    int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
    AssertRC(rc);
}


/**
 * Exports the guest APIC TPR state into the VMCS.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);

        PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
        if (!pVmxTransient->fIsNestedGuest)
        {
            if (   PDMHasApic(pVCpu->CTX_SUFF(pVM))
                && APICIsEnabled(pVCpu))
            {
                /*
                 * Setup TPR shadowing.
                 */
                if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
                {
                    bool    fPendingIntr  = false;
                    uint8_t u8Tpr         = 0;
                    uint8_t u8PendingIntr = 0;
                    int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
                    AssertRC(rc);

                    /*
                     * If there are interrupts pending but masked by the TPR, instruct VT-x to
                     * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
                     * priority of the pending interrupt so we can deliver the interrupt. If there
                     * are no interrupts pending, set threshold to 0 to not cause any
                     * TPR-below-threshold VM-exits.
                     */
                    uint32_t u32TprThreshold = 0;
                    if (fPendingIntr)
                    {
                        /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
                           (which is the Task-Priority Class). */
                        const uint8_t u8PendingPriority = u8PendingIntr >> 4;
                        const uint8_t u8TprPriority     = u8Tpr >> 4;
                        if (u8PendingPriority <= u8TprPriority)
                            u32TprThreshold = u8PendingPriority;
                    }

                    vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
                }
            }
        }
        /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
    }
}


/**
 * Gets the guest interruptibility-state and updates related force-flags.
 *
 * @returns Guest's interruptibility-state.
 * @param   pVCpu           The cross context virtual CPU structure.
 *
 * @remarks No-long-jump zone!!!
 */
static uint32_t vmxHCGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
{
    uint32_t fIntrState;

    /*
     * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
     */
    if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
        fIntrState = 0;
    else
    {
        /* If inhibition is active, RIP should've been imported from the VMCS already. */
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);

        if (CPUMIsInInterruptShadowAfterSs(&pVCpu->cpum.GstCtx))
            fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
        else
        {
            fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;

            /* Block-by-STI must not be set when interrupts are disabled. */
            AssertStmt(pVCpu->cpum.GstCtx.eflags.Bits.u1IF, fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
        }
    }

    /*
     * Check if we should inhibit NMI delivery.
     */
    if (!CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx))
    { /* likely */ }
    else
        fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;

    /*
     * Validate.
     */
    /* We don't support block-by-SMI yet.*/
    Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));

    return fIntrState;
}


/**
 * Exports the exception intercepts required for guest execution in the VMCS.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
    {
        /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
        if (   !pVmxTransient->fIsNestedGuest
            &&  VCPU_2_VMXSTATE(pVCpu).fGIMTrapXcptUD)
            vmxHCAddXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
        else
            vmxHCRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);

        /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
    }
}


/**
 * Exports the guest's RIP into the guest-state area in the VMCS.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCExportGuestRip(PVMCPUCC pVCpu)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RIP)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);

        int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
        AssertRC(rc);

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RIP);
        Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
    }
}


/**
 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);

        /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits
           of RFLAGS are reserved (MBZ).  We use bits 63:24 for internal purposes, so no need
           to assert this, the CPUMX86EFLAGS/CPUMX86RFLAGS union masks these off for us.
           Use 32-bit VMWRITE. */
        uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u;
        Assert((fEFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK);
        AssertMsg(!(fEFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK)), ("%#x\n", fEFlags));

#ifndef IN_NEM_DARWIN
        /*
         * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
         * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
         * can run the real-mode guest code under Virtual 8086 mode.
         */
        PVMXVMCSINFOSHARED pVmcsInfo = pVmxTransient->pVmcsInfo->pShared;
        if (pVmcsInfo->RealMode.fRealOnV86Active)
        {
            Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
            Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
            Assert(!pVmxTransient->fIsNestedGuest);
            pVmcsInfo->RealMode.Eflags.u32 = fEFlags;        /* Save the original eflags of the real-mode guest. */
            fEFlags |= X86_EFL_VM;                           /* Set the Virtual 8086 mode bit. */
            fEFlags &= ~X86_EFL_IOPL;                        /* Change IOPL to 0, otherwise certain instructions won't fault. */
        }
#else
        RT_NOREF(pVmxTransient);
#endif

        int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, fEFlags);
        AssertRC(rc);

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
        Log4Func(("eflags=%#RX32\n", fEFlags));
    }
}


#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
 * Copies the nested-guest VMCS to the shadow VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks No-long-jump zone!!!
 */
static int vmxHCCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    PVMCC      const pVM         = pVCpu->CTX_SUFF(pVM);
    PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;

    /*
     * Disable interrupts so we don't get preempted while the shadow VMCS is the
     * current VMCS, as we may try saving guest lazy MSRs.
     *
     * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
     * calling the import VMCS code which is currently performing the guest MSR reads
     * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
     * and the rest of the VMX leave session machinery.
     */
    RTCCUINTREG const fEFlags = ASMIntDisableFlags();

    int rc = vmxHCLoadShadowVmcs(pVmcsInfo);
    if (RT_SUCCESS(rc))
    {
        /*
         * Copy all guest read/write VMCS fields.
         *
         * We don't check for VMWRITE failures here for performance reasons and
         * because they are not expected to fail, barring irrecoverable conditions
         * like hardware errors.
         */
        uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
        for (uint32_t i = 0; i < cShadowVmcsFields; i++)
        {
            uint64_t       u64Val;
            uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
            IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
            VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val);
        }

        /*
         * If the host CPU supports writing all VMCS fields, copy the guest read-only
         * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
         */
        if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
        {
            uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
            for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
            {
                uint64_t       u64Val;
                uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsRoFields[i];
                IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
                VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val);
            }
        }

        rc  = vmxHCClearShadowVmcs(pVmcsInfo);
        rc |= hmR0VmxLoadVmcs(pVmcsInfo);
    }

    ASMSetFlags(fEFlags);
    return rc;
}


/**
 * Copies the shadow VMCS to the nested-guest VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Called with interrupts disabled.
 */
static int vmxHCCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
    PVMCC const     pVM         = pVCpu->CTX_SUFF(pVM);
    PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;

    int rc = vmxHCLoadShadowVmcs(pVmcsInfo);
    if (RT_SUCCESS(rc))
    {
        /*
         * Copy guest read/write fields from the shadow VMCS.
         * Guest read-only fields cannot be modified, so no need to copy them.
         *
         * We don't check for VMREAD failures here for performance reasons and
         * because they are not expected to fail, barring irrecoverable conditions
         * like hardware errors.
         */
        uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
        for (uint32_t i = 0; i < cShadowVmcsFields; i++)
        {
            uint64_t       u64Val;
            uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
            VMX_VMCS_READ_64(pVCpu, uVmcsField, &u64Val);
            IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
        }

        rc  = vmxHCClearShadowVmcs(pVmcsInfo);
        rc |= hmR0VmxLoadVmcs(pVmcsInfo);
    }
    return rc;
}


/**
 * Enables VMCS shadowing for the given VMCS info. object.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCEnableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
    if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
    {
        Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
        uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
        int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2);                            AssertRC(rc);
        rc     = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs);  AssertRC(rc);
        pVmcsInfo->u32ProcCtls2   = uProcCtls2;
        pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
        Log4Func(("Enabled\n"));
    }
}


/**
 * Disables VMCS shadowing for the given VMCS info. object.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks No-long-jump zone!!!
 */
static void vmxHCDisableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    /*
     * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
     * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
     * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
     * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
     *
     * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
     * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
     */
    uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
    if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
    {
        uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
        int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2);                AssertRC(rc);
        rc     = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);     AssertRC(rc);
        pVmcsInfo->u32ProcCtls2   = uProcCtls2;
        pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
        Log4Func(("Disabled\n"));
    }
}
#endif


/**
 * Exports the guest CR0 control register into the guest-state area in the VMCS.
 *
 * The guest FPU state is always pre-loaded hence we don't need to bother about
 * sharing FPU related CR0 bits between the guest and host.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static int vmxHCExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR0)
    {
        PVMCC pVM = pVCpu->CTX_SUFF(pVM);
        PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;

        uint64_t       fSetCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed0;
        uint64_t const fZapCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed1;
        if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
            fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
        else
            Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));

        if (!pVmxTransient->fIsNestedGuest)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
            uint64_t       u64GuestCr0  = pVCpu->cpum.GstCtx.cr0;
            uint64_t const u64ShadowCr0 = u64GuestCr0;
            Assert(!RT_HI_U32(u64GuestCr0));

            /*
             * Setup VT-x's view of the guest CR0.
             */
            uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
            if (VM_IS_VMX_NESTED_PAGING(pVM))
            {
#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
                if (CPUMIsGuestPagingEnabled(pVCpu))
                {
                    /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
                    uProcCtls &= ~(  VMX_PROC_CTLS_CR3_LOAD_EXIT
                                   | VMX_PROC_CTLS_CR3_STORE_EXIT);
                }
                else
                {
                    /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
                    uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
                              |  VMX_PROC_CTLS_CR3_STORE_EXIT;
                }

                /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
                if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
                    uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
#endif
            }
            else
            {
                /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
                u64GuestCr0 |= X86_CR0_WP;
            }

            /*
             * Guest FPU bits.
             *
             * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
             * using CR0.TS.
             *
             * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
             * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
             */
            u64GuestCr0 |= X86_CR0_NE;

            /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
            bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);

            /*
             * Update exception intercepts.
             */
            uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
#ifndef IN_NEM_DARWIN
            if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
            {
                Assert(PDMVmmDevHeapIsEnabled(pVM));
                Assert(pVM->hm.s.vmx.pRealModeTSS);
                uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
            }
            else
#endif
            {
                /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
                uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
                if (fInterceptMF)
                    uXcptBitmap |= RT_BIT(X86_XCPT_MF);
            }

            /* Additional intercepts for debugging, define these yourself explicitly. */
#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
            uXcptBitmap |= 0
                        |  RT_BIT(X86_XCPT_BP)
                        |  RT_BIT(X86_XCPT_DE)
                        |  RT_BIT(X86_XCPT_NM)
                        |  RT_BIT(X86_XCPT_TS)
                        |  RT_BIT(X86_XCPT_UD)
                        |  RT_BIT(X86_XCPT_NP)
                        |  RT_BIT(X86_XCPT_SS)
                        |  RT_BIT(X86_XCPT_GP)
                        |  RT_BIT(X86_XCPT_PF)
                        |  RT_BIT(X86_XCPT_MF)
                        ;
#elif defined(HMVMX_ALWAYS_TRAP_PF)
            uXcptBitmap |= RT_BIT(X86_XCPT_PF);
#endif
            if (VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv)
                uXcptBitmap |= RT_BIT(X86_XCPT_GP);
            if (VCPU_2_VMXSTATE(pVCpu).fGCMTrapXcptDE)
                uXcptBitmap |= RT_BIT(X86_XCPT_DE);
            Assert(VM_IS_VMX_NESTED_PAGING(pVM) || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));

            /* Apply the hardware specified CR0 fixed bits and enable caching. */
            u64GuestCr0 |= fSetCr0;
            u64GuestCr0 &= fZapCr0;
            u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);

            Assert(!RT_HI_U32(u64GuestCr0));
            Assert(u64GuestCr0 & X86_CR0_NE);

            /* Commit the CR0 and related fields to the guest VMCS. */
            int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0);               AssertRC(rc);
            rc     = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);   AssertRC(rc);
            if (uProcCtls != pVmcsInfo->u32ProcCtls)
            {
                rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
                AssertRC(rc);
            }
            if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
            {
                rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
                AssertRC(rc);
            }

            /* Update our caches. */
            pVmcsInfo->u32ProcCtls   = uProcCtls;
            pVmcsInfo->u32XcptBitmap = uXcptBitmap;

            Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
        }
        else
        {
            /*
             * With nested-guests, we may have extended the guest/host mask here since we
             * merged in the outer guest's mask. Thus, the merged mask can include more bits
             * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
             * originally supplied. We must copy those bits from the nested-guest CR0 into
             * the nested-guest CR0 read-shadow.
             */
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
            uint64_t       u64GuestCr0  = pVCpu->cpum.GstCtx.cr0;
            uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);

            /* Apply the hardware specified CR0 fixed bits and enable caching. */
            u64GuestCr0 |= fSetCr0;
            u64GuestCr0 &= fZapCr0;
            u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);

            Assert(!RT_HI_U32(u64GuestCr0));
            Assert(u64GuestCr0 & X86_CR0_NE);

            /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
            int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0);               AssertRC(rc);
            rc     = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);   AssertRC(rc);

            Log4Func(("cr0=%#RX64 shadow=%#RX64 vmcs_read_shw=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0,
                      pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u, fSetCr0, fZapCr0));
        }

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR0);
    }

    return VINF_SUCCESS;
}


/**
 * Exports the guest control registers (CR3, CR4) into the guest-state area
 * in the VMCS.
 *
 * @returns VBox strict status code.
 * @retval  VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
 *          without unrestricted guest access and the VMMDev is not presently
 *          mapped (e.g. EFI32).
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static VBOXSTRICTRC vmxHCExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    int rc  = VINF_SUCCESS;
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);

    /*
     * Guest CR2.
     * It's always loaded in the assembler code. Nothing to do here.
     */

    /*
     * Guest CR3.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR3)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);

        if (VM_IS_VMX_NESTED_PAGING(pVM))
        {
#ifndef IN_NEM_DARWIN
            PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
            pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);

            /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
            Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
            Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
            Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));

            /* VMX_EPT_MEMTYPE_WB support is already checked in vmxHCSetupTaggedTlb(). */
            pVmcsInfo->HCPhysEPTP |= RT_BF_MAKE(VMX_BF_EPTP_MEMTYPE,          VMX_EPTP_MEMTYPE_WB)
                                  |  RT_BF_MAKE(VMX_BF_EPTP_PAGE_WALK_LENGTH, VMX_EPTP_PAGE_WALK_LENGTH_4);

            /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
            AssertMsg(   ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3      /* Bits 3:5 (EPT page walk length - 1) must be 3. */
                      && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0,     /* Bits 7:11 MBZ. */
                         ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
            AssertMsg(  !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01)           /* Bit 6 (EPT accessed & dirty bit). */
                      || (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY),
                         ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));

            rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
            AssertRC(rc);
#endif

            PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
            uint64_t  u64GuestCr3 = pCtx->cr3;
            if (   VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
                || CPUMIsGuestPagingEnabledEx(pCtx))
            {
                /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
                if (CPUMIsGuestInPAEModeEx(pCtx))
                {
                    rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, pCtx->aPaePdpes[0].u);     AssertRC(rc);
                    rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, pCtx->aPaePdpes[1].u);     AssertRC(rc);
                    rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, pCtx->aPaePdpes[2].u);     AssertRC(rc);
                    rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, pCtx->aPaePdpes[3].u);     AssertRC(rc);
                }

                /*
                 * The guest's view of its CR3 is unblemished with nested paging when the
                 * guest is using paging or we have unrestricted guest execution to handle
                 * the guest when it's not using paging.
                 */
            }
#ifndef IN_NEM_DARWIN
            else
            {
                /*
                 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
                 * thinks it accesses physical memory directly, we use our identity-mapped
                 * page table to map guest-linear to guest-physical addresses. EPT takes care
                 * of translating it to host-physical addresses.
                 */
                RTGCPHYS GCPhys;
                Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);

                /* We obtain it here every time as the guest could have relocated this PCI region. */
                rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
                if (RT_SUCCESS(rc))
                { /* likely */ }
                else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
                {
                    Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
                    return VINF_EM_RESCHEDULE_REM;  /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
                }
                else
                    AssertMsgFailedReturn(("%Rrc\n",  rc), rc);

                u64GuestCr3 = GCPhys;
            }
#endif

            Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
            rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, u64GuestCr3);
            AssertRC(rc);
        }
        else
        {
            Assert(!pVmxTransient->fIsNestedGuest);
            /* Non-nested paging case, just use the hypervisor's CR3. */
            RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);

            Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
            rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
            AssertRC(rc);
        }

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR3);
    }

    /*
     * Guest CR4.
     * ASSUMES this is done everytime we get in from ring-3! (XCR0)
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR4)
    {
        PCPUMCTX     pCtx      = &pVCpu->cpum.GstCtx;
        PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;

        uint64_t const fSetCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed0;
        uint64_t const fZapCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed1;

        /*
         * With nested-guests, we may have extended the guest/host mask here (since we
         * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the
         * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
         * the nested hypervisor originally supplied. Thus, we should, in essence, copy
         * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
         */
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
        uint64_t       u64GuestCr4  = pCtx->cr4;
        uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
                                    ? pCtx->cr4
                                    : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
        Assert(!RT_HI_U32(u64GuestCr4));

#ifndef IN_NEM_DARWIN
        /*
         * Setup VT-x's view of the guest CR4.
         *
         * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
         * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
         * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
         *
         * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
         */
        if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
        {
            Assert(pVM->hm.s.vmx.pRealModeTSS);
            Assert(PDMVmmDevHeapIsEnabled(pVM));
            u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
        }
#endif

        if (VM_IS_VMX_NESTED_PAGING(pVM))
        {
            if (   !CPUMIsGuestPagingEnabledEx(pCtx)
                && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
            {
                /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
                u64GuestCr4 |= X86_CR4_PSE;
                /* Our identity mapping is a 32-bit page directory. */
                u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
            }
            /* else use guest CR4.*/
        }
        else
        {
            Assert(!pVmxTransient->fIsNestedGuest);

            /*
             * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
             * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
             */
            switch (VCPU_2_VMXSTATE(pVCpu).enmShadowMode)
            {
                case PGMMODE_REAL:              /* Real-mode. */
                case PGMMODE_PROTECTED:         /* Protected mode without paging. */
                case PGMMODE_32_BIT:            /* 32-bit paging. */
                {
                    u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
                    break;
                }

                case PGMMODE_PAE:               /* PAE paging. */
                case PGMMODE_PAE_NX:            /* PAE paging with NX. */
                {
                    u64GuestCr4 |= X86_CR4_PAE;
                    break;
                }

                case PGMMODE_AMD64:             /* 64-bit AMD paging (long mode). */
                case PGMMODE_AMD64_NX:          /* 64-bit AMD paging (long mode) with NX enabled. */
                {
#ifdef VBOX_WITH_64_BITS_GUESTS
                    /* For our assumption in vmxHCShouldSwapEferMsr. */
                    Assert(u64GuestCr4 & X86_CR4_PAE);
                    break;
#endif
                }
                default:
                    AssertFailed();
                    return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
            }
        }

        /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
        u64GuestCr4 |= fSetCr4;
        u64GuestCr4 &= fZapCr4;

        Assert(!RT_HI_U32(u64GuestCr4));
        Assert(u64GuestCr4 & X86_CR4_VMXE);

        /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR4, u64GuestCr4);               AssertRC(rc);
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);   AssertRC(rc);

#ifndef IN_NEM_DARWIN
        /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
        bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
        if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
        {
            pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
            hmR0VmxUpdateStartVmFunction(pVCpu);
        }
#endif

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR4);

        Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
    }
    return rc;
}


#ifdef VBOX_STRICT
/**
 * Strict function to validate segment registers.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Will import guest CR0 on strict builds during validation of
 *          segments.
 */
static void vmxHCValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    /*
     * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
     *
     * The reason we check for attribute value 0 in this function and not just the unusable bit is
     * because vmxHCExportGuestSegReg() only updates the VMCS' copy of the value with the
     * unusable bit and doesn't change the guest-context value.
     */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
    if (   !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
        && (   !CPUMIsGuestInRealModeEx(pCtx)
            && !CPUMIsGuestInV86ModeEx(pCtx)))
    {
        /* Protected mode checks */
        /* CS */
        Assert(pCtx->cs.Attr.n.u1Present);
        Assert(!(pCtx->cs.Attr.u & 0xf00));
        Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
        Assert(   (pCtx->cs.u32Limit & 0xfff) == 0xfff
               || !(pCtx->cs.Attr.n.u1Granularity));
        Assert(   !(pCtx->cs.u32Limit & 0xfff00000)
               || (pCtx->cs.Attr.n.u1Granularity));
        /* CS cannot be loaded with NULL in protected mode. */
        Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
        if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
            Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
        else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
            Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
        else
            AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
        /* SS */
        Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
        Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
        if (   !(pCtx->cr0 & X86_CR0_PE)
            || pCtx->cs.Attr.n.u4Type == 3)
        {
            Assert(!pCtx->ss.Attr.n.u2Dpl);
        }
        if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
        {
            Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
            Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
            Assert(pCtx->ss.Attr.n.u1Present);
            Assert(!(pCtx->ss.Attr.u & 0xf00));
            Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
            Assert(   (pCtx->ss.u32Limit & 0xfff) == 0xfff
                   || !(pCtx->ss.Attr.n.u1Granularity));
            Assert(   !(pCtx->ss.u32Limit & 0xfff00000)
                   || (pCtx->ss.Attr.n.u1Granularity));
        }
        /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSegReg(). */
        if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
        {
            Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
            Assert(pCtx->ds.Attr.n.u1Present);
            Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
            Assert(!(pCtx->ds.Attr.u & 0xf00));
            Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
            Assert(   (pCtx->ds.u32Limit & 0xfff) == 0xfff
                   || !(pCtx->ds.Attr.n.u1Granularity));
            Assert(   !(pCtx->ds.u32Limit & 0xfff00000)
                   || (pCtx->ds.Attr.n.u1Granularity));
            Assert(   !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                   || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
        }
        if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
        {
            Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
            Assert(pCtx->es.Attr.n.u1Present);
            Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
            Assert(!(pCtx->es.Attr.u & 0xf00));
            Assert(!(pCtx->es.Attr.u & 0xfffe0000));
            Assert(   (pCtx->es.u32Limit & 0xfff) == 0xfff
                   || !(pCtx->es.Attr.n.u1Granularity));
            Assert(   !(pCtx->es.u32Limit & 0xfff00000)
                   || (pCtx->es.Attr.n.u1Granularity));
            Assert(   !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                   || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
        }
        if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
        {
            Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
            Assert(pCtx->fs.Attr.n.u1Present);
            Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
            Assert(!(pCtx->fs.Attr.u & 0xf00));
            Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
            Assert(   (pCtx->fs.u32Limit & 0xfff) == 0xfff
                   || !(pCtx->fs.Attr.n.u1Granularity));
            Assert(   !(pCtx->fs.u32Limit & 0xfff00000)
                   || (pCtx->fs.Attr.n.u1Granularity));
            Assert(   !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                   || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
        }
        if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
        {
            Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
            Assert(pCtx->gs.Attr.n.u1Present);
            Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
            Assert(!(pCtx->gs.Attr.u & 0xf00));
            Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
            Assert(   (pCtx->gs.u32Limit & 0xfff) == 0xfff
                   || !(pCtx->gs.Attr.n.u1Granularity));
            Assert(   !(pCtx->gs.u32Limit & 0xfff00000)
                   || (pCtx->gs.Attr.n.u1Granularity));
            Assert(   !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                   || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
        }
        /* 64-bit capable CPUs. */
        Assert(!RT_HI_U32(pCtx->cs.u64Base));
        Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
        Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
        Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
    }
    else if (   CPUMIsGuestInV86ModeEx(pCtx)
             || (   CPUMIsGuestInRealModeEx(pCtx)
                 && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)))
    {
        /* Real and v86 mode checks. */
        /* vmxHCExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
        uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
#ifndef IN_NEM_DARWIN
        if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
        {
            u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
            u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
        }
        else
#endif
        {
            u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
            u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
        }

        /* CS */
        AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
        Assert(pCtx->cs.u32Limit == 0xffff);
        AssertMsg(u32CSAttr == 0xf3, ("cs=%#x %#x ", pCtx->cs.Sel, u32CSAttr));
        /* SS */
        Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
        Assert(pCtx->ss.u32Limit == 0xffff);
        Assert(u32SSAttr == 0xf3);
        /* DS */
        Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
        Assert(pCtx->ds.u32Limit == 0xffff);
        Assert(u32DSAttr == 0xf3);
        /* ES */
        Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
        Assert(pCtx->es.u32Limit == 0xffff);
        Assert(u32ESAttr == 0xf3);
        /* FS */
        Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
        Assert(pCtx->fs.u32Limit == 0xffff);
        Assert(u32FSAttr == 0xf3);
        /* GS */
        Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
        Assert(pCtx->gs.u32Limit == 0xffff);
        Assert(u32GSAttr == 0xf3);
        /* 64-bit capable CPUs. */
        Assert(!RT_HI_U32(pCtx->cs.u64Base));
        Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
        Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
        Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
    }
}
#endif /* VBOX_STRICT */


/**
 * Exports a guest segment register into the guest-state area in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 * @param   iSegReg     The segment register number (X86_SREG_XXX).
 * @param   pSelReg     Pointer to the segment selector.
 *
 * @remarks No-long-jump zone!!!
 */
static int vmxHCExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t iSegReg, PCCPUMSELREG pSelReg)
{
    Assert(iSegReg < X86_SREG_COUNT);

    uint32_t u32Access = pSelReg->Attr.u;
#ifndef IN_NEM_DARWIN
    if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
#endif
    {
        /*
         * The way to differentiate between whether this is really a null selector or was just
         * a selector loaded with 0 in real-mode is using the segment attributes. A selector
         * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
         * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
         * NULL selectors loaded in protected-mode have their attribute as 0.
         */
        if (u32Access)
        { }
        else
            u32Access = X86DESCATTR_UNUSABLE;
    }
#ifndef IN_NEM_DARWIN
    else
    {
        /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
        u32Access = 0xf3;
        Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
        Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
        RT_NOREF_PV(pVCpu);
    }
#else
    RT_NOREF(pVmcsInfo);
#endif

    /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
    AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
              ("Access bit not set for usable segment. %.2s sel=%#x attr %#x\n", "ESCSSSDSFSGS" + iSegReg * 2, pSelReg, pSelReg->Attr.u));

    /*
     * Commit it to the VMCS.
     */
    int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(iSegReg),           pSelReg->Sel);      AssertRC(rc);
    rc     = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg),         pSelReg->u32Limit); AssertRC(rc);
    rc     = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(iSegReg),            pSelReg->u64Base);  AssertRC(rc);
    rc     = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), u32Access);         AssertRC(rc);
    return VINF_SUCCESS;
}


/**
 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
 * area in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks Will import guest CR0 on strict builds during validation of
 *          segments.
 * @remarks No-long-jump zone!!!
 */
static int vmxHCExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
    int                 rc              = VERR_INTERNAL_ERROR_5;
#ifndef IN_NEM_DARWIN
    PVMCC               pVM             = pVCpu->CTX_SUFF(pVM);
#endif
    PCCPUMCTX           pCtx            = &pVCpu->cpum.GstCtx;
    PVMXVMCSINFO        pVmcsInfo       = pVmxTransient->pVmcsInfo;
#ifndef IN_NEM_DARWIN
    PVMXVMCSINFOSHARED  pVmcsInfoShared = pVmcsInfo->pShared;
#endif

    /*
     * Guest Segment registers: CS, SS, DS, ES, FS, GS.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
    {
        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CS)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrCS.u = pCtx->cs.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CS);
        }

        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SS)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrSS.u = pCtx->ss.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_SS);
        }

        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_DS)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrDS.u = pCtx->ds.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_DS);
        }

        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_ES)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrES.u = pCtx->es.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_ES);
        }

        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_FS)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrFS.u = pCtx->fs.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_FS);
        }

        if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GS)
        {
            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
#ifndef IN_NEM_DARWIN
            if (pVmcsInfoShared->RealMode.fRealOnV86Active)
                pVmcsInfoShared->RealMode.AttrGS.u = pCtx->gs.Attr.u;
#endif
            rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
            AssertRC(rc);
            ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GS);
        }

#ifdef VBOX_STRICT
        vmxHCValidateSegmentRegs(pVCpu, pVmcsInfo);
#endif
        Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
                  pCtx->cs.Attr.u));
    }

    /*
     * Guest TR.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_TR)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);

        /*
         * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
         * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
         * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
         */
        uint16_t u16Sel;
        uint32_t u32Limit;
        uint64_t u64Base;
        uint32_t u32AccessRights;
#ifndef IN_NEM_DARWIN
        if (!pVmcsInfoShared->RealMode.fRealOnV86Active)
#endif
        {
            u16Sel          = pCtx->tr.Sel;
            u32Limit        = pCtx->tr.u32Limit;
            u64Base         = pCtx->tr.u64Base;
            u32AccessRights = pCtx->tr.Attr.u;
        }
#ifndef IN_NEM_DARWIN
        else
        {
            Assert(!pVmxTransient->fIsNestedGuest);
            Assert(pVM->hm.s.vmx.pRealModeTSS);
            Assert(PDMVmmDevHeapIsEnabled(pVM));    /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */

            /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
            RTGCPHYS GCPhys;
            rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
            AssertRCReturn(rc, rc);

            X86DESCATTR DescAttr;
            DescAttr.u           = 0;
            DescAttr.n.u1Present = 1;
            DescAttr.n.u4Type    = X86_SEL_TYPE_SYS_386_TSS_BUSY;

            u16Sel          = 0;
            u32Limit        = HM_VTX_TSS_SIZE;
            u64Base         = GCPhys;
            u32AccessRights = DescAttr.u;
        }
#endif

        /* Validate. */
        Assert(!(u16Sel & RT_BIT(2)));
        AssertMsg(   (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
                  || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
        AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
        Assert(!(u32AccessRights & RT_BIT(4)));                 /* System MBZ.*/
        Assert(u32AccessRights & RT_BIT(7));                    /* Present MB1.*/
        Assert(!(u32AccessRights & 0xf00));                     /* 11:8 MBZ. */
        Assert(!(u32AccessRights & 0xfffe0000));                /* 31:17 MBZ. */
        Assert(   (u32Limit & 0xfff) == 0xfff
               || !(u32AccessRights & RT_BIT(15)));             /* Granularity MBZ. */
        Assert(   !(pCtx->tr.u32Limit & 0xfff00000)
               || (u32AccessRights & RT_BIT(15)));              /* Granularity MB1. */

        rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL,           u16Sel);             AssertRC(rc);
        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT,         u32Limit);           AssertRC(rc);
        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);    AssertRC(rc);
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE,            u64Base);            AssertRC(rc);

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_TR);
        Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
    }

    /*
     * Guest GDTR.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GDTR)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);

        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);     AssertRC(rc);
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE,  pCtx->gdtr.pGdt);        AssertRC(rc);

        /* Validate. */
        Assert(!(pCtx->gdtr.cbGdt & 0xffff0000));          /* Bits 31:16 MBZ. */

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
        Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
    }

    /*
     * Guest LDTR.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_LDTR)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);

        /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
        uint32_t u32Access;
        if (   !pVmxTransient->fIsNestedGuest
            && !pCtx->ldtr.Attr.u)
            u32Access = X86DESCATTR_UNUSABLE;
        else
            u32Access = pCtx->ldtr.Attr.u;

        rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL,           pCtx->ldtr.Sel);       AssertRC(rc);
        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT,         pCtx->ldtr.u32Limit);  AssertRC(rc);
        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);            AssertRC(rc);
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE,            pCtx->ldtr.u64Base);   AssertRC(rc);

        /* Validate. */
        if (!(u32Access & X86DESCATTR_UNUSABLE))
        {
            Assert(!(pCtx->ldtr.Sel & RT_BIT(2)));              /* TI MBZ. */
            Assert(pCtx->ldtr.Attr.n.u4Type == 2);              /* Type MB2 (LDT). */
            Assert(!pCtx->ldtr.Attr.n.u1DescType);              /* System MBZ. */
            Assert(pCtx->ldtr.Attr.n.u1Present == 1);           /* Present MB1. */
            Assert(!pCtx->ldtr.Attr.n.u4LimitHigh);             /* 11:8 MBZ. */
            Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000));          /* 31:17 MBZ. */
            Assert(   (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
                   || !pCtx->ldtr.Attr.n.u1Granularity);        /* Granularity MBZ. */
            Assert(   !(pCtx->ldtr.u32Limit & 0xfff00000)
                   || pCtx->ldtr.Attr.n.u1Granularity);         /* Granularity MB1. */
        }

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
        Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
    }

    /*
     * Guest IDTR.
     */
    if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_IDTR)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);

        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);     AssertRC(rc);
        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE,  pCtx->idtr.pIdt);        AssertRC(rc);

        /* Validate. */
        Assert(!(pCtx->idtr.cbIdt & 0xffff0000));          /* Bits 31:16 MBZ. */

        ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
        Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
    }

    return VINF_SUCCESS;
}


/**
 * Gets the IEM exception flags for the specified vector and IDT vectoring /
 * VM-exit interruption info type.
 *
 * @returns The IEM exception flags.
 * @param   uVector         The event vector.
 * @param   uVmxEventType   The VMX event type.
 *
 * @remarks This function currently only constructs flags required for
 *          IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
 *          and CR2 aspects of an exception are not included).
 */
static uint32_t vmxHCGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
{
    uint32_t fIemXcptFlags;
    switch (uVmxEventType)
    {
        case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
        case VMX_IDT_VECTORING_INFO_TYPE_NMI:
            fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
            break;

        case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
            fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
            break;

        case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
            fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
            break;

        case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
        {
            fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
            if (uVector == X86_XCPT_BP)
                fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
            else if (uVector == X86_XCPT_OF)
                fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
            else
            {
                fIemXcptFlags = 0;
                AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
            }
            break;
        }

        case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
            fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
            break;

        default:
            fIemXcptFlags = 0;
            AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
            break;
    }
    return fIemXcptFlags;
}


/**
 * Sets an event as a pending event to be injected into the guest.
 *
 * @param   pVCpu               The cross context virtual CPU structure.
 * @param   u32IntInfo          The VM-entry interruption-information field.
 * @param   cbInstr             The VM-entry instruction length in bytes (for
 *                              software interrupts, exceptions and privileged
 *                              software exceptions).
 * @param   u32ErrCode          The VM-entry exception error code.
 * @param   GCPtrFaultAddress   The fault-address (CR2) in case it's a
 *                              page-fault.
 */
DECLINLINE(void) vmxHCSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
                                      RTGCUINTPTR GCPtrFaultAddress)
{
    Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);
    VCPU_2_VMXSTATE(pVCpu).Event.fPending          = true;
    VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo        = u32IntInfo;
    VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode        = u32ErrCode;
    VCPU_2_VMXSTATE(pVCpu).Event.cbInstr           = cbInstr;
    VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress = GCPtrFaultAddress;
}


/**
 * Sets an external interrupt as pending-for-injection into the VM.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   u8Interrupt     The external interrupt vector.
 */
DECLINLINE(void) vmxHCSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR,          u8Interrupt)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
}


/**
 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
DECLINLINE(void) vmxHCSetPendingXcptNmi(PVMCPUCC pVCpu)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_NMI)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_ENTRY_INT_INFO_TYPE_NMI)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
}


/**
 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
DECLINLINE(void) vmxHCSetPendingXcptDF(PVMCPUCC pVCpu)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_DF)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
}


/**
 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
DECLINLINE(void) vmxHCSetPendingXcptUD(PVMCPUCC pVCpu)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_UD)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
}


/**
 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
DECLINLINE(void) vmxHCSetPendingXcptDB(PVMCPUCC pVCpu)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_DB)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
}


#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   u32ErrCode  The error code for the general-protection exception.
 */
DECLINLINE(void) vmxHCSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_GP)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
}


/**
 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   u32ErrCode  The error code for the stack exception.
 */
DECLINLINE(void) vmxHCSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
{
    uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR,         X86_XCPT_SS)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,           VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
                              | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1);
    vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/**
 * Fixes up attributes for the specified segment register.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pSelReg     The segment register that needs fixing.
 * @param   pszRegName  The register name (for logging and assertions).
 */
static void vmxHCFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, const char *pszRegName)
{
    Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);

    /*
     * If VT-x marks the segment as unusable, most other bits remain undefined:
     *   - For CS the L, D and G bits have meaning.
     *   - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
     *   - For the remaining data segments no bits are defined.
     *
     * The present bit and the unusable bit has been observed to be set at the
     * same time (the selector was supposed to be invalid as we started executing
     * a V8086 interrupt in ring-0).
     *
     * What should be important for the rest of the VBox code, is that the P bit is
     * cleared.  Some of the other VBox code recognizes the unusable bit, but
     * AMD-V certainly don't, and REM doesn't really either.  So, to be on the
     * safe side here, we'll strip off P and other bits we don't care about.  If
     * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
     *
     * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
     */
#ifdef VBOX_STRICT
    uint32_t const uAttr = pSelReg->Attr.u;
#endif

    /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
    pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L    | X86DESCATTR_D  | X86DESCATTR_G
                     | X86DESCATTR_DPL      | X86DESCATTR_TYPE | X86DESCATTR_DT;

#ifdef VBOX_STRICT
# ifndef IN_NEM_DARWIN
    VMMRZCallRing3Disable(pVCpu);
# endif
    Log4Func(("Unusable %s: sel=%#x attr=%#x -> %#x\n", pszRegName, pSelReg->Sel, uAttr, pSelReg->Attr.u));
# ifdef DEBUG_bird
    AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
              ("%s: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
               pszRegName, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
# endif
# ifndef IN_NEM_DARWIN
    VMMRZCallRing3Enable(pVCpu);
# endif
    NOREF(uAttr);
#endif
    RT_NOREF2(pVCpu, pszRegName);
}


/**
 * Imports a guest segment register from the current VMCS into the guest-CPU
 * context.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @tparam  a_iSegReg   The segment register number (X86_SREG_XXX).
 *
 * @remarks Called with interrupts and/or preemption disabled.
 */
template<uint32_t const a_iSegReg>
DECLINLINE(void) vmxHCImportGuestSegReg(PVMCPUCC pVCpu)
{
    AssertCompile(a_iSegReg < X86_SREG_COUNT);
    /* Check that the macros we depend upon here and in the export parenter function works: */
#define MY_SEG_VMCS_FIELD(a_FieldPrefix, a_FieldSuff) \
        (  a_iSegReg == X86_SREG_ES ? a_FieldPrefix ## ES ## a_FieldSuff \
         : a_iSegReg == X86_SREG_CS ? a_FieldPrefix ## CS ## a_FieldSuff \
         : a_iSegReg == X86_SREG_SS ? a_FieldPrefix ## SS ## a_FieldSuff \
         : a_iSegReg == X86_SREG_DS ? a_FieldPrefix ## DS ## a_FieldSuff \
         : a_iSegReg == X86_SREG_FS ? a_FieldPrefix ## FS ## a_FieldSuff \
         : a_iSegReg == X86_SREG_GS ? a_FieldPrefix ## GS ## a_FieldSuff : 0)
    AssertCompile(VMX_VMCS_GUEST_SEG_BASE(a_iSegReg)             == MY_SEG_VMCS_FIELD(VMX_VMCS_GUEST_,_BASE));
    AssertCompile(VMX_VMCS16_GUEST_SEG_SEL(a_iSegReg)            == MY_SEG_VMCS_FIELD(VMX_VMCS16_GUEST_,_SEL));
    AssertCompile(VMX_VMCS32_GUEST_SEG_LIMIT(a_iSegReg)          == MY_SEG_VMCS_FIELD(VMX_VMCS32_GUEST_,_LIMIT));
    AssertCompile(VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(a_iSegReg)  == MY_SEG_VMCS_FIELD(VMX_VMCS32_GUEST_,_ACCESS_RIGHTS));

    PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[a_iSegReg];

    uint16_t u16Sel;
    int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(a_iSegReg), &u16Sel);   AssertRC(rc);
    pSelReg->Sel      = u16Sel;
    pSelReg->ValidSel = u16Sel;

    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(a_iSegReg), &pSelReg->u32Limit); AssertRC(rc);
    rc     = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(a_iSegReg), &pSelReg->u64Base);     AssertRC(rc);

    uint32_t u32Attr;
    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(a_iSegReg), &u32Attr);   AssertRC(rc);
    pSelReg->Attr.u   = u32Attr;
    if (u32Attr & X86DESCATTR_UNUSABLE)
        vmxHCFixUnusableSegRegAttr(pVCpu, pSelReg, "ES\0CS\0SS\0DS\0FS\0GS" + a_iSegReg * 3);

    pSelReg->fFlags   = CPUMSELREG_FLAGS_VALID;
}


/**
 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 *
 * @remarks Called with interrupts and/or preemption disabled.
 */
DECLINLINE(void) vmxHCImportGuestLdtr(PVMCPUCC pVCpu)
{
    uint16_t u16Sel;
    uint64_t u64Base;
    uint32_t u32Limit, u32Attr;
    int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL,           &u16Sel);       AssertRC(rc);
    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT,         &u32Limit);     AssertRC(rc);
    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);      AssertRC(rc);
    rc     = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE,            &u64Base);      AssertRC(rc);

    pVCpu->cpum.GstCtx.ldtr.Sel      = u16Sel;
    pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
    pVCpu->cpum.GstCtx.ldtr.fFlags   = CPUMSELREG_FLAGS_VALID;
    pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
    pVCpu->cpum.GstCtx.ldtr.u64Base  = u64Base;
    pVCpu->cpum.GstCtx.ldtr.Attr.u   = u32Attr;
    if (u32Attr & X86DESCATTR_UNUSABLE)
        vmxHCFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, "LDTR");
}


/**
 * Imports the guest TR from the current VMCS into the guest-CPU context.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 *
 * @remarks Called with interrupts and/or preemption disabled.
 */
DECLINLINE(void) vmxHCImportGuestTr(PVMCPUCC pVCpu)
{
    uint16_t u16Sel;
    uint64_t u64Base;
    uint32_t u32Limit, u32Attr;
    int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL,           &u16Sel);     AssertRC(rc);
    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT,         &u32Limit);   AssertRC(rc);
    rc     = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);    AssertRC(rc);
    rc     = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE,            &u64Base);    AssertRC(rc);

    pVCpu->cpum.GstCtx.tr.Sel      = u16Sel;
    pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
    pVCpu->cpum.GstCtx.tr.fFlags   = CPUMSELREG_FLAGS_VALID;
    pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
    pVCpu->cpum.GstCtx.tr.u64Base  = u64Base;
    pVCpu->cpum.GstCtx.tr.Attr.u   = u32Attr;
    /* TR is the only selector that can never be unusable. */
    Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
}


/**
 * Core: Imports the guest RIP from the VMCS back into the guest-CPU context.
 *
 * @returns The RIP value.
 * @param   pVCpu               The cross context virtual CPU structure.
 *
 * @remarks Called with interrupts and/or preemption disabled, should not assert!
 * @remarks Do -not- call this function directly!
 */
DECL_FORCE_INLINE(uint64_t) vmxHCImportGuestCoreRip(PVMCPUCC pVCpu)
{
    uint64_t u64Val;
    int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val);
    AssertRC(rc);

    pVCpu->cpum.GstCtx.rip = u64Val;

    return u64Val;
}


/**
 * Imports the guest RIP from the VMCS back into the guest-CPU context.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 *
 * @remarks Called with interrupts and/or preemption disabled, should not assert!
 * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
 *          instead!!!
 */
DECLINLINE(void) vmxHCImportGuestRip(PVMCPUCC pVCpu)
{
    if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
    {
        EMHistoryUpdatePC(pVCpu, vmxHCImportGuestCoreRip(pVCpu), false);
        pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
    }
}


/**
 * Core: Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Called with interrupts and/or preemption disabled, should not assert!
 * @remarks Do -not- call this function directly!
 */
DECL_FORCE_INLINE(void) vmxHCImportGuestCoreRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
    uint64_t fRFlags;
    int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &fRFlags);
    AssertRC(rc);

    Assert((fRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK);
    Assert((fRFlags & ~(uint64_t)(X86_EFL_1 | X86_EFL_LIVE_MASK)) == 0);

    pVCpu->cpum.GstCtx.rflags.u = fRFlags;
#ifndef IN_NEM_DARWIN
    PCVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
    if (!pVmcsInfoShared->RealMode.fRealOnV86Active)
    { /* mostly likely */ }
    else
    {
        pVCpu->cpum.GstCtx.eflags.Bits.u1VM   = 0;
        pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL = pVmcsInfoShared->RealMode.Eflags.Bits.u2IOPL;
    }
#else
    RT_NOREF(pVmcsInfo);
#endif
}


/**
 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Called with interrupts and/or preemption disabled, should not assert!
 * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
 *          instead!!!
 */
DECLINLINE(void) vmxHCImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
    if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RFLAGS)
    {
        vmxHCImportGuestCoreRFlags(pVCpu, pVmcsInfo);
        pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
    }
}


/**
 * Worker for vmxHCImportGuestIntrState that handles the case where any of the
 * relevant VMX_VMCS32_GUEST_INT_STATE bits are set.
 */
DECL_NO_INLINE(static,void) vmxHCImportGuestIntrStateSlow(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t fGstIntState)
{
    /*
     * We must import RIP here to set our EM interrupt-inhibited state.
     * We also import RFLAGS as our code that evaluates pending interrupts
     * before VM-entry requires it.
     */
    vmxHCImportGuestRip(pVCpu);
    vmxHCImportGuestRFlags(pVCpu, pVmcsInfo);

    CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
                                     RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
                                     RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
                                     pVCpu->cpum.GstCtx.rip);
    CPUMUpdateInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx, RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
}


/**
 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
 * context.
 *
 * @note    May import RIP and RFLAGS if interrupt or NMI are blocked.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
 *          do not log!
 * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
 *          instead!!!
 */
DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
    uint32_t u32Val;
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32Val);    AssertRC(rc);
    if (!u32Val)
    {
        CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
        CPUMClearInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx);
    }
    else
        vmxHCImportGuestIntrStateSlow(pVCpu, pVmcsInfo, u32Val);
}


/**
 * Worker for VMXR0ImportStateOnDemand.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 * @param   fWhat       What to import, CPUMCTX_EXTRN_XXX.
 */
static int vmxHCImportGuestStateEx(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
{
    int      rc   = VINF_SUCCESS;
    PVMCC    pVM  = pVCpu->CTX_SUFF(pVM);
    PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    uint32_t u32Val;

    /*
     * Note! This is hack to workaround a mysterious BSOD observed with release builds
     *       on Windows 10 64-bit hosts. Profile and debug builds are not affected and
     *       neither are other host platforms.
     *
     *       Committing this temporarily as it prevents BSOD.
     *
     * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
     */
#ifdef RT_OS_WINDOWS
    if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
        return VERR_HM_IPE_1;
#endif

    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);

#ifndef IN_NEM_DARWIN
    /*
     * We disable interrupts to make the updating of the state and in particular
     * the fExtrn modification atomic wrt to preemption hooks.
     */
    RTCCUINTREG const fEFlags = ASMIntDisableFlags();
#endif

    fWhat &= pCtx->fExtrn;
    if (fWhat)
    {
        do
        {
            if (fWhat & CPUMCTX_EXTRN_RIP)
                vmxHCImportGuestRip(pVCpu);

            if (fWhat & CPUMCTX_EXTRN_RFLAGS)
                vmxHCImportGuestRFlags(pVCpu, pVmcsInfo);

            /* Note! vmxHCImportGuestIntrState may also include RIP and RFLAGS and update fExtrn. */
            if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
                vmxHCImportGuestIntrState(pVCpu, pVmcsInfo);

            if (fWhat & CPUMCTX_EXTRN_RSP)
            {
                rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RSP, &pCtx->rsp);
                AssertRC(rc);
            }

            if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
            {
                PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
#ifndef IN_NEM_DARWIN
                bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
#else
                bool const fRealOnV86Active = false; /* HV supports only unrestricted guest execution. */
#endif
                if (fWhat & CPUMCTX_EXTRN_CS)
                {
                    vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu);
                    vmxHCImportGuestRip(pVCpu); /** @todo WTF? */
                    if (fRealOnV86Active)
                        pCtx->cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u;
                    EMHistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
                }
                if (fWhat & CPUMCTX_EXTRN_SS)
                {
                    vmxHCImportGuestSegReg<X86_SREG_SS>(pVCpu);
                    if (fRealOnV86Active)
                        pCtx->ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u;
                }
                if (fWhat & CPUMCTX_EXTRN_DS)
                {
                    vmxHCImportGuestSegReg<X86_SREG_DS>(pVCpu);
                    if (fRealOnV86Active)
                        pCtx->ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u;
                }
                if (fWhat & CPUMCTX_EXTRN_ES)
                {
                    vmxHCImportGuestSegReg<X86_SREG_ES>(pVCpu);
                    if (fRealOnV86Active)
                        pCtx->es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u;
                }
                if (fWhat & CPUMCTX_EXTRN_FS)
                {
                    vmxHCImportGuestSegReg<X86_SREG_FS>(pVCpu);
                    if (fRealOnV86Active)
                        pCtx->fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u;
                }
                if (fWhat & CPUMCTX_EXTRN_GS)
                {
                    vmxHCImportGuestSegReg<X86_SREG_GS>(pVCpu);
                    if (fRealOnV86Active)
                        pCtx->gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u;
                }
            }

            if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
            {
                if (fWhat & CPUMCTX_EXTRN_LDTR)
                    vmxHCImportGuestLdtr(pVCpu);

                if (fWhat & CPUMCTX_EXTRN_GDTR)
                {
                    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE,    &pCtx->gdtr.pGdt);  AssertRC(rc);
                    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);           AssertRC(rc);
                    pCtx->gdtr.cbGdt = u32Val;
                }

                /* Guest IDTR. */
                if (fWhat & CPUMCTX_EXTRN_IDTR)
                {
                    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE,    &pCtx->idtr.pIdt);  AssertRC(rc);
                    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);           AssertRC(rc);
                    pCtx->idtr.cbIdt = u32Val;
                }

                /* Guest TR. */
                if (fWhat & CPUMCTX_EXTRN_TR)
                {
#ifndef IN_NEM_DARWIN
                    /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
                       don't need to import that one. */
                    if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
#endif
                        vmxHCImportGuestTr(pVCpu);
                }
            }

            if (fWhat & CPUMCTX_EXTRN_DR7)
            {
#ifndef IN_NEM_DARWIN
                if (!pVCpu->hmr0.s.fUsingHyperDR7)
#endif
                {
                    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_DR7, &pCtx->dr[7]);
                    AssertRC(rc);
                }
            }

            if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
            {
                rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_EIP,  &pCtx->SysEnter.eip);  AssertRC(rc);
                rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_ESP,  &pCtx->SysEnter.esp);  AssertRC(rc);
                rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);              AssertRC(rc);
                pCtx->SysEnter.cs = u32Val;
            }

#ifndef IN_NEM_DARWIN
            if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
            {
                if (   pVM->hmr0.s.fAllow64BitGuests
                    && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
                    pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
            }

            if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
            {
                if (   pVM->hmr0.s.fAllow64BitGuests
                    && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
                {
                    pCtx->msrLSTAR  = ASMRdMsr(MSR_K8_LSTAR);
                    pCtx->msrSTAR   = ASMRdMsr(MSR_K6_STAR);
                    pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
                }
            }

            if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
            {
                PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
                PCVMXAUTOMSR       pMsrs           = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
                uint32_t const     cMsrs           = pVmcsInfo->cExitMsrStore;
                Assert(pMsrs);
                Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
                Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
                for (uint32_t i = 0; i < cMsrs; i++)
                {
                    uint32_t const idMsr = pMsrs[i].u32Msr;
                    switch (idMsr)
                    {
                        case MSR_K8_TSC_AUX:        CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value);     break;
                        case MSR_IA32_SPEC_CTRL:    CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value);   break;
                        case MSR_K6_EFER:           /* Can't be changed without causing a VM-exit */  break;
                        default:
                        {
                            uint32_t idxLbrMsr;
                            if (VM_IS_VMX_LBR(pVM))
                            {
                                if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
                                {
                                    Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
                                    pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
                                    break;
                                }
                                if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
                                {
                                    Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
                                    pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
                                    break;
                                }
                                if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr)
                                {
                                    pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value;
                                    break;
                                }
                                /* Fallthru (no break) */
                            }
                            pCtx->fExtrn = 0;
                            VCPU_2_VMXSTATE(pVCpu).u32HMError = pMsrs->u32Msr;
                            ASMSetFlags(fEFlags);
                            AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
                            return VERR_HM_UNEXPECTED_LD_ST_MSR;
                        }
                    }
                }
            }
#endif

            if (fWhat & CPUMCTX_EXTRN_CR_MASK)
            {
                if (fWhat & CPUMCTX_EXTRN_CR0)
                {
                    uint64_t u64Cr0;
                    uint64_t u64Shadow;
                    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0,            &u64Cr0);       AssertRC(rc);
                    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);    AssertRC(rc);
#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
                    u64Cr0 = (u64Cr0    & ~pVmcsInfo->u64Cr0Mask)
                           | (u64Shadow &  pVmcsInfo->u64Cr0Mask);
#else
                    if (!CPUMIsGuestInVmxNonRootMode(pCtx))
                    {
                        u64Cr0 = (u64Cr0    & ~pVmcsInfo->u64Cr0Mask)
                               | (u64Shadow &  pVmcsInfo->u64Cr0Mask);
                    }
                    else
                    {
                        /*
                         * We've merged the guest and nested-guest's CR0 guest/host mask while executing
                         * the nested-guest using hardware-assisted VMX. Accordingly we need to
                         * re-construct CR0. See @bugref{9180#c95} for details.
                         */
                        PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
                        PVMXVVMCS const     pVmcsNstGst  = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
                        u64Cr0 = (u64Cr0                     & ~(pVmcsInfoGst->u64Cr0Mask & pVmcsNstGst->u64Cr0Mask.u))
                               | (pVmcsNstGst->u64GuestCr0.u &   pVmcsNstGst->u64Cr0Mask.u)
                               | (u64Shadow                  &  (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
                        Assert(u64Cr0 & X86_CR0_NE);
                    }
#endif
#ifndef IN_NEM_DARWIN
                    VMMRZCallRing3Disable(pVCpu);   /* May call into PGM which has Log statements. */
#endif
                    CPUMSetGuestCR0(pVCpu, u64Cr0);
#ifndef IN_NEM_DARWIN
                    VMMRZCallRing3Enable(pVCpu);
#endif
                }

                if (fWhat & CPUMCTX_EXTRN_CR4)
                {
                    uint64_t u64Cr4;
                    uint64_t u64Shadow;
                    rc  = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4,            &u64Cr4);      AssertRC(rc);
                    rc |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);   AssertRC(rc);
#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
                    u64Cr4 = (u64Cr4    & ~pVmcsInfo->u64Cr4Mask)
                           | (u64Shadow &  pVmcsInfo->u64Cr4Mask);
#else
                    if (!CPUMIsGuestInVmxNonRootMode(pCtx))
                    {
                        u64Cr4 = (u64Cr4    & ~pVmcsInfo->u64Cr4Mask)
                               | (u64Shadow &  pVmcsInfo->u64Cr4Mask);
                    }
                    else
                    {
                        /*
                         * We've merged the guest and nested-guest's CR4 guest/host mask while executing
                         * the nested-guest using hardware-assisted VMX. Accordingly we need to
                         * re-construct CR4. See @bugref{9180#c95} for details.
                         */
                        PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
                        PVMXVVMCS const     pVmcsNstGst  = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
                        u64Cr4 = (u64Cr4                     & ~(pVmcsInfo->u64Cr4Mask & pVmcsNstGst->u64Cr4Mask.u))
                               | (pVmcsNstGst->u64GuestCr4.u &   pVmcsNstGst->u64Cr4Mask.u)
                               | (u64Shadow                  &  (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
                        Assert(u64Cr4 & X86_CR4_VMXE);
                    }
#endif
                    pCtx->cr4 = u64Cr4;
                }

                if (fWhat & CPUMCTX_EXTRN_CR3)
                {
                    /* CR0.PG bit changes are always intercepted, so it's up to date. */
                    if (   VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
                        || (   VM_IS_VMX_NESTED_PAGING(pVM)
                            && CPUMIsGuestPagingEnabledEx(pCtx)))
                    {
                        uint64_t u64Cr3;
                        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR3, &u64Cr3);  AssertRC(rc);
                        if (pCtx->cr3 != u64Cr3)
                        {
                            pCtx->cr3 = u64Cr3;
                            VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
                        }

                        /*
                         * If the guest is in PAE mode, sync back the PDPE's into the guest state.
                         * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
                         */
                        if (CPUMIsGuestInPAEModeEx(pCtx))
                        {
                            X86PDPE aPaePdpes[4];
                            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u);     AssertRC(rc);
                            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u);     AssertRC(rc);
                            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u);     AssertRC(rc);
                            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u);     AssertRC(rc);
                            if (memcmp(&aPaePdpes[0], &pCtx->aPaePdpes[0], sizeof(aPaePdpes)))
                            {
                                memcpy(&pCtx->aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
                                /* PGM now updates PAE PDPTEs while updating CR3. */
                                VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
                            }
                        }
                    }
                }
            }

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
            if (fWhat & CPUMCTX_EXTRN_HWVIRT)
            {
                if (   (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
                    && !CPUMIsGuestInVmxNonRootMode(pCtx))
                {
                    Assert(CPUMIsGuestInVmxRootMode(pCtx));
                    rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
                    if (RT_SUCCESS(rc))
                    { /* likely */ }
                    else
                        break;
                }
            }
#endif
        } while (0);

        if (RT_SUCCESS(rc))
        {
            /* Update fExtrn. */
            pCtx->fExtrn &= ~fWhat;

            /* If everything has been imported, clear the HM keeper bit. */
            if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
            {
#ifndef IN_NEM_DARWIN
                pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
#else
                pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_NEM;
#endif
                Assert(!pCtx->fExtrn);
            }
        }
    }
#ifndef IN_NEM_DARWIN
    else
        AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));

    /*
     * Restore interrupts.
     */
    ASMSetFlags(fEFlags);
#endif

    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);

    if (RT_SUCCESS(rc))
    { /* likely */ }
    else
        return rc;

    /*
     * Honor any pending CR3 updates.
     *
     * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
     * -> VMMRZCallRing3Disable() -> vmxHCImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
     * -> continue with VM-exit handling -> vmxHCImportGuestState() and here we are.
     *
     * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
     * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
     * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
     * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
     *
     * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
     *
     * The force-flag is checked first as it's cheaper for potential superfluous calls to this function.
     */
    if (   VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)
#ifndef IN_NEM_DARWIN
        && VMMRZCallRing3IsEnabled(pVCpu)
#endif
        )
    {
        Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
        PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
        Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
    }

    return VINF_SUCCESS;
}


/**
 * Internal state fetcher, inner version where we fetch all of a_fWhat.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 * @param   fEFlags     Saved EFLAGS for restoring the interrupt flag. Ignored
 *                      in NEM/darwin context.
 * @tparam  a_fWhat     What to import, zero or more bits from
 *                      HMVMX_CPUMCTX_EXTRN_ALL.
 */
template<uint64_t const a_fWhat>
static int vmxHCImportGuestStateInner(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t fEFlags)
{
    Assert(a_fWhat != 0); /* No AssertCompile as the assertion probably kicks in before the compiler (clang) discards it. */
    AssertCompile(!(a_fWhat & ~HMVMX_CPUMCTX_EXTRN_ALL));
    Assert(   (pVCpu->cpum.GstCtx.fExtrn & a_fWhat) == a_fWhat
           || (pVCpu->cpum.GstCtx.fExtrn & a_fWhat) == (a_fWhat & ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)));

    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);

    PVMCC const pVM  = pVCpu->CTX_SUFF(pVM);

    /* RIP and RFLAGS may have been imported already by the post exit code
       together with the CPUMCTX_EXTRN_INHIBIT_INT/NMI state, so this part
       of the code is skipping this part of the code. */
    if (   (a_fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS))
        && pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS))
    {
        if (a_fWhat & CPUMCTX_EXTRN_RFLAGS)
            vmxHCImportGuestCoreRFlags(pVCpu, pVmcsInfo);

        if (a_fWhat & CPUMCTX_EXTRN_RIP)
        {
            if (!(a_fWhat & CPUMCTX_EXTRN_CS))
                EMHistoryUpdatePC(pVCpu, vmxHCImportGuestCoreRip(pVCpu), false);
            else
                vmxHCImportGuestCoreRip(pVCpu);
        }
    }

    /* Note! vmxHCImportGuestIntrState may also include RIP and RFLAGS and update fExtrn. */
    if (a_fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
        vmxHCImportGuestIntrState(pVCpu, pVmcsInfo);

    if (a_fWhat & (CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TR))
    {
        if (a_fWhat & CPUMCTX_EXTRN_CS)
        {
            vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu);
            /** @todo try get rid of this carp, it smells and is probably never ever
             *        used: */
            if (   !(a_fWhat & CPUMCTX_EXTRN_RIP)
                && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
            {
                vmxHCImportGuestCoreRip(pVCpu);
                pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP;
            }
            EMHistoryUpdatePC(pVCpu, pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, true /* fFlattened */);
        }
        if (a_fWhat & CPUMCTX_EXTRN_SS)
            vmxHCImportGuestSegReg<X86_SREG_SS>(pVCpu);
        if (a_fWhat & CPUMCTX_EXTRN_DS)
            vmxHCImportGuestSegReg<X86_SREG_DS>(pVCpu);
        if (a_fWhat & CPUMCTX_EXTRN_ES)
            vmxHCImportGuestSegReg<X86_SREG_ES>(pVCpu);
        if (a_fWhat & CPUMCTX_EXTRN_FS)
            vmxHCImportGuestSegReg<X86_SREG_FS>(pVCpu);
        if (a_fWhat & CPUMCTX_EXTRN_GS)
            vmxHCImportGuestSegReg<X86_SREG_GS>(pVCpu);

        /* Guest TR.
           Real-mode emulation using virtual-8086 mode has the fake TSS
           (pRealModeTSS) in TR, don't need to import that one. */
#ifndef IN_NEM_DARWIN
        PVMXVMCSINFOSHARED const pVmcsInfoShared  = pVmcsInfo->pShared;
        bool const               fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
        if ((a_fWhat & CPUMCTX_EXTRN_TR) && !fRealOnV86Active)
#else
        if (a_fWhat & CPUMCTX_EXTRN_TR)
#endif
            vmxHCImportGuestTr(pVCpu);

#ifndef IN_NEM_DARWIN /* NEM/Darwin: HV supports only unrestricted guest execution. */
        if (fRealOnV86Active)
        {
            if (a_fWhat & CPUMCTX_EXTRN_CS)
                pVCpu->cpum.GstCtx.cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u;
            if (a_fWhat & CPUMCTX_EXTRN_SS)
                pVCpu->cpum.GstCtx.ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u;
            if (a_fWhat & CPUMCTX_EXTRN_DS)
                pVCpu->cpum.GstCtx.ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u;
            if (a_fWhat & CPUMCTX_EXTRN_ES)
                pVCpu->cpum.GstCtx.es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u;
            if (a_fWhat & CPUMCTX_EXTRN_FS)
                pVCpu->cpum.GstCtx.fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u;
            if (a_fWhat & CPUMCTX_EXTRN_GS)
                pVCpu->cpum.GstCtx.gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u;
        }
#endif
    }

    if (a_fWhat & CPUMCTX_EXTRN_RSP)
    {
        int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RSP, &pVCpu->cpum.GstCtx.rsp);
        AssertRC(rc);
    }

    if (a_fWhat & CPUMCTX_EXTRN_LDTR)
        vmxHCImportGuestLdtr(pVCpu);

    if (a_fWhat & CPUMCTX_EXTRN_GDTR)
    {
        int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE,    &pVCpu->cpum.GstCtx.gdtr.pGdt); AssertRC(rc1);
        uint32_t u32Val;
        int const rc2 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc2);
        pVCpu->cpum.GstCtx.gdtr.cbGdt = (uint16_t)u32Val;
    }

    /* Guest IDTR. */
    if (a_fWhat & CPUMCTX_EXTRN_IDTR)
    {
        int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE,    &pVCpu->cpum.GstCtx.idtr.pIdt); AssertRC(rc1);
        uint32_t u32Val;
        int const rc2 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc2);
        pVCpu->cpum.GstCtx.idtr.cbIdt = (uint64_t)u32Val;
    }

    if (a_fWhat & CPUMCTX_EXTRN_DR7)
    {
#ifndef IN_NEM_DARWIN
        if (!pVCpu->hmr0.s.fUsingHyperDR7)
#endif
        {
            int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_DR7, &pVCpu->cpum.GstCtx.dr[7]);
            AssertRC(rc);
        }
    }

    if (a_fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
    {
        int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_EIP,  &pVCpu->cpum.GstCtx.SysEnter.eip); AssertRC(rc1);
        int const rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_ESP,  &pVCpu->cpum.GstCtx.SysEnter.esp); AssertRC(rc2);
        uint32_t u32Val;
        int const rc3 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc3);
        pVCpu->cpum.GstCtx.SysEnter.cs = u32Val;
    }

#ifndef IN_NEM_DARWIN
    if (a_fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
    {
        if (   (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
            && pVM->hmr0.s.fAllow64BitGuests)
            pVCpu->cpum.GstCtx.msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
    }

    if (a_fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
    {
        if (   (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
            && pVM->hmr0.s.fAllow64BitGuests)
        {
            pVCpu->cpum.GstCtx.msrLSTAR  = ASMRdMsr(MSR_K8_LSTAR);
            pVCpu->cpum.GstCtx.msrSTAR   = ASMRdMsr(MSR_K6_STAR);
            pVCpu->cpum.GstCtx.msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
        }
    }

    if (a_fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
    {
        PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
        PCVMXAUTOMSR       pMsrs           = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
        uint32_t const     cMsrs           = pVmcsInfo->cExitMsrStore;
        Assert(pMsrs);
        Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
        Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
        for (uint32_t i = 0; i < cMsrs; i++)
        {
            uint32_t const idMsr = pMsrs[i].u32Msr;
            switch (idMsr)
            {
                case MSR_K8_TSC_AUX:        CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value);     break;
                case MSR_IA32_SPEC_CTRL:    CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value);   break;
                case MSR_K6_EFER:           /* Can't be changed without causing a VM-exit */  break;
                default:
                {
                    uint32_t idxLbrMsr;
                    if (VM_IS_VMX_LBR(pVM))
                    {
                        if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
                        {
                            Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
                            pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
                            break;
                        }
                        if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
                        {
                            Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
                            pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
                            break;
                        }
                        if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr)
                        {
                            pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value;
                            break;
                        }
                    }
                    pVCpu->cpum.GstCtx.fExtrn = 0;
                    VCPU_2_VMXSTATE(pVCpu).u32HMError = pMsrs->u32Msr;
                    ASMSetFlags(fEFlags);
                    AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
                    return VERR_HM_UNEXPECTED_LD_ST_MSR;
                }
            }
        }
    }
#endif

    if (a_fWhat & CPUMCTX_EXTRN_CR0)
    {
        uint64_t u64Cr0;
        uint64_t u64Shadow;
        int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0,            &u64Cr0);    AssertRC(rc1);
        int const rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc2);
#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
        u64Cr0 = (u64Cr0    & ~pVmcsInfo->u64Cr0Mask)
               | (u64Shadow &  pVmcsInfo->u64Cr0Mask);
#else
        if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
            u64Cr0 = (u64Cr0    & ~pVmcsInfo->u64Cr0Mask)
                   | (u64Shadow &  pVmcsInfo->u64Cr0Mask);
        else
        {
            /*
             * We've merged the guest and nested-guest's CR0 guest/host mask while executing
             * the nested-guest using hardware-assisted VMX. Accordingly we need to
             * re-construct CR0. See @bugref{9180#c95} for details.
             */
            PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
            PVMXVVMCS const     pVmcsNstGst  = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
            u64Cr0 = (u64Cr0                     & ~(pVmcsInfoGst->u64Cr0Mask & pVmcsNstGst->u64Cr0Mask.u))
                   | (pVmcsNstGst->u64GuestCr0.u &   pVmcsNstGst->u64Cr0Mask.u)
                   | (u64Shadow                  &  (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
            Assert(u64Cr0 & X86_CR0_NE);
        }
#endif
#ifndef IN_NEM_DARWIN
        VMMRZCallRing3Disable(pVCpu);   /* May call into PGM which has Log statements. */
#endif
        CPUMSetGuestCR0(pVCpu, u64Cr0);
#ifndef IN_NEM_DARWIN
        VMMRZCallRing3Enable(pVCpu);
#endif
    }

    if (a_fWhat & CPUMCTX_EXTRN_CR4)
    {
        uint64_t u64Cr4;
        uint64_t u64Shadow;
        int rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4,            &u64Cr4);    AssertRC(rc1);
        int rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc2);
#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
        u64Cr4 = (u64Cr4    & ~pVmcsInfo->u64Cr4Mask)
               | (u64Shadow &  pVmcsInfo->u64Cr4Mask);
#else
        if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
            u64Cr4 = (u64Cr4    & ~pVmcsInfo->u64Cr4Mask)
                   | (u64Shadow &  pVmcsInfo->u64Cr4Mask);
        else
        {
            /*
             * We've merged the guest and nested-guest's CR4 guest/host mask while executing
             * the nested-guest using hardware-assisted VMX. Accordingly we need to
             * re-construct CR4. See @bugref{9180#c95} for details.
             */
            PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
            PVMXVVMCS const     pVmcsNstGst  = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
            u64Cr4 = (u64Cr4                     & ~(pVmcsInfo->u64Cr4Mask & pVmcsNstGst->u64Cr4Mask.u))
                   | (pVmcsNstGst->u64GuestCr4.u &   pVmcsNstGst->u64Cr4Mask.u)
                   | (u64Shadow                  &  (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
            Assert(u64Cr4 & X86_CR4_VMXE);
        }
#endif
        pVCpu->cpum.GstCtx.cr4 = u64Cr4;
    }

    if (a_fWhat & CPUMCTX_EXTRN_CR3)
    {
        /* CR0.PG bit changes are always intercepted, so it's up to date. */
        if (   VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
            || (   VM_IS_VMX_NESTED_PAGING(pVM)
                && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)))
        {
            uint64_t u64Cr3;
            int const rc0 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR3, &u64Cr3);  AssertRC(rc0);
            if (pVCpu->cpum.GstCtx.cr3 != u64Cr3)
            {
                pVCpu->cpum.GstCtx.cr3 = u64Cr3;
                VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
            }

            /*
             * If the guest is in PAE mode, sync back the PDPE's into the guest state.
             * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
             */
            if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
            {
                X86PDPE aPaePdpes[4];
                int const rc1 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u); AssertRC(rc1);
                int const rc2 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u); AssertRC(rc2);
                int const rc3 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u); AssertRC(rc3);
                int const rc4 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u); AssertRC(rc4);
                if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
                {
                    memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
                    /* PGM now updates PAE PDPTEs while updating CR3. */
                    VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
                }
            }
        }
    }

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
    if (a_fWhat & CPUMCTX_EXTRN_HWVIRT)
    {
        if (   (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
            && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
        {
            Assert(CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx));
            int const rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
            AssertRCReturn(rc, rc);
        }
    }
#endif

    /* Update fExtrn. */
    pVCpu->cpum.GstCtx.fExtrn &= ~a_fWhat;

    /* If everything has been imported, clear the HM keeper bit. */
    if (!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
    {
#ifndef IN_NEM_DARWIN
        pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
#else
        pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_KEEPER_NEM;
#endif
        Assert(!pVCpu->cpum.GstCtx.fExtrn);
    }

    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);

    /*
     * Honor any pending CR3 updates.
     *
     * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
     * -> VMMRZCallRing3Disable() -> vmxHCImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
     * -> continue with VM-exit handling -> vmxHCImportGuestState() and here we are.
     *
     * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
     * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
     * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
     * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
     *
     * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
     *
     * The force-flag is checked first as it's cheaper for potential superfluous calls to this function.
     */
#ifndef IN_NEM_DARWIN
    if (!(a_fWhat & CPUMCTX_EXTRN_CR3)
        ? RT_LIKELY(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) || !VMMRZCallRing3IsEnabled(pVCpu))
        :           !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) || !VMMRZCallRing3IsEnabled(pVCpu) )
        return VINF_SUCCESS;
    ASMSetFlags(fEFlags);
#else
    if (!(a_fWhat & CPUMCTX_EXTRN_CR3)
        ? RT_LIKELY(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
        :           !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) )
        return VINF_SUCCESS;
    RT_NOREF_PV(fEFlags);
#endif

    Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
    PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
    Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
    return VINF_SUCCESS;
}


/**
 * Internal state fetcher.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmcsInfo       The VMCS info. object.
 * @param   pszCaller       For logging.
 * @tparam  a_fWhat         What needs to be imported, CPUMCTX_EXTRN_XXX.
 * @tparam  a_fDoneLocal    What's ASSUMED to have been retrieved locally
 *                          already.  This is ORed together with @a a_fWhat when
 *                          calculating what needs fetching (just for safety).
 * @tparam  a_fDonePostExit What's ASSUMED to been been retrieved by
 *                          hmR0VmxPostRunGuest()/nemR3DarwinHandleExitCommon()
 *                          already.  This is ORed together with @a a_fWhat when
 *                          calculating what needs fetching (just for safety).
 */
template<uint64_t const a_fWhat,
    uint64_t const a_fDoneLocal = 0,
    uint64_t const a_fDonePostExit = 0
#ifndef IN_NEM_DARWIN
                                   | CPUMCTX_EXTRN_INHIBIT_INT
                                   | CPUMCTX_EXTRN_INHIBIT_NMI
# if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
                                   | HMVMX_CPUMCTX_EXTRN_ALL
# elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
                                   | CPUMCTX_EXTRN_RFLAGS
# endif
#else  /* IN_NEM_DARWIN */
                                   | CPUMCTX_EXTRN_ALL /** @todo optimize */
#endif /* IN_NEM_DARWIN */
>
DECLINLINE(int) vmxHCImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, const char *pszCaller)
{
    RT_NOREF_PV(pszCaller);
    if ((a_fWhat | a_fDoneLocal | a_fDonePostExit) & HMVMX_CPUMCTX_EXTRN_ALL)
    {
#ifndef IN_NEM_DARWIN
        /*
         * We disable interrupts to make the updating of the state and in particular
         * the fExtrn modification atomic wrt to preemption hooks.
         */
        RTCCUINTREG const fEFlags   = ASMIntDisableFlags();
#else
        RTCCUINTREG const fEFlags   = 0;
#endif

        /*
         * We combine all three parameters and take the (probably) inlined optimized
         * code path for the new things specified in a_fWhat.
         *
         * As a tweak to deal with exits that have INHIBIT_INT/NMI active, causing
         * vmxHCImportGuestIntrState to automatically fetch both RIP & RFLAGS, we
         * also take the streamlined path when both of these are cleared in fExtrn
         * already. vmxHCImportGuestStateInner checks fExtrn before fetching.  This
         * helps with MWAIT and HLT exits that always inhibit IRQs on many platforms.
         */
        uint64_t const    fWhatToDo = pVCpu->cpum.GstCtx.fExtrn
                                    & ((a_fWhat | a_fDoneLocal | a_fDonePostExit) & HMVMX_CPUMCTX_EXTRN_ALL);
        if (RT_LIKELY(   (   fWhatToDo ==   (a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit))
                          || fWhatToDo == (  a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit)
                                           & ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)) /* fetch with INHIBIT_INT/NMI */))
            && (a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit)) != 0 /* just in case */)
        {
            int const rc = vmxHCImportGuestStateInner<  a_fWhat
                                                      & HMVMX_CPUMCTX_EXTRN_ALL
                                                      & ~(a_fDoneLocal | a_fDonePostExit)>(pVCpu, pVmcsInfo, fEFlags);
#ifndef IN_NEM_DARWIN
            ASMSetFlags(fEFlags);
#endif
            return rc;
        }

#ifndef IN_NEM_DARWIN
        ASMSetFlags(fEFlags);
#endif

        /*
         * We shouldn't normally get here, but it may happen when executing
         * in the debug run-loops.  Typically, everything should already have
         * been fetched then.  Otherwise call the fallback state import function.
         */
        if (fWhatToDo == 0)
        { /* hope the cause was the debug loop or something similar */ }
        else
        {
            STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestStateFallback);
            Log11Func(("a_fWhat=%#RX64/%#RX64/%#RX64 fExtrn=%#RX64 => %#RX64 - Taking inefficient code path from %s!\n",
                       a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL, a_fDoneLocal & HMVMX_CPUMCTX_EXTRN_ALL,
                       a_fDonePostExit & HMVMX_CPUMCTX_EXTRN_ALL, pVCpu->cpum.GstCtx.fExtrn, fWhatToDo, pszCaller));
            return vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, a_fWhat | a_fDoneLocal | a_fDonePostExit);
        }
    }
    return VINF_SUCCESS;
}


/**
 * Check per-VM and per-VCPU force flag actions that require us to go back to
 * ring-3 for one reason or another.
 *
 * @returns Strict VBox status code (i.e. informational status codes too)
 * @retval VINF_SUCCESS if we don't have any actions that require going back to
 *         ring-3.
 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
 *         interrupts)
 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
 *         all EMTs to be in ring-3.
 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
 *         to the EM loop.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   fIsNestedGuest  Flag whether this is for a for a pending nested guest event.
 * @param   fStepping       Whether we are single-stepping the guest using the
 *                          hypervisor debugger.
 *
 * @remarks This might cause nested-guest VM-exits, caller must check if the guest
 *          is no longer in VMX non-root mode.
 */
static VBOXSTRICTRC vmxHCCheckForceFlags(PVMCPUCC pVCpu, bool fIsNestedGuest, bool fStepping)
{
#ifndef IN_NEM_DARWIN
    Assert(VMMRZCallRing3IsEnabled(pVCpu));
#endif

    /*
     * Update pending interrupts into the APIC's IRR.
     */
    if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
        APICUpdatePendingInterrupts(pVCpu);

    /*
     * Anything pending?  Should be more likely than not if we're doing a good job.
     */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    if (  !fStepping
        ?    !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
          && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
        :    !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
          && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
        return VINF_SUCCESS;

    /* Pending PGM C3 sync. */
    if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
    {
        PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
        Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
        VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
                                           VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
        if (rcStrict != VINF_SUCCESS)
        {
            AssertRC(VBOXSTRICTRC_VAL(rcStrict));
            Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
            return rcStrict;
        }
    }

    /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
    if (   VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
        || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
    {
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHmToR3FF);
        int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
        Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d (fVM=%#RX64 fCpu=%#RX64)\n",
                  rc, pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
        return rc;
    }

    /* Pending VM request packets, such as hardware interrupts. */
    if (   VM_FF_IS_SET(pVM, VM_FF_REQUEST)
        || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
    {
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchVmReq);
        Log4Func(("Pending VM request forcing us back to ring-3\n"));
        return VINF_EM_PENDING_REQUEST;
    }

    /* Pending PGM pool flushes. */
    if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
    {
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchPgmPoolFlush);
        Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
        return VINF_PGM_POOL_FLUSH_PENDING;
    }

    /* Pending DMA requests. */
    if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
    {
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchDma);
        Log4Func(("Pending DMA request forcing us back to ring-3\n"));
        return VINF_EM_RAW_TO_R3;
    }

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
    /*
     * Pending nested-guest events.
     *
     * Please note the priority of these events are specified and important.
     * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
     * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
     */
    if (fIsNestedGuest)
    {
        /* Pending nested-guest APIC-write. */
        if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
        {
            Log4Func(("Pending nested-guest APIC-write\n"));
            VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
            Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
            return rcStrict;
        }

        /* Pending nested-guest monitor-trap flag (MTF). */
        if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
        {
            Log4Func(("Pending nested-guest MTF\n"));
            VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
            Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
            return rcStrict;
        }

        /* Pending nested-guest VMX-preemption timer expired. */
        if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
        {
            Log4Func(("Pending nested-guest preempt timer\n"));
            VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
            Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
            return rcStrict;
        }
    }
#else
    NOREF(fIsNestedGuest);
#endif

    return VINF_SUCCESS;
}


/**
 * Converts any TRPM trap into a pending HM event. This is typically used when
 * entering from ring-3 (not longjmp returns).
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
static void vmxHCTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
{
    Assert(TRPMHasTrap(pVCpu));
    Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);

    uint8_t     uVector;
    TRPMEVENT   enmTrpmEvent;
    uint32_t    uErrCode;
    RTGCUINTPTR GCPtrFaultAddress;
    uint8_t     cbInstr;
    bool        fIcebp;

    int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
    AssertRC(rc);

    uint32_t u32IntInfo;
    u32IntInfo  = uVector | VMX_IDT_VECTORING_INFO_VALID;
    u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);

    rc = TRPMResetTrap(pVCpu);
    AssertRC(rc);
    Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
          u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));

    vmxHCSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
}


/**
 * Converts the pending HM event into a TRPM trap.
 *
 * @param   pVCpu   The cross context virtual CPU structure.
 */
static void vmxHCPendingEventToTrpmTrap(PVMCPUCC pVCpu)
{
    Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);

    /* If a trap was already pending, we did something wrong! */
    Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);

    uint32_t const  u32IntInfo  = VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo;
    uint32_t const  uVector     = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
    TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);

    Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));

    int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
    AssertRC(rc);

    if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
        TRPMSetErrorCode(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode);

    if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
        TRPMSetFaultAddress(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress);
    else
    {
        uint8_t const uVectorType = VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo);
        switch (uVectorType)
        {
            case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
                TRPMSetTrapDueToIcebp(pVCpu);
                RT_FALL_THRU();
            case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
            case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
            {
                AssertMsg(   uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
                          || (   uVector == X86_XCPT_BP /* INT3 */
                              || uVector == X86_XCPT_OF /* INTO */
                              || uVector == X86_XCPT_DB /* INT1 (ICEBP) */),
                          ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
                TRPMSetInstrLength(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.cbInstr);
                break;
            }
        }
    }

    /* We're now done converting the pending event. */
    VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;
}


/**
 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static void vmxHCSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
    {
        if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
        {
            pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
            int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
            AssertRC(rc);
        }
    } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
}


/**
 * Clears the interrupt-window exiting control in the VMCS.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
DECLINLINE(void) vmxHCClearIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
    {
        pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
        int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
        AssertRC(rc);
    }
}


/**
 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static void vmxHCSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
    {
        if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
        {
            pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
            int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
            AssertRC(rc);
            Log4Func(("Setup NMI-window exiting\n"));
        }
    } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
}


/**
 * Clears the NMI-window exiting control in the VMCS.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
DECLINLINE(void) vmxHCClearNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
    {
        pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
        int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
        AssertRC(rc);
    }
}


/**
 * Injects an event into the guest upon VM-entry by updating the relevant fields
 * in the VM-entry area in the VMCS.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @retval  VINF_SUCCESS if the event is successfully injected into the VMCS.
 * @retval  VINF_EM_RESET if event injection resulted in a triple-fault.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmcsInfo       The VMCS info object.
 * @param   fIsNestedGuest  Flag whether this is for a for a pending nested guest event.
 * @param   pEvent          The event being injected.
 * @param   pfIntrState     Pointer to the VT-x guest-interruptibility-state. This
 *                          will be updated if necessary. This cannot not be NULL.
 * @param   fStepping       Whether we're single-stepping guest execution and should
 *                          return VINF_EM_DBG_STEPPED if the event is injected
 *                          directly (registers modified by us, not by hardware on
 *                          VM-entry).
 */
static VBOXSTRICTRC vmxHCInjectEventVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, PCHMEVENT pEvent,
                                         bool fStepping, uint32_t *pfIntrState)
{
    /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
    AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
    Assert(pfIntrState);

#ifdef IN_NEM_DARWIN
    RT_NOREF(fIsNestedGuest, fStepping, pfIntrState);
#endif

    PCPUMCTX          pCtx       = &pVCpu->cpum.GstCtx;
    uint32_t          u32IntInfo = pEvent->u64IntInfo;
    uint32_t const    u32ErrCode = pEvent->u32ErrCode;
    uint32_t const    cbInstr    = pEvent->cbInstr;
    RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
    uint8_t const     uVector    = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
    uint32_t const    uIntType   = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);

#ifdef VBOX_STRICT
    /*
     * Validate the error-code-valid bit for hardware exceptions.
     * No error codes for exceptions in real-mode.
     *
     * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
     */
    if (   uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
        && !CPUMIsGuestInRealModeEx(pCtx))
    {
        switch (uVector)
        {
            case X86_XCPT_PF:
            case X86_XCPT_DF:
            case X86_XCPT_TS:
            case X86_XCPT_NP:
            case X86_XCPT_SS:
            case X86_XCPT_GP:
            case X86_XCPT_AC:
                AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
                          ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
                RT_FALL_THRU();
            default:
                break;
        }
    }

    /* Cannot inject an NMI when block-by-MOV SS is in effect. */
    Assert(   uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
           || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
#endif

    RT_NOREF(uVector);
    if (   uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
        || uIntType == VMX_EXIT_INT_INFO_TYPE_NMI
        || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT
        || uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
    {
        Assert(uVector <= X86_XCPT_LAST);
        Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_NMI          || uVector == X86_XCPT_NMI);
        Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT || uVector == X86_XCPT_DB);
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedXcpts[uVector]);
    }
    else
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedIrqs[uVector & MASK_INJECT_IRQ_STAT]);

    /*
     * Hardware interrupts & exceptions cannot be delivered through the software interrupt
     * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
     * interrupt handler in the (real-mode) guest.
     *
     * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
     * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
     */
    if (CPUMIsGuestInRealModeEx(pCtx))     /* CR0.PE bit changes are always intercepted, so it's up to date. */
    {
#ifndef IN_NEM_DARWIN
        if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest)
#endif
        {
            /*
             * For CPUs with unrestricted guest execution enabled and with the guest
             * in real-mode, we must not set the deliver-error-code bit.
             *
             * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
             */
            u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
        }
#ifndef IN_NEM_DARWIN
        else
        {
            PVMCC pVM = pVCpu->CTX_SUFF(pVM);
            Assert(PDMVmmDevHeapIsEnabled(pVM));
            Assert(pVM->hm.s.vmx.pRealModeTSS);
            Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));

            /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
            int rc2 = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
                                                                | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
            AssertRCReturn(rc2, rc2);

            /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
            size_t const cbIdtEntry = sizeof(X86IDTR16);
            if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
            {
                /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
                if (uVector == X86_XCPT_DF)
                    return VINF_EM_RESET;

                /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
                   No error codes for exceptions in real-mode. */
                if (uVector == X86_XCPT_GP)
                {
                    static HMEVENT const s_EventXcptDf
                        = HMEVENT_INIT_ONLY_INT_INFO(  RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
                                                     | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,   VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
                                                     | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                                                     | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1));
                    return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &s_EventXcptDf, fStepping, pfIntrState);
                }

                /*
                 * If we're injecting an event with no valid IDT entry, inject a #GP.
                 * No error codes for exceptions in real-mode.
                 *
                 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
                 */
                static HMEVENT const s_EventXcptGp
                    = HMEVENT_INIT_ONLY_INT_INFO(  RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
                                                 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE,   VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
                                                 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
                                                 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID,          1));
                return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &s_EventXcptGp, fStepping, pfIntrState);
            }

            /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
            uint16_t uGuestIp = pCtx->ip;
            if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
            {
                Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
                /* #BP and #OF are both benign traps, we need to resume the next instruction. */
                uGuestIp = pCtx->ip + (uint16_t)cbInstr;
            }
            else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
                uGuestIp = pCtx->ip + (uint16_t)cbInstr;

            /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
            X86IDTR16 IdtEntry;
            RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
            rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
            AssertRCReturn(rc2, rc2);

            /* Construct the stack frame for the interrupt/exception handler. */
            VBOXSTRICTRC rcStrict;
            rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, (uint16_t)pCtx->eflags.u);
            if (rcStrict == VINF_SUCCESS)
            {
                rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
                if (rcStrict == VINF_SUCCESS)
                    rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
            }

            /* Clear the required eflag bits and jump to the interrupt/exception handler. */
            if (rcStrict == VINF_SUCCESS)
            {
                pCtx->eflags.u   &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
                pCtx->rip         = IdtEntry.offSel;
                pCtx->cs.Sel      = IdtEntry.uSel;
                pCtx->cs.ValidSel = IdtEntry.uSel;
                pCtx->cs.u64Base  = IdtEntry.uSel << cbIdtEntry;
                if (   uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
                    && uVector  == X86_XCPT_PF)
                    pCtx->cr2 = GCPtrFault;

                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CS  | HM_CHANGED_GUEST_CR2
                                                         | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
                                                         | HM_CHANGED_GUEST_RSP);

                /*
                 * If we delivered a hardware exception (other than an NMI) and if there was
                 * block-by-STI in effect, we should clear it.
                 */
                if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
                {
                    Assert(   uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
                           && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
                    Log4Func(("Clearing inhibition due to STI\n"));
                    *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
                }

                Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
                      u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));

                /*
                 * The event has been truly dispatched to the guest. Mark it as no longer pending so
                 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
                 */
                VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;

                /*
                 * If we eventually support nested-guest execution without unrestricted guest execution,
                 * we should set fInterceptEvents here.
                 */
                Assert(!fIsNestedGuest);

                /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
                if (fStepping)
                    rcStrict = VINF_EM_DBG_STEPPED;
            }
            AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
                      ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
            return rcStrict;
        }
#else
        RT_NOREF(pVmcsInfo);
#endif
    }

    /*
     * Validate.
     */
    Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo));                     /* Bit 31 (Valid bit) must be set by caller. */
    Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK));       /* Bits 30:12 MBZ. */

    /*
     * Inject the event into the VMCS.
     */
    int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
    if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
        rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
    rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
    AssertRC(rc);

    /*
     * Update guest CR2 if this is a page-fault.
     */
    if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
        pCtx->cr2 = GCPtrFault;

    Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
    return VINF_SUCCESS;
}


/**
 * Evaluates the event to be delivered to the guest and sets it as the pending
 * event.
 *
 * Toggling of interrupt force-flags here is safe since we update TRPM on premature
 * exits to ring-3 before executing guest code, see vmxHCExitToRing3(). We must
 * NOT restore these force-flags.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmcsInfo       The VMCS information structure.
 * @param   fIsNestedGuest  Flag whether the evaluation happens for a nested guest.
 * @param   pfIntrState     Where to store the VT-x guest-interruptibility state.
 */
static VBOXSTRICTRC vmxHCEvaluatePendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, uint32_t *pfIntrState)
{
    Assert(pfIntrState);
    Assert(!TRPMHasTrap(pVCpu));

    /*
     * Compute/update guest-interruptibility state related FFs.
     * The FFs will be used below while evaluating events to be injected.
     */
    *pfIntrState = vmxHCGetGuestIntrStateAndUpdateFFs(pVCpu);

    /*
     * Evaluate if a new event needs to be injected.
     * An event that's already pending has already performed all necessary checks.
     */
    if (   !VCPU_2_VMXSTATE(pVCpu).Event.fPending
        && !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
    {
        /** @todo SMI. SMIs take priority over NMIs. */

        /*
         * NMIs.
         * NMIs take priority over external interrupts.
         */
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
        PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
#endif
        if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
        {
            /*
             * For a guest, the FF always indicates the guest's ability to receive an NMI.
             *
             * For a nested-guest, the FF always indicates the outer guest's ability to
             * receive an NMI while the guest-interruptibility state bit depends on whether
             * the nested-hypervisor is using virtual-NMIs.
             */
            if (!CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
            {
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
                if (   fIsNestedGuest
                    && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
                    return IEMExecVmxVmexitXcptNmi(pVCpu);
#endif
                vmxHCSetPendingXcptNmi(pVCpu);
                VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
                Log4Func(("NMI pending injection\n"));

                /* We've injected the NMI, bail. */
                return VINF_SUCCESS;
            }
            if (!fIsNestedGuest)
                vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
        }

        /*
         * External interrupts (PIC/APIC).
         * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
         * We cannot re-request the interrupt from the controller again.
         */
        if (    VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
            && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
        {
            Assert(!DBGFIsStepping(pVCpu));
            int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
            AssertRC(rc);

            /*
             * We must not check EFLAGS directly when executing a nested-guest, use
             * CPUMIsGuestPhysIntrEnabled() instead as EFLAGS.IF does not control the blocking of
             * external interrupts when "External interrupt exiting" is set. This fixes a nasty
             * SMP hang while executing nested-guest VCPUs on spinlocks which aren't rescued by
             * other VM-exits (like a preemption timer), see @bugref{9562#c18}.
             *
             * See Intel spec. 25.4.1 "Event Blocking".
             */
            if (CPUMIsGuestPhysIntrEnabled(pVCpu))
            {
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
                if (    fIsNestedGuest
                    &&  CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
                {
                    VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
                    if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
                        return rcStrict;
                }
#endif
                uint8_t u8Interrupt;
                rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
                if (RT_SUCCESS(rc))
                {
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
                    if (   fIsNestedGuest
                        && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
                    {
                        VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
                        Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
                        return rcStrict;
                    }
#endif
                    vmxHCSetPendingExtInt(pVCpu, u8Interrupt);
                    Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
                }
                else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
                {
                    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchTprMaskedIrq);

                    if (   !fIsNestedGuest
                        && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
                        vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
                    /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */

                    /*
                     * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
                     * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
                     * need to re-set this force-flag here.
                     */
                }
                else
                    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchGuestIrq);

                /* We've injected the interrupt or taken necessary action, bail. */
                return VINF_SUCCESS;
            }
            if (!fIsNestedGuest)
                vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
        }
    }
    else if (!fIsNestedGuest)
    {
        /*
         * An event is being injected or we are in an interrupt shadow. Check if another event is
         * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
         * the pending event.
         */
        if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
            vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
        else if (   VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
                 && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
            vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
    }
    /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */

    return VINF_SUCCESS;
}


/**
 * Injects any pending events into the guest if the guest is in a state to
 * receive them.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmcsInfo       The VMCS information structure.
 * @param   fIsNestedGuest  Flag whether the event injection happens for a nested guest.
 * @param   fIntrState      The VT-x guest-interruptibility state.
 * @param   fStepping       Whether we are single-stepping the guest using the
 *                          hypervisor debugger and should return
 *                          VINF_EM_DBG_STEPPED if the event was dispatched
 *                          directly.
 */
static VBOXSTRICTRC vmxHCInjectPendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest,
                                            uint32_t fIntrState, bool fStepping)
{
    HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
#ifndef IN_NEM_DARWIN
    Assert(VMMRZCallRing3IsEnabled(pVCpu));
#endif

#ifdef VBOX_STRICT
    /*
     * Verify guest-interruptibility state.
     *
     * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
     * since injecting an event may modify the interruptibility state and we must thus always
     * use fIntrState.
     */
    {
        bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
        bool const fBlockSti   = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
        Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
        Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF);     /* Cannot set block-by-STI when interrupts are disabled. */
        Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));    /* We don't support block-by-SMI yet.*/
        Assert(!TRPMHasTrap(pVCpu));
        NOREF(fBlockMovSS); NOREF(fBlockSti);
    }
#endif

    VBOXSTRICTRC rcStrict = VINF_SUCCESS;
    if (VCPU_2_VMXSTATE(pVCpu).Event.fPending)
    {
        /*
         * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
         * pending even while injecting an event and in this case, we want a VM-exit as soon as
         * the guest is ready for the next interrupt, see @bugref{6208#c45}.
         *
         * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
         */
        uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo);
#ifdef VBOX_STRICT
        if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
        {
            Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
            Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
            Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
        }
        else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
        {
            Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
            Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
            Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
        }
#endif
        Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
              uIntType));

        /*
         * Inject the event and get any changes to the guest-interruptibility state.
         *
         * The guest-interruptibility state may need to be updated if we inject the event
         * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
         */
        rcStrict = vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &VCPU_2_VMXSTATE(pVCpu).Event, fStepping, &fIntrState);
        AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);

        if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterrupt);
        else
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectXcpt);
    }

    /*
     * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
     * is an interrupt shadow (block-by-STI or block-by-MOV SS).
     */
    if (   (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
        && !fIsNestedGuest)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);

        if (!VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
        {
            /*
             * Set or clear the BS bit depending on whether the trap flag is active or not. We need
             * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
             */
            Assert(!DBGFIsStepping(pVCpu));
            uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_TF);
            int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
                                       fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
            AssertRC(rc);
        }
        else
        {
            /*
             * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
             * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
             * we take care of this case in vmxHCExportSharedDebugState and also the case if
             * we use MTF, so just make sure it's called before executing guest-code.
             */
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
        }
    }
    /* else: for nested-guest currently handling while merging controls. */

    /*
     * Finally, update the guest-interruptibility state.
     *
     * This is required for the real-on-v86 software interrupt injection, for
     * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
     */
    int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
    AssertRC(rc);

    /*
     * There's no need to clear the VM-entry interruption-information field here if we're not
     * injecting anything. VT-x clears the valid bit on every VM-exit.
     *
     * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
     */

    Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
    return rcStrict;
}


/**
 * Tries to determine what part of the guest-state VT-x has deemed as invalid
 * and update error record fields accordingly.
 *
 * @returns VMX_IGS_* error codes.
 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
 *         wrong with the guest state.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 *
 * @remarks This function assumes our cache of the VMCS controls
 *          are valid, i.e. vmxHCCheckCachedVmcsCtls() succeeded.
 */
static uint32_t vmxHCCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
#define HMVMX_ERROR_BREAK(err)              { uError = (err); break; }
#define HMVMX_CHECK_BREAK(expr, err)        if (!(expr)) { uError = (err); break; } else do { } while (0)

    PCPUMCTX pCtx   = &pVCpu->cpum.GstCtx;
    uint32_t uError = VMX_IGS_ERROR;
    uint32_t u32IntrState = 0;
#ifndef IN_NEM_DARWIN
    PVMCC    pVM    = pVCpu->CTX_SUFF(pVM);
    bool const fUnrestrictedGuest = VM_IS_VMX_UNRESTRICTED_GUEST(pVM);
#else
    bool const fUnrestrictedGuest = true;
#endif
    do
    {
        int rc;

        /*
         * Guest-interruptibility state.
         *
         * Read this first so that any check that fails prior to those that actually
         * require the guest-interruptibility state would still reflect the correct
         * VMCS value and avoids causing further confusion.
         */
        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
        AssertRC(rc);

        uint32_t u32Val;
        uint64_t u64Val;

        /*
         * CR0.
         */
        /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
        uint64_t       fSetCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 & g_HmMsrs.u.vmx.u64Cr0Fixed1);
        uint64_t const fZapCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 | g_HmMsrs.u.vmx.u64Cr0Fixed1);
        /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
           See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
        if (fUnrestrictedGuest)
            fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);

        uint64_t u64GuestCr0;
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64GuestCr0);
        AssertRC(rc);
        HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
        HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
        if (   !fUnrestrictedGuest
            &&  (u64GuestCr0 & X86_CR0_PG)
            && !(u64GuestCr0 & X86_CR0_PE))
            HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);

        /*
         * CR4.
         */
        /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
        uint64_t const fSetCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 & g_HmMsrs.u.vmx.u64Cr4Fixed1);
        uint64_t const fZapCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 | g_HmMsrs.u.vmx.u64Cr4Fixed1);

        uint64_t u64GuestCr4;
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64GuestCr4);
        AssertRC(rc);
        HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
        HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);

        /*
         * IA32_DEBUGCTL MSR.
         */
        rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
        AssertRC(rc);
        if (   (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
            && (u64Val & 0xfffffe3c))                           /* Bits 31:9, bits 5:2 MBZ. */
        {
            HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
        }
        uint64_t u64DebugCtlMsr = u64Val;

#ifdef VBOX_STRICT
        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val);
        AssertRC(rc);
        Assert(u32Val == pVmcsInfo->u32EntryCtls);
#endif
        bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);

        /*
         * RIP and RFLAGS.
         */
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val);
        AssertRC(rc);
        /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
        if (   !fLongModeGuest
            || !pCtx->cs.Attr.n.u1Long)
        {
            HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
        }
        /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
         *        must be identical if the "IA-32e mode guest" VM-entry
         *        control is 1 and CS.L is 1. No check applies if the
         *        CPU supports 64 linear-address bits. */

        /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &u64Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)),                     /* Bit 63:22, Bit 15, 5, 3 MBZ. */
                          VMX_IGS_RFLAGS_RESERVED);
        HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1);       /* Bit 1 MB1. */
        uint32_t const u32Eflags = u64Val;

        if (   fLongModeGuest
            || (   fUnrestrictedGuest
                && !(u64GuestCr0 & X86_CR0_PE)))
        {
            HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
        }

        uint32_t u32EntryInfo;
        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
        AssertRC(rc);
        if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
        {
            HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
        }

        /*
         * 64-bit checks.
         */
        if (fLongModeGuest)
        {
            HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG,  VMX_IGS_CR0_PG_LONGMODE);
            HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
        }

        if (   !fLongModeGuest
            && (u64GuestCr4 & X86_CR4_PCIDE))
            HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);

        /** @todo CR3 field must be such that bits 63:52 and bits in the range
         *        51:32 beyond the processor's physical-address width are 0. */

        if (   (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
            && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
            HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);

#ifndef IN_NEM_DARWIN
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);

        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
#endif

        /*
         * PERF_GLOBAL MSR.
         */
        if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
        {
            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
                              VMX_IGS_PERF_GLOBAL_MSR_RESERVED);        /* Bits 63:35, bits 31:2 MBZ. */
        }

        /*
         * PAT MSR.
         */
        if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
        {
            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
            for (unsigned i = 0; i < 8; i++)
            {
                uint8_t u8Val = (u64Val & 0xff);
                if (   u8Val != 0 /* UC */
                    && u8Val != 1 /* WC */
                    && u8Val != 4 /* WT */
                    && u8Val != 5 /* WP */
                    && u8Val != 6 /* WB */
                    && u8Val != 7 /* UC- */)
                    HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
                u64Val >>= 8;
            }
        }

        /*
         * EFER MSR.
         */
        if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
        {
            Assert(g_fHmVmxSupportsVmcsEfer);
            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
                              VMX_IGS_EFER_MSR_RESERVED);               /* Bits 63:12, bit 9, bits 7:1 MBZ. */
            HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(  pVmcsInfo->u32EntryCtls
                                                                           & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
                              VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
            /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
             *        iemVmxVmentryCheckGuestState(). */
            HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                              || !(u64GuestCr0 & X86_CR0_PG)
                              || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
                              VMX_IGS_EFER_LMA_LME_MISMATCH);
        }

        /*
         * Segment registers.
         */
        HMVMX_CHECK_BREAK(   (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
                          || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
        if (!(u32Eflags & X86_EFL_VM))
        {
            /* CS */
            HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
            HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
            HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
            HMVMX_CHECK_BREAK(   (pCtx->cs.u32Limit & 0xfff) == 0xfff
                              || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
            HMVMX_CHECK_BREAK(   !(pCtx->cs.u32Limit & 0xfff00000)
                              || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
            /* CS cannot be loaded with NULL in protected mode. */
            HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
            HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
            if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
                HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
            else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
                HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
            else if (fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
                HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
            else
                HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);

            /* SS */
            HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                              || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
            HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
            if (   !(pCtx->cr0 & X86_CR0_PE)
                || pCtx->cs.Attr.n.u4Type == 3)
            {
                HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
            }

            if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
            {
                HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
                HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
                HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(   (pCtx->ss.u32Limit & 0xfff) == 0xfff
                                  || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->ss.u32Limit & 0xfff00000)
                                  || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
            }

            /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSReg(). */
            if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
            {
                HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
                HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
                HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                                  || pCtx->ds.Attr.n.u4Type > 11
                                  || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
                HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(   (pCtx->ds.u32Limit & 0xfff) == 0xfff
                                  || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->ds.u32Limit & 0xfff00000)
                                  || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                                  || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
            }
            if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
            {
                HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
                HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
                HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                                  || pCtx->es.Attr.n.u4Type > 11
                                  || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
                HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(   (pCtx->es.u32Limit & 0xfff) == 0xfff
                                  || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->es.u32Limit & 0xfff00000)
                                  || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                                  || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
            }
            if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
            {
                HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
                HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
                HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                                  || pCtx->fs.Attr.n.u4Type > 11
                                  || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
                HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(   (pCtx->fs.u32Limit & 0xfff) == 0xfff
                                  || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->fs.u32Limit & 0xfff00000)
                                  || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                                  || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
            }
            if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
            {
                HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
                HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
                HMVMX_CHECK_BREAK(   fUnrestrictedGuest
                                  || pCtx->gs.Attr.n.u4Type > 11
                                  || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
                HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
                HMVMX_CHECK_BREAK(   (pCtx->gs.u32Limit & 0xfff) == 0xfff
                                  || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->gs.u32Limit & 0xfff00000)
                                  || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
                HMVMX_CHECK_BREAK(   !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
                                  || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
            }
            /* 64-bit capable CPUs. */
            HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(   (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
                              || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
                              VMX_IGS_LONGMODE_SS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
                              VMX_IGS_LONGMODE_DS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
                              VMX_IGS_LONGMODE_ES_BASE_INVALID);
        }
        else
        {
            /* V86 mode checks. */
            uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
            if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
            {
                u32CSAttr = 0xf3;   u32SSAttr = 0xf3;
                u32DSAttr = 0xf3;   u32ESAttr = 0xf3;
                u32FSAttr = 0xf3;   u32GSAttr = 0xf3;
            }
            else
            {
                u32CSAttr = pCtx->cs.Attr.u;   u32SSAttr = pCtx->ss.Attr.u;
                u32DSAttr = pCtx->ds.Attr.u;   u32ESAttr = pCtx->es.Attr.u;
                u32FSAttr = pCtx->fs.Attr.u;   u32GSAttr = pCtx->gs.Attr.u;
            }

            /* CS */
            HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
            /* SS */
            HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
            /* DS */
            HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
            /* ES */
            HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
            /* FS */
            HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
            /* GS */
            HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
            HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
            HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
            /* 64-bit capable CPUs. */
            HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(   (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
                              || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
            HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
                              VMX_IGS_LONGMODE_SS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
                              VMX_IGS_LONGMODE_DS_BASE_INVALID);
            HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
                              VMX_IGS_LONGMODE_ES_BASE_INVALID);
        }

        /*
         * TR.
         */
        HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
        /* 64-bit capable CPUs. */
        HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
        if (fLongModeGuest)
            HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11,           /* 64-bit busy TSS. */
                              VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
        else
            HMVMX_CHECK_BREAK(   pCtx->tr.Attr.n.u4Type == 3          /* 16-bit busy TSS. */
                              || pCtx->tr.Attr.n.u4Type == 11,        /* 32-bit busy TSS.*/
                              VMX_IGS_TR_ATTR_TYPE_INVALID);
        HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
        HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
        HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED);   /* Bits 11:8 MBZ. */
        HMVMX_CHECK_BREAK(   (pCtx->tr.u32Limit & 0xfff) == 0xfff
                          || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
        HMVMX_CHECK_BREAK(   !(pCtx->tr.u32Limit & 0xfff00000)
                          || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
        HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);

        /*
         * GDTR and IDTR (64-bit capable checks).
         */
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);

        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);

        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID);      /* Bits 31:16 MBZ. */

        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID);      /* Bits 31:16 MBZ. */

        /*
         * Guest Non-Register State.
         */
        /* Activity State. */
        uint32_t u32ActivityState;
        rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
        AssertRC(rc);
        HMVMX_CHECK_BREAK(   !u32ActivityState
                          || (u32ActivityState & RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
                             VMX_IGS_ACTIVITY_STATE_INVALID);
        HMVMX_CHECK_BREAK(   !(pCtx->ss.Attr.n.u2Dpl)
                          || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);

        if (   u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
            || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
        {
            HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
        }

        /** @todo Activity state and injecting interrupts. Left as a todo since we
         *        currently don't use activity states but ACTIVE. */

        HMVMX_CHECK_BREAK(   !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
                          || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);

        /* Guest interruptibility-state. */
        HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
        HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
                                       != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
                          VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
        HMVMX_CHECK_BREAK(   (u32Eflags & X86_EFL_IF)
                          || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
                          VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
        if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
        {
            HMVMX_CHECK_BREAK(   !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
                              && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
                              VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
        }
        else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
        {
            HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
                              VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
            HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
                              VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
        }
        /** @todo Assumes the processor is not in SMM. */
        HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
                          VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
        HMVMX_CHECK_BREAK(   !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
                          || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
                             VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
        if (   (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
            && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
        {
            HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
        }

        /* Pending debug exceptions. */
        rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
        AssertRC(rc);
        /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
        HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
        u32Val = u64Val;    /* For pending debug exceptions checks below. */

        if (   (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
            || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
            || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
        {
            if (   (u32Eflags & X86_EFL_TF)
                && !(u64DebugCtlMsr & RT_BIT_64(1)))    /* Bit 1 is IA32_DEBUGCTL.BTF. */
            {
                /* Bit 14 is PendingDebug.BS. */
                HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
            }
            if (   !(u32Eflags & X86_EFL_TF)
                || (u64DebugCtlMsr & RT_BIT_64(1)))     /* Bit 1 is IA32_DEBUGCTL.BTF. */
            {
                /* Bit 14 is PendingDebug.BS. */
                HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
            }
        }

#ifndef IN_NEM_DARWIN
        /* VMCS link pointer. */
        rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
        AssertRC(rc);
        if (u64Val != UINT64_C(0xffffffffffffffff))
        {
            HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
            /** @todo Bits beyond the processor's physical-address width MBZ. */
            /** @todo SMM checks. */
            Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
            Assert(pVmcsInfo->pvShadowVmcs);
            VMXVMCSREVID VmcsRevId;
            VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
            HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID),
                              VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
            HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
                              VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
        }

        /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
         *        not using nested paging? */
        if (   VM_IS_VMX_NESTED_PAGING(pVM)
            && !fLongModeGuest
            && CPUMIsGuestInPAEModeEx(pCtx))
        {
            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);

            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);

            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);

            rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
            AssertRC(rc);
            HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
        }
#endif

        /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
        if (uError == VMX_IGS_ERROR)
            uError = VMX_IGS_REASON_NOT_FOUND;
    } while (0);

    VCPU_2_VMXSTATE(pVCpu).u32HMError = uError;
    VCPU_2_VMXSTATE(pVCpu).vmx.LastError.u32GuestIntrState = u32IntrState;
    return uError;

#undef HMVMX_ERROR_BREAK
#undef HMVMX_CHECK_BREAK
}


#ifndef HMVMX_USE_FUNCTION_TABLE
/**
 * Handles a guest VM-exit from hardware-assisted VMX execution.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
DECLINLINE(VBOXSTRICTRC) vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
#ifdef DEBUG_ramshankar
# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
       do { \
            if (a_fSave != 0) \
                vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); \
            VBOXSTRICTRC rcStrict = a_CallExpr; \
            if (a_fSave != 0) \
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); \
            return rcStrict; \
        } while (0)
#else
# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
#endif
    uint32_t const uExitReason = pVmxTransient->uExitReason;
    switch (uExitReason)
    {
        case VMX_EXIT_EPT_MISCONFIG:           VMEXIT_CALL_RET(0, vmxHCExitEptMisconfig(pVCpu, pVmxTransient));
        case VMX_EXIT_EPT_VIOLATION:           VMEXIT_CALL_RET(0, vmxHCExitEptViolation(pVCpu, pVmxTransient));
        case VMX_EXIT_IO_INSTR:                VMEXIT_CALL_RET(0, vmxHCExitIoInstr(pVCpu, pVmxTransient));
        case VMX_EXIT_CPUID:                   VMEXIT_CALL_RET(0, vmxHCExitCpuid(pVCpu, pVmxTransient));
        case VMX_EXIT_RDTSC:                   VMEXIT_CALL_RET(0, vmxHCExitRdtsc(pVCpu, pVmxTransient));
        case VMX_EXIT_RDTSCP:                  VMEXIT_CALL_RET(0, vmxHCExitRdtscp(pVCpu, pVmxTransient));
        case VMX_EXIT_APIC_ACCESS:             VMEXIT_CALL_RET(0, vmxHCExitApicAccess(pVCpu, pVmxTransient));
        case VMX_EXIT_XCPT_OR_NMI:             VMEXIT_CALL_RET(0, vmxHCExitXcptOrNmi(pVCpu, pVmxTransient));
        case VMX_EXIT_MOV_CRX:                 VMEXIT_CALL_RET(0, vmxHCExitMovCRx(pVCpu, pVmxTransient));
        case VMX_EXIT_EXT_INT:                 VMEXIT_CALL_RET(0, vmxHCExitExtInt(pVCpu, pVmxTransient));
        case VMX_EXIT_INT_WINDOW:              VMEXIT_CALL_RET(0, vmxHCExitIntWindow(pVCpu, pVmxTransient));
        case VMX_EXIT_TPR_BELOW_THRESHOLD:     VMEXIT_CALL_RET(0, vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient));
        case VMX_EXIT_MWAIT:                   VMEXIT_CALL_RET(0, vmxHCExitMwait(pVCpu, pVmxTransient));
        case VMX_EXIT_MONITOR:                 VMEXIT_CALL_RET(0, vmxHCExitMonitor(pVCpu, pVmxTransient));
        case VMX_EXIT_TASK_SWITCH:             VMEXIT_CALL_RET(0, vmxHCExitTaskSwitch(pVCpu, pVmxTransient));
        case VMX_EXIT_PREEMPT_TIMER:           VMEXIT_CALL_RET(0, vmxHCExitPreemptTimer(pVCpu, pVmxTransient));
        case VMX_EXIT_RDMSR:                   VMEXIT_CALL_RET(0, vmxHCExitRdmsr(pVCpu, pVmxTransient));
        case VMX_EXIT_WRMSR:                   VMEXIT_CALL_RET(0, vmxHCExitWrmsr(pVCpu, pVmxTransient));
        case VMX_EXIT_VMCALL:                  VMEXIT_CALL_RET(0, vmxHCExitVmcall(pVCpu, pVmxTransient));
        case VMX_EXIT_MOV_DRX:                 VMEXIT_CALL_RET(0, vmxHCExitMovDRx(pVCpu, pVmxTransient));
        case VMX_EXIT_HLT:                     VMEXIT_CALL_RET(0, vmxHCExitHlt(pVCpu, pVmxTransient));
        case VMX_EXIT_INVD:                    VMEXIT_CALL_RET(0, vmxHCExitInvd(pVCpu, pVmxTransient));
        case VMX_EXIT_INVLPG:                  VMEXIT_CALL_RET(0, vmxHCExitInvlpg(pVCpu, pVmxTransient));
        case VMX_EXIT_MTF:                     VMEXIT_CALL_RET(0, vmxHCExitMtf(pVCpu, pVmxTransient));
        case VMX_EXIT_PAUSE:                   VMEXIT_CALL_RET(0, vmxHCExitPause(pVCpu, pVmxTransient));
        case VMX_EXIT_WBINVD:                  VMEXIT_CALL_RET(0, vmxHCExitWbinvd(pVCpu, pVmxTransient));
        case VMX_EXIT_XSETBV:                  VMEXIT_CALL_RET(0, vmxHCExitXsetbv(pVCpu, pVmxTransient));
        case VMX_EXIT_INVPCID:                 VMEXIT_CALL_RET(0, vmxHCExitInvpcid(pVCpu, pVmxTransient));
        case VMX_EXIT_GETSEC:                  VMEXIT_CALL_RET(0, vmxHCExitGetsec(pVCpu, pVmxTransient));
        case VMX_EXIT_RDPMC:                   VMEXIT_CALL_RET(0, vmxHCExitRdpmc(pVCpu, pVmxTransient));
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
        case VMX_EXIT_VMCLEAR:                 VMEXIT_CALL_RET(0, vmxHCExitVmclear(pVCpu, pVmxTransient));
        case VMX_EXIT_VMLAUNCH:                VMEXIT_CALL_RET(0, vmxHCExitVmlaunch(pVCpu, pVmxTransient));
        case VMX_EXIT_VMPTRLD:                 VMEXIT_CALL_RET(0, vmxHCExitVmptrld(pVCpu, pVmxTransient));
        case VMX_EXIT_VMPTRST:                 VMEXIT_CALL_RET(0, vmxHCExitVmptrst(pVCpu, pVmxTransient));
        case VMX_EXIT_VMREAD:                  VMEXIT_CALL_RET(0, vmxHCExitVmread(pVCpu, pVmxTransient));
        case VMX_EXIT_VMRESUME:                VMEXIT_CALL_RET(0, vmxHCExitVmwrite(pVCpu, pVmxTransient));
        case VMX_EXIT_VMWRITE:                 VMEXIT_CALL_RET(0, vmxHCExitVmresume(pVCpu, pVmxTransient));
        case VMX_EXIT_VMXOFF:                  VMEXIT_CALL_RET(0, vmxHCExitVmxoff(pVCpu, pVmxTransient));
        case VMX_EXIT_VMXON:                   VMEXIT_CALL_RET(0, vmxHCExitVmxon(pVCpu, pVmxTransient));
        case VMX_EXIT_INVVPID:                 VMEXIT_CALL_RET(0, vmxHCExitInvvpid(pVCpu, pVmxTransient));
#else
        case VMX_EXIT_VMCLEAR:
        case VMX_EXIT_VMLAUNCH:
        case VMX_EXIT_VMPTRLD:
        case VMX_EXIT_VMPTRST:
        case VMX_EXIT_VMREAD:
        case VMX_EXIT_VMRESUME:
        case VMX_EXIT_VMWRITE:
        case VMX_EXIT_VMXOFF:
        case VMX_EXIT_VMXON:
        case VMX_EXIT_INVVPID:
            return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient);
#endif
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
        case VMX_EXIT_INVEPT:                  VMEXIT_CALL_RET(0, vmxHCExitInvept(pVCpu, pVmxTransient));
#else
        case VMX_EXIT_INVEPT:                  return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient);
#endif

        case VMX_EXIT_TRIPLE_FAULT:            return vmxHCExitTripleFault(pVCpu, pVmxTransient);
        case VMX_EXIT_NMI_WINDOW:              return vmxHCExitNmiWindow(pVCpu, pVmxTransient);
        case VMX_EXIT_ERR_INVALID_GUEST_STATE: return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient);

        case VMX_EXIT_INIT_SIGNAL:
        case VMX_EXIT_SIPI:
        case VMX_EXIT_IO_SMI:
        case VMX_EXIT_SMI:
        case VMX_EXIT_ERR_MSR_LOAD:
        case VMX_EXIT_ERR_MACHINE_CHECK:
        case VMX_EXIT_PML_FULL:
        case VMX_EXIT_VIRTUALIZED_EOI:
        case VMX_EXIT_GDTR_IDTR_ACCESS:
        case VMX_EXIT_LDTR_TR_ACCESS:
        case VMX_EXIT_APIC_WRITE:
        case VMX_EXIT_RDRAND:
        case VMX_EXIT_RSM:
        case VMX_EXIT_VMFUNC:
        case VMX_EXIT_ENCLS:
        case VMX_EXIT_RDSEED:
        case VMX_EXIT_XSAVES:
        case VMX_EXIT_XRSTORS:
        case VMX_EXIT_UMWAIT:
        case VMX_EXIT_TPAUSE:
        case VMX_EXIT_LOADIWKEY:
        default:
            return vmxHCExitErrUnexpected(pVCpu, pVmxTransient);
    }
#undef VMEXIT_CALL_RET
}
#endif /* !HMVMX_USE_FUNCTION_TABLE */


#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
DECLINLINE(VBOXSTRICTRC) vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    uint32_t const uExitReason = pVmxTransient->uExitReason;
    switch (uExitReason)
    {
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
        case VMX_EXIT_EPT_MISCONFIG:            return vmxHCExitEptMisconfigNested(pVCpu, pVmxTransient);
        case VMX_EXIT_EPT_VIOLATION:            return vmxHCExitEptViolationNested(pVCpu, pVmxTransient);
# else
        case VMX_EXIT_EPT_MISCONFIG:            return vmxHCExitEptMisconfig(pVCpu, pVmxTransient);
        case VMX_EXIT_EPT_VIOLATION:            return vmxHCExitEptViolation(pVCpu, pVmxTransient);
# endif
        case VMX_EXIT_XCPT_OR_NMI:              return vmxHCExitXcptOrNmiNested(pVCpu, pVmxTransient);
        case VMX_EXIT_IO_INSTR:                 return vmxHCExitIoInstrNested(pVCpu, pVmxTransient);
        case VMX_EXIT_HLT:                      return vmxHCExitHltNested(pVCpu, pVmxTransient);

        /*
         * We shouldn't direct host physical interrupts to the nested-guest.
         */
        case VMX_EXIT_EXT_INT:
            return vmxHCExitExtInt(pVCpu, pVmxTransient);

        /*
         * Instructions that cause VM-exits unconditionally or the condition is
         * always taken solely from the nested hypervisor (meaning if the VM-exit
         * happens, it's guaranteed to be a nested-guest VM-exit).
         *
         *   - Provides VM-exit instruction length ONLY.
         */
        case VMX_EXIT_CPUID:              /* Unconditional. */
        case VMX_EXIT_VMCALL:
        case VMX_EXIT_GETSEC:
        case VMX_EXIT_INVD:
        case VMX_EXIT_XSETBV:
        case VMX_EXIT_VMLAUNCH:
        case VMX_EXIT_VMRESUME:
        case VMX_EXIT_VMXOFF:
        case VMX_EXIT_ENCLS:              /* Condition specified solely by nested hypervisor. */
        case VMX_EXIT_VMFUNC:
            return vmxHCExitInstrNested(pVCpu, pVmxTransient);

        /*
         * Instructions that cause VM-exits unconditionally or the condition is
         * always taken solely from the nested hypervisor (meaning if the VM-exit
         * happens, it's guaranteed to be a nested-guest VM-exit).
         *
         *   - Provides VM-exit instruction length.
         *   - Provides VM-exit information.
         *   - Optionally provides Exit qualification.
         *
         * Since Exit qualification is 0 for all VM-exits where it is not
         * applicable, reading and passing it to the guest should produce
         * defined behavior.
         *
         * See Intel spec. 27.2.1 "Basic VM-Exit Information".
         */
        case VMX_EXIT_INVEPT:             /* Unconditional. */
        case VMX_EXIT_INVVPID:
        case VMX_EXIT_VMCLEAR:
        case VMX_EXIT_VMPTRLD:
        case VMX_EXIT_VMPTRST:
        case VMX_EXIT_VMXON:
        case VMX_EXIT_GDTR_IDTR_ACCESS:   /* Condition specified solely by nested hypervisor. */
        case VMX_EXIT_LDTR_TR_ACCESS:
        case VMX_EXIT_RDRAND:
        case VMX_EXIT_RDSEED:
        case VMX_EXIT_XSAVES:
        case VMX_EXIT_XRSTORS:
        case VMX_EXIT_UMWAIT:
        case VMX_EXIT_TPAUSE:
            return vmxHCExitInstrWithInfoNested(pVCpu, pVmxTransient);

        case VMX_EXIT_RDTSC:                    return vmxHCExitRdtscNested(pVCpu, pVmxTransient);
        case VMX_EXIT_RDTSCP:                   return vmxHCExitRdtscpNested(pVCpu, pVmxTransient);
        case VMX_EXIT_RDMSR:                    return vmxHCExitRdmsrNested(pVCpu, pVmxTransient);
        case VMX_EXIT_WRMSR:                    return vmxHCExitWrmsrNested(pVCpu, pVmxTransient);
        case VMX_EXIT_INVLPG:                   return vmxHCExitInvlpgNested(pVCpu, pVmxTransient);
        case VMX_EXIT_INVPCID:                  return vmxHCExitInvpcidNested(pVCpu, pVmxTransient);
        case VMX_EXIT_TASK_SWITCH:              return vmxHCExitTaskSwitchNested(pVCpu, pVmxTransient);
        case VMX_EXIT_WBINVD:                   return vmxHCExitWbinvdNested(pVCpu, pVmxTransient);
        case VMX_EXIT_MTF:                      return vmxHCExitMtfNested(pVCpu, pVmxTransient);
        case VMX_EXIT_APIC_ACCESS:              return vmxHCExitApicAccessNested(pVCpu, pVmxTransient);
        case VMX_EXIT_APIC_WRITE:               return vmxHCExitApicWriteNested(pVCpu, pVmxTransient);
        case VMX_EXIT_VIRTUALIZED_EOI:          return vmxHCExitVirtEoiNested(pVCpu, pVmxTransient);
        case VMX_EXIT_MOV_CRX:                  return vmxHCExitMovCRxNested(pVCpu, pVmxTransient);
        case VMX_EXIT_INT_WINDOW:               return vmxHCExitIntWindowNested(pVCpu, pVmxTransient);
        case VMX_EXIT_NMI_WINDOW:               return vmxHCExitNmiWindowNested(pVCpu, pVmxTransient);
        case VMX_EXIT_TPR_BELOW_THRESHOLD:      return vmxHCExitTprBelowThresholdNested(pVCpu, pVmxTransient);
        case VMX_EXIT_MWAIT:                    return vmxHCExitMwaitNested(pVCpu, pVmxTransient);
        case VMX_EXIT_MONITOR:                  return vmxHCExitMonitorNested(pVCpu, pVmxTransient);
        case VMX_EXIT_PAUSE:                    return vmxHCExitPauseNested(pVCpu, pVmxTransient);

        case VMX_EXIT_PREEMPT_TIMER:
        {
            /** @todo NSTVMX: Preempt timer. */
            return vmxHCExitPreemptTimer(pVCpu, pVmxTransient);
        }

        case VMX_EXIT_MOV_DRX:                  return vmxHCExitMovDRxNested(pVCpu, pVmxTransient);
        case VMX_EXIT_RDPMC:                    return vmxHCExitRdpmcNested(pVCpu, pVmxTransient);

        case VMX_EXIT_VMREAD:
        case VMX_EXIT_VMWRITE:                  return vmxHCExitVmreadVmwriteNested(pVCpu, pVmxTransient);

        case VMX_EXIT_TRIPLE_FAULT:             return vmxHCExitTripleFaultNested(pVCpu, pVmxTransient);
        case VMX_EXIT_ERR_INVALID_GUEST_STATE:  return vmxHCExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);

        case VMX_EXIT_INIT_SIGNAL:
        case VMX_EXIT_SIPI:
        case VMX_EXIT_IO_SMI:
        case VMX_EXIT_SMI:
        case VMX_EXIT_ERR_MSR_LOAD:
        case VMX_EXIT_ERR_MACHINE_CHECK:
        case VMX_EXIT_PML_FULL:
        case VMX_EXIT_RSM:
        default:
            return vmxHCExitErrUnexpected(pVCpu, pVmxTransient);
    }
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/** @name VM-exit helpers.
 * @{
 */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */

/** Macro for VM-exits called unexpectedly. */
#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
    do { \
        VCPU_2_VMXSTATE((a_pVCpu)).u32HMError = (a_HmError); \
        return VERR_VMX_UNEXPECTED_EXIT; \
    } while (0)

#ifdef VBOX_STRICT
# ifndef IN_NEM_DARWIN
/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
    RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()

# define HMVMX_ASSERT_PREEMPT_CPUID() \
    do { \
         RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
         AssertMsg(idAssertCpu == idAssertCpuNow,  ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
    } while (0)

# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { \
        AssertPtr((a_pVCpu)); \
        AssertPtr((a_pVmxTransient)); \
        Assert(   (a_pVmxTransient)->fVMEntryFailed == false \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MSR_LOAD \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MACHINE_CHECK); \
        Assert((a_pVmxTransient)->pVmcsInfo); \
        Assert(ASMIntAreEnabled()); \
        HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
        HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
        Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
        HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
        if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \
            HMVMX_ASSERT_PREEMPT_CPUID(); \
        HMVMX_STOP_EXIT_DISPATCH_PROF(); \
    } while (0)
# else
# define HMVMX_ASSERT_PREEMPT_CPUID_VAR()   do { } while(0)
# define HMVMX_ASSERT_PREEMPT_CPUID()       do { } while(0)
# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { \
        AssertPtr((a_pVCpu)); \
        AssertPtr((a_pVmxTransient)); \
        Assert(   (a_pVmxTransient)->fVMEntryFailed == false \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MSR_LOAD \
               || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MACHINE_CHECK); \
        Assert((a_pVmxTransient)->pVmcsInfo); \
        Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
        HMVMX_STOP_EXIT_DISPATCH_PROF(); \
    } while (0)
# endif

# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { \
        HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
        Assert((a_pVmxTransient)->fIsNestedGuest); \
    } while (0)

# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { \
        Log4Func(("\n")); \
    } while (0)
#else
# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { \
        HMVMX_STOP_EXIT_DISPATCH_PROF(); \
        NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
    } while (0)

# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
    do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)

# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient)      do { } while (0)
#endif

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/** Macro that does the necessary privilege checks and intercepted VM-exits for
 *  guests that attempted to execute a VMX instruction. */
# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
    do \
    { \
        VBOXSTRICTRC rcStrictTmp = vmxHCCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
        if (rcStrictTmp == VINF_SUCCESS) \
        { /* likely */ } \
        else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
        { \
            Assert((a_pVCpu)->hm.s.Event.fPending); \
            Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
            return VINF_SUCCESS; \
        } \
        else \
        { \
            int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
            AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
        } \
    } while (0)

/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
    do \
    { \
        VBOXSTRICTRC rcStrictTmp = vmxHCDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
                                                           (a_pGCPtrEffAddr)); \
        if (rcStrictTmp == VINF_SUCCESS) \
        { /* likely */ } \
        else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
        { \
            uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
            Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
            NOREF(uXcptTmp); \
            return VINF_SUCCESS; \
        } \
        else \
        { \
            Log4Func(("vmxHCDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
            return rcStrictTmp; \
        } \
    } while (0)
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/**
 * Advances the guest RIP by the specified number of bytes.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   cbInstr     Number of bytes to advance the RIP by.
 *
 * @remarks No-long-jump zone!!!
 */
DECLINLINE(void) vmxHCAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
{
    CPUM_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);

    /*
     * Advance RIP.
     *
     * The upper 32 bits are only set when in 64-bit mode, so we have to detect
     * when the addition causes a "carry" into the upper half and check whether
     * we're in 64-bit and can go on with it or wether we should zap the top
     * half. (Note! The 8086, 80186 and 80286 emulation is done exclusively in
     * IEM, so we don't need to bother with pre-386 16-bit wraparound.)
     *
     * See PC wrap around tests in bs3-cpu-weird-1.
     */
    uint64_t const uRipPrev = pVCpu->cpum.GstCtx.rip;
    uint64_t const uRipNext = uRipPrev + cbInstr;
    if (RT_LIKELY(   !((uRipNext ^ uRipPrev) & RT_BIT_64(32))
                  || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
        pVCpu->cpum.GstCtx.rip = uRipNext;
    else
        pVCpu->cpum.GstCtx.rip = (uint32_t)uRipNext;

    /*
     * Clear RF and interrupt shadowing.
     */
    if (RT_LIKELY(!(pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_RF | X86_EFL_TF))))
        pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_INHIBIT_SHADOW;
    else
    {
        if ((pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_RF | X86_EFL_TF)) == X86_EFL_TF)
        {
            /** @todo \#DB - single step. */
        }
        pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW);
    }
    AssertCompile(CPUMCTX_INHIBIT_SHADOW < UINT32_MAX);

    /* Mark both RIP and RFLAGS as updated. */
    ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
}


/**
 * Advances the guest RIP after reading it from the VMCS.
 *
 * @returns VBox status code, no informational status codes.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks No-long-jump zone!!!
 */
static int vmxHCAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    /** @todo consider template here after checking callers.   */
    int rc = vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
    AssertRCReturn(rc, rc);

    vmxHCAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
    return VINF_SUCCESS;
}


/**
 * Handle a condition that occurred while delivering an event through the guest or
 * nested-guest IDT.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @retval  VINF_SUCCESS if we should continue handling the VM-exit.
 * @retval  VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
 *          to continue execution of the guest which will delivery the \#DF.
 * @retval  VINF_EM_RESET if we detected a triple-fault condition.
 * @retval  VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 *          Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
 *          is due to an EPT violation, PML full or SPP-related event.
 *
 * @remarks No-long-jump zone!!!
 */
static VBOXSTRICTRC vmxHCCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);
    HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
    if (   pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
        || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
        || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
        HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);

    VBOXSTRICTRC   rcStrict       = VINF_SUCCESS;
    PCVMXVMCSINFO  pVmcsInfo      = pVmxTransient->pVmcsInfo;
    uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
    uint32_t const uExitIntInfo   = pVmxTransient->uExitIntInfo;
    if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
    {
        uint32_t const uIdtVector     = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
        uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);

        /*
         * If the event was a software interrupt (generated with INT n) or a software exception
         * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
         * can handle the VM-exit and continue guest execution which will re-execute the
         * instruction rather than re-injecting the exception, as that can cause premature
         * trips to ring-3 before injection and involve TRPM which currently has no way of
         * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
         * the problem).
         */
        IEMXCPTRAISE     enmRaise;
        IEMXCPTRAISEINFO fRaiseInfo;
        if (   uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
            || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
            || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
        {
            enmRaise   = IEMXCPTRAISE_REEXEC_INSTR;
            fRaiseInfo = IEMXCPTRAISEINFO_NONE;
        }
        else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
        {
            uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
            uint8_t const  uExitVector     = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
            Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);

            uint32_t const fIdtVectorFlags  = vmxHCGetIemXcptFlags(uIdtVector, uIdtVectorType);
            uint32_t const fExitVectorFlags = vmxHCGetIemXcptFlags(uExitVector, uExitVectorType);

            enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);

            /* Determine a vectoring #PF condition, see comment in vmxHCExitXcptPF(). */
            if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
            {
                pVmxTransient->fVectoringPF = true;
                enmRaise = IEMXCPTRAISE_PREV_EVENT;
            }
        }
        else
        {
            /*
             * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
             * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
             * It is sufficient to reflect the original event to the guest after handling the VM-exit.
             */
            Assert(   uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
                   || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
                   || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
            enmRaise   = IEMXCPTRAISE_PREV_EVENT;
            fRaiseInfo = IEMXCPTRAISEINFO_NONE;
        }

        /*
         * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
         * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
         * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
         * subsequent VM-entry would fail, see @bugref{7445}.
         *
         * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
         */
        if (   uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
            && enmRaise == IEMXCPTRAISE_PREV_EVENT
            && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
            && CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx))
            CPUMClearInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx);

        switch (enmRaise)
        {
            case IEMXCPTRAISE_CURRENT_XCPT:
            {
                Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
                Assert(rcStrict == VINF_SUCCESS);
                break;
            }

            case IEMXCPTRAISE_PREV_EVENT:
            {
                uint32_t u32ErrCode;
                if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
                    u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
                else
                    u32ErrCode = 0;

                /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see vmxHCExitXcptPF(). */
                STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflect);
                vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */, u32ErrCode,
                                     pVCpu->cpum.GstCtx.cr2);

                Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
                          VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode));
                Assert(rcStrict == VINF_SUCCESS);
                break;
            }

            case IEMXCPTRAISE_REEXEC_INSTR:
                Assert(rcStrict == VINF_SUCCESS);
                break;

            case IEMXCPTRAISE_DOUBLE_FAULT:
            {
                /*
                 * Determine a vectoring double #PF condition. Used later, when PGM evaluates the
                 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
                 */
                if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
                {
                    pVmxTransient->fVectoringDoublePF = true;
                    Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
                          pVCpu->cpum.GstCtx.cr2));
                    rcStrict = VINF_SUCCESS;
                }
                else
                {
                    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectConvertDF);
                    vmxHCSetPendingXcptDF(pVCpu);
                    Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
                              uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
                    rcStrict = VINF_HM_DOUBLE_FAULT;
                }
                break;
            }

            case IEMXCPTRAISE_TRIPLE_FAULT:
            {
                Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
                          VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
                rcStrict = VINF_EM_RESET;
                break;
            }

            case IEMXCPTRAISE_CPU_HANG:
            {
                Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
                rcStrict = VERR_EM_GUEST_CPU_HANG;
                break;
            }

            default:
            {
                AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
                rcStrict = VERR_VMX_IPE_2;
                break;
            }
        }
    }
    else if (   (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
             && !CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx))
    {
        if (    VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
             && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
             && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
        {
            /*
             * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
             * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
             * that virtual NMIs remain blocked until the IRET execution is completed.
             *
             * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
             */
            CPUMSetInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx);
            Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
        }
        else if (   pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
                 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
                 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
        {
            /*
             * Execution of IRET caused an EPT violation, page-modification log-full event or
             * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
             * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
             * that virtual NMIs remain blocked until the IRET execution is completed.
             *
             * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
             */
            if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
            {
                CPUMSetInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx);
                Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
            }
        }
    }

    Assert(   rcStrict == VINF_SUCCESS  || rcStrict == VINF_HM_DOUBLE_FAULT
           || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
    return rcStrict;
}


#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
 * guest attempting to execute a VMX instruction.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @retval  VINF_SUCCESS if we should continue handling the VM-exit.
 * @retval  VINF_HM_PENDING_XCPT if an exception was raised.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   uExitReason     The VM-exit reason.
 *
 * @todo    NSTVMX: Document other error codes when VM-exit is implemented.
 * @remarks No-long-jump zone!!!
 */
static VBOXSTRICTRC vmxHCCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
{
    HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
                              | CPUMCTX_EXTRN_CS  | CPUMCTX_EXTRN_EFER);

    /*
     * The physical CPU would have already checked the CPU mode/code segment.
     * We shall just assert here for paranoia.
     * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
     */
    Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
    Assert(   !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
           ||  CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));

    if (uExitReason == VMX_EXIT_VMXON)
    {
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);

        /*
         * We check CR4.VMXE because it is required to be always set while in VMX operation
         * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
         * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
         * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
         */
        if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
        {
            Log4Func(("CR4.VMXE is not set -> #UD\n"));
            vmxHCSetPendingXcptUD(pVCpu);
            return VINF_HM_PENDING_XCPT;
        }
    }
    else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
    {
        /*
         * The guest has not entered VMX operation but attempted to execute a VMX instruction
         * (other than VMXON), we need to raise a #UD.
         */
        Log4Func(("Not in VMX root mode -> #UD\n"));
        vmxHCSetPendingXcptUD(pVCpu);
        return VINF_HM_PENDING_XCPT;
    }

    /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
    return VINF_SUCCESS;
}


/**
 * Decodes the memory operand of an instruction that caused a VM-exit.
 *
 * The Exit qualification field provides the displacement field for memory
 * operand instructions, if any.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @retval  VINF_SUCCESS if the operand was successfully decoded.
 * @retval  VINF_HM_PENDING_XCPT if an exception was raised while decoding the
 *          operand.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   uExitInstrInfo  The VM-exit instruction information field.
 * @param   enmMemAccess    The memory operand's access type (read or write).
 * @param   GCPtrDisp       The instruction displacement field, if any. For
 *                          RIP-relative addressing pass RIP + displacement here.
 * @param   pGCPtrMem       Where to store the effective destination memory address.
 *
 * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
 *          virtual-8086 mode hence skips those checks while verifying if the
 *          segment is valid.
 */
static VBOXSTRICTRC vmxHCDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
                                            PRTGCPTR pGCPtrMem)
{
    Assert(pGCPtrMem);
    Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
    HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
                              | CPUMCTX_EXTRN_CR0);

    static uint64_t const s_auAddrSizeMasks[]   = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
    static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
    AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));

    VMXEXITINSTRINFO ExitInstrInfo;
    ExitInstrInfo.u = uExitInstrInfo;
    uint8_t const   uAddrSize     =  ExitInstrInfo.All.u3AddrSize;
    uint8_t const   iSegReg       =  ExitInstrInfo.All.iSegReg;
    bool const      fIdxRegValid  = !ExitInstrInfo.All.fIdxRegInvalid;
    uint8_t const   iIdxReg       =  ExitInstrInfo.All.iIdxReg;
    uint8_t const   uScale        =  ExitInstrInfo.All.u2Scaling;
    bool const      fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
    uint8_t const   iBaseReg      =  ExitInstrInfo.All.iBaseReg;
    bool const      fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
    bool const      fIsLongMode   =  CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);

    /*
     * Validate instruction information.
     * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
     */
    AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
                          ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
    AssertLogRelMsgReturn(iSegReg  < X86_SREG_COUNT,
                          ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
    AssertLogRelMsgReturn(fIsMemOperand,
                          ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);

    /*
     * Compute the complete effective address.
     *
     * See AMD instruction spec. 1.4.2 "SIB Byte Format"
     * See AMD spec. 4.5.2 "Segment Registers".
     */
    RTGCPTR GCPtrMem = GCPtrDisp;
    if (fBaseRegValid)
        GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
    if (fIdxRegValid)
        GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;

    RTGCPTR const GCPtrOff = GCPtrMem;
    if (   !fIsLongMode
        || iSegReg >= X86_SREG_FS)
        GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
    GCPtrMem &= s_auAddrSizeMasks[uAddrSize];

    /*
     * Validate effective address.
     * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
     */
    uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
    Assert(cbAccess > 0);
    if (fIsLongMode)
    {
        if (X86_IS_CANONICAL(GCPtrMem))
        {
            *pGCPtrMem = GCPtrMem;
            return VINF_SUCCESS;
        }

        /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
         *        "Data Limit Checks in 64-bit Mode". */
        Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
        vmxHCSetPendingXcptGP(pVCpu, 0);
        return VINF_HM_PENDING_XCPT;
    }

    /*
     * This is a watered down version of iemMemApplySegment().
     * Parts that are not applicable for VMX instructions like real-or-v8086 mode
     * and segment CPL/DPL checks are skipped.
     */
    RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
    RTGCPTR32 const GCPtrLast32  = GCPtrFirst32 + cbAccess - 1;
    PCCPUMSELREG    pSel         = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];

    /* Check if the segment is present and usable. */
    if (    pSel->Attr.n.u1Present
        && !pSel->Attr.n.u1Unusable)
    {
        Assert(pSel->Attr.n.u1DescType);
        if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
        {
            /* Check permissions for the data segment. */
            if (   enmMemAccess == VMXMEMACCESS_WRITE
                && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
            {
                Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
                vmxHCSetPendingXcptGP(pVCpu, iSegReg);
                return VINF_HM_PENDING_XCPT;
            }

            /* Check limits if it's a normal data segment. */
            if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
            {
                if (   GCPtrFirst32 > pSel->u32Limit
                    || GCPtrLast32  > pSel->u32Limit)
                {
                    Log4Func(("Data segment limit exceeded. "
                              "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
                              GCPtrLast32, pSel->u32Limit));
                    if (iSegReg == X86_SREG_SS)
                        vmxHCSetPendingXcptSS(pVCpu, 0);
                    else
                        vmxHCSetPendingXcptGP(pVCpu, 0);
                    return VINF_HM_PENDING_XCPT;
                }
            }
            else
            {
               /* Check limits if it's an expand-down data segment.
                  Note! The upper boundary is defined by the B bit, not the G bit! */
               if (   GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
                   || GCPtrLast32  > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
               {
                   Log4Func(("Expand-down data segment limit exceeded. "
                             "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
                             GCPtrLast32, pSel->u32Limit));
                   if (iSegReg == X86_SREG_SS)
                       vmxHCSetPendingXcptSS(pVCpu, 0);
                   else
                       vmxHCSetPendingXcptGP(pVCpu, 0);
                   return VINF_HM_PENDING_XCPT;
               }
            }
        }
        else
        {
            /* Check permissions for the code segment. */
            if (   enmMemAccess == VMXMEMACCESS_WRITE
                || (   enmMemAccess == VMXMEMACCESS_READ
                    && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
            {
                Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
                Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
                vmxHCSetPendingXcptGP(pVCpu, 0);
                return VINF_HM_PENDING_XCPT;
            }

            /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
            if (   GCPtrFirst32 > pSel->u32Limit
                || GCPtrLast32  > pSel->u32Limit)
            {
                Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
                          GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
                if (iSegReg == X86_SREG_SS)
                    vmxHCSetPendingXcptSS(pVCpu, 0);
                else
                    vmxHCSetPendingXcptGP(pVCpu, 0);
                return VINF_HM_PENDING_XCPT;
            }
        }
    }
    else
    {
        Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
        vmxHCSetPendingXcptGP(pVCpu, 0);
        return VINF_HM_PENDING_XCPT;
    }

    *pGCPtrMem = GCPtrMem;
    return VINF_SUCCESS;
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/**
 * VM-exit helper for LMSW.
 */
static VBOXSTRICTRC vmxHCExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
{
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
    AssertMsg(   rcStrict == VINF_SUCCESS
              || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

    ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
    if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }

    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitLmsw);
    Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;
}


/**
 * VM-exit helper for CLTS.
 */
static VBOXSTRICTRC vmxHCExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
{
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
    AssertMsg(   rcStrict == VINF_SUCCESS
              || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

    ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
    if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }

    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitClts);
    Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;
}


/**
 * VM-exit helper for MOV from CRx (CRx read).
 */
static VBOXSTRICTRC vmxHCExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
{
    Assert(iCrReg < 16);
    Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));

    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
    AssertMsg(   rcStrict == VINF_SUCCESS
              || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

    if (iGReg == X86_GREG_xSP)
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
    else
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
#ifdef VBOX_WITH_STATISTICS
    switch (iCrReg)
    {
        case 0: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Read); break;
        case 2: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Read); break;
        case 3: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Read); break;
        case 4: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Read); break;
        case 8: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Read); break;
    }
#endif
    Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;
}


/**
 * VM-exit helper for MOV to CRx (CRx write).
 */
static VBOXSTRICTRC vmxHCExitMovToCrX(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
{
    HMVMX_CPUMCTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);

    VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
    AssertMsg(   rcStrict == VINF_SUCCESS
              || rcStrict == VINF_IEM_RAISED_XCPT
              || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

    switch (iCrReg)
    {
        case 0:
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
                                                     | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Write);
            Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
            break;

        case 2:
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Write);
            /* Nothing to do here, CR2 it's not part of the VMCS. */
            break;

        case 3:
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Write);
            Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
            break;

        case 4:
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Write);
#ifndef IN_NEM_DARWIN
            Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
                      pVCpu->cpum.GstCtx.cr4, pVCpu->hmr0.s.fLoadSaveGuestXcr0));
#else
            Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr4));
#endif
            break;

        case 8:
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged,
                             HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Write);
            break;

        default:
            AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
            break;
    }

    if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit exception handler for \#PF (Page-fault exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);

#ifndef IN_NEM_DARWIN
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    if (!VM_IS_VMX_NESTED_PAGING(pVM))
    { /* likely */ }
    else
#endif
    {
#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF) && !defined(IN_NEM_DARWIN)
        Assert(pVmxTransient->fIsNestedGuest || pVCpu->hmr0.s.fUsingDebugLoop);
#endif
        VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;                  /* In case it's a contributory or vectoring #PF. */
        if (!pVmxTransient->fVectoringDoublePF)
        {
            vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
                                   pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
        }
        else
        {
            /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
            Assert(!pVmxTransient->fIsNestedGuest);
            vmxHCSetPendingXcptDF(pVCpu);
            Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
        }
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF);
        return VINF_SUCCESS;
    }

    Assert(!pVmxTransient->fIsNestedGuest);

    /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
       of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
    if (pVmxTransient->fVectoringPF)
    {
        Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);
        return VINF_EM_RAW_INJECT_TRPM_EVENT;
    }

    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    Log4Func(("#PF: cs:rip=%#04x:%08RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pVCpu->cpum.GstCtx.cs.Sel,
              pVCpu->cpum.GstCtx.rip, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pVCpu->cpum.GstCtx.cr3));

    TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
    rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, &pVCpu->cpum.GstCtx, (RTGCPTR)pVmxTransient->uExitQual);

    Log4Func(("#PF: rc=%Rrc\n", rc));
    if (rc == VINF_SUCCESS)
    {
        /*
         * This is typically a shadow page table sync or a MMIO instruction. But we may have
         * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
         */
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
        TRPMResetTrap(pVCpu);
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPF);
        return rc;
    }

    if (rc == VINF_EM_RAW_GUEST_TRAP)
    {
        if (!pVmxTransient->fVectoringDoublePF)
        {
            /* It's a guest page fault and needs to be reflected to the guest. */
            uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
            TRPMResetTrap(pVCpu);
            VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;                 /* In case it's a contributory #PF. */
            vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
                                   uGstErrorCode, pVmxTransient->uExitQual);
        }
        else
        {
            /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
            TRPMResetTrap(pVCpu);
            VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;     /* Clear pending #PF to replace it with #DF. */
            vmxHCSetPendingXcptDF(pVCpu);
            Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
        }

        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF);
        return VINF_SUCCESS;
    }

    TRPMResetTrap(pVCpu);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPFEM);
    return rc;
}


/**
 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF);

    int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CR0>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
    {
        /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
        rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);

        /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
         *        provides VM-exit instruction length. If this causes problem later,
         *        disassemble the instruction like it's done on AMD-V. */
        int rc2 = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
        AssertRCReturn(rc2, rc2);
        return rc;
    }

    vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
                           pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
    return VINF_SUCCESS;
}


/**
 * VM-exit exception handler for \#BP (Breakpoint exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP);

    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict;
    if (!pVmxTransient->fIsNestedGuest)
        rcStrict = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.GstCtx);
    else
        rcStrict = VINF_EM_RAW_GUEST_TRAP;

    if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
    {
        vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                               pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
        rcStrict = VINF_SUCCESS;
    }

    Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_DBG_BREAKPOINT);
    return rcStrict;
}


/**
 * VM-exit exception handler for \#AC (Alignment-check exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /*
     * Detect #ACs caused by host having enabled split-lock detection.
     * Emulate such instructions.
     */
#define VMX_HC_EXIT_XCPT_AC_INITIAL_REGS    (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS)
    int rc = vmxHCImportGuestState<VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);
    /** @todo detect split lock in cpu feature?   */
    if (   /* 1. If 486-style alignment checks aren't enabled, then this must be a split-lock exception */
           !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
           /* 2. #AC cannot happen in rings 0-2 except for split-lock detection. */
        || CPUMGetGuestCPL(pVCpu) != 3
           /* 3. When the EFLAGS.AC != 0 this can only be a split-lock case. */
        || !(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_AC) )
    {
        /*
         * Check for debug/trace events and import state accordingly.
         */
        STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestACSplitLock);
        PVMCC pVM = pVCpu->CTX_SUFF(pVM);
        if (   !DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK)
#ifndef IN_NEM_DARWIN
            && !VBOXVMM_VMX_SPLIT_LOCK_ENABLED()
#endif
            )
        {
            if (pVM->cCpus == 1)
            {
#if 0 /** @todo r=bird: This is potentially wrong.  Might have to just do a whole state sync above and mark everything changed to be safe... */
                rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK,
                                           VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
#else
                rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL,
                                           VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
#endif
                AssertRCReturn(rc, rc);
            }
        }
        else
        {
            rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL,
                                       VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);

            VBOXVMM_XCPT_DF(pVCpu, &pVCpu->cpum.GstCtx);

            if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK))
            {
                VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, DBGFEVENT_VMX_SPLIT_LOCK, DBGFEVENTCTX_HM, 0);
                if (rcStrict != VINF_SUCCESS)
                    return rcStrict;
            }
        }

        /*
         * Emulate the instruction.
         *
         * We have to ignore the LOCK prefix here as we must not retrigger the
         * detection on the host.  This isn't all that satisfactory, though...
         */
        if (pVM->cCpus == 1)
        {
            Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC\n", pVCpu->cpum.GstCtx.cs.Sel,
                      pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));

            /** @todo For SMP configs we should do a rendezvous here. */
            VBOXSTRICTRC rcStrict = IEMExecOneIgnoreLock(pVCpu);
            if (rcStrict == VINF_SUCCESS)
#if 0 /** @todo r=bird: This is potentially wrong.  Might have to just do a whole state sync above and mark everything changed to be safe... */
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged,
                                   HM_CHANGED_GUEST_RIP
                                 | HM_CHANGED_GUEST_RFLAGS
                                 | HM_CHANGED_GUEST_GPRS_MASK
                                 | HM_CHANGED_GUEST_CS
                                 | HM_CHANGED_GUEST_SS);
#else
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
#endif
            else if (rcStrict == VINF_IEM_RAISED_XCPT)
            {
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
                rcStrict = VINF_SUCCESS;
            }
            return rcStrict;
        }
        Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC -> VINF_EM_EMULATE_SPLIT_LOCK\n",
                  pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));
        return VINF_EM_EMULATE_SPLIT_LOCK;
    }

    STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC);
    Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 cpl=%d -> #AC\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0, CPUMGetGuestCPL(pVCpu) ));

    /* Re-inject it. We'll detect any nesting before getting here. */
    vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                           pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
    return VINF_SUCCESS;
}


/**
 * VM-exit exception handler for \#DB (Debug exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB);

    /*
     * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
     */
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);

    /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
    uint64_t const uDR6 = X86_DR6_INIT_VAL
                        | (pVmxTransient->uExitQual & (  X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
                                                       | X86_DR6_BD | X86_DR6_BS));
    Log6Func(("uDR6=%#RX64 uExitQual=%#RX64\n", uDR6, pVmxTransient->uExitQual));

    int rc;
    if (!pVmxTransient->fIsNestedGuest)
    {
        rc = DBGFTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.GstCtx, uDR6, VCPU_2_VMXSTATE(pVCpu).fSingleInstruction);

        /*
         * Prevents stepping twice over the same instruction when the guest is stepping using
         * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
         * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
         */
        if (   rc == VINF_EM_DBG_STEPPED
            && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
        {
            Assert(VCPU_2_VMXSTATE(pVCpu).fSingleInstruction);
            rc = VINF_EM_RAW_GUEST_TRAP;
        }
    }
    else
        rc = VINF_EM_RAW_GUEST_TRAP;
    Log6Func(("rc=%Rrc\n", rc));
    if (rc == VINF_EM_RAW_GUEST_TRAP)
    {
        /*
         * The exception was for the guest.  Update DR6, DR7.GD and
         * IA32_DEBUGCTL.LBR before forwarding it.
         * See Intel spec. 27.1 "Architectural State before a VM-Exit"
         * and @sdmv3{077,622,17.2.3,Debug Status Register (DR6)}.
         */
#ifndef IN_NEM_DARWIN
        VMMRZCallRing3Disable(pVCpu);
        HM_DISABLE_PREEMPT(pVCpu);

        pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK;
        pVCpu->cpum.GstCtx.dr[6] |= uDR6;
        if (CPUMIsGuestDebugStateActive(pVCpu))
            ASMSetDR6(pVCpu->cpum.GstCtx.dr[6]);

        HM_RESTORE_PREEMPT();
        VMMRZCallRing3Enable(pVCpu);
#else
        /** @todo */
#endif

        rc = vmxHCImportGuestState<CPUMCTX_EXTRN_DR7>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc, rc);

        /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
        pVCpu->cpum.GstCtx.dr[7] &= ~(uint64_t)X86_DR7_GD;

        /* Paranoia. */
        pVCpu->cpum.GstCtx.dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
        pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK;

        rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_DR7, pVCpu->cpum.GstCtx.dr[7]);
        AssertRC(rc);

        /*
         * Raise #DB in the guest.
         *
         * It is important to reflect exactly what the VM-exit gave us (preserving the
         * interruption-type) rather than use vmxHCSetPendingXcptDB() as the #DB could've
         * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
         * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
         *
         * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
         * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
         */
        vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                             pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
        return VINF_SUCCESS;
    }

    /*
     * Not a guest trap, must be a hypervisor related debug event then.
     * Update DR6 in case someone is interested in it.
     */
    AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
    AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
    CPUMSetHyperDR6(pVCpu, uDR6);

    return rc;
}


/**
 * Hacks its way around the lovely mesa driver's backdoor accesses.
 *
 * @sa hmR0SvmHandleMesaDrvGp.
 */
static int vmxHCHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
{
    LogFunc(("cs:rip=%#04x:%08RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
    RT_NOREF(pCtx);

    /* For now we'll just skip the instruction. */
    return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
}


/**
 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
 * backdoor logging w/o checking what it is running inside.
 *
 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
 * backdoor port and magic numbers loaded in registers.
 *
 * @returns true if it is, false if it isn't.
 * @sa      hmR0SvmIsMesaDrvGp.
 */
DECLINLINE(bool) vmxHCIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
{
    /* 0xed:  IN eAX,dx */
    uint8_t abInstr[1];
    if (pVmxTransient->cbExitInstr != sizeof(abInstr))
        return false;

    /* Check that it is #GP(0). */
    if (pVmxTransient->uExitIntErrorCode != 0)
        return false;

    /* Check magic and port. */
    Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
    /*Log(("vmxHCIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
    if (pCtx->rax != UINT32_C(0x564d5868))
        return false;
    if (pCtx->dx != UINT32_C(0x5658))
        return false;

    /* Flat ring-3 CS. */
    AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
    Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
    /*Log(("vmxHCIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
    if (pCtx->cs.Attr.n.u2Dpl != 3)
        return false;
    if (pCtx->cs.u64Base != 0)
        return false;

    /* Check opcode. */
    AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
    Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
    int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
    /*Log(("vmxHCIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
    if (RT_FAILURE(rc))
        return false;
    if (abInstr[0] != 0xed)
        return false;

    return true;
}


/**
 * VM-exit exception handler for \#GP (General-protection exception).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP);

    PCPUMCTX            pCtx            = &pVCpu->cpum.GstCtx;
    PVMXVMCSINFO        pVmcsInfo       = pVmxTransient->pVmcsInfo;
#ifndef IN_NEM_DARWIN
    PVMXVMCSINFOSHARED  pVmcsInfoShared = pVmcsInfo->pShared;
    if (pVmcsInfoShared->RealMode.fRealOnV86Active)
    { /* likely */ }
    else
#endif
    {
#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
# ifndef IN_NEM_DARWIN
        Assert(pVCpu->hmr0.s.fUsingDebugLoop || VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
# else
        Assert(/*pVCpu->hmr0.s.fUsingDebugLoop ||*/ VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
# endif
#endif
        /*
         * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
         * executing a nested-guest, reflect #GP to the guest or nested-guest.
         */
        int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc, rc);
        Log4Func(("Gst: cs:rip=%#04x:%08RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
                  pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));

        if (    pVmxTransient->fIsNestedGuest
            || !VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv
            || !vmxHCIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
            vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                                   pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
        else
            rc = vmxHCHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
        return rc;
    }

#ifndef IN_NEM_DARWIN
    Assert(CPUMIsGuestInRealModeEx(pCtx));
    Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest);
    Assert(!pVmxTransient->fIsNestedGuest);

    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
    if (rcStrict == VINF_SUCCESS)
    {
        if (!CPUMIsGuestInRealModeEx(pCtx))
        {
            /*
             * The guest is no longer in real-mode, check if we can continue executing the
             * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
             */
            pVmcsInfoShared->RealMode.fRealOnV86Active = false;
            if (HMCanExecuteVmxGuest(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx))
            {
                Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
            }
            else
            {
                Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
                rcStrict = VINF_EM_RESCHEDULE;
            }
        }
        else
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
    }
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        rcStrict = VINF_SUCCESS;
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
    }
    return VBOXSTRICTRC_VAL(rcStrict);
#endif
}


/**
 * VM-exit exception handler for \#DE (Divide Error).
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptDE(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDE);

    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
    if (VCPU_2_VMXSTATE(pVCpu).fGCMTrapXcptDE)
    {
        uint8_t cbInstr = 0;
        VBOXSTRICTRC rc2 = GCMXcptDE(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
        if (rc2 == VINF_SUCCESS)
            rcStrict = VINF_SUCCESS;    /* Restart instruction with modified guest register context. */
        else if (rc2 == VERR_NOT_FOUND)
            rcStrict = VERR_NOT_FOUND;  /* Deliver the exception. */
        else
            Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
    }
    else
        rcStrict = VINF_SUCCESS;        /* Do nothing. */

    /* If the GCM #DE exception handler didn't succeed or wasn't needed, raise #DE. */
    if (RT_FAILURE(rcStrict))
    {
        vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                               pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
        rcStrict = VINF_SUCCESS;
    }

    Assert(rcStrict == VINF_SUCCESS || rcStrict == VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE);
    return VBOXSTRICTRC_VAL(rcStrict);
}


/**
 * VM-exit exception handler wrapper for all other exceptions that are not handled
 * by a specific handler.
 *
 * This simply re-injects the exception back into the VM without any special
 * processing.
 *
 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
 */
static VBOXSTRICTRC vmxHCExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);

#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
# ifndef IN_NEM_DARWIN
    PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    AssertMsg(pVCpu->hmr0.s.fUsingDebugLoop || pVmcsInfo->pShared->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
              ("uVector=%#x u32XcptBitmap=%#X32\n",
               VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
    NOREF(pVmcsInfo);
# endif
#endif

    /*
     * Re-inject the exception into the guest. This cannot be a double-fault condition which
     * would have been handled while checking exits due to event delivery.
     */
    uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);

#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
    int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);
    Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%08RX64\n", uVector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
#endif

#ifdef VBOX_WITH_STATISTICS
    switch (uVector)
    {
        case X86_XCPT_DE:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDE);     break;
        case X86_XCPT_DB:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB);     break;
        case X86_XCPT_BP:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP);     break;
        case X86_XCPT_OF:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF);     break;
        case X86_XCPT_BR:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBR);     break;
        case X86_XCPT_UD:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestUD);     break;
        case X86_XCPT_NM:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF);     break;
        case X86_XCPT_DF:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDF);     break;
        case X86_XCPT_TS:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestTS);     break;
        case X86_XCPT_NP:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestNP);     break;
        case X86_XCPT_SS:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestSS);     break;
        case X86_XCPT_GP:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP);     break;
        case X86_XCPT_PF:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF);     break;
        case X86_XCPT_MF:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF);     break;
        case X86_XCPT_AC:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC);     break;
        case X86_XCPT_XF:   STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXF);     break;
        default:
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXcpUnk);
            break;
    }
#endif

    /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
    Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
    NOREF(uVector);

    /* Re-inject the original exception into the guest. */
    vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
                           pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
    return VINF_SUCCESS;
}


/**
 * VM-exit exception handler for all exceptions (except NMIs!).
 *
 * @remarks This may be called for both guests and nested-guests. Take care to not
 *          make assumptions and avoid doing anything that is not relevant when
 *          executing a nested-guest (e.g., Mesa driver hacks).
 */
static VBOXSTRICTRC vmxHCExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);

    /*
     * If this VM-exit occurred while delivering an event through the guest IDT, take
     * action based on the return code and additional hints (e.g. for page-faults)
     * that will be updated in the VMX transient structure.
     */
    VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
    if (rcStrict == VINF_SUCCESS)
    {
        /*
         * If an exception caused a VM-exit due to delivery of an event, the original
         * event may have to be re-injected into the guest. We shall reinject it and
         * continue guest execution. However, page-fault is a complicated case and
         * needs additional processing done in vmxHCExitXcptPF().
         */
        Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
        uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
        if (   !VCPU_2_VMXSTATE(pVCpu).Event.fPending
            || uVector == X86_XCPT_PF)
        {
            switch (uVector)
            {
                case X86_XCPT_PF: return vmxHCExitXcptPF(pVCpu, pVmxTransient);
                case X86_XCPT_GP: return vmxHCExitXcptGP(pVCpu, pVmxTransient);
                case X86_XCPT_MF: return vmxHCExitXcptMF(pVCpu, pVmxTransient);
                case X86_XCPT_DB: return vmxHCExitXcptDB(pVCpu, pVmxTransient);
                case X86_XCPT_BP: return vmxHCExitXcptBP(pVCpu, pVmxTransient);
                case X86_XCPT_AC: return vmxHCExitXcptAC(pVCpu, pVmxTransient);
                case X86_XCPT_DE: return vmxHCExitXcptDE(pVCpu, pVmxTransient);
                default:
                    return vmxHCExitXcptOthers(pVCpu, pVmxTransient);
            }
        }
        /* else: inject pending event before resuming guest execution. */
    }
    else if (rcStrict == VINF_HM_DOUBLE_FAULT)
    {
        Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);
        rcStrict = VINF_SUCCESS;
    }

    return rcStrict;
}
/** @} */


/** @name VM-exit handlers.
 * @{
 */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */

/**
 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
 */
HMVMX_EXIT_DECL vmxHCExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitExtInt);

#ifndef IN_NEM_DARWIN
    /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
    if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
        return VINF_SUCCESS;
    return VINF_EM_RAW_INTERRUPT;
#else
    return VINF_SUCCESS;
#endif
}


/**
 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient);

    uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
    uint8_t const  uVector      = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
    Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));

    PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    Assert(   !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
           && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
    NOREF(pVmcsInfo);

    VBOXSTRICTRC rcStrict;
    switch (uExitIntType)
    {
#ifndef IN_NEM_DARWIN /* NMIs should never reach R3. */
        /*
         * Host physical NMIs:
         *     This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
         *     injected it ourselves and anything we inject is not going to cause a VM-exit directly
         *     for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
         *
         *     See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
         *     See Intel spec. 27.5.5 "Updating Non-Register State".
         */
        case VMX_EXIT_INT_INFO_TYPE_NMI:
        {
            rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
            break;
        }
#endif

        /*
         * Privileged software exceptions (#DB from ICEBP),
         * Software exceptions (#BP and #OF),
         * Hardware exceptions:
         *     Process the required exceptions and resume guest execution if possible.
         */
        case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
            Assert(uVector == X86_XCPT_DB);
            RT_FALL_THRU();
        case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
            Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
            RT_FALL_THRU();
        case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
        {
            NOREF(uVector);
            vmxHCReadToTransient<  HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                                 | HMVMX_READ_EXIT_INSTR_LEN
                                 | HMVMX_READ_IDT_VECTORING_INFO
                                 | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);
            rcStrict = vmxHCExitXcpt(pVCpu, pVmxTransient);
            break;
        }

        default:
        {
            VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo;
            rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
            AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
            break;
        }
    }

    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3);
    return rcStrict;
}


/**
 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCClearIntWindowExitVmcs(pVCpu, pVmcsInfo);

    /* Evaluate and deliver pending events and resume guest execution. */
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIntWindow);
    return VINF_SUCCESS;
}


/**
 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
    {
        AssertMsgFailed(("Unexpected NMI-window exit.\n"));
        HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
    }

    Assert(!CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx));

    /*
     * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
     * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
     */
    uint32_t fIntrState;
    int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
    AssertRC(rc);
    Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
    if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
    {
        CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);

        fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
        rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
        AssertRC(rc);
    }

    /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
    vmxHCClearNmiWindowExitVmcs(pVCpu, pVmcsInfo);

    /* Evaluate and deliver pending events and resume guest execution. */
    return VINF_SUCCESS;
}


/**
 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
}


/**
 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
}


/**
 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /*
     * Get the state we need and update the exit history entry.
     */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict;
    PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
                                                            EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
                                                            pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
    if (!pExitRec)
    {
        /*
         * Regular CPUID instruction execution.
         */
        rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
        if (rcStrict == VINF_SUCCESS)
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
        else if (rcStrict == VINF_IEM_RAISED_XCPT)
        {
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
            rcStrict = VINF_SUCCESS;
        }
    }
    else
    {
        /*
         * Frequent exit or something needing probing.  Get state and call EMHistoryExec.
         */
        int rc2 = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL,
                                        IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc2, rc2);

        Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));

        rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);

        Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
    }
    return rcStrict;
}


/**
 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
        return VINF_EM_RAW_EMULATE_INSTR;

    AssertMsgFailed(("vmxHCExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
    HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
}


/**
 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        /* If we get a spurious VM-exit when TSC offsetting is enabled,
           we must reset offsetting on VM-entry. See @bugref{6634}. */
        if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
            pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    }
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        /* If we get a spurious VM-exit when TSC offsetting is enabled,
           we must reset offsetting on VM-reentry. See @bugref{6634}. */
        if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
            pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    }
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedRdpmc(pVCpu, pVmxTransient->cbExitInstr);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
    if (EMAreHypercallInstructionsEnabled(pVCpu))
    {
        PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
        int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RIP
                                       | CPUMCTX_EXTRN_RFLAGS
                                       | CPUMCTX_EXTRN_CR0
                                       | CPUMCTX_EXTRN_SS
                                       | CPUMCTX_EXTRN_CS
                                       | CPUMCTX_EXTRN_EFER>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc, rc);

        /* Perform the hypercall. */
        rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
        if (rcStrict == VINF_SUCCESS)
        {
            rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
            AssertRCReturn(rc, rc);
        }
        else
            Assert(   rcStrict == VINF_GIM_R3_HYPERCALL
                   || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
                   || RT_FAILURE(rcStrict));

        /* If the hypercall changes anything other than guest's general-purpose registers,
           we would need to reload the guest changed bits here before VM-entry. */
    }
    else
        Log4Func(("Hypercalls not enabled\n"));

    /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
    if (RT_FAILURE(rcStrict))
    {
        vmxHCSetPendingXcptUD(pVCpu);
        rcStrict = VINF_SUCCESS;
    }

    return rcStrict;
}


/**
 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
#ifndef IN_NEM_DARWIN
    Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || pVCpu->hmr0.s.fUsingDebugLoop);
#endif

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);

    if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    else
        AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
                         VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;
}


/**
 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
    if (rcStrict == VINF_SUCCESS)
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }

    return rcStrict;
}


/**
 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
    if (RT_SUCCESS(rcStrict))
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
        if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
            rcStrict = VINF_SUCCESS;
    }

    return rcStrict;
}


/**
 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    return VINF_EM_RESET;
}


/**
 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
    AssertRCReturn(rc, rc);

    HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);            /* Advancing the RIP above should've imported eflags. */
    if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx))    /* Requires eflags. */
        rc = VINF_SUCCESS;
    else
        rc = VINF_EM_HALT;

    if (rc != VINF_SUCCESS)
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHltToR3);
    return rc;
}


#ifndef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
/**
 * VM-exit handler for instructions that result in a \#UD exception delivered to
 * the guest.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    vmxHCSetPendingXcptUD(pVCpu);
    return VINF_SUCCESS;
}
#endif


/**
 * VM-exit handler for expiry of the VMX-preemption timer.
 */
HMVMX_EXIT_DECL vmxHCExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
    pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
Log12(("vmxHCExitPreemptTimer:\n"));

    /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
    STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitPreemptTimer);
    return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
}


/**
 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
    ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
                                                                                : HM_CHANGED_RAISED_XCPT_MASK);

#ifndef IN_NEM_DARWIN
    PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
    if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
    {
        pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
        hmR0VmxUpdateStartVmFunction(pVCpu);
    }
#endif

    return rcStrict;
}


/**
 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /** @todo Enable the new code after finding a reliably guest test-case. */
#if 1
    return VERR_EM_INTERPRETER;
#else
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
                                                                    | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
    AssertRCReturn(rc, rc);

    /* Paranoia. Ensure this has a memory operand. */
    Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);

    uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
    Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
    uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
                                                         : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;

    RTGCPTR GCPtrDesc;
    HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);

    VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
                                                  GCPtrDesc, uType);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
#endif
}


/**
 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
 * VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
    AssertRCReturn(rc, rc);

    rc = vmxHCCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
    if (RT_FAILURE(rc))
        return rc;

    uint32_t const uInvalidReason = vmxHCCheckGuestState(pVCpu, pVmcsInfo);
    NOREF(uInvalidReason);

#ifdef VBOX_STRICT
    uint32_t fIntrState;
    uint64_t u64Val;
    vmxHCReadToTransient<  HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    vmxHCReadEntryXcptErrorCodeVmcs(pVCpu, pVmxTransient);

    Log4(("uInvalidReason                             %u\n",     uInvalidReason));
    Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO    %#RX32\n", pVmxTransient->uEntryIntInfo));
    Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE    %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
    Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH         %#RX32\n", pVmxTransient->cbEntryInstr));

    rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);            AssertRC(rc);
    Log4(("VMX_VMCS32_GUEST_INT_STATE                 %#RX32\n", fIntrState));
    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Val);                        AssertRC(rc);
    Log4(("VMX_VMCS_GUEST_CR0                         %#RX64\n", u64Val));
    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_MASK, &u64Val);                    AssertRC(rc);
    Log4(("VMX_VMCS_CTRL_CR0_MASK                     %#RX64\n", u64Val));
    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val);             AssertRC(rc);
    Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW              %#RX64\n", u64Val));
    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_MASK, &u64Val);                    AssertRC(rc);
    Log4(("VMX_VMCS_CTRL_CR4_MASK                     %#RX64\n", u64Val));
    rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val);             AssertRC(rc);
    Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW              %#RX64\n", u64Val));
# ifndef IN_NEM_DARWIN
    if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
    {
        rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, &u64Val);             AssertRC(rc);
        Log4(("VMX_VMCS64_CTRL_EPTP_FULL                  %#RX64\n", u64Val));
    }

    hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
# endif
#endif

    return VERR_VMX_INVALID_GUEST_STATE;
}

/**
 * VM-exit handler for all undefined/unexpected reasons. Should never happen.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    /*
     * Cumulative notes of all recognized but unexpected VM-exits.
     *
     * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
     *    nested-paging is used.
     *
     * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
     *    emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
     *    this function (and thereby stop VM execution) for handling such instructions.
     *
     *
     * VMX_EXIT_INIT_SIGNAL:
     *    INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
     *    It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
     *    VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
     *
     *    See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
     *    See Intel spec. 29.3 "VMX Instructions" for "VMXON".
     *    See Intel spec. "23.8 Restrictions on VMX operation".
     *
     * VMX_EXIT_SIPI:
     *    SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
     *    activity state is used. We don't make use of it as our guests don't have direct
     *    access to the host local APIC.
     *
     *    See Intel spec. 25.3 "Other Causes of VM-exits".
     *
     * VMX_EXIT_IO_SMI:
     * VMX_EXIT_SMI:
     *    This can only happen if we support dual-monitor treatment of SMI, which can be
     *    activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
     *    monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
     *    VMX root mode or receive an SMI. If we get here, something funny is going on.
     *
     *    See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
     *    See Intel spec. 25.3 "Other Causes of VM-Exits"
     *
     * VMX_EXIT_ERR_MSR_LOAD:
     *    Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
     *    and typically indicates a bug in the hypervisor code. We thus cannot not resume
     *    execution.
     *
     *    See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
     *
     * VMX_EXIT_ERR_MACHINE_CHECK:
     *    Machine check exceptions indicates a fatal/unrecoverable hardware condition
     *    including but not limited to system bus, ECC, parity, cache and TLB errors. A
     *    #MC exception abort class exception is raised. We thus cannot assume a
     *    reasonable chance of continuing any sort of execution and we bail.
     *
     *    See Intel spec. 15.1 "Machine-check Architecture".
     *    See Intel spec. 27.1 "Architectural State Before A VM Exit".
     *
     * VMX_EXIT_PML_FULL:
     * VMX_EXIT_VIRTUALIZED_EOI:
     * VMX_EXIT_APIC_WRITE:
     *    We do not currently support any of these features and thus they are all unexpected
     *    VM-exits.
     *
     * VMX_EXIT_GDTR_IDTR_ACCESS:
     * VMX_EXIT_LDTR_TR_ACCESS:
     * VMX_EXIT_RDRAND:
     * VMX_EXIT_RSM:
     * VMX_EXIT_VMFUNC:
     * VMX_EXIT_ENCLS:
     * VMX_EXIT_RDSEED:
     * VMX_EXIT_XSAVES:
     * VMX_EXIT_XRSTORS:
     * VMX_EXIT_UMWAIT:
     * VMX_EXIT_TPAUSE:
     * VMX_EXIT_LOADIWKEY:
     *    These VM-exits are -not- caused unconditionally by execution of the corresponding
     *    instruction. Any VM-exit for these instructions indicate a hardware problem,
     *    unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
     *
     *    See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
     */
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
    HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
}


/**
 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
 */
HMVMX_EXIT_DECL vmxHCExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

    /** @todo Optimize this: We currently drag in the whole MSR state
     * (CPUMCTX_EXTRN_ALL_MSRS) here.  We should optimize this to only get
     * MSRs required.  That would require changes to IEM and possibly CPUM too.
     * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
    PVMXVMCSINFO   pVmcsInfo = pVmxTransient->pVmcsInfo;
    uint32_t const idMsr     = pVCpu->cpum.GstCtx.ecx;
    int            rc;
    switch (idMsr)
    {
        default:
            rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS>(pVCpu, pVmcsInfo,
                                                                                                            __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;
        case MSR_K8_FS_BASE:
            rc = vmxHCImportGuestState<  IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS
                                       | CPUMCTX_EXTRN_FS>(pVCpu, pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;
        case MSR_K8_GS_BASE:
            rc = vmxHCImportGuestState<  IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS
                                       | CPUMCTX_EXTRN_GS>(pVCpu, pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;
    }

    Log4Func(("ecx=%#RX32\n", idMsr));

#if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN)
    Assert(!pVmxTransient->fIsNestedGuest);
    if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
    {
        if (   hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
            && idMsr != MSR_K6_EFER)
        {
            AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
        }
        if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
        {
            Assert(pVmcsInfo->pvMsrBitmap);
            uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
            if (fMsrpm & VMXMSRPM_ALLOW_RD)
            {
                AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
                HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
            }
        }
    }
#endif

    VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitRdmsr);
    if (rcStrict == VINF_SUCCESS)
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    else
        AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ || rcStrict == VINF_EM_TRIPLE_FAULT,
                  ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));

    return rcStrict;
}


/**
 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
 */
HMVMX_EXIT_DECL vmxHCExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

    /*
     * The FS and GS base MSRs are not part of the above all-MSRs mask.
     * Although we don't need to fetch the base as it will be overwritten shortly, while
     * loading guest-state we would also load the entire segment register including limit
     * and attributes and thus we need to load them here.
     */
    /** @todo Optimize this: We currently drag in the whole MSR state
     * (CPUMCTX_EXTRN_ALL_MSRS) here.  We should optimize this to only get
     * MSRs required.  That would require changes to IEM and possibly CPUM too.
     * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    uint32_t const idMsr   = pVCpu->cpum.GstCtx.ecx;
    int            rc;
    switch (idMsr)
    {
        default:
            rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS>(pVCpu, pVmcsInfo,
                                                                                                            __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;

        case MSR_K8_FS_BASE:
            rc = vmxHCImportGuestState<  IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS
                                       | CPUMCTX_EXTRN_FS>(pVCpu, pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;
        case MSR_K8_GS_BASE:
            rc = vmxHCImportGuestState<  IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS
                                       | CPUMCTX_EXTRN_GS>(pVCpu, pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);
            break;
    }
    Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));

    VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitWrmsr);

    if (rcStrict == VINF_SUCCESS)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);

        /* If this is an X2APIC WRMSR access, update the APIC state as well. */
        if (    idMsr == MSR_IA32_APICBASE
            || (   idMsr >= MSR_IA32_X2APIC_START
                && idMsr <= MSR_IA32_X2APIC_END))
        {
            /*
             * We've already saved the APIC related guest-state (TPR) in post-run phase.
             * When full APIC register virtualization is implemented we'll have to make
             * sure APIC state is saved from the VMCS before IEM changes it.
             */
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
        }
        else if (idMsr == MSR_IA32_TSC)        /* Windows 7 does this during bootup. See @bugref{6398}. */
            pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
        else if (idMsr == MSR_K6_EFER)
        {
            /*
             * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
             * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
             * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
             */
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
        }

        /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
        if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
        {
            switch (idMsr)
            {
                case MSR_IA32_SYSENTER_CS:  ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR);  break;
                case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
                case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
                case MSR_K8_FS_BASE:        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_FS);               break;
                case MSR_K8_GS_BASE:        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_GS);               break;
                case MSR_K6_EFER:           /* Nothing to do, already handled above. */                                    break;
                default:
                {
#ifndef IN_NEM_DARWIN
                    if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
                        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
                    else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
                        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
#else
                    AssertMsgFailed(("TODO\n"));
#endif
                    break;
                }
            }
        }
#if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN)
        else
        {
            /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
            switch (idMsr)
            {
                case MSR_IA32_SYSENTER_CS:
                case MSR_IA32_SYSENTER_EIP:
                case MSR_IA32_SYSENTER_ESP:
                case MSR_K8_FS_BASE:
                case MSR_K8_GS_BASE:
                {
                    AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
                    HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
                }

                /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
                default:
                {
                    if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
                    {
                        /* EFER MSR writes are always intercepted. */
                        if (idMsr != MSR_K6_EFER)
                        {
                            AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
                                             idMsr));
                            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
                        }
                    }

                    if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
                    {
                        Assert(pVmcsInfo->pvMsrBitmap);
                        uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
                        if (fMsrpm & VMXMSRPM_ALLOW_WR)
                        {
                            AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
                            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
                        }
                    }
                    break;
                }
            }
        }
#endif  /* VBOX_STRICT */
    }
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    else
        AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE || rcStrict == VINF_EM_TRIPLE_FAULT,
                  ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));

    return rcStrict;
}


/**
 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /** @todo The guest has likely hit a contended spinlock. We might want to
     *        poke a schedule different guest VCPU. */
    int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
    if (RT_SUCCESS(rc))
        return VINF_EM_RAW_INTERRUPT;

    AssertMsgFailed(("vmxHCExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
    return rc;
}


/**
 * VM-exit handler for when the TPR value is lowered below the specified
 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);

    /*
     * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
     * We'll re-evaluate pending interrupts and inject them before the next VM
     * entry so we can just continue execution here.
     */
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTprBelowThreshold);
    return VINF_SUCCESS;
}


/**
 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
 * VM-exit.
 *
 * @retval VINF_SUCCESS when guest execution can continue.
 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
 * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
 *         incompatible guest state for VMX execution (real-on-v86 case).
 */
HMVMX_EXIT_DECL vmxHCExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

    VBOXSTRICTRC rcStrict;
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    uint64_t const uExitQual   = pVmxTransient->uExitQual;
    uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
    switch (uAccessType)
    {
        /*
         * MOV to CRx.
         */
        case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
        {
            /*
             * When PAE paging is used, the CPU will reload PAE PDPTEs from CR3 when the guest
             * changes certain bits even in CR0, CR4 (and not just CR3). We are currently fine
             * since IEM_CPUMCTX_EXTRN_MUST_MASK (used below) includes CR3 which will import
             * PAE PDPTEs as well.
             */
            int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
            AssertRCReturn(rc, rc);

            HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
#ifndef IN_NEM_DARWIN
            uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
#endif
            uint8_t const  iGReg   = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
            uint8_t const  iCrReg  = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);

            /*
             * MOV to CR3 only cause a VM-exit when one or more of the following are true:
             *   - When nested paging isn't used.
             *   - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
             *   - We are executing in the VM debug loop.
             */
#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
# ifndef IN_NEM_DARWIN
            Assert(   iCrReg != 3
                   || !VM_IS_VMX_NESTED_PAGING(pVM)
                   || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
                   || pVCpu->hmr0.s.fUsingDebugLoop);
# else
            Assert(   iCrReg != 3
                   || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx));
# endif
#endif

            /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
            Assert(   iCrReg != 8
                   || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));

            rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg);
            AssertMsg(   rcStrict == VINF_SUCCESS
                      || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

#ifndef IN_NEM_DARWIN
            /*
             * This is a kludge for handling switches back to real mode when we try to use
             * V86 mode to run real mode code directly.  Problem is that V86 mode cannot
             * deal with special selector values, so we have to return to ring-3 and run
             * there till the selector values are V86 mode compatible.
             *
             * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
             *       latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
             *       this function.
             */
            if (   iCrReg == 0
                && rcStrict == VINF_SUCCESS
                && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
                && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
                && (uOldCr0 & X86_CR0_PE)
                && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
            {
                /** @todo Check selectors rather than returning all the time.  */
                Assert(!pVmxTransient->fIsNestedGuest);
                Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
                rcStrict = VINF_EM_RESCHEDULE_REM;
            }
#endif

            break;
        }

        /*
         * MOV from CRx.
         */
        case VMX_EXIT_QUAL_CRX_ACCESS_READ:
        {
            uint8_t const iGReg  = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
            uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);

            /*
             * MOV from CR3 only cause a VM-exit when one or more of the following are true:
             *   - When nested paging isn't used.
             *   - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
             *   - We are executing in the VM debug loop.
             */
#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
# ifndef IN_NEM_DARWIN
            Assert(   iCrReg != 3
                   || !VM_IS_VMX_NESTED_PAGING(pVM)
                   || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
                   || pVCpu->hmr0.s.fLeaveDone);
# else
            Assert(   iCrReg != 3
                   || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx));
# endif
#endif

            /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
            Assert(   iCrReg != 8
                   || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));

            rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
            break;
        }

        /*
         * CLTS (Clear Task-Switch Flag in CR0).
         */
        case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
        {
            rcStrict = vmxHCExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
            break;
        }

        /*
         * LMSW (Load Machine-Status Word into CR0).
         * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
         */
        case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
        {
            RTGCPTR        GCPtrEffDst;
            uint8_t const  cbInstr     = pVmxTransient->cbExitInstr;
            uint16_t const uMsw        = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
            bool const     fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
            if (fMemOperand)
            {
                vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient);
                GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
            }
            else
                GCPtrEffDst = NIL_RTGCPTR;
            rcStrict = vmxHCExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
            break;
        }

        default:
        {
            AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
        }
    }

    Assert((VCPU_2_VMXSTATE(pVCpu).fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
                                   == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
    Assert(rcStrict != VINF_IEM_RAISED_XCPT);

    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2);
    NOREF(pVM);
    return rcStrict;
}


/**
 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1);

    PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
#define VMX_HC_EXIT_IO_INSTR_INITIAL_REGS   (IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER)
    /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
    int rc = vmxHCImportGuestState<VMX_HC_EXIT_IO_INSTR_INITIAL_REGS>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
    uint32_t const uIOPort      = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
    uint8_t  const uIOSize      = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
    bool     const fIOWrite     = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
    bool     const fIOString    = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
    bool     const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
    bool     const fDbgStepping = VCPU_2_VMXSTATE(pVCpu).fSingleInstruction;
    AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);

    /*
     * Update exit history to see if this exit can be optimized.
     */
    VBOXSTRICTRC rcStrict;
    PCEMEXITREC  pExitRec = NULL;
    if (   !fGstStepping
        && !fDbgStepping)
        pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
                                                    !fIOString
                                                    ? !fIOWrite
                                                    ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
                                                    : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
                                                    : !fIOWrite
                                                    ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
                                                    : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
                                                    pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
    if (!pExitRec)
    {
        static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 };                    /* Size of the I/O accesses in bytes. */
        static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff };   /* AND masks for saving result in AL/AX/EAX. */

        uint32_t const cbValue  = s_aIOSizes[uIOSize];
        uint32_t const cbInstr  = pVmxTransient->cbExitInstr;
        bool  fUpdateRipAlready = false; /* ugly hack, should be temporary. */
        PVMCC pVM = pVCpu->CTX_SUFF(pVM);
        if (fIOString)
        {
            /*
             * INS/OUTS - I/O String instruction.
             *
             * Use instruction-information if available, otherwise fall back on
             * interpreting the instruction.
             */
            Log4Func(("cs:rip=%#04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
            AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
            bool const fInsOutsInfo = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
            if (fInsOutsInfo)
            {
                vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
                AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
                AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
                IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
                bool const fRep           = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
                if (fIOWrite)
                    rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
                                                    pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
                else
                {
                    /*
                     * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
                     * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
                     * See Intel Instruction spec. for "INS".
                     * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
                     */
                    rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
                }
            }
            else
                rcStrict = IEMExecOne(pVCpu);

            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP);
            fUpdateRipAlready = true;
        }
        else
        {
            /*
             * IN/OUT - I/O instruction.
             */
            Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
            uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
            Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
            if (fIOWrite)
            {
                rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
                STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite);
#ifndef IN_NEM_DARWIN
                if (    rcStrict == VINF_IOM_R3_IOPORT_WRITE
                    && !pCtx->eflags.Bits.u1TF)
                    rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
#endif
            }
            else
            {
                uint32_t u32Result = 0;
                rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
                if (IOM_SUCCESS(rcStrict))
                {
                    /* Save result of I/O IN instr. in AL/AX/EAX. */
                    pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
                }
#ifndef IN_NEM_DARWIN
                if (    rcStrict == VINF_IOM_R3_IOPORT_READ
                    && !pCtx->eflags.Bits.u1TF)
                    rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
#endif
                STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIORead);
            }
        }

        if (IOM_SUCCESS(rcStrict))
        {
            if (!fUpdateRipAlready)
            {
                vmxHCAdvanceGuestRipBy(pVCpu, cbInstr);
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP);
            }

            /*
             * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
             * while booting Fedora 17 64-bit guest.
             *
             * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
             */
            if (fIOString)
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RFLAGS);

            /*
             * If any I/O breakpoints are armed, we need to check if one triggered
             * and take appropriate action.
             * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
             */
#if 1
            AssertCompile(VMX_HC_EXIT_IO_INSTR_INITIAL_REGS & CPUMCTX_EXTRN_DR7);
#else
            AssertCompile(!(VMX_HC_EXIT_IO_INSTR_INITIAL_REGS & CPUMCTX_EXTRN_DR7));
            rc = vmxHCImportGuestState<CPUMCTX_EXTRN_DR7>(pVCpu, pVmcsInfo);
            AssertRCReturn(rc, rc);
#endif

            /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
             *  execution engines about whether hyper BPs and such are pending. */
            uint32_t const uDr7 = pCtx->dr[7];
            if (RT_UNLIKELY(   (   (uDr7 & X86_DR7_ENABLED_MASK)
                                && X86_DR7_ANY_RW_IO(uDr7)
                                && (pCtx->cr4 & X86_CR4_DE))
                            || DBGFBpIsHwIoArmed(pVM)))
            {
                STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxIoCheck);

#ifndef IN_NEM_DARWIN
                /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
                VMMRZCallRing3Disable(pVCpu);
                HM_DISABLE_PREEMPT(pVCpu);

                bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);

                VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
                if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
                {
                    /* Raise #DB. */
                    if (fIsGuestDbgActive)
                        ASMSetDR6(pCtx->dr[6]);
                    if (pCtx->dr[7] != uDr7)
                        VCPU_2_VMXSTATE(pVCpu).fCtxChanged |= HM_CHANGED_GUEST_DR7;

                    vmxHCSetPendingXcptDB(pVCpu);
                }
                /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
                   however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
                else if (   rcStrict2 != VINF_SUCCESS
                         && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
                    rcStrict = rcStrict2;
                AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);

                HM_RESTORE_PREEMPT();
                VMMRZCallRing3Enable(pVCpu);
#else
                /** @todo */
#endif
            }
        }

#ifdef VBOX_STRICT
        if (   rcStrict == VINF_IOM_R3_IOPORT_READ
            || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
            Assert(!fIOWrite);
        else if (   rcStrict == VINF_IOM_R3_IOPORT_WRITE
                 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
                 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
            Assert(fIOWrite);
        else
        {
# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
           *        statuses, that the VMM device and some others may return. See
           *        IOM_SUCCESS() for guidance. */
            AssertMsg(   RT_FAILURE(rcStrict)
                      || rcStrict == VINF_SUCCESS
                      || rcStrict == VINF_EM_RAW_EMULATE_INSTR
                      || rcStrict == VINF_EM_DBG_BREAKPOINT
                      || rcStrict == VINF_EM_RAW_GUEST_TRAP
                      || rcStrict == VINF_EM_RAW_TO_R3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
# endif
        }
#endif
        STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1);
    }
    else
    {
        /*
         * Frequent exit or something needing probing.  Get state and call EMHistoryExec.
         */
        int rc2 = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL,
                                        VMX_HC_EXIT_IO_INSTR_INITIAL_REGS>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc2, rc2);
        STAM_COUNTER_INC(!fIOString ? fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIORead
                         : fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringRead);
        Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
              fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));

        rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);

        Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
    }
    return rcStrict;
}


/**
 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /* Check if this task-switch occurred while delivery an event through the guest IDT. */
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
    if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
    {
        vmxHCReadToTransient<HMVMX_READ_IDT_VECTORING_INFO>(pVCpu, pVmxTransient);
        if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
        {
            uint32_t uErrCode;
            if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
            {
                vmxHCReadToTransient<HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);
                uErrCode = pVmxTransient->uIdtVectoringErrorCode;
            }
            else
                uErrCode = 0;

            RTGCUINTPTR GCPtrFaultAddress;
            if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
                GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
            else
                GCPtrFaultAddress = 0;

            vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

            vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
                                 pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);

            Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
                      VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch);
            return VINF_EM_RAW_INJECT_TRPM_EVENT;
        }
    }

    /* Fall back to the interpreter to emulate the task-switch. */
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch);
    return VERR_EM_INTERPRETER;
}


/**
 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
    int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
    AssertRC(rc);
    return VINF_EM_DBG_STEPPED;
}


/**
 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitApicAccess);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_EXIT_INTERRUPTION_INFO
                         | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                         | HMVMX_READ_IDT_VECTORING_INFO
                         | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);

    /*
     * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
     */
    VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
        if (RT_UNLIKELY(VCPU_2_VMXSTATE(pVCpu).Event.fPending))
        {
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret);
            return VINF_EM_RAW_INJECT_TRPM_EVENT;
        }
    }
    else
    {
        Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
        return rcStrict;
    }

    /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
    uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
    switch (uAccessType)
    {
#ifndef IN_NEM_DARWIN
        case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
        case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
        {
            AssertMsg(   !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
                      || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
                      ("vmxHCExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));

            RTGCPHYS GCPhys = VCPU_2_VMXSTATE(pVCpu).vmx.u64GstMsrApicBase;    /* Always up-to-date, as it is not part of the VMCS. */
            GCPhys &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
            GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
            Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
                 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));

            rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
                                            uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
            Log4Func(("IOMR0MmioPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
            if (   rcStrict == VINF_SUCCESS
                || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
                || rcStrict == VERR_PAGE_NOT_PRESENT)
            {
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
                                                         | HM_CHANGED_GUEST_APIC_TPR);
                rcStrict = VINF_SUCCESS;
            }
            break;
        }
#else
        /** @todo */
#endif

        default:
        {
            Log4Func(("uAccessType=%#x\n", uAccessType));
            rcStrict = VINF_EM_RAW_EMULATE_INSTR;
            break;
        }
    }

    if (rcStrict != VINF_SUCCESS)
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchApicAccessToR3);
    return rcStrict;
}


/**
 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;

    /*
     * We might also get this VM-exit if the nested-guest isn't intercepting MOV DRx accesses.
     * In such a case, rather than disabling MOV DRx intercepts and resuming execution, we
     * must emulate the MOV DRx access.
     */
    if (!pVmxTransient->fIsNestedGuest)
    {
        /* We should -not- get this VM-exit if the guest's debug registers were active. */
        if (   pVmxTransient->fWasGuestDebugStateActive
#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
            && !pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx
#endif
           )
        {
            AssertMsgFailed(("Unexpected MOV DRx exit\n"));
            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
        }

        if (   !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction
            && !pVmxTransient->fWasHyperDebugStateActive)
        {
            Assert(!DBGFIsStepping(pVCpu));
            Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));

            /* Whether we disable intercepting MOV DRx instructions and resume
               the current one, or emulate it and keep intercepting them is
               configurable.  Though it usually comes down to whether there are
               any new DR6 & DR7 bits (RTM) we want to hide from the guest. */
#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
            bool const fResumeInstruction = !pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx;
#else
            bool const fResumeInstruction = true;
#endif
            if (fResumeInstruction)
            {
                pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
                int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
                AssertRC(rc);
            }

#ifndef IN_NEM_DARWIN
            /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
            VMMRZCallRing3Disable(pVCpu);
            HM_DISABLE_PREEMPT(pVCpu);

            /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
            CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
            Assert(CPUMIsGuestDebugStateActive(pVCpu));

            HM_RESTORE_PREEMPT();
            VMMRZCallRing3Enable(pVCpu);
#else
            CPUMR3NemActivateGuestDebugState(pVCpu);
            Assert(CPUMIsGuestDebugStateActive(pVCpu));
            Assert(!CPUMIsHyperDebugStateActive(pVCpu));
#endif

            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxContextSwitch);
            if (fResumeInstruction)
            {
#ifdef VBOX_WITH_STATISTICS
                vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
                if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
                    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite);
                else
                    STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead);
#endif
                return VINF_SUCCESS;
            }
        }
    }

    /*
     * Import state.  We must have DR7 loaded here as it's always consulted,
     * both for reading and writing.  The other debug registers are never
     * exported as such.
     */
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
                                   | CPUMCTX_EXTRN_GPRS_MASK
                                   | CPUMCTX_EXTRN_DR7>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    uint8_t const iGReg  = VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual);
    uint8_t const iDrReg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
    Log4Func(("cs:rip=%#04x:%08RX64 r%d %s dr%d\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, iGReg,
              VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE ? "->" : "<-", iDrReg));

    VBOXSTRICTRC  rcStrict;
    if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
    {
        /*
         * Write DRx register.
         */
        rcStrict = IEMExecDecodedMovDRxWrite(pVCpu, pVmxTransient->cbExitInstr, iDrReg, iGReg);
        AssertMsg(   rcStrict == VINF_SUCCESS
                  || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

        if (rcStrict == VINF_SUCCESS)
       {
            /** @todo r=bird: Not sure why we always flag DR7 as modified here, but I've
             * kept it for now to avoid breaking something non-obvious. */
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
                                                                | HM_CHANGED_GUEST_DR7);
            /* Update the DR6 register if guest debug state is active, otherwise we'll
               trash it when calling CPUMR0DebugStateMaybeSaveGuestAndRestoreHost. */
            if (iDrReg == 6 && CPUMIsGuestDebugStateActive(pVCpu))
                ASMSetDR6(pVCpu->cpum.GstCtx.dr[6]);
            Log4Func(("r%d=%#RX64 => dr%d=%#RX64\n", iGReg, pVCpu->cpum.GstCtx.aGRegs[iGReg].u,
                      iDrReg, pVCpu->cpum.GstCtx.dr[iDrReg]));
        }
        else if (rcStrict == VINF_IEM_RAISED_XCPT)
        {
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
            rcStrict = VINF_SUCCESS;
        }

        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite);
    }
    else
    {
        /*
         * Read DRx register into a general purpose register.
         */
        rcStrict = IEMExecDecodedMovDRxRead(pVCpu, pVmxTransient->cbExitInstr, iGReg, iDrReg);
        AssertMsg(   rcStrict == VINF_SUCCESS
                  || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));

        if (rcStrict == VINF_SUCCESS)
        {
            if (iGReg == X86_GREG_xSP)
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
                                                                    | HM_CHANGED_GUEST_RSP);
            else
                ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
        }
        else if (rcStrict == VINF_IEM_RAISED_XCPT)
        {
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
            rcStrict = VINF_SUCCESS;
        }

        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead);
    }

    return rcStrict;
}


/**
 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

#ifndef IN_NEM_DARWIN
    Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_EXIT_INTERRUPTION_INFO
                         | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                         | HMVMX_READ_IDT_VECTORING_INFO
                         | HMVMX_READ_IDT_VECTORING_ERROR_CODE
                         | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);

    /*
     * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
     */
    VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        /*
         * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
         * instruction emulation to inject the original event. Otherwise, injecting the original event
         * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
         */
        if (!VCPU_2_VMXSTATE(pVCpu).Event.fPending)
        { /* likely */ }
        else
        {
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret);
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
            /** @todo NSTVMX: Think about how this should be handled. */
            if (pVmxTransient->fIsNestedGuest)
                return VERR_VMX_IPE_3;
# endif
            return VINF_EM_RAW_INJECT_TRPM_EVENT;
        }
    }
    else
    {
        Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
        return rcStrict;
    }

    /*
     * Get sufficient state and update the exit history entry.
     */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
    PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
                                                            EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
                                                            pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
    if (!pExitRec)
    {
        /*
         * If we succeed, resume guest execution.
         * If we fail in interpreting the instruction because we couldn't get the guest physical address
         * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
         * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
         * weird case. See @bugref{6043}.
         */
        PVMCC    pVM  = pVCpu->CTX_SUFF(pVM);
/** @todo bird: We can probably just go straight to IOM here and assume that
 *        it's MMIO, then fall back on PGM if that hunch didn't work out so
 *        well.  However, we need to address that aliasing workarounds that
 *        PGMR0Trap0eHandlerNPMisconfig implements.  So, some care is needed.
 *
 *        Might also be interesting to see if we can get this done more or
 *        less locklessly inside IOM.  Need to consider the lookup table
 *        updating and use a bit more carefully first (or do all updates via
 *        rendezvous) */
        rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, &pVCpu->cpum.GstCtx, GCPhys, UINT32_MAX);
        Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict)));
        if (   rcStrict == VINF_SUCCESS
            || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
            || rcStrict == VERR_PAGE_NOT_PRESENT)
        {
            /* Successfully handled MMIO operation. */
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
                                                     | HM_CHANGED_GUEST_APIC_TPR);
            rcStrict = VINF_SUCCESS;
        }
    }
    else
    {
        /*
         * Frequent exit or something needing probing. Call EMHistoryExec.
         */
        int rc2 = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL, IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc2, rc2);
        Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));

        rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);

        Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
    }
    return rcStrict;
#else
    AssertFailed();
    return VERR_VMX_IPE_3; /* Should never happen with Apple HV in R3. */
#endif
}


/**
 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
#ifndef IN_NEM_DARWIN
    Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_EXIT_INTERRUPTION_INFO
                         | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                         | HMVMX_READ_IDT_VECTORING_INFO
                         | HMVMX_READ_IDT_VECTORING_ERROR_CODE
                         | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);

    /*
     * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
     */
    VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        /*
         * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
         * we shall resolve the nested #PF and re-inject the original event.
         */
        if (VCPU_2_VMXSTATE(pVCpu).Event.fPending)
            STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflectNPF);
    }
    else
    {
        Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
        return rcStrict;
    }

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    RTGCPHYS const GCPhys    = pVmxTransient->uGuestPhysicalAddr;
    uint64_t const uExitQual = pVmxTransient->uExitQual;
    AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));

    RTGCUINT uErrorCode = 0;
    if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH)
        uErrorCode |= X86_TRAP_PF_ID;
    if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
        uErrorCode |= X86_TRAP_PF_RW;
    if (uExitQual & (VMX_EXIT_QUAL_EPT_ENTRY_READ | VMX_EXIT_QUAL_EPT_ENTRY_WRITE | VMX_EXIT_QUAL_EPT_ENTRY_EXECUTE))
        uErrorCode |= X86_TRAP_PF_P;

    PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%08RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));

    PVMCC    pVM  = pVCpu->CTX_SUFF(pVM);

    /*
     * Handle the pagefault trap for the nested shadow table.
     */
    TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
    rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, pCtx, GCPhys);
    TRPMResetTrap(pVCpu);

    /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
    if (   rcStrict == VINF_SUCCESS
        || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
        || rcStrict == VERR_PAGE_NOT_PRESENT)
    {
        /* Successfully synced our nested page tables. */
        STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitReasonNpf);
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
        return VINF_SUCCESS;
    }
    Log4Func(("EPT return to ring-3 rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;

#else /* IN_NEM_DARWIN */
    PVM pVM = pVCpu->CTX_SUFF(pVM);
    uint64_t const uHostTsc = ASMReadTSC(); RT_NOREF(uHostTsc);
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);
    vmxHCImportGuestRip(pVCpu);
    vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu);

    /*
     * Ask PGM for information about the given GCPhys.  We need to check if we're
     * out of sync first.
     */
    NEMHCDARWINHMACPCCSTATE State = { RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE),
                                      false,
                                      false };
    PGMPHYSNEMPAGEINFO      Info;
    int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pVmxTransient->uGuestPhysicalAddr, State.fWriteAccess, &Info,
                                       nemR3DarwinHandleMemoryAccessPageCheckerCallback, &State);
    if (RT_SUCCESS(rc))
    {
        if (Info.fNemProt & (  RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
                             ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
        {
            if (State.fCanResume)
            {
                Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting\n",
                      pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
                      pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
                      Info.fHasHandlers ? " handlers" : "", Info.fZeroPage    ? " zero-pg" : "",
                      State.fDidSomething ? "" : " no-change"));
                EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
                                 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
                return VINF_SUCCESS;
            }
        }

        Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
              Info.fHasHandlers ? " handlers" : "", Info.fZeroPage    ? " zero-pg" : "",
              State.fDidSomething ? "" : " no-change"));
    }
    else
        Log4(("MemExit/%u: %04x:%08RX64: %RGp rc=%Rrc%s; emulating\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              pVmxTransient->uGuestPhysicalAddr, rc, State.fDidSomething ? " modified-backing" : ""));

    /*
     * Emulate the memory access, either access handler or special memory.
     */
    PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
                                              RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
                                            ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
                                            : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
                                            pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);

    rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    VBOXSTRICTRC rcStrict;
    if (!pExitRec)
        rcStrict = IEMExecOne(pVCpu);
    else
    {
        /* Frequent access or probing. */
        rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
        Log4(("MemExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
              pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
              VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
    }

    ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);

    Log4Func(("EPT return rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
    return rcStrict;
#endif /* IN_NEM_DARWIN */
}

#ifdef VBOX_WITH_NESTED_HWVIRT_VMX

/**
 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
       otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
    VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
        if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
            rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
    }
    Assert(rcStrict != VINF_IEM_RAISED_XCPT);
    return rcStrict;
}


/**
 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /*
     * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
     * thus might not need to import the shadow VMCS state, it's safer just in case
     * code elsewhere dares look at unsynced VMCS fields.
     */
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
        HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);

# if 0 //ndef IN_NEM_DARWIN /** @todo this needs serious tuning still, slows down things enormously. */
        /* Try for exit optimization.  This is on the following instruction
           because it would be a waste of time to have to reinterpret the
           already decoded vmwrite instruction. */
        PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndType(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_VMREAD));
        if (pExitRec)
        {
            /* Frequent access or probing. */
            rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
            AssertRCReturn(rc, rc);

            rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
            Log4(("vmread/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
                  pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
                  VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
        }
# endif
    }
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
       otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
    VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
    STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
        if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
            rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
    }
    Assert(rcStrict != VINF_IEM_RAISED_XCPT);
    return rcStrict;
}


/**
 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /*
     * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
     * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
     * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
     */
    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
        HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_CR4
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | CPUMCTX_EXTRN_HWVIRT
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
/**
 * VM-exit handler for INVEPT (VMX_EXIT_INVEPT). Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvept(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_INFO
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    int rc = vmxHCImportGuestState<  CPUMCTX_EXTRN_RSP
                                   | CPUMCTX_EXTRN_SREG_MASK
                                   | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
    AssertRCReturn(rc, rc);

    HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);

    VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);

    VBOXSTRICTRC rcStrict = IEMExecDecodedInvept(pVCpu, &ExitInfo);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
    else if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}
# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
/** @} */


#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/** @name Nested-guest VM-exit handlers.
 * @{
 */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */

/**
 * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient);

    uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
    uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
    Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));

    switch (uExitIntType)
    {
# ifndef IN_NEM_DARWIN
        /*
         * Physical NMIs:
         *     We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
         */
        case VMX_EXIT_INT_INFO_TYPE_NMI:
            return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
# endif

        /*
         * Hardware exceptions,
         * Software exceptions,
         * Privileged software exceptions:
         *     Figure out if the exception must be delivered to the guest or the nested-guest.
         */
        case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
        case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
        case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
        {
            vmxHCReadToTransient<  HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                                 | HMVMX_READ_EXIT_INSTR_LEN
                                 | HMVMX_READ_IDT_VECTORING_INFO
                                 | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);

            PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
            if (CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo), pVmxTransient->uExitIntErrorCode))
            {
                /* Exit qualification is required for debug and page-fault exceptions. */
                vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);

                /*
                 * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
                 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
                 * length. However, if delivery of a software interrupt, software exception or privileged
                 * software exception causes a VM-exit, that too provides the VM-exit instruction length.
                 */
                VMXVEXITINFO const      ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
                VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT(pVmxTransient->uExitIntInfo,
                                                                               pVmxTransient->uExitIntErrorCode,
                                                                               pVmxTransient->uIdtVectoringInfo,
                                                                               pVmxTransient->uIdtVectoringErrorCode);
#ifdef DEBUG_ramshankar
                vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
                Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n",
                          pVmxTransient->uExitIntInfo, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
                if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
                    Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n",
                              pVmxTransient->uIdtVectoringInfo, pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
#endif
                return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
            }

            /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in vmxHCExitXcptPF. */
            Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
            return vmxHCExitXcpt(pVCpu, pVmxTransient);
        }

        /*
         * Software interrupts:
         *    VM-exits cannot be caused by software interrupts.
         *
         * External interrupts:
         *    This should only happen when "acknowledge external interrupts on VM-exit"
         *    control is set. However, we never set this when executing a guest or
         *    nested-guest. For nested-guests it is emulated while injecting interrupts into
         *    the guest.
         */
        case VMX_EXIT_INT_INFO_TYPE_SW_INT:
        case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
        default:
        {
            VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo;
            return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
        }
    }
}


/**
 * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
 * Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    return IEMExecVmxVmexitTripleFault(pVCpu);
}


/**
 * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
        return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
    return vmxHCExitIntWindow(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
        return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
    return vmxHCExitIntWindow(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
 * Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_IDT_VECTORING_INFO
                         | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);

    VMXVEXITINFO const      ExitInfo      = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
    VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo,
                                                                            pVmxTransient->uIdtVectoringErrorCode);
    return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
}


/**
 * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitHlt(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
    {
        vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                             | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
    }
    return vmxHCExitInvlpg(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitRdpmc(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
 * (VMX_EXIT_VMWRITE). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    Assert(   pVmxTransient->uExitReason == VMX_EXIT_VMREAD
           || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);

    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);

    uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
    Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
    uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;

    HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
    if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
        u64VmcsField &= UINT64_C(0xffffffff);

    if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
    {
        vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                             | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
    }

    if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
        return vmxHCExitVmread(pVCpu, pVmxTransient);
    return vmxHCExitVmwrite(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }

    return vmxHCExitRdtsc(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

    VBOXSTRICTRC rcStrict;
    uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
    switch (uAccessType)
    {
        case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
        {
            uint8_t const iCrReg   = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
            uint8_t const iGReg    = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
            Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
            uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;

            bool fIntercept;
            switch (iCrReg)
            {
                case 0:
                case 4:
                    fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
                    break;

                case 3:
                    fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
                    break;

                case 8:
                    fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
                    break;

                default:
                    fIntercept = false;
                    break;
            }
            if (fIntercept)
            {
                VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
                rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
            }
            else
            {
                int const rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
                AssertRCReturn(rc, rc);
                rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg);
            }
            break;
        }

        case VMX_EXIT_QUAL_CRX_ACCESS_READ:
        {
            /*
             * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
             * CR2 reads do not cause a VM-exit.
             * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
             * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
             */
            uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
            if (   iCrReg == 3
                || iCrReg == 8)
            {
                static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
                                                                  0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
                uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
                if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
                {
                    VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
                    rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
                }
                else
                {
                    uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
                    rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
                }
            }
            else
            {
                AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
                HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
            }
            break;
        }

        case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
        {
            PCVMXVVMCS const pVmcsNstGst  = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
            uint64_t const   uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
            uint64_t const   uReadShadow  = pVmcsNstGst->u64Cr0ReadShadow.u;
            if (   (uGstHostMask & X86_CR0_TS)
                && (uReadShadow  & X86_CR0_TS))
            {
                VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
                rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
            }
            else
                rcStrict = vmxHCExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
            break;
        }

        case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:        /* LMSW (Load Machine-Status Word into CR0) */
        {
            RTGCPTR        GCPtrEffDst;
            uint16_t const uNewMsw     = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
            bool const     fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
            if (fMemOperand)
            {
                vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient);
                GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
            }
            else
                GCPtrEffDst = NIL_RTGCPTR;

            if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
            {
                VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
                ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
                rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
            }
            else
                rcStrict = vmxHCExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
            break;
        }

        default:
        {
            AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
            HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
        }
    }

    if (rcStrict == VINF_IEM_RAISED_XCPT)
    {
        ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
        rcStrict = VINF_SUCCESS;
    }
    return rcStrict;
}


/**
 * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
    {
        vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                             | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
    }
    return vmxHCExitMovDRx(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);

    uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
    uint8_t  const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
    AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);

    static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 };   /* Size of the I/O accesses in bytes. */
    uint8_t const cbAccess = s_aIOSizes[uIOSize];
    if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
    {
        /*
         * IN/OUT instruction:
         *   - Provides VM-exit instruction length.
         *
         * INS/OUTS instruction:
         *   - Provides VM-exit instruction length.
         *   - Provides Guest-linear address.
         *   - Optionally provides VM-exit instruction info (depends on CPU feature).
         */
        PVMCC pVM = pVCpu->CTX_SUFF(pVM);
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);

        /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
        pVmxTransient->ExitInstrInfo.u  = 0;
        pVmxTransient->uGuestLinearAddr = 0;

        bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
        bool const fIOString       = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
        if (fIOString)
        {
            vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient);
            if (fVmxInsOutsInfo)
            {
                Assert(RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
                vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
            }
        }

        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_AND_LIN_ADDR_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
    }
    return vmxHCExitIoInstr(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
 */
HMVMX_EXIT_DECL vmxHCExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    uint32_t fMsrpm;
    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
        fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx);
    else
        fMsrpm = VMXMSRPM_EXIT_RD;

    if (fMsrpm & VMXMSRPM_EXIT_RD)
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitRdmsr(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
 */
HMVMX_EXIT_DECL vmxHCExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    uint32_t fMsrpm;
    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
        fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx);
    else
        fMsrpm = VMXMSRPM_EXIT_WR;

    if (fMsrpm & VMXMSRPM_EXIT_WR)
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitWrmsr(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitMwait(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
    vmxHCReadToTransient<HMVMX_READ_GUEST_PENDING_DBG_XCPTS>(pVCpu, pVmxTransient);
    VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_DBG_XCPTS_FROM_TRANSIENT(pVmxTransient);
    return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
}


/**
 * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitMonitor(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
     *        PAUSE when executing a nested-guest? If it does not, we would not need
     *        to check for the intercepts here. Just call VM-exit... */

    /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
    if (   CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
        || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitPause(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for when the TPR value is lowered below the
 * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
    {
        vmxHCReadToTransient<HMVMX_READ_GUEST_PENDING_DBG_XCPTS>(pVCpu, pVmxTransient);
        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_DBG_XCPTS_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
    }
    return vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
 * VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_IDT_VECTORING_INFO
                         | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);

    Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));

    Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
              VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));

    VMXVEXITINFO const      ExitInfo      = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient);
    VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo,
                                                                            pVmxTransient->uIdtVectoringErrorCode);
    return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
}


/**
 * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
    return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
}


/**
 * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
    vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
    return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
}


/**
 * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
    {
        Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitRdtscp(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
 */
HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
    }
    return vmxHCExitWbinvd(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
    {
        Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
        vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                             | HMVMX_READ_EXIT_INSTR_INFO
                             | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
        VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
        return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
    }
    return vmxHCExitInvpcid(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for invalid-guest state
 * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

    /*
     * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
     * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
     * Handle it like it's in an invalid guest state of the outer guest.
     *
     * When the fast path is implemented, this should be changed to cause the corresponding
     * nested-guest VM-exit.
     */
    return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for instructions that cause VM-exits unconditionally
 * and only provide the instruction length.
 *
 * Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

#ifdef VBOX_STRICT
    PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    switch (pVmxTransient->uExitReason)
    {
        case VMX_EXIT_ENCLS:
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
            break;

        case VMX_EXIT_VMFUNC:
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
            break;
    }
#endif

    vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
    return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
}


/**
 * Nested-guest VM-exit handler for instructions that provide instruction length as
 * well as more information.
 *
 * Unconditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);

# ifdef VBOX_STRICT
    PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
    switch (pVmxTransient->uExitReason)
    {
        case VMX_EXIT_GDTR_IDTR_ACCESS:
        case VMX_EXIT_LDTR_TR_ACCESS:
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
            break;

        case VMX_EXIT_RDRAND:
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
            break;

        case VMX_EXIT_RDSEED:
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
            break;

        case VMX_EXIT_XSAVES:
        case VMX_EXIT_XRSTORS:
            /** @todo NSTVMX: Verify XSS-bitmap. */
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
            break;

        case VMX_EXIT_UMWAIT:
        case VMX_EXIT_TPAUSE:
            Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
            Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
            break;

        case VMX_EXIT_LOADIWKEY:
            Assert(CPUMIsGuestVmxProcCtls3Set(pCtx, VMX_PROC_CTLS3_LOADIWKEY_EXIT));
            break;
    }
# endif

    vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                         | HMVMX_READ_EXIT_INSTR_LEN
                         | HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
    VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient);
    return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
}

# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT

/**
 * Nested-guest VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitEptViolationNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_EPT))
    {
        vmxHCReadToTransient<  HMVMX_READ_EXIT_QUALIFICATION
                             | HMVMX_READ_EXIT_INSTR_LEN
                             | HMVMX_READ_EXIT_INTERRUPTION_INFO
                             | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
                             | HMVMX_READ_IDT_VECTORING_INFO
                             | HMVMX_READ_IDT_VECTORING_ERROR_CODE
                             | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);
        int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc, rc);

        /*
         * If it's our VMEXIT, we're responsible for re-injecting any event which delivery
         * might have triggered this VMEXIT.  If we forward the problem to the inner VMM,
         * it's its problem to deal with that issue and we'll clear the recovered event.
         */
        VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
        if (RT_LIKELY(rcStrict == VINF_SUCCESS))
        { /*likely*/ }
        else
        {
            Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
            return rcStrict;
        }
        uint32_t const fClearEventOnForward = VCPU_2_VMXSTATE(pVCpu).Event.fPending; /* paranoia. should not inject events below.  */

        RTGCPHYS const GCPhysNestedFault = pVmxTransient->uGuestPhysicalAddr;
        uint64_t const uExitQual         = pVmxTransient->uExitQual;

        RTGCPTR GCPtrNestedFault;
        bool const fIsLinearAddrValid = RT_BOOL(uExitQual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID);
        if (fIsLinearAddrValid)
        {
            vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient);
            GCPtrNestedFault = pVmxTransient->uGuestLinearAddr;
        }
        else
            GCPtrNestedFault = 0;

        RTGCUINT const uErr = ((uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH) ? X86_TRAP_PF_ID : 0)
                            | ((uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)       ? X86_TRAP_PF_RW : 0)
                            | ((uExitQual & (  VMX_EXIT_QUAL_EPT_ENTRY_READ
                                             | VMX_EXIT_QUAL_EPT_ENTRY_WRITE
                                             | VMX_EXIT_QUAL_EPT_ENTRY_EXECUTE))  ? X86_TRAP_PF_P  : 0);

        PGMPTWALK Walk;
        PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
        rcStrict = PGMR0NestedTrap0eHandlerNestedPaging(pVCpu, PGMMODE_EPT, uErr, pCtx, GCPhysNestedFault,
                                                        fIsLinearAddrValid, GCPtrNestedFault, &Walk);
        Log7Func(("PGM (uExitQual=%#RX64, %RGp, %RGv) -> %Rrc (fFailed=%d)\n",
                  uExitQual, GCPhysNestedFault, GCPtrNestedFault, VBOXSTRICTRC_VAL(rcStrict), Walk.fFailed));
        if (RT_SUCCESS(rcStrict))
            return rcStrict;

        if (fClearEventOnForward)
            VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;

        VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo,
                                                                                pVmxTransient->uIdtVectoringErrorCode);
        if (Walk.fFailed & PGM_WALKFAIL_EPT_VIOLATION)
        {
            VMXVEXITINFO const ExitInfo
                = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_AND_GST_ADDRESSES(VMX_EXIT_EPT_VIOLATION,
                                                                              pVmxTransient->uExitQual,
                                                                              pVmxTransient->cbExitInstr,
                                                                              pVmxTransient->uGuestLinearAddr,
                                                                              pVmxTransient->uGuestPhysicalAddr);
            return IEMExecVmxVmexitEptViolation(pVCpu, &ExitInfo, &ExitEventInfo);
        }

        AssertMsgReturn(Walk.fFailed & PGM_WALKFAIL_EPT_MISCONFIG,
                        ("uErr=%#RX32 uExitQual=%#RX64 GCPhysNestedFault=%#RGp GCPtrNestedFault=%#RGv\n",
                         (uint32_t)uErr, uExitQual, GCPhysNestedFault, GCPtrNestedFault),
                        rcStrict);
        return IEMExecVmxVmexitEptMisconfig(pVCpu, pVmxTransient->uGuestPhysicalAddr, &ExitEventInfo);
    }

    return vmxHCExitEptViolation(pVCpu, pVmxTransient);
}


/**
 * Nested-guest VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
 * Conditional VM-exit.
 */
HMVMX_EXIT_DECL vmxHCExitEptMisconfigNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
    Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);

    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_EPT))
    {
        vmxHCReadToTransient<HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);
        int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__);
        AssertRCReturn(rc, rc);

        PGMPTWALK Walk;
        PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
        RTGCPHYS const GCPhysNestedFault = pVmxTransient->uGuestPhysicalAddr;
        VBOXSTRICTRC rcStrict = PGMR0NestedTrap0eHandlerNestedPaging(pVCpu, PGMMODE_EPT, X86_TRAP_PF_RSVD, pCtx,
                                                                     GCPhysNestedFault, false /* fIsLinearAddrValid */,
                                                                     0 /* GCPtrNestedFault */, &Walk);
        if (RT_SUCCESS(rcStrict))
        {
            AssertMsgFailed(("Shouldn't happen with the way we have programmed the EPT shadow tables\n"));
            return rcStrict;
        }

        AssertMsg(Walk.fFailed & PGM_WALKFAIL_EPT_MISCONFIG, ("GCPhysNestedFault=%#RGp\n", GCPhysNestedFault));
        vmxHCReadToTransient<  HMVMX_READ_IDT_VECTORING_INFO
                             | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);

        VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo,
                                                                                pVmxTransient->uIdtVectoringErrorCode);
        return IEMExecVmxVmexitEptMisconfig(pVCpu, pVmxTransient->uGuestPhysicalAddr, &ExitEventInfo);
    }

    return vmxHCExitEptMisconfig(pVCpu, pVmxTransient);
}

# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */

/** @} */
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */


/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
 *  probes.
 *
 * The following few functions and associated structure contains the bloat
 * necessary for providing detailed debug events and dtrace probes as well as
 * reliable host side single stepping.  This works on the principle of
 * "subclassing" the normal execution loop and workers.  We replace the loop
 * method completely and override selected helpers to add necessary adjustments
 * to their core operation.
 *
 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
 * any performance for debug and analysis features.
 *
 * @{
 */

/**
 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
 * the debug run loop.
 */
typedef struct VMXRUNDBGSTATE
{
    /** The RIP we started executing at.  This is for detecting that we stepped.  */
    uint64_t    uRipStart;
    /** The CS we started executing with.  */
    uint16_t    uCsStart;

    /** Whether we've actually modified the 1st execution control field. */
    bool        fModifiedProcCtls : 1;
    /** Whether we've actually modified the 2nd execution control field. */
    bool        fModifiedProcCtls2 : 1;
    /** Whether we've actually modified the exception bitmap. */
    bool        fModifiedXcptBitmap : 1;

    /** We desire the modified the CR0 mask to be cleared. */
    bool        fClearCr0Mask : 1;
    /** We desire the modified the CR4 mask to be cleared. */
    bool        fClearCr4Mask : 1;
    /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
    uint32_t    fCpe1Extra;
    /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
    uint32_t    fCpe1Unwanted;
    /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
    uint32_t    fCpe2Extra;
    /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
    uint32_t    bmXcptExtra;
    /** The sequence number of the Dtrace provider settings the state was
     *  configured against. */
    uint32_t    uDtraceSettingsSeqNo;
    /** VM-exits to check (one bit per VM-exit). */
    uint32_t    bmExitsToCheck[3];

    /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
    uint32_t    fProcCtlsInitial;
    /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
    uint32_t    fProcCtls2Initial;
    /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
    uint32_t    bmXcptInitial;
} VMXRUNDBGSTATE;
AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;


/**
 * Initializes the VMXRUNDBGSTATE structure.
 *
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   pDbgState       The debug state to initialize.
 */
static void vmxHCRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
{
    pDbgState->uRipStart            = pVCpu->cpum.GstCtx.rip;
    pDbgState->uCsStart             = pVCpu->cpum.GstCtx.cs.Sel;

    pDbgState->fModifiedProcCtls    = false;
    pDbgState->fModifiedProcCtls2   = false;
    pDbgState->fModifiedXcptBitmap  = false;
    pDbgState->fClearCr0Mask        = false;
    pDbgState->fClearCr4Mask        = false;
    pDbgState->fCpe1Extra           = 0;
    pDbgState->fCpe1Unwanted        = 0;
    pDbgState->fCpe2Extra           = 0;
    pDbgState->bmXcptExtra          = 0;
    pDbgState->fProcCtlsInitial     = pVmxTransient->pVmcsInfo->u32ProcCtls;
    pDbgState->fProcCtls2Initial    = pVmxTransient->pVmcsInfo->u32ProcCtls2;
    pDbgState->bmXcptInitial        = pVmxTransient->pVmcsInfo->u32XcptBitmap;
}


/**
 * Updates the VMSC fields with changes requested by @a pDbgState.
 *
 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
 * immediately before executing guest code, i.e. when interrupts are disabled.
 * We don't check status codes here as we cannot easily assert or return in the
 * latter case.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   pDbgState       The debug state.
 */
static void vmxHCPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
{
    /*
     * Ensure desired flags in VMCS control fields are set.
     * (Ignoring write failure here, as we're committed and it's just debug extras.)
     *
     * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
     *       there should be no stale data in pCtx at this point.
     */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
    if (   (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
        || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
    {
        pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
        pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
        VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
        Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
        pDbgState->fModifiedProcCtls   = true;
    }

    if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
    {
        pVmcsInfo->u32ProcCtls2  |= pDbgState->fCpe2Extra;
        VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
        Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
        pDbgState->fModifiedProcCtls2  = true;
    }

    if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
    {
        pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
        VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
        Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
        pDbgState->fModifiedXcptBitmap = true;
    }

    if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
    {
        pVmcsInfo->u64Cr0Mask = 0;
        VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_MASK, 0);
        Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
    }

    if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
    {
        pVmcsInfo->u64Cr4Mask = 0;
        VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR4_MASK, 0);
        Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
    }

    NOREF(pVCpu);
}


/**
 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
 * re-entry next time around.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   pDbgState       The debug state.
 * @param   rcStrict        The return code from executing the guest using single
 *                          stepping.
 */
static VBOXSTRICTRC vmxHCRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
                                             VBOXSTRICTRC rcStrict)
{
    /*
     * Restore VM-exit control settings as we may not reenter this function the
     * next time around.
     */
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;

    /* We reload the initial value, trigger what we can of recalculations the
       next time around.  From the looks of things, that's all that's required atm. */
    if (pDbgState->fModifiedProcCtls)
    {
        if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
            pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
        int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
        AssertRC(rc2);
        pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
    }

    /* We're currently the only ones messing with this one, so just restore the
       cached value and reload the field. */
    if (   pDbgState->fModifiedProcCtls2
        && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
    {
        int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
        AssertRC(rc2);
        pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
    }

    /* If we've modified the exception bitmap, we restore it and trigger
       reloading and partial recalculation the next time around. */
    if (pDbgState->fModifiedXcptBitmap)
    {
        int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pDbgState->bmXcptInitial);
        AssertRC(rc2);
        pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
    }

    return rcStrict;
}


/**
 * Configures VM-exit controls for current DBGF and DTrace settings.
 *
 * This updates @a pDbgState and the VMCS execution control fields to reflect
 * the necessary VM-exits demanded by DBGF and DTrace.
 *
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure. May update
 *                          fUpdatedTscOffsettingAndPreemptTimer.
 * @param   pDbgState       The debug state.
 */
static void vmxHCPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
{
#ifndef IN_NEM_DARWIN
    /*
     * Take down the dtrace serial number so we can spot changes.
     */
    pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
    ASMCompilerBarrier();
#endif

    /*
     * We'll rebuild most of the middle block of data members (holding the
     * current settings) as we go along here, so start by clearing it all.
     */
    pDbgState->bmXcptExtra      = 0;
    pDbgState->fCpe1Extra       = 0;
    pDbgState->fCpe1Unwanted    = 0;
    pDbgState->fCpe2Extra       = 0;
    for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
        pDbgState->bmExitsToCheck[i] = 0;

    /*
     * Software interrupts (INT XXh) - no idea how to trigger these...
     */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    if (   DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
        || VBOXVMM_INT_SOFTWARE_ENABLED())
    {
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
    }

    /*
     * INT3 breakpoints - triggered by #BP exceptions.
     */
    if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
        pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);

    /*
     * Exception bitmap and XCPT events+probes.
     */
    for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
        if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
            pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);

    if (VBOXVMM_XCPT_DE_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
    if (VBOXVMM_XCPT_DB_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
    if (VBOXVMM_XCPT_BP_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
    if (VBOXVMM_XCPT_OF_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
    if (VBOXVMM_XCPT_BR_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
    if (VBOXVMM_XCPT_UD_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
    if (VBOXVMM_XCPT_NM_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
    if (VBOXVMM_XCPT_DF_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
    if (VBOXVMM_XCPT_TS_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
    if (VBOXVMM_XCPT_NP_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
    if (VBOXVMM_XCPT_SS_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
    if (VBOXVMM_XCPT_GP_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
    if (VBOXVMM_XCPT_PF_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
    if (VBOXVMM_XCPT_MF_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
    if (VBOXVMM_XCPT_AC_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
    if (VBOXVMM_XCPT_XF_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
    if (VBOXVMM_XCPT_VE_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
    if (VBOXVMM_XCPT_SX_ENABLED())  pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);

    if (pDbgState->bmXcptExtra)
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);

    /*
     * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
     *
     * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
     *       So, when adding/changing/removing please don't forget to update it.
     *
     * Some of the macros are picking up local variables to save horizontal space,
     * (being able to see it in a table is the lesser evil here).
     */
#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
        (    DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
         ||  RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
        if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
        {   AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
            ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
        } else do { } while (0)
#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
        if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
        { \
            (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
            AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
            ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
        } else do { } while (0)
#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
        if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
        { \
            (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
            AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
            ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
        } else do { } while (0)
#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
        if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
        { \
            (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
            AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
            ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
        } else do { } while (0)

    SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH,         VMX_EXIT_TASK_SWITCH);   /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION,   VMX_EXIT_EPT_VIOLATION); /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG,   VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
    SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS,    VMX_EXIT_APIC_ACCESS);   /* feature dependent, nothing to enable here */
    SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE,     VMX_EXIT_APIC_WRITE);    /* feature dependent, nothing to enable here */

    SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID,              VMX_EXIT_CPUID);         /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID,              VMX_EXIT_CPUID);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC,             VMX_EXIT_GETSEC);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC,             VMX_EXIT_GETSEC);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT,               VMX_EXIT_HLT,      VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT,               VMX_EXIT_HLT);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD,               VMX_EXIT_INVD);          /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD,               VMX_EXIT_INVD);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG,             VMX_EXIT_INVLPG,   VMX_PROC_CTLS_INVLPG_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG,             VMX_EXIT_INVLPG);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC,              VMX_EXIT_RDPMC,    VMX_PROC_CTLS_RDPMC_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC,              VMX_EXIT_RDPMC);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC,              VMX_EXIT_RDTSC,    VMX_PROC_CTLS_RDTSC_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC,              VMX_EXIT_RDTSC);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM,                VMX_EXIT_RSM);           /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM,                VMX_EXIT_RSM);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL,           VMX_EXIT_VMCALL);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL,           VMX_EXIT_VMCALL);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR,        VMX_EXIT_VMCLEAR);       /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR,        VMX_EXIT_VMCLEAR);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH,       VMX_EXIT_VMLAUNCH);      /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH,       VMX_EXIT_VMLAUNCH);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD,        VMX_EXIT_VMPTRLD);       /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD,        VMX_EXIT_VMPTRLD);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST,        VMX_EXIT_VMPTRST);       /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST,        VMX_EXIT_VMPTRST);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD,         VMX_EXIT_VMREAD);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD,         VMX_EXIT_VMREAD);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME,       VMX_EXIT_VMRESUME);      /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME,       VMX_EXIT_VMRESUME);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE,        VMX_EXIT_VMWRITE);       /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE,        VMX_EXIT_VMWRITE);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF,         VMX_EXIT_VMXOFF);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF,         VMX_EXIT_VMXOFF);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON,          VMX_EXIT_VMXON);         /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON,          VMX_EXIT_VMXON);

    if (   IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
        || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
    {
        int rc = vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo,
                                         CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
        AssertRC(rc);

#if 0 /** @todo fix me */
        pDbgState->fClearCr0Mask = true;
        pDbgState->fClearCr4Mask = true;
#endif
        if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
            pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
        if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
            pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
        pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
        /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT.  It would
                 require clearing here and in the loop if we start using it. */
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
    }
    else
    {
        if (pDbgState->fClearCr0Mask)
        {
            pDbgState->fClearCr0Mask = false;
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CR0);
        }
        if (pDbgState->fClearCr4Mask)
        {
            pDbgState->fClearCr4Mask = false;
            ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CR4);
        }
    }
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ,           VMX_EXIT_MOV_CRX);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE,          VMX_EXIT_MOV_CRX);

    if (   IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
        || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
    {
        /** @todo later, need to fix handler as it assumes this won't usually happen. */
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
    }
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ,           VMX_EXIT_MOV_DRX);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE,          VMX_EXIT_MOV_DRX);

    SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR,              VMX_EXIT_RDMSR,    VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR,              VMX_EXIT_RDMSR);
    SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR,              VMX_EXIT_WRMSR,    VMX_PROC_CTLS_USE_MSR_BITMAPS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR,              VMX_EXIT_WRMSR);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT,              VMX_EXIT_MWAIT,    VMX_PROC_CTLS_MWAIT_EXIT);   /* paranoia */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT,              VMX_EXIT_MWAIT);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR,            VMX_EXIT_MONITOR,  VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR,            VMX_EXIT_MONITOR);
#if 0 /** @todo too slow, fix handler. */
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE,              VMX_EXIT_PAUSE,    VMX_PROC_CTLS_PAUSE_EXIT);
#endif
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE,              VMX_EXIT_PAUSE);

    if (   IS_EITHER_ENABLED(pVM, INSTR_SGDT)
        || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
        || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
        || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
    {
        pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
    }
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT,               VMX_EXIT_GDTR_IDTR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT,               VMX_EXIT_GDTR_IDTR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT,               VMX_EXIT_GDTR_IDTR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT,               VMX_EXIT_GDTR_IDTR_ACCESS);

    if (   IS_EITHER_ENABLED(pVM, INSTR_SLDT)
        || IS_EITHER_ENABLED(pVM, INSTR_STR)
        || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
        || IS_EITHER_ENABLED(pVM, INSTR_LTR))
    {
        pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
        ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
    }
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT,               VMX_EXIT_LDTR_TR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR,                VMX_EXIT_LDTR_TR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT,               VMX_EXIT_LDTR_TR_ACCESS);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR,                VMX_EXIT_LDTR_TR_ACCESS);

    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT,         VMX_EXIT_INVEPT);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT,         VMX_EXIT_INVEPT);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP,             VMX_EXIT_RDTSCP,   VMX_PROC_CTLS_RDTSC_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP,             VMX_EXIT_RDTSCP);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID,        VMX_EXIT_INVVPID);       /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID,        VMX_EXIT_INVVPID);
    SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD,             VMX_EXIT_WBINVD,   VMX_PROC_CTLS2_WBINVD_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD,             VMX_EXIT_WBINVD);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV,             VMX_EXIT_XSETBV);        /* unconditional */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV,             VMX_EXIT_XSETBV);
    SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND,             VMX_EXIT_RDRAND,   VMX_PROC_CTLS2_RDRAND_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND,             VMX_EXIT_RDRAND);
    SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID,        VMX_EXIT_INVPCID,  VMX_PROC_CTLS_INVLPG_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID,        VMX_EXIT_INVPCID);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC,         VMX_EXIT_VMFUNC);        /* unconditional for the current setup */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC,         VMX_EXIT_VMFUNC);
    SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED,             VMX_EXIT_RDSEED,   VMX_PROC_CTLS2_RDSEED_EXIT);
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED,             VMX_EXIT_RDSEED);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES,             VMX_EXIT_XSAVES);        /* unconditional (enabled by host, guest cfg) */
    SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES,              VMX_EXIT_XSAVES);
    SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS,            VMX_EXIT_XRSTORS);       /* unconditional (enabled by host, guest cfg) */
    SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS,            VMX_EXIT_XRSTORS);

#undef IS_EITHER_ENABLED
#undef SET_ONLY_XBM_IF_EITHER_EN
#undef SET_CPE1_XBM_IF_EITHER_EN
#undef SET_CPEU_XBM_IF_EITHER_EN
#undef SET_CPE2_XBM_IF_EITHER_EN

    /*
     * Sanitize the control stuff.
     */
    pDbgState->fCpe2Extra       &= g_HmMsrs.u.vmx.ProcCtls2.n.allowed1;
    if (pDbgState->fCpe2Extra)
        pDbgState->fCpe1Extra   |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
    pDbgState->fCpe1Extra       &= g_HmMsrs.u.vmx.ProcCtls.n.allowed1;
    pDbgState->fCpe1Unwanted    &= ~g_HmMsrs.u.vmx.ProcCtls.n.allowed0;
#ifndef IN_NEM_DARWIN
    if (pVCpu->hmr0.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
    {
        pVCpu->hmr0.s.fDebugWantRdTscExit ^= true;
        pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
    }
#else
    if (pVCpu->nem.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
    {
        pVCpu->nem.s.fDebugWantRdTscExit ^= true;
        pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
    }
#endif

    Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
          pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
          pDbgState->fClearCr0Mask ? " clr-cr0" : "",
          pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
}


/**
 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
 * appropriate.
 *
 * The caller has checked the VM-exit against the
 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
 * already, so we don't have to do that either.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   uExitReason     The VM-exit reason.
 *
 * @remarks The name of this function is displayed by dtrace, so keep it short
 *          and to the point. No longer than 33 chars long, please.
 */
static VBOXSTRICTRC vmxHCHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
{
    /*
     * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
     * same time check whether any corresponding Dtrace event is enabled (fDtrace).
     *
     * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
     *       does.  Must add/change/remove both places.  Same ordering, please.
     *
     *       Added/removed events must also be reflected in the next section
     *       where we dispatch dtrace events.
     */
    bool            fDtrace1   = false;
    bool            fDtrace2   = false;
    DBGFEVENTTYPE   enmEvent1  = DBGFEVENT_END;
    DBGFEVENTTYPE   enmEvent2  = DBGFEVENT_END;
    uint32_t        uEventArg  = 0;
#define SET_EXIT(a_EventSubName) \
        do { \
            enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_,  a_EventSubName); \
            fDtrace2  = RT_CONCAT3(VBOXVMM_EXIT_,   a_EventSubName, _ENABLED)(); \
        } while (0)
#define SET_BOTH(a_EventSubName) \
        do { \
            enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
            enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_,  a_EventSubName); \
            fDtrace1  = RT_CONCAT3(VBOXVMM_INSTR_,  a_EventSubName, _ENABLED)(); \
            fDtrace2  = RT_CONCAT3(VBOXVMM_EXIT_,   a_EventSubName, _ENABLED)(); \
        } while (0)
    switch (uExitReason)
    {
        case VMX_EXIT_MTF:
            return vmxHCExitMtf(pVCpu, pVmxTransient);

        case VMX_EXIT_XCPT_OR_NMI:
        {
            uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
            switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
            {
                case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
                case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
                case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
                    if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
                    {
                        if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
                        {
                            vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE>(pVCpu, pVmxTransient);
                            uEventArg = pVmxTransient->uExitIntErrorCode;
                        }
                        enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
                        switch (enmEvent1)
                        {
                            case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
                            case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
                            case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
                            case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
                            case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
                            case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
                            case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
                            case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
                            case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
                            case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
                            case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
                            case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
                            case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
                            case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
                            case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
                            case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
                            case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
                            case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
                            default:                                                      break;
                        }
                    }
                    else
                        AssertFailed();
                    break;

                case VMX_EXIT_INT_INFO_TYPE_SW_INT:
                    uEventArg = idxVector;
                    enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
                    fDtrace1  = VBOXVMM_INT_SOFTWARE_ENABLED();
                    break;
            }
            break;
        }

        case VMX_EXIT_TRIPLE_FAULT:
            enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
            //fDtrace1  = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
            break;
        case VMX_EXIT_TASK_SWITCH:      SET_EXIT(TASK_SWITCH); break;
        case VMX_EXIT_EPT_VIOLATION:    SET_EXIT(VMX_EPT_VIOLATION); break;
        case VMX_EXIT_EPT_MISCONFIG:    SET_EXIT(VMX_EPT_MISCONFIG); break;
        case VMX_EXIT_APIC_ACCESS:      SET_EXIT(VMX_VAPIC_ACCESS); break;
        case VMX_EXIT_APIC_WRITE:       SET_EXIT(VMX_VAPIC_WRITE); break;

        /* Instruction specific VM-exits: */
        case VMX_EXIT_CPUID:            SET_BOTH(CPUID); break;
        case VMX_EXIT_GETSEC:           SET_BOTH(GETSEC); break;
        case VMX_EXIT_HLT:              SET_BOTH(HALT); break;
        case VMX_EXIT_INVD:             SET_BOTH(INVD); break;
        case VMX_EXIT_INVLPG:           SET_BOTH(INVLPG); break;
        case VMX_EXIT_RDPMC:            SET_BOTH(RDPMC); break;
        case VMX_EXIT_RDTSC:            SET_BOTH(RDTSC); break;
        case VMX_EXIT_RSM:              SET_BOTH(RSM); break;
        case VMX_EXIT_VMCALL:           SET_BOTH(VMM_CALL); break;
        case VMX_EXIT_VMCLEAR:          SET_BOTH(VMX_VMCLEAR); break;
        case VMX_EXIT_VMLAUNCH:         SET_BOTH(VMX_VMLAUNCH); break;
        case VMX_EXIT_VMPTRLD:          SET_BOTH(VMX_VMPTRLD); break;
        case VMX_EXIT_VMPTRST:          SET_BOTH(VMX_VMPTRST); break;
        case VMX_EXIT_VMREAD:           SET_BOTH(VMX_VMREAD); break;
        case VMX_EXIT_VMRESUME:         SET_BOTH(VMX_VMRESUME); break;
        case VMX_EXIT_VMWRITE:          SET_BOTH(VMX_VMWRITE); break;
        case VMX_EXIT_VMXOFF:           SET_BOTH(VMX_VMXOFF); break;
        case VMX_EXIT_VMXON:            SET_BOTH(VMX_VMXON); break;
        case VMX_EXIT_MOV_CRX:
            vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
            if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
                SET_BOTH(CRX_READ);
            else
                SET_BOTH(CRX_WRITE);
            uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
            break;
        case VMX_EXIT_MOV_DRX:
            vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
            if (   VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
                == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
                SET_BOTH(DRX_READ);
            else
                SET_BOTH(DRX_WRITE);
            uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
            break;
        case VMX_EXIT_RDMSR:            SET_BOTH(RDMSR); break;
        case VMX_EXIT_WRMSR:            SET_BOTH(WRMSR); break;
        case VMX_EXIT_MWAIT:            SET_BOTH(MWAIT); break;
        case VMX_EXIT_MONITOR:          SET_BOTH(MONITOR); break;
        case VMX_EXIT_PAUSE:            SET_BOTH(PAUSE); break;
        case VMX_EXIT_GDTR_IDTR_ACCESS:
            vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
            switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
            {
                case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
                case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
                case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
                case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
            }
            break;

        case VMX_EXIT_LDTR_TR_ACCESS:
            vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
            switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
            {
                case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
                case VMX_YYTR_INSINFO_II_STR:  SET_BOTH(STR); break;
                case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
                case VMX_YYTR_INSINFO_II_LTR:  SET_BOTH(LTR); break;
            }
            break;

        case VMX_EXIT_INVEPT:           SET_BOTH(VMX_INVEPT); break;
        case VMX_EXIT_RDTSCP:           SET_BOTH(RDTSCP); break;
        case VMX_EXIT_INVVPID:          SET_BOTH(VMX_INVVPID); break;
        case VMX_EXIT_WBINVD:           SET_BOTH(WBINVD); break;
        case VMX_EXIT_XSETBV:           SET_BOTH(XSETBV); break;
        case VMX_EXIT_RDRAND:           SET_BOTH(RDRAND); break;
        case VMX_EXIT_INVPCID:          SET_BOTH(VMX_INVPCID); break;
        case VMX_EXIT_VMFUNC:           SET_BOTH(VMX_VMFUNC); break;
        case VMX_EXIT_RDSEED:           SET_BOTH(RDSEED); break;
        case VMX_EXIT_XSAVES:           SET_BOTH(XSAVES); break;
        case VMX_EXIT_XRSTORS:          SET_BOTH(XRSTORS); break;

        /* Events that aren't relevant at this point. */
        case VMX_EXIT_EXT_INT:
        case VMX_EXIT_INT_WINDOW:
        case VMX_EXIT_NMI_WINDOW:
        case VMX_EXIT_TPR_BELOW_THRESHOLD:
        case VMX_EXIT_PREEMPT_TIMER:
        case VMX_EXIT_IO_INSTR:
            break;

        /* Errors and unexpected events. */
        case VMX_EXIT_INIT_SIGNAL:
        case VMX_EXIT_SIPI:
        case VMX_EXIT_IO_SMI:
        case VMX_EXIT_SMI:
        case VMX_EXIT_ERR_INVALID_GUEST_STATE:
        case VMX_EXIT_ERR_MSR_LOAD:
        case VMX_EXIT_ERR_MACHINE_CHECK:
        case VMX_EXIT_PML_FULL:
        case VMX_EXIT_VIRTUALIZED_EOI:
            break;

        default:
            AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
            break;
    }
#undef SET_BOTH
#undef SET_EXIT

    /*
     * Dtrace tracepoints go first.   We do them here at once so we don't
     * have to copy the guest state saving and stuff a few dozen times.
     * Down side is that we've got to repeat the switch, though this time
     * we use enmEvent since the probes are a subset of what DBGF does.
     */
    if (fDtrace1 || fDtrace2)
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
        vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
        PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
        switch (enmEvent1)
        {
            /** @todo consider which extra parameters would be helpful for each probe.   */
            case DBGFEVENT_END: break;
            case DBGFEVENT_XCPT_DE:                 VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_DB:                 VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
            case DBGFEVENT_XCPT_BP:                 VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_OF:                 VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_BR:                 VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_UD:                 VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_NM:                 VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_DF:                 VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_TS:                 VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
            case DBGFEVENT_XCPT_NP:                 VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
            case DBGFEVENT_XCPT_SS:                 VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
            case DBGFEVENT_XCPT_GP:                 VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
            case DBGFEVENT_XCPT_PF:                 VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
            case DBGFEVENT_XCPT_MF:                 VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_AC:                 VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_XF:                 VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_VE:                 VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
            case DBGFEVENT_XCPT_SX:                 VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
            case DBGFEVENT_INTERRUPT_SOFTWARE:      VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_INSTR_CPUID:             VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
            case DBGFEVENT_INSTR_GETSEC:            VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_HALT:              VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_INVD:              VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_INVLPG:            VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RDPMC:             VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RDTSC:             VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RSM:               VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_CRX_READ:          VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_INSTR_CRX_WRITE:         VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_INSTR_DRX_READ:          VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_INSTR_DRX_WRITE:         VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_INSTR_RDMSR:             VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
            case DBGFEVENT_INSTR_WRMSR:             VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
                                                                        RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
            case DBGFEVENT_INSTR_MWAIT:             VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_MONITOR:           VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_PAUSE:             VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_SGDT:              VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_SIDT:              VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_LGDT:              VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_LIDT:              VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_SLDT:              VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_STR:               VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_LLDT:              VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_LTR:               VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RDTSCP:            VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_WBINVD:            VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_XSETBV:            VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RDRAND:            VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_RDSEED:            VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_XSAVES:            VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_XRSTORS:           VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMM_CALL:          VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMCLEAR:       VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMLAUNCH:      VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMPTRLD:       VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMPTRST:       VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMREAD:        VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMRESUME:      VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMWRITE:       VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMXOFF:        VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMXON:         VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_INVEPT:        VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_INVVPID:       VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_INVPCID:       VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
            case DBGFEVENT_INSTR_VMX_VMFUNC:        VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
            default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
        }
        switch (enmEvent2)
        {
            /** @todo consider which extra parameters would be helpful for each probe. */
            case DBGFEVENT_END: break;
            case DBGFEVENT_EXIT_TASK_SWITCH:        VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_CPUID:              VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
            case DBGFEVENT_EXIT_GETSEC:             VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_HALT:               VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_INVD:               VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_INVLPG:             VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RDPMC:              VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RDTSC:              VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RSM:                VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_CRX_READ:           VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_EXIT_CRX_WRITE:          VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_EXIT_DRX_READ:           VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_EXIT_DRX_WRITE:          VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
            case DBGFEVENT_EXIT_RDMSR:              VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
            case DBGFEVENT_EXIT_WRMSR:              VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
                                                                       RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
            case DBGFEVENT_EXIT_MWAIT:              VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_MONITOR:            VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_PAUSE:              VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_SGDT:               VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_SIDT:               VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_LGDT:               VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_LIDT:               VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_SLDT:               VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_STR:                VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_LLDT:               VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_LTR:                VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RDTSCP:             VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_WBINVD:             VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_XSETBV:             VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RDRAND:             VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_RDSEED:             VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_XSAVES:             VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_XRSTORS:            VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMM_CALL:           VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMCLEAR:        VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMLAUNCH:       VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMPTRLD:        VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMPTRST:        VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMREAD:         VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMRESUME:       VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMWRITE:        VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMXOFF:         VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMXON:          VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_INVEPT:         VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_INVVPID:        VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_INVPCID:        VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VMFUNC:         VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG:  VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_EPT_VIOLATION:  VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS:   VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
            case DBGFEVENT_EXIT_VMX_VAPIC_WRITE:    VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
            default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
        }
    }

    /*
     * Fire of the DBGF event, if enabled (our check here is just a quick one,
     * the DBGF call will do a full check).
     *
     * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
     * Note! If we have to events, we prioritize the first, i.e. the instruction
     *       one, in order to avoid event nesting.
     */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    if (   enmEvent1 != DBGFEVENT_END
        && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
    {
        vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
        VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
        if (rcStrict != VINF_SUCCESS)
            return rcStrict;
    }
    else if (   enmEvent2 != DBGFEVENT_END
             && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
    {
        vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
        VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
        if (rcStrict != VINF_SUCCESS)
            return rcStrict;
    }

    return VINF_SUCCESS;
}


/**
 * Single-stepping VM-exit filtering.
 *
 * This is preprocessing the VM-exits and deciding whether we've gotten far
 * enough to return VINF_EM_DBG_STEPPED already.  If not, normal VM-exit
 * handling is performed.
 *
 * @returns Strict VBox status code (i.e. informational status codes too).
 * @param   pVCpu           The cross context virtual CPU structure of the calling EMT.
 * @param   pVmxTransient   The VMX-transient structure.
 * @param   pDbgState       The debug state.
 */
DECLINLINE(VBOXSTRICTRC) vmxHCRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
{
    /*
     * Expensive (saves context) generic dtrace VM-exit probe.
     */
    uint32_t const uExitReason = pVmxTransient->uExitReason;
    if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
    { /* more likely */ }
    else
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
        int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
        AssertRC(rc);
        VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
    }

#ifndef IN_NEM_DARWIN
    /*
     * Check for host NMI, just to get that out of the way.
     */
    if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
    { /* normally likely */ }
    else
    {
        vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient);
        uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
        if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
            return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
    }
#endif

    /*
     * Check for single stepping event if we're stepping.
     */
    if (VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
    {
        switch (uExitReason)
        {
            case VMX_EXIT_MTF:
                return vmxHCExitMtf(pVCpu, pVmxTransient);

            /* Various events: */
            case VMX_EXIT_XCPT_OR_NMI:
            case VMX_EXIT_EXT_INT:
            case VMX_EXIT_TRIPLE_FAULT:
            case VMX_EXIT_INT_WINDOW:
            case VMX_EXIT_NMI_WINDOW:
            case VMX_EXIT_TASK_SWITCH:
            case VMX_EXIT_TPR_BELOW_THRESHOLD:
            case VMX_EXIT_APIC_ACCESS:
            case VMX_EXIT_EPT_VIOLATION:
            case VMX_EXIT_EPT_MISCONFIG:
            case VMX_EXIT_PREEMPT_TIMER:

            /* Instruction specific VM-exits: */
            case VMX_EXIT_CPUID:
            case VMX_EXIT_GETSEC:
            case VMX_EXIT_HLT:
            case VMX_EXIT_INVD:
            case VMX_EXIT_INVLPG:
            case VMX_EXIT_RDPMC:
            case VMX_EXIT_RDTSC:
            case VMX_EXIT_RSM:
            case VMX_EXIT_VMCALL:
            case VMX_EXIT_VMCLEAR:
            case VMX_EXIT_VMLAUNCH:
            case VMX_EXIT_VMPTRLD:
            case VMX_EXIT_VMPTRST:
            case VMX_EXIT_VMREAD:
            case VMX_EXIT_VMRESUME:
            case VMX_EXIT_VMWRITE:
            case VMX_EXIT_VMXOFF:
            case VMX_EXIT_VMXON:
            case VMX_EXIT_MOV_CRX:
            case VMX_EXIT_MOV_DRX:
            case VMX_EXIT_IO_INSTR:
            case VMX_EXIT_RDMSR:
            case VMX_EXIT_WRMSR:
            case VMX_EXIT_MWAIT:
            case VMX_EXIT_MONITOR:
            case VMX_EXIT_PAUSE:
            case VMX_EXIT_GDTR_IDTR_ACCESS:
            case VMX_EXIT_LDTR_TR_ACCESS:
            case VMX_EXIT_INVEPT:
            case VMX_EXIT_RDTSCP:
            case VMX_EXIT_INVVPID:
            case VMX_EXIT_WBINVD:
            case VMX_EXIT_XSETBV:
            case VMX_EXIT_RDRAND:
            case VMX_EXIT_INVPCID:
            case VMX_EXIT_VMFUNC:
            case VMX_EXIT_RDSEED:
            case VMX_EXIT_XSAVES:
            case VMX_EXIT_XRSTORS:
            {
                int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__);
                AssertRCReturn(rc, rc);
                if (   pVCpu->cpum.GstCtx.rip    != pDbgState->uRipStart
                    || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
                    return VINF_EM_DBG_STEPPED;
                break;
            }

            /* Errors and unexpected events: */
            case VMX_EXIT_INIT_SIGNAL:
            case VMX_EXIT_SIPI:
            case VMX_EXIT_IO_SMI:
            case VMX_EXIT_SMI:
            case VMX_EXIT_ERR_INVALID_GUEST_STATE:
            case VMX_EXIT_ERR_MSR_LOAD:
            case VMX_EXIT_ERR_MACHINE_CHECK:
            case VMX_EXIT_PML_FULL:
            case VMX_EXIT_VIRTUALIZED_EOI:
            case VMX_EXIT_APIC_WRITE:  /* Some talk about this being fault like, so I guess we must process it? */
                break;

            default:
                AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
                break;
        }
    }

    /*
     * Check for debugger event breakpoints and dtrace probes.
     */
    if (   uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
        && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
    {
        VBOXSTRICTRC rcStrict = vmxHCHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
        if (rcStrict != VINF_SUCCESS)
            return rcStrict;
    }

    /*
     * Normal processing.
     */
#ifdef HMVMX_USE_FUNCTION_TABLE
    return g_aVMExitHandlers[uExitReason].pfn(pVCpu, pVmxTransient);
#else
    return vmxHCHandleExit(pVCpu, pVmxTransient, uExitReason);
#endif
}

/** @} */