1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
|
/* $Id: HMVMXR0.cpp $ */
/** @file
* HM VMX (Intel VT-x) - Host Context Ring-0.
*/
/*
* Copyright (C) 2012-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_HM
#define VMCPU_INCL_CPUM_GST_CTX
#include <iprt/x86.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/thread.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/iem.h>
#include <VBox/vmm/iom.h>
#include <VBox/vmm/tm.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/gcm.h>
#include <VBox/vmm/gim.h>
#include <VBox/vmm/apic.h>
#include "HMInternal.h"
#include <VBox/vmm/vmcc.h>
#include <VBox/vmm/hmvmxinline.h>
#include "HMVMXR0.h"
#include "VMXInternal.h"
#include "dtrace/VBoxVMM.h"
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
#ifdef DEBUG_ramshankar
# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
# define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
# define HMVMX_ALWAYS_CLEAN_TRANSIENT
# define HMVMX_ALWAYS_CHECK_GUEST_STATE
# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
# define HMVMX_ALWAYS_TRAP_PF
# define HMVMX_ALWAYS_FLUSH_TLB
# define HMVMX_ALWAYS_SWAP_EFER
#endif
/** Enables the fAlwaysInterceptMovDRx related code. */
#define VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX 1
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* VMX page allocation information.
*/
typedef struct
{
uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
} VMXPAGEALLOCINFO;
/** Pointer to VMX page-allocation info. */
typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
/** Pointer to a const VMX page-allocation info. */
typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient);
static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** The DR6 value after writing zero to the register.
* Set by VMXR0GlobalInit(). */
static uint64_t g_fDr6Zeroed = 0;
/**
* Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
* @returns @c true if it's part of LBR stack, @c false otherwise.
*
* @param pVM The cross context VM structure.
* @param idMsr The MSR.
* @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
* Optional, can be NULL.
*
* @remarks Must only be called when LBR is enabled.
*/
DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
{
Assert(pVM->hmr0.s.vmx.fLbr);
Assert(pVM->hmr0.s.vmx.idLbrFromIpMsrFirst);
uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
if (idxMsr < cLbrStack)
{
if (pidxMsr)
*pidxMsr = idxMsr;
return true;
}
return false;
}
/**
* Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
* @returns @c true if it's part of LBR stack, @c false otherwise.
*
* @param pVM The cross context VM structure.
* @param idMsr The MSR.
* @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
* Optional, can be NULL.
*
* @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
* are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
*/
DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVMCC pVM, uint32_t idMsr, uint32_t *pidxMsr)
{
Assert(pVM->hmr0.s.vmx.fLbr);
if (pVM->hmr0.s.vmx.idLbrToIpMsrFirst)
{
uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrToIpMsrLast - pVM->hmr0.s.vmx.idLbrToIpMsrFirst + 1;
uint32_t const idxMsr = idMsr - pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
if (idxMsr < cLbrStack)
{
if (pidxMsr)
*pidxMsr = idxMsr;
return true;
}
}
return false;
}
/**
* Gets the active (in use) VMCS info. object for the specified VCPU.
*
* This is either the guest or nested-guest VMCS info. and need not necessarily
* pertain to the "current" VMCS (in the VMX definition of the term). For instance,
* if the VM-entry failed due to an invalid-guest state, we may have "cleared" the
* current VMCS while returning to ring-3. However, the VMCS info. object for that
* VMCS would still be active and returned here so that we could dump the VMCS
* fields to ring-3 for diagnostics. This function is thus only used to
* distinguish between the nested-guest or guest VMCS.
*
* @returns The active VMCS information.
* @param pVCpu The cross context virtual CPU structure.
*
* @thread EMT.
* @remarks This function may be called with preemption or interrupts disabled!
*/
DECLINLINE(PVMXVMCSINFO) hmGetVmxActiveVmcsInfo(PVMCPUCC pVCpu)
{
if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
return &pVCpu->hmr0.s.vmx.VmcsInfo;
return &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
}
/**
* Returns whether the VM-exit MSR-store area differs from the VM-exit MSR-load
* area.
*
* @returns @c true if it's different, @c false otherwise.
* @param pVmcsInfo The VMCS info. object.
*/
DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
{
return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
&& pVmcsInfo->pvGuestMsrStore);
}
/**
* Sets the given Processor-based VM-execution controls.
*
* @param pVmxTransient The VMX-transient structure.
* @param uProcCtls The Processor-based VM-execution controls to set.
*/
static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
{
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
{
pVmcsInfo->u32ProcCtls |= uProcCtls;
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
AssertRC(rc);
}
}
/**
* Removes the given Processor-based VM-execution controls.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param uProcCtls The Processor-based VM-execution controls to remove.
*
* @remarks When executing a nested-guest, this will not remove any of the specified
* controls if the nested hypervisor has set any one of them.
*/
static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
{
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
if (pVmcsInfo->u32ProcCtls & uProcCtls)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if ( !pVmxTransient->fIsNestedGuest
|| !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls))
#else
NOREF(pVCpu);
if (!pVmxTransient->fIsNestedGuest)
#endif
{
pVmcsInfo->u32ProcCtls &= ~uProcCtls;
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
AssertRC(rc);
}
}
}
/**
* Sets the TSC offset for the current VMCS.
*
* @param uTscOffset The TSC offset to set.
* @param pVmcsInfo The VMCS info. object.
*/
static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
{
if (pVmcsInfo->u64TscOffset != uTscOffset)
{
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
AssertRC(rc);
pVmcsInfo->u64TscOffset = uTscOffset;
}
}
/**
* Loads the VMCS specified by the VMCS info. object.
*
* @returns VBox status code.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks Can be called with interrupts disabled.
*/
static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
{
Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
if (RT_SUCCESS(rc))
pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
return rc;
}
/**
* Clears the VMCS specified by the VMCS info. object.
*
* @returns VBox status code.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks Can be called with interrupts disabled.
*/
static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
{
Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
if (RT_SUCCESS(rc))
pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
return rc;
}
/**
* Checks whether the MSR belongs to the set of guest MSRs that we restore
* lazily while leaving VT-x.
*
* @returns true if it does, false otherwise.
* @param pVCpu The cross context virtual CPU structure.
* @param idMsr The MSR to check.
*/
static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
{
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
{
switch (idMsr)
{
case MSR_K8_LSTAR:
case MSR_K6_STAR:
case MSR_K8_SF_MASK:
case MSR_K8_KERNEL_GS_BASE:
return true;
}
}
return false;
}
/**
* Loads a set of guests MSRs to allow read/passthru to the guest.
*
* The name of this function is slightly confusing. This function does NOT
* postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
* common prefix for functions dealing with "lazy restoration" of the shared
* MSRs.
*
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
{
/*
* If the guest MSRs are not loaded -and- if all the guest MSRs are identical
* to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
* we can skip a few MSR writes.
*
* Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
* guest MSR values in the guest-CPU context might be different to what's currently
* loaded in the CPU. In either case, we need to write the new guest MSR values to the
* CPU, see @bugref{8728}.
*/
PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
if ( !(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
&& pCtx->msrKERNELGSBASE == pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase
&& pCtx->msrLSTAR == pVCpu->hmr0.s.vmx.u64HostMsrLStar
&& pCtx->msrSTAR == pVCpu->hmr0.s.vmx.u64HostMsrStar
&& pCtx->msrSFMASK == pVCpu->hmr0.s.vmx.u64HostMsrSfMask)
{
#ifdef VBOX_STRICT
Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
#endif
}
else
{
/* Avoid raising #GP caused by writing illegal values to these MSRs. */
if ( X86_IS_CANONICAL(pCtx->msrKERNELGSBASE)
&& X86_IS_CANONICAL(pCtx->msrLSTAR))
{
ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
/* The system call flag mask register isn't as benign and accepting of all
values as the above, so mask it to avoid #GP'ing on corrupted input. */
Assert(!(pCtx->msrSFMASK & ~(uint64_t)UINT32_MAX));
ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK & UINT32_MAX);
}
else
AssertMsgFailed(("Incompatible lazily-loaded guest MSR values\n"));
}
}
pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
}
/**
* Checks if the specified guest MSR is part of the VM-entry MSR-load area.
*
* @returns @c true if found, @c false otherwise.
* @param pVmcsInfo The VMCS info. object.
* @param idMsr The MSR to find.
*/
static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
{
PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
Assert(pMsrs);
Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
for (uint32_t i = 0; i < cMsrs; i++)
{
if (pMsrs[i].u32Msr == idMsr)
return true;
}
return false;
}
/**
* Performs lazy restoration of the set of host MSRs if they were previously
* loaded with guest MSR values.
*
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
* @remarks The guest MSRs should have been saved back into the guest-CPU
* context by hmR0VmxImportGuestState()!!!
*/
static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
{
Assert(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
{
ASMWrMsr(MSR_K8_LSTAR, pVCpu->hmr0.s.vmx.u64HostMsrLStar);
ASMWrMsr(MSR_K6_STAR, pVCpu->hmr0.s.vmx.u64HostMsrStar);
ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hmr0.s.vmx.u64HostMsrSfMask);
ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase);
}
}
pVCpu->hmr0.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
}
/**
* Sets pfnStartVm to the best suited variant.
*
* This must be called whenever anything changes relative to the hmR0VmXStartVm
* variant selection:
* - pVCpu->hm.s.fLoadSaveGuestXcr0
* - HM_WSF_IBPB_ENTRY in pVCpu->hmr0.s.fWorldSwitcher
* - HM_WSF_IBPB_EXIT in pVCpu->hmr0.s.fWorldSwitcher
* - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
* - Perhaps: CPUMCTX.fXStateMask (windows only)
*
* We currently ASSUME that neither HM_WSF_IBPB_ENTRY nor HM_WSF_IBPB_EXIT
* cannot be changed at runtime.
*/
static void hmR0VmxUpdateStartVmFunction(PVMCPUCC pVCpu)
{
static const struct CLANGWORKAROUND { PFNHMVMXSTARTVM pfn; } s_aHmR0VmxStartVmFunctions[] =
{
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_SansIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_SansMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_SansL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_SansIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_SansXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
{ hmR0VmxStartVm_WithXcr0_WithIbpbEntry_WithL1dEntry_WithMdsEntry_WithIbpbExit },
};
uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
| (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
| (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_ENTRY ? 4 : 0)
| (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_ENTRY ? 8 : 0)
| (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 16 : 0);
PFNHMVMXSTARTVM const pfnStartVm = s_aHmR0VmxStartVmFunctions[idx].pfn;
if (pVCpu->hmr0.s.vmx.pfnStartVm != pfnStartVm)
pVCpu->hmr0.s.vmx.pfnStartVm = pfnStartVm;
}
/**
* Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
* stack.
*
* @returns Strict VBox status code (i.e. informational status codes too).
* @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
* @param pVCpu The cross context virtual CPU structure.
* @param uValue The value to push to the guest stack.
*/
static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
{
/*
* The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
* virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
* See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
*/
PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
if (pCtx->sp == 1)
return VINF_EM_RESET;
pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
AssertRC(rc);
return rc;
}
/**
* Wrapper around VMXWriteVmcs16 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs16(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
{
RT_NOREF(pVCpu);
return VMXWriteVmcs16(uFieldEnc, u16Val);
}
/**
* Wrapper around VMXWriteVmcs32 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs32(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
{
RT_NOREF(pVCpu);
return VMXWriteVmcs32(uFieldEnc, u32Val);
}
/**
* Wrapper around VMXWriteVmcs64 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxWriteVmcs64(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
{
RT_NOREF(pVCpu);
return VMXWriteVmcs64(uFieldEnc, u64Val);
}
/**
* Wrapper around VMXReadVmcs16 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxReadVmcs16(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pu16Val)
{
RT_NOREF(pVCpu);
return VMXReadVmcs16(uFieldEnc, pu16Val);
}
/**
* Wrapper around VMXReadVmcs32 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxReadVmcs32(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pu32Val)
{
RT_NOREF(pVCpu);
return VMXReadVmcs32(uFieldEnc, pu32Val);
}
/**
* Wrapper around VMXReadVmcs64 taking a pVCpu parameter so VCC doesn't complain about
* unreferenced local parameters in the template code...
*/
DECL_FORCE_INLINE(int) hmR0VmxReadVmcs64(PCVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pu64Val)
{
RT_NOREF(pVCpu);
return VMXReadVmcs64(uFieldEnc, pu64Val);
}
/*
* Instantiate the code we share with the NEM darwin backend.
*/
#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->hm.s
#define VCPU_2_VMXSTATS(a_pVCpu) (a_pVCpu)->hm.s
#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) (a_pVM)->hmr0.s.vmx.fUnrestrictedGuest
#define VM_IS_VMX_NESTED_PAGING(a_pVM) (a_pVM)->hmr0.s.fNestedPaging
#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) (a_pVM)->hmr0.s.vmx.fUsePreemptTimer
#define VM_IS_VMX_LBR(a_pVM) (a_pVM)->hmr0.s.vmx.fLbr
#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) hmR0VmxWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) hmR0VmxReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
#include "../VMMAll/VMXAllTemplate.cpp.h"
#undef VMX_VMCS_WRITE_16
#undef VMX_VMCS_WRITE_32
#undef VMX_VMCS_WRITE_64
#undef VMX_VMCS_WRITE_NW
#undef VMX_VMCS_READ_16
#undef VMX_VMCS_READ_32
#undef VMX_VMCS_READ_64
#undef VMX_VMCS_READ_NW
#undef VM_IS_VMX_PREEMPT_TIMER_USED
#undef VM_IS_VMX_NESTED_PAGING
#undef VM_IS_VMX_UNRESTRICTED_GUEST
#undef VCPU_2_VMXSTATS
#undef VCPU_2_VMXSTATE
/**
* Updates the VM's last error record.
*
* If there was a VMX instruction error, reads the error data from the VMCS and
* updates VCPU's last error record as well.
*
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
* Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
* VERR_VMX_INVALID_VMCS_FIELD.
* @param rc The error code.
*/
static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
{
if ( rc == VERR_VMX_INVALID_VMCS_FIELD
|| rc == VERR_VMX_UNABLE_TO_START_VM)
{
AssertPtrReturnVoid(pVCpu);
VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
}
pVCpu->CTX_SUFF(pVM)->hm.s.ForR3.rcInit = rc;
}
/**
* Enters VMX root mode operation on the current CPU.
*
* @returns VBox status code.
* @param pHostCpu The HM physical-CPU structure.
* @param pVM The cross context VM structure. Can be
* NULL, after a resume.
* @param HCPhysCpuPage Physical address of the VMXON region.
* @param pvCpuPage Pointer to the VMXON region.
*/
static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
{
Assert(pHostCpu);
Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
Assert(pvCpuPage);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
if (pVM)
{
/* Write the VMCS revision identifier to the VMXON region. */
*(uint32_t *)pvCpuPage = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
}
/* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
RTCCUINTREG const fEFlags = ASMIntDisableFlags();
/* Enable the VMX bit in CR4 if necessary. */
RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
/* Record whether VMXE was already prior to us enabling it above. */
pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
/* Enter VMX root mode. */
int rc = VMXEnable(HCPhysCpuPage);
if (RT_FAILURE(rc))
{
/* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
if (!pHostCpu->fVmxeAlreadyEnabled)
SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
if (pVM)
pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
}
/* Restore interrupts. */
ASMSetFlags(fEFlags);
return rc;
}
/**
* Exits VMX root mode operation on the current CPU.
*
* @returns VBox status code.
* @param pHostCpu The HM physical-CPU structure.
*/
static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
RTCCUINTREG const fEFlags = ASMIntDisableFlags();
/* If we're for some reason not in VMX root mode, then don't leave it. */
RTCCUINTREG const uHostCr4 = ASMGetCR4();
int rc;
if (uHostCr4 & X86_CR4_VMXE)
{
/* Exit VMX root mode and clear the VMX bit in CR4. */
VMXDisable();
/* Clear CR4.VMXE only if it was clear prior to use setting it. */
if (!pHostCpu->fVmxeAlreadyEnabled)
SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
rc = VINF_SUCCESS;
}
else
rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
/* Restore interrupts. */
ASMSetFlags(fEFlags);
return rc;
}
/**
* Allocates pages specified as specified by an array of VMX page allocation info
* objects.
*
* The pages contents are zero'd after allocation.
*
* @returns VBox status code.
* @param phMemObj Where to return the handle to the allocation.
* @param paAllocInfo The pointer to the first element of the VMX
* page-allocation info object array.
* @param cEntries The number of elements in the @a paAllocInfo array.
*/
static int hmR0VmxPagesAllocZ(PRTR0MEMOBJ phMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
{
*phMemObj = NIL_RTR0MEMOBJ;
/* Figure out how many pages to allocate. */
uint32_t cPages = 0;
for (uint32_t iPage = 0; iPage < cEntries; iPage++)
cPages += !!paAllocInfo[iPage].fValid;
/* Allocate the pages. */
if (cPages)
{
size_t const cbPages = cPages << HOST_PAGE_SHIFT;
int rc = RTR0MemObjAllocPage(phMemObj, cbPages, false /* fExecutable */);
if (RT_FAILURE(rc))
return rc;
/* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
void *pvFirstPage = RTR0MemObjAddress(*phMemObj);
RT_BZERO(pvFirstPage, cbPages);
uint32_t iPage = 0;
for (uint32_t i = 0; i < cEntries; i++)
if (paAllocInfo[i].fValid)
{
RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(*phMemObj, iPage);
void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
AssertPtr(pvPage);
Assert(paAllocInfo[iPage].pHCPhys);
Assert(paAllocInfo[iPage].ppVirt);
*paAllocInfo[iPage].pHCPhys = HCPhysPage;
*paAllocInfo[iPage].ppVirt = pvPage;
/* Move to next page. */
++iPage;
}
/* Make sure all valid (requested) pages have been assigned. */
Assert(iPage == cPages);
}
return VINF_SUCCESS;
}
/**
* Frees pages allocated using hmR0VmxPagesAllocZ.
*
* @param phMemObj Pointer to the memory object handle. Will be set to
* NIL.
*/
DECL_FORCE_INLINE(void) hmR0VmxPagesFree(PRTR0MEMOBJ phMemObj)
{
/* We can cleanup wholesale since it's all one allocation. */
if (*phMemObj != NIL_RTR0MEMOBJ)
{
RTR0MemObjFree(*phMemObj, true /* fFreeMappings */);
*phMemObj = NIL_RTR0MEMOBJ;
}
}
/**
* Initializes a VMCS info. object.
*
* @param pVmcsInfo The VMCS info. object.
* @param pVmcsInfoShared The VMCS info. object shared with ring-3.
*/
static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
{
RT_ZERO(*pVmcsInfo);
RT_ZERO(*pVmcsInfoShared);
pVmcsInfo->pShared = pVmcsInfoShared;
Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
pVmcsInfo->idHostCpuState = NIL_RTCPUID;
pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
}
/**
* Frees the VT-x structures for a VMCS info. object.
*
* @param pVmcsInfo The VMCS info. object.
* @param pVmcsInfoShared The VMCS info. object shared with ring-3.
*/
static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo, PVMXVMCSINFOSHARED pVmcsInfoShared)
{
hmR0VmxPagesFree(&pVmcsInfo->hMemObj);
hmR0VmxVmcsInfoInit(pVmcsInfo, pVmcsInfoShared);
}
/**
* Allocates the VT-x structures for a VMCS info. object.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
* @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
*
* @remarks The caller is expected to take care of any and all allocation failures.
* This function will not perform any cleanup for failures half-way
* through.
*/
static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
bool const fMsrBitmaps = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hmr0.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
VMXPAGEALLOCINFO aAllocInfo[] =
{
{ true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
{ true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
{ true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
{ fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
{ fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
};
int rc = hmR0VmxPagesAllocZ(&pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
if (RT_FAILURE(rc))
return rc;
/*
* We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
* Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
*/
AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
/*
* Get the virtual-APIC page rather than allocating them again.
*/
if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
{
if (!fIsNstGstVmcs)
{
if (PDMHasApic(pVM))
{
rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
if (RT_FAILURE(rc))
return rc;
Assert(pVmcsInfo->pbVirtApic);
Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
}
}
else
{
/* These are setup later while marging the nested-guest VMCS. */
Assert(pVmcsInfo->pbVirtApic == NULL);
Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
}
}
return VINF_SUCCESS;
}
/**
* Free all VT-x structures for the VM.
*
* @param pVM The cross context VM structure.
*/
static void hmR0VmxStructsFree(PVMCC pVM)
{
hmR0VmxPagesFree(&pVM->hmr0.s.vmx.hMemObj);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
{
RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsFields);
pVM->hmr0.s.vmx.paShadowVmcsFields = NULL;
RTMemFree(pVM->hmr0.s.vmx.paShadowVmcsRoFields);
pVM->hmr0.s.vmx.paShadowVmcsRoFields = NULL;
}
#endif
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if (pVM->cpum.ro.GuestFeatures.fVmx)
hmR0VmxVmcsInfoFree(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
#endif
}
}
/**
* Allocate all VT-x structures for the VM.
*
* @returns IPRT status code.
* @param pVM The cross context VM structure.
*
* @remarks This functions will cleanup on memory allocation failures.
*/
static int hmR0VmxStructsAlloc(PVMCC pVM)
{
/*
* Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
* The VMCS size cannot be more than 4096 bytes.
*
* See Intel spec. Appendix A.1 "Basic VMX Information".
*/
uint32_t const cbVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
if (cbVmcs <= X86_PAGE_4K_SIZE)
{ /* likely */ }
else
{
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/*
* Allocate per-VM VT-x structures.
*/
bool const fVirtApicAccess = RT_BOOL(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
bool const fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing;
VMXPAGEALLOCINFO aAllocInfo[] =
{
{ fVirtApicAccess, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hmr0.s.vmx.pbApicAccess },
{ fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmreadBitmap, &pVM->hmr0.s.vmx.pvVmreadBitmap },
{ fUseVmcsShadowing, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysVmwriteBitmap, &pVM->hmr0.s.vmx.pvVmwriteBitmap },
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
{ true, 0 /* Unused */, &pVM->hmr0.s.vmx.HCPhysScratch, (PRTR0PTR)&pVM->hmr0.s.vmx.pbScratch },
#endif
};
int rc = hmR0VmxPagesAllocZ(&pVM->hmr0.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
if (RT_SUCCESS(rc))
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/* Allocate the shadow VMCS-fields array. */
if (fUseVmcsShadowing)
{
Assert(!pVM->hmr0.s.vmx.cShadowVmcsFields);
Assert(!pVM->hmr0.s.vmx.cShadowVmcsRoFields);
pVM->hmr0.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
pVM->hmr0.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
if (!pVM->hmr0.s.vmx.paShadowVmcsFields || !pVM->hmr0.s.vmx.paShadowVmcsRoFields)
rc = VERR_NO_MEMORY;
}
#endif
/*
* Allocate per-VCPU VT-x structures.
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus && RT_SUCCESS(rc); idCpu++)
{
/* Allocate the guest VMCS structures. */
PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
if (pVM->cpum.ro.GuestFeatures.fVmx && RT_SUCCESS(rc))
rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
#endif
}
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
}
hmR0VmxStructsFree(pVM);
return rc;
}
/**
* Pre-initializes non-zero fields in VMX structures that will be allocated.
*
* @param pVM The cross context VM structure.
*/
static void hmR0VmxStructsInit(PVMCC pVM)
{
/* Paranoia. */
Assert(pVM->hmr0.s.vmx.pbApicAccess == NULL);
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
Assert(pVM->hmr0.s.vmx.pbScratch == NULL);
#endif
/*
* Initialize members up-front so we can cleanup en masse on allocation failures.
*/
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
pVM->hmr0.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
#endif
pVM->hmr0.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
pVM->hmr0.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
pVM->hmr0.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfo);
hmR0VmxVmcsInfoInit(&pVCpu->hmr0.s.vmx.VmcsInfoNstGst, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
}
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
*
* @returns @c true if the MSR is intercepted, @c false otherwise.
* @param pbMsrBitmap The MSR bitmap.
* @param offMsr The MSR byte offset.
* @param iBit The bit offset from the byte offset.
*/
DECLINLINE(bool) hmR0VmxIsMsrBitSet(uint8_t const *pbMsrBitmap, uint16_t offMsr, int32_t iBit)
{
Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
return ASMBitTest(pbMsrBitmap, (offMsr << 3) + iBit);
}
#endif
/**
* Sets the permission bits for the specified MSR in the given MSR bitmap.
*
* If the passed VMCS is a nested-guest VMCS, this function ensures that the
* read/write intercept is cleared from the MSR bitmap used for hardware-assisted
* VMX execution of the nested-guest, only if nested-guest is also not intercepting
* the read/write access of this MSR.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
* @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
* @param idMsr The MSR value.
* @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
* include both a read -and- a write permission!
*
* @sa CPUMGetVmxMsrPermission.
* @remarks Can be called with interrupts disabled.
*/
static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
{
uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
Assert(pbMsrBitmap);
Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
/*
* MSR-bitmap Layout:
* Byte index MSR range Interpreted as
* 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
* 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
* 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
* 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
*
* A bit corresponding to an MSR within the above range causes a VM-exit
* if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
* the MSR range, it always cause a VM-exit.
*
* See Intel spec. 24.6.9 "MSR-Bitmap Address".
*/
uint16_t const offBitmapRead = 0;
uint16_t const offBitmapWrite = 0x800;
uint16_t offMsr;
int32_t iBit;
if (idMsr <= UINT32_C(0x00001fff))
{
offMsr = 0;
iBit = idMsr;
}
else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
{
offMsr = 0x400;
iBit = idMsr - UINT32_C(0xc0000000);
}
else
AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
/*
* Set the MSR read permission.
*/
uint16_t const offMsrRead = offBitmapRead + offMsr;
Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
if (fMsrpm & VMXMSRPM_ALLOW_RD)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
bool const fClear = !fIsNstGstVmcs ? true
: !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, offMsrRead, iBit);
#else
RT_NOREF2(pVCpu, fIsNstGstVmcs);
bool const fClear = true;
#endif
if (fClear)
ASMBitClear(pbMsrBitmap, (offMsrRead << 3) + iBit);
}
else
ASMBitSet(pbMsrBitmap, (offMsrRead << 3) + iBit);
/*
* Set the MSR write permission.
*/
uint16_t const offMsrWrite = offBitmapWrite + offMsr;
Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
if (fMsrpm & VMXMSRPM_ALLOW_WR)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
bool const fClear = !fIsNstGstVmcs ? true
: !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, offMsrWrite, iBit);
#else
RT_NOREF2(pVCpu, fIsNstGstVmcs);
bool const fClear = true;
#endif
if (fClear)
ASMBitClear(pbMsrBitmap, (offMsrWrite << 3) + iBit);
}
else
ASMBitSet(pbMsrBitmap, (offMsrWrite << 3) + iBit);
}
/**
* Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
* area.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
* @param cMsrs The number of MSRs.
*/
static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
{
/* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc);
if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
{
/* Commit the MSR counts to the VMCS and update the cache. */
if (pVmcsInfo->cEntryMsrLoad != cMsrs)
{
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
pVmcsInfo->cEntryMsrLoad = cMsrs;
pVmcsInfo->cExitMsrStore = cMsrs;
pVmcsInfo->cExitMsrLoad = cMsrs;
}
return VINF_SUCCESS;
}
LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/**
* Adds a new (or updates the value of an existing) guest/host MSR
* pair to be swapped during the world-switch as part of the
* auto-load/store MSR area in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param idMsr The MSR.
* @param uGuestMsrValue Value of the guest MSR.
* @param fSetReadWrite Whether to set the guest read/write access of this
* MSR (thus not causing a VM-exit).
* @param fUpdateHostMsr Whether to update the value of the host MSR if
* necessary.
*/
static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
bool fSetReadWrite, bool fUpdateHostMsr)
{
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
uint32_t i;
/* Paranoia. */
Assert(pGuestMsrLoad);
#ifndef DEBUG_bird
LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGuestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
#endif
/* Check if the MSR already exists in the VM-entry MSR-load area. */
for (i = 0; i < cMsrs; i++)
{
if (pGuestMsrLoad[i].u32Msr == idMsr)
break;
}
bool fAdded = false;
if (i == cMsrs)
{
/* The MSR does not exist, bump the MSR count to make room for the new MSR. */
++cMsrs;
int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
/* Set the guest to read/write this MSR without causing VM-exits. */
if ( fSetReadWrite
&& (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
fAdded = true;
}
/* Update the MSR value for the newly added or already existing MSR. */
pGuestMsrLoad[i].u32Msr = idMsr;
pGuestMsrLoad[i].u64Value = uGuestMsrValue;
/* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
{
PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
pGuestMsrStore[i].u32Msr = idMsr;
pGuestMsrStore[i].u64Value = uGuestMsrValue;
}
/* Update the corresponding slot in the host MSR area. */
PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
pHostMsr[i].u32Msr = idMsr;
/*
* Only if the caller requests to update the host MSR value AND we've newly added the
* MSR to the host MSR area do we actually update the value. Otherwise, it will be
* updated by hmR0VmxUpdateAutoLoadHostMsrs().
*
* We do this for performance reasons since reading MSRs may be quite expensive.
*/
if (fAdded)
{
if (fUpdateHostMsr)
{
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
pHostMsr[i].u64Value = ASMRdMsr(idMsr);
}
else
{
/* Someone else can do the work. */
pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
}
}
return VINF_SUCCESS;
}
/**
* Removes a guest/host MSR pair to be swapped during the world-switch from the
* auto-load/store MSR area in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param idMsr The MSR.
*/
static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
{
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
#ifndef DEBUG_bird
LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
#endif
for (uint32_t i = 0; i < cMsrs; i++)
{
/* Find the MSR. */
if (pGuestMsrLoad[i].u32Msr == idMsr)
{
/*
* If it's the last MSR, we only need to reduce the MSR count.
* If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
*/
if (i < cMsrs - 1)
{
/* Remove it from the VM-entry MSR-load area. */
pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
/* Remove it from the VM-exit MSR-store area if it's in a different page. */
if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
{
PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
Assert(pGuestMsrStore[i].u32Msr == idMsr);
pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
}
/* Remove it from the VM-exit MSR-load area. */
PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
Assert(pHostMsr[i].u32Msr == idMsr);
pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
}
/* Reduce the count to reflect the removed MSR and bail. */
--cMsrs;
break;
}
}
/* Update the VMCS if the count changed (meaning the MSR was found and removed). */
if (cMsrs != pVmcsInfo->cEntryMsrLoad)
{
int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
AssertRCReturn(rc, rc);
/* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
return VINF_SUCCESS;
}
return VERR_NOT_FOUND;
}
/**
* Updates the value of all host MSRs in the VM-exit MSR-load area.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
RT_NOREF(pVCpu);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
Assert(pHostMsrLoad);
Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
for (uint32_t i = 0; i < cMsrs; i++)
{
/*
* Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
* Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
*/
if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
pHostMsrLoad[i].u64Value = g_uHmVmxHostMsrEfer;
else
pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
}
}
/**
* Saves a set of host MSRs to allow read/write passthru access to the guest and
* perform lazy restoration of the host MSRs while leaving VT-x.
*
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/*
* Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
*/
if (!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
{
Assert(!(pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fAllow64BitGuests)
{
pVCpu->hmr0.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
pVCpu->hmr0.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
pVCpu->hmr0.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
pVCpu->hmr0.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
}
pVCpu->hmr0.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
}
}
#ifdef VBOX_STRICT
/**
* Verifies that our cached host EFER MSR value has not changed since we cached it.
*
* @param pVmcsInfo The VMCS info. object.
*/
static void hmR0VmxCheckHostEferMsr(PCVMXVMCSINFO pVmcsInfo)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
{
uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
uint64_t const uHostEferMsrCache = g_uHmVmxHostMsrEfer;
uint64_t uVmcsEferMsrVmcs;
int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
AssertRC(rc);
AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
}
}
/**
* Verifies whether the guest/host MSR pairs in the auto-load/store area in the
* VMCS are correct.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
* @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
*/
static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/* Read the various MSR-area counts from the VMCS. */
uint32_t cEntryLoadMsrs;
uint32_t cExitStoreMsrs;
uint32_t cExitLoadMsrs;
int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
/* Verify all the MSR counts are the same. */
Assert(cEntryLoadMsrs == cExitStoreMsrs);
Assert(cExitStoreMsrs == cExitLoadMsrs);
uint32_t const cMsrs = cExitLoadMsrs;
/* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
Assert(cMsrs < VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
/* Verify the MSR counts are within the allocated page size. */
Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
/* Verify the relevant contents of the MSR areas match. */
PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
for (uint32_t i = 0; i < cMsrs; i++)
{
/* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
if (fSeparateExitMsrStorePage)
{
AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
}
AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
/* Verify that cached host EFER MSR matches what's loaded on the CPU. */
bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
AssertMsgReturnVoid(!fIsEferMsr || u64HostMsr == g_uHmVmxHostMsrEfer,
("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n", g_uHmVmxHostMsrEfer, u64HostMsr, cMsrs));
/* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
{
uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
if (fIsEferMsr)
{
AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
}
else
{
/* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
if ( pVM->hmr0.s.vmx.fLbr
&& ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
|| hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
|| pGuestMsrLoad->u32Msr == pVM->hmr0.s.vmx.idLbrTosMsr))
{
AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
pGuestMsrLoad->u32Msr, cMsrs));
}
else if (!fIsNstGstVmcs)
{
AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
}
else
{
/*
* A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
* execute a nested-guest with MSR passthrough.
*
* Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
* allow passthrough too.
*/
void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap;
Assert(pvMsrBitmapNstGst);
uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
}
}
}
/* Move to the next MSR. */
pHostMsrLoad++;
pGuestMsrLoad++;
pGuestMsrStore++;
}
}
#endif /* VBOX_STRICT */
/**
* Flushes the TLB using EPT.
*
* @param pVCpu The cross context virtual CPU structure of the calling
* EMT. Can be NULL depending on @a enmTlbFlush.
* @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
* enmTlbFlush.
* @param enmTlbFlush Type of flush.
*
* @remarks Caller is responsible for making sure this function is called only
* when NestedPaging is supported and providing @a enmTlbFlush that is
* supported by the CPU.
* @remarks Can be called with interrupts disabled.
*/
static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
{
uint64_t au64Descriptor[2];
if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
au64Descriptor[0] = 0;
else
{
Assert(pVCpu);
Assert(pVmcsInfo);
au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
}
au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
if ( RT_SUCCESS(rc)
&& pVCpu)
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
}
/**
* Flushes the TLB using VPID.
*
* @param pVCpu The cross context virtual CPU structure of the calling
* EMT. Can be NULL depending on @a enmTlbFlush.
* @param enmTlbFlush Type of flush.
* @param GCPtr Virtual address of the page to flush (can be 0 depending
* on @a enmTlbFlush).
*
* @remarks Can be called with interrupts disabled.
*/
static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
{
Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid);
uint64_t au64Descriptor[2];
if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
{
au64Descriptor[0] = 0;
au64Descriptor[1] = 0;
}
else
{
AssertPtr(pVCpu);
AssertMsg(pVCpu->hmr0.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
AssertMsg(pVCpu->hmr0.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hmr0.s.uCurrentAsid));
au64Descriptor[0] = pVCpu->hmr0.s.uCurrentAsid;
au64Descriptor[1] = GCPtr;
}
int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
AssertMsg(rc == VINF_SUCCESS,
("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hmr0.s.uCurrentAsid : 0, GCPtr, rc));
if ( RT_SUCCESS(rc)
&& pVCpu)
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
NOREF(rc);
}
/**
* Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
* otherwise there is nothing really to invalidate.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCVirt Guest virtual address of the page to invalidate.
*/
VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
{
AssertPtr(pVCpu);
LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
{
/*
* We must invalidate the guest TLB entry in either case, we cannot ignore it even for
* the EPT case. See @bugref{6043} and @bugref{6177}.
*
* Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
* as this function maybe called in a loop with individual addresses.
*/
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
if (pVM->hmr0.s.vmx.fVpid)
{
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
{
hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
}
else
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
}
else if (pVM->hmr0.s.fNestedPaging)
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
}
return VINF_SUCCESS;
}
/**
* Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
* case where neither EPT nor VPID is supported by the CPU.
*
* @param pHostCpu The HM physical-CPU structure.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks Called with interrupts disabled.
*/
static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
AssertPtr(pHostCpu);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
Assert(pHostCpu->idCpu != NIL_RTCPUID);
pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
pVCpu->hmr0.s.fForceTLBFlush = false;
return;
}
/**
* Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
*
* @param pHostCpu The HM physical-CPU structure.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
* nomenclature. The reason is, to avoid confusion in compare statements
* since the host-CPU copies are named "ASID".
*
* @remarks Called with interrupts disabled.
*/
static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
#ifdef VBOX_WITH_STATISTICS
bool fTlbFlushed = false;
# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
if (!fTlbFlushed) \
STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
} while (0)
#else
# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
#endif
AssertPtr(pVCpu);
AssertPtr(pHostCpu);
Assert(pHostCpu->idCpu != NIL_RTCPUID);
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
AssertMsg(pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid,
("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
"fNestedPaging=%RTbool fVpid=%RTbool", pVM->hmr0.s.fNestedPaging, pVM->hmr0.s.vmx.fVpid));
/*
* Force a TLB flush for the first world-switch if the current CPU differs from the one we
* ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
* limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
* cannot reuse the current ASID anymore.
*/
if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|| pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
{
++pHostCpu->uCurrentAsid;
if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
{
pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
}
pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
/*
* Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
* invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
*/
hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
HMVMX_SET_TAGGED_TLB_FLUSHED();
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
}
else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
{
/*
* Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
* creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
* tables when EPT is in use. Flushing-by-VPID will only flush linear (only
* VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
* mappings, see @bugref{6568}.
*
* See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
*/
hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
HMVMX_SET_TAGGED_TLB_FLUSHED();
}
else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
{
/*
* The nested-guest specifies its own guest-physical address to use as the APIC-access
* address which requires flushing the TLB of EPT cached structures.
*
* See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
*/
hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hmr0.s.vmx.enmTlbFlushEpt);
pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
HMVMX_SET_TAGGED_TLB_FLUSHED();
}
pVCpu->hmr0.s.fForceTLBFlush = false;
HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
Assert(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu);
Assert(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes);
AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
/* Update VMCS with the VPID. */
int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
AssertRC(rc);
#undef HMVMX_SET_TAGGED_TLB_FLUSHED
}
/**
* Flushes the tagged-TLB entries for EPT CPUs as necessary.
*
* @param pHostCpu The HM physical-CPU structure.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks Called with interrupts disabled.
*/
static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
AssertPtr(pVCpu);
AssertPtr(pHostCpu);
Assert(pHostCpu->idCpu != NIL_RTCPUID);
AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
/*
* Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
* A change in the TLB flush count implies the host CPU is online after a suspend/resume.
*/
if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|| pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
{
pVCpu->hmr0.s.fForceTLBFlush = true;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
}
/* Check for explicit TLB flushes. */
if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
{
pVCpu->hmr0.s.fForceTLBFlush = true;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
}
/* Check for TLB flushes while switching to/from a nested-guest. */
if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
{
pVCpu->hmr0.s.fForceTLBFlush = true;
pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
}
pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
if (pVCpu->hmr0.s.fForceTLBFlush)
{
hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.enmTlbFlushEpt);
pVCpu->hmr0.s.fForceTLBFlush = false;
}
}
/**
* Flushes the tagged-TLB entries for VPID CPUs as necessary.
*
* @param pHostCpu The HM physical-CPU structure.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks Called with interrupts disabled.
*/
static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
AssertPtr(pHostCpu);
Assert(pHostCpu->idCpu != NIL_RTCPUID);
AssertMsg(pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
AssertMsg(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
/*
* Force a TLB flush for the first world switch if the current CPU differs from the one we
* ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
* limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
* cannot reuse the current ASID anymore.
*/
if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
|| pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes)
{
pVCpu->hmr0.s.fForceTLBFlush = true;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
}
/* Check for explicit TLB flushes. */
if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
{
/*
* If we ever support VPID flush combinations other than ALL or SINGLE-context (see
* hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
* fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
* include fExplicitFlush's too) - an obscure corner case.
*/
pVCpu->hmr0.s.fForceTLBFlush = true;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
}
/* Check for TLB flushes while switching to/from a nested-guest. */
if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
{
pVCpu->hmr0.s.fForceTLBFlush = true;
pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
}
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
if (pVCpu->hmr0.s.fForceTLBFlush)
{
++pHostCpu->uCurrentAsid;
if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
{
pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
}
pVCpu->hmr0.s.fForceTLBFlush = false;
pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
if (pHostCpu->fFlushAsidBeforeUse)
{
if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
else if (pVM->hmr0.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
{
hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
pHostCpu->fFlushAsidBeforeUse = false;
}
else
{
/* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
}
}
}
AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hmr0.s.idLastCpu, pVCpu->hmr0.s.cTlbFlushes));
AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hmr0.s.uCurrentAsid);
AssertRC(rc);
}
/**
* Flushes the guest TLB entry based on CPU capabilities.
*
* @param pHostCpu The HM physical-CPU structure.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*
* @remarks Called with interrupts disabled.
*/
static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
#ifdef HMVMX_ALWAYS_FLUSH_TLB
VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
#endif
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
switch (pVM->hmr0.s.vmx.enmTlbFlushType)
{
case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
default:
AssertMsgFailed(("Invalid flush-tag function identifier\n"));
break;
}
/* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
}
/**
* Sets up the appropriate tagged TLB-flush level and handler for flushing guest
* TLB entries from the host TLB before VM-entry.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
{
/*
* Determine optimal flush type for nested paging.
* We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
* unrestricted guest execution (see hmR3InitFinalizeR0()).
*/
if (pVM->hmr0.s.fNestedPaging)
{
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
{
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
else
{
/* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Make sure the write-back cacheable memory type for EPT is supported. */
if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB)))
{
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* EPT requires a page-walk length of 4. */
if (RT_UNLIKELY(!(g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
{
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
}
else
{
/* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
}
/*
* Determine optimal flush type for VPID.
*/
if (pVM->hmr0.s.vmx.fVpid)
{
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
{
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
else if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
else
{
/* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
if (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
pVM->hmr0.s.vmx.fVpid = false;
}
}
else
{
/* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
pVM->hmr0.s.vmx.fVpid = false;
}
}
/*
* Setup the handler for flushing tagged-TLBs.
*/
if (pVM->hmr0.s.fNestedPaging && pVM->hmr0.s.vmx.fVpid)
pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
else if (pVM->hmr0.s.fNestedPaging)
pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
else if (pVM->hmr0.s.vmx.fVpid)
pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
else
pVM->hmr0.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
/*
* Copy out the result to ring-3.
*/
pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid;
pVM->hm.s.ForR3.vmx.enmTlbFlushType = pVM->hmr0.s.vmx.enmTlbFlushType;
pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt;
pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid;
return VINF_SUCCESS;
}
/**
* Sets up the LBR MSR ranges based on the host CPU.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*
* @sa nemR3DarwinSetupLbrMsrRange
*/
static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
{
Assert(pVM->hmr0.s.vmx.fLbr);
uint32_t idLbrFromIpMsrFirst;
uint32_t idLbrFromIpMsrLast;
uint32_t idLbrToIpMsrFirst;
uint32_t idLbrToIpMsrLast;
uint32_t idLbrTosMsr;
/*
* Determine the LBR MSRs supported for this host CPU family and model.
*
* See Intel spec. 17.4.8 "LBR Stack".
* See Intel "Model-Specific Registers" spec.
*/
uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
| g_CpumHostFeatures.s.uModel;
switch (uFamilyModel)
{
case 0x0f01: case 0x0f02:
idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
idLbrToIpMsrFirst = 0x0;
idLbrToIpMsrLast = 0x0;
idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
break;
case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
case 0x066a: case 0x066c: case 0x067d: case 0x067e:
idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
idLbrTosMsr = MSR_LASTBRANCH_TOS;
break;
case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
case 0x062e: case 0x0625: case 0x062c: case 0x062f:
idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
idLbrTosMsr = MSR_LASTBRANCH_TOS;
break;
case 0x0617: case 0x061d: case 0x060f:
idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
break;
/* Atom and related microarchitectures we don't care about:
case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
case 0x0636: */
/* All other CPUs: */
default:
{
LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
}
/*
* Validate.
*/
uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
== RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
{
LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
NOREF(pVCpu0);
/*
* Update the LBR info. to the VM struct. for use later.
*/
pVM->hmr0.s.vmx.idLbrTosMsr = idLbrTosMsr;
pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast = pVM->hmr0.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst = pVM->hmr0.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
pVM->hm.s.ForR3.vmx.idLbrToIpMsrLast = pVM->hmr0.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Sets up the shadow VMCS fields arrays.
*
* This function builds arrays of VMCS fields to sync the shadow VMCS later while
* executing the guest.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
{
/*
* Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
* when the host does not support it.
*/
bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
if ( !fGstVmwriteAll
|| (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL))
{ /* likely. */ }
else
{
LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
uint32_t cRwFields = 0;
uint32_t cRoFields = 0;
for (uint32_t i = 0; i < cVmcsFields; i++)
{
VMXVMCSFIELD VmcsField;
VmcsField.u = g_aVmcsFields[i];
/*
* We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
* Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
* in the shadow VMCS fields array as they would be redundant.
*
* If the VMCS field depends on a CPU feature that is not exposed to the guest,
* we must not include it in the shadow VMCS fields array. Guests attempting to
* VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
* the required behavior.
*/
if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
&& CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
{
/*
* Read-only fields are placed in a separate array so that while syncing shadow
* VMCS fields later (which is more performance critical) we can avoid branches.
*
* However, if the guest can write to all fields (including read-only fields),
* we treat it a as read/write field. Otherwise, writing to these fields would
* cause a VMWRITE instruction error while syncing the shadow VMCS.
*/
if ( fGstVmwriteAll
|| !VMXIsVmcsFieldReadOnly(VmcsField.u))
pVM->hmr0.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
else
pVM->hmr0.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
}
}
/* Update the counts. */
pVM->hmr0.s.vmx.cShadowVmcsFields = cRwFields;
pVM->hmr0.s.vmx.cShadowVmcsRoFields = cRoFields;
return VINF_SUCCESS;
}
/**
* Sets up the VMREAD and VMWRITE bitmaps.
*
* @param pVM The cross context VM structure.
*/
static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
{
/*
* By default, ensure guest attempts to access any VMCS fields cause VM-exits.
*/
uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmreadBitmap;
uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hmr0.s.vmx.pvVmwriteBitmap;
ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
/*
* Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
* VMREAD and VMWRITE bitmaps.
*/
{
uint32_t const *paShadowVmcsFields = pVM->hmr0.s.vmx.paShadowVmcsFields;
uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
for (uint32_t i = 0; i < cShadowVmcsFields; i++)
{
uint32_t const uVmcsField = paShadowVmcsFields[i];
Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
Assert(uVmcsField >> 3 < cbBitmap);
ASMBitClear(pbVmreadBitmap, uVmcsField & 0x7fff);
ASMBitClear(pbVmwriteBitmap, uVmcsField & 0x7fff);
}
}
/*
* Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
* if the host supports VMWRITE to all supported VMCS fields.
*/
if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
{
uint32_t const *paShadowVmcsRoFields = pVM->hmr0.s.vmx.paShadowVmcsRoFields;
uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
{
uint32_t const uVmcsField = paShadowVmcsRoFields[i];
Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
Assert(uVmcsField >> 3 < cbBitmap);
ASMBitClear(pbVmreadBitmap, uVmcsField & 0x7fff);
}
}
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
/**
* Sets up the virtual-APIC page address for the VMCS.
*
* @param pVmcsInfo The VMCS info. object.
*/
DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
{
RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
Assert(HCPhysVirtApic != NIL_RTHCPHYS);
Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
AssertRC(rc);
}
/**
* Sets up the MSR-bitmap address for the VMCS.
*
* @param pVmcsInfo The VMCS info. object.
*/
DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
{
RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
AssertRC(rc);
}
/**
* Sets up the APIC-access page address for the VMCS.
*
* @param pVCpu The cross context virtual CPU structure.
*/
DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
{
RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysApicAccess;
Assert(HCPhysApicAccess != NIL_RTHCPHYS);
Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
AssertRC(rc);
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Sets up the VMREAD bitmap address for the VMCS.
*
* @param pVCpu The cross context virtual CPU structure.
*/
DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
{
RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmreadBitmap;
Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
AssertRC(rc);
}
/**
* Sets up the VMWRITE bitmap address for the VMCS.
*
* @param pVCpu The cross context virtual CPU structure.
*/
DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
{
RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.HCPhysVmwriteBitmap;
Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
AssertRC(rc);
}
#endif
/**
* Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
* in the VMCS.
*
* @returns VBox status code.
* @param pVmcsInfo The VMCS info. object.
*/
DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
{
RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
return VINF_SUCCESS;
}
/**
* Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
/*
* By default, ensure guest attempts to access any MSR cause VM-exits.
* This shall later be relaxed for specific MSRs as necessary.
*
* Note: For nested-guests, the entire bitmap will be merged prior to
* executing the nested-guest using hardware-assisted VMX and hence there
* is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
*/
Assert(pVmcsInfo->pvMsrBitmap);
ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
/*
* The guest can access the following MSRs (read, write) without causing
* VM-exits; they are loaded/stored automatically using fields in the VMCS.
*/
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
/*
* The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
* associated with then. We never need to intercept access (writes need to be
* executed without causing a VM-exit, reads will #GP fault anyway).
*
* The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
* read/write them. We swap the guest/host MSR value using the
* auto-load/store MSR area.
*/
if (pVM->cpum.ro.GuestFeatures.fIbpb)
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
if (pVM->cpum.ro.GuestFeatures.fIbrs)
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
/*
* Allow full read/write access for the following MSRs (mandatory for VT-x)
* required for 64-bit guests.
*/
if (pVM->hmr0.s.fAllow64BitGuests)
{
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
}
/*
* IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
*/
#ifdef VBOX_STRICT
Assert(pVmcsInfo->pvMsrBitmap);
uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
#endif
}
/**
* Sets up pin-based VM-execution controls in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
| VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
/* Enable the VMX-preemption timer. */
if (pVM->hmr0.s.vmx.fUsePreemptTimer)
{
Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
}
#if 0
/* Enable posted-interrupt processing. */
if (pVM->hm.s.fPostedIntrs)
{
Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
fVal |= VMX_PIN_CTLS_POSTED_INT;
}
#endif
if ((fVal & fZap) != fVal)
{
LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Commit it to the VMCS and update our cache. */
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
AssertRC(rc);
pVmcsInfo->u32PinCtls = fVal;
return VINF_SUCCESS;
}
/**
* Sets up secondary processor-based VM-execution controls in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
/* WBINVD causes a VM-exit. */
if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
/* Enable EPT (aka nested-paging). */
if (pVM->hmr0.s.fNestedPaging)
fVal |= VMX_PROC_CTLS2_EPT;
/* Enable the INVPCID instruction if we expose it to the guest and is supported
by the hardware. Without this, guest executing INVPCID would cause a #UD. */
if ( pVM->cpum.ro.GuestFeatures.fInvpcid
&& (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
fVal |= VMX_PROC_CTLS2_INVPCID;
/* Enable VPID. */
if (pVM->hmr0.s.vmx.fVpid)
fVal |= VMX_PROC_CTLS2_VPID;
/* Enable unrestricted guest execution. */
if (pVM->hmr0.s.vmx.fUnrestrictedGuest)
fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
#if 0
if (pVM->hm.s.fVirtApicRegs)
{
/* Enable APIC-register virtualization. */
Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
/* Enable virtual-interrupt delivery. */
Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
}
#endif
/* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
where the TPR shadow resides. */
/** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
* done dynamically. */
if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
{
fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
}
/* Enable the RDTSCP instruction if we expose it to the guest and is supported
by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
if ( pVM->cpum.ro.GuestFeatures.fRdTscP
&& (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
fVal |= VMX_PROC_CTLS2_RDTSCP;
/* Enable Pause-Loop exiting. */
if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
&& pVM->hm.s.vmx.cPleGapTicks
&& pVM->hm.s.vmx.cPleWindowTicks)
{
fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
}
if ((fVal & fZap) != fVal)
{
LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Commit it to the VMCS and update our cache. */
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
AssertRC(rc);
pVmcsInfo->u32ProcCtls2 = fVal;
return VINF_SUCCESS;
}
/**
* Sets up processor-based VM-execution controls in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
| VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
| VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
| VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
| VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
| VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
| VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
/* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
|| (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
{
pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
if (!pVM->hmr0.s.fNestedPaging)
{
Assert(!pVM->hmr0.s.vmx.fUnrestrictedGuest);
fVal |= VMX_PROC_CTLS_INVLPG_EXIT
| VMX_PROC_CTLS_CR3_LOAD_EXIT
| VMX_PROC_CTLS_CR3_STORE_EXIT;
}
/* Use TPR shadowing if supported by the CPU. */
if ( PDMHasApic(pVM)
&& (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
{
fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
/* CR8 writes cause a VM-exit based on TPR threshold. */
Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
}
else
{
/* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
if (pVM->hmr0.s.fAllow64BitGuests)
fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
| VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
}
/* Use MSR-bitmaps if supported by the CPU. */
if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
{
fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
}
/* Use the secondary processor-based VM-execution controls if supported by the CPU. */
if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
if ((fVal & fZap) != fVal)
{
LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Commit it to the VMCS and update our cache. */
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
AssertRC(rc);
pVmcsInfo->u32ProcCtls = fVal;
/* Set up MSR permissions that don't change through the lifetime of the VM. */
if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
/* Set up secondary processor-based VM-execution controls if the CPU supports it. */
if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
/* Sanity check, should not really happen. */
if (RT_LIKELY(!pVM->hmr0.s.vmx.fUnrestrictedGuest))
{ /* likely */ }
else
{
pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
}
/* Old CPUs without secondary processor-based VM-execution controls would end up here. */
return VINF_SUCCESS;
}
/**
* Sets up miscellaneous (everything other than Pin, Processor and secondary
* Processor-based VM-execution) control fields in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
{
hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
}
#endif
Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
AssertRC(rc);
rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
if (RT_SUCCESS(rc))
{
uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
{
rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
AssertRC(rc);
}
return VINF_SUCCESS;
}
else
LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
return rc;
}
/**
* Sets up the initial exception bitmap in the VMCS based on static conditions.
*
* We shall setup those exception intercepts that don't change during the
* lifetime of the VM here. The rest are done dynamically while loading the
* guest state.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
*/
static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
/*
* The following exceptions are always intercepted:
*
* #AC - To prevent the guest from hanging the CPU and for dealing with
* split-lock detecting host configs.
* #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
* recursive #DBs can cause a CPU hang.
* #PF - To sync our shadow page tables when nested-paging is not used.
*/
bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
| RT_BIT(X86_XCPT_DB)
| (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
/* Commit it to the VMCS. */
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
AssertRC(rc);
/* Update our cache of the exception bitmap. */
pVmcsInfo->u32XcptBitmap = uXcptBitmap;
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
*
* @returns VBox status code.
* @param pVmcsInfo The VMCS info. object.
*/
static int hmR0VmxSetupVmcsCtlsNested(PVMXVMCSINFO pVmcsInfo)
{
Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
AssertRC(rc);
rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
if (RT_SUCCESS(rc))
{
if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
/* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
Assert(!pVmcsInfo->u64Cr0Mask);
Assert(!pVmcsInfo->u64Cr4Mask);
return VINF_SUCCESS;
}
LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
return rc;
}
#endif
/**
* Selector FNHMSVMVMRUN implementation.
*/
static DECLCALLBACK(int) hmR0VmxStartVmSelector(PVMXVMCSINFO pVmcsInfo, PVMCPUCC pVCpu, bool fResume)
{
hmR0VmxUpdateStartVmFunction(pVCpu);
return pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResume);
}
/**
* Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
* VMX.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object.
* @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
*/
static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
{
Assert(pVmcsInfo->pvVmcs);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
*(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
LogFlowFunc(("\n"));
/*
* Initialize the VMCS using VMCLEAR before loading the VMCS.
* See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
*/
int rc = hmR0VmxClearVmcs(pVmcsInfo);
if (RT_SUCCESS(rc))
{
rc = hmR0VmxLoadVmcs(pVmcsInfo);
if (RT_SUCCESS(rc))
{
/*
* Initialize the hardware-assisted VMX execution handler for guest and nested-guest VMCS.
* The host is always 64-bit since we no longer support 32-bit hosts.
* Currently we have just a single handler for all guest modes as well, see @bugref{6208#c73}.
*/
if (!fIsNstGstVmcs)
{
rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
if (RT_SUCCESS(rc))
{
rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
if (RT_SUCCESS(rc))
{
rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
if (RT_SUCCESS(rc))
{
hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* If a shadow VMCS is allocated for the VMCS info. object, initialize the
* VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
* making it fit for use when VMCS shadowing is later enabled.
*/
if (pVmcsInfo->pvShadowVmcs)
{
VMXVMCSREVID VmcsRevId;
VmcsRevId.u = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID);
VmcsRevId.n.fIsShadowVmcs = 1;
*(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
rc = vmxHCClearShadowVmcs(pVmcsInfo);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
}
#endif
}
else
LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
}
else
LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
}
else
LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
}
else
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
rc = hmR0VmxSetupVmcsCtlsNested(pVmcsInfo);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
#else
AssertFailed();
#endif
}
}
else
LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
}
else
LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
/* Sync any CPU internal VMCS data back into our VMCS in memory. */
if (RT_SUCCESS(rc))
{
rc = hmR0VmxClearVmcs(pVmcsInfo);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
}
/*
* Update the last-error record both for failures and success, so we
* can propagate the status code back to ring-3 for diagnostics.
*/
hmR0VmxUpdateErrorRecord(pVCpu, rc);
NOREF(pszVmcs);
return rc;
}
/**
* Does global VT-x initialization (called during module initialization).
*
* @returns VBox status code.
*/
VMMR0DECL(int) VMXR0GlobalInit(void)
{
#ifdef HMVMX_USE_FUNCTION_TABLE
AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_aVMExitHandlers));
# ifdef VBOX_STRICT
for (unsigned i = 0; i < RT_ELEMENTS(g_aVMExitHandlers); i++)
Assert(g_aVMExitHandlers[i].pfn);
# endif
#endif
/*
* For detecting whether DR6.RTM is writable or not (done in VMXR0InitVM).
*/
RTTHREADPREEMPTSTATE Preempt = RTTHREADPREEMPTSTATE_INITIALIZER;
RTThreadPreemptDisable(&Preempt);
RTCCUINTXREG const fSavedDr6 = ASMGetDR6();
ASMSetDR6(0);
RTCCUINTXREG const fZeroDr6 = ASMGetDR6();
ASMSetDR6(fSavedDr6);
RTThreadPreemptRestore(&Preempt);
g_fDr6Zeroed = fZeroDr6;
return VINF_SUCCESS;
}
/**
* Does global VT-x termination (called during module termination).
*/
VMMR0DECL(void) VMXR0GlobalTerm()
{
/* Nothing to do currently. */
}
/**
* Sets up and activates VT-x on the current CPU.
*
* @returns VBox status code.
* @param pHostCpu The HM physical-CPU structure.
* @param pVM The cross context VM structure. Can be
* NULL after a host resume operation.
* @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
* fEnabledByHost is @c true).
* @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
* @a fEnabledByHost is @c true).
* @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
* enable VT-x on the host.
* @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
*/
VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
PCSUPHWVIRTMSRS pHwvirtMsrs)
{
AssertPtr(pHostCpu);
AssertPtr(pHwvirtMsrs);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/* Enable VT-x if it's not already enabled by the host. */
if (!fEnabledByHost)
{
int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
if (RT_FAILURE(rc))
return rc;
}
/*
* Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
* using EPTPs) so we don't retain any stale guest-physical mappings which won't get
* invalidated when flushing by VPID.
*/
if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
{
hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
pHostCpu->fFlushAsidBeforeUse = false;
}
else
pHostCpu->fFlushAsidBeforeUse = true;
/* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
++pHostCpu->cTlbFlushes;
return VINF_SUCCESS;
}
/**
* Deactivates VT-x on the current CPU.
*
* @returns VBox status code.
* @param pHostCpu The HM physical-CPU structure.
* @param pvCpuPage Pointer to the VMXON region.
* @param HCPhysCpuPage Physical address of the VMXON region.
*
* @remarks This function should never be called when SUPR0EnableVTx() or
* similar was used to enable VT-x on the host.
*/
VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
{
RT_NOREF2(pvCpuPage, HCPhysCpuPage);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
return hmR0VmxLeaveRootMode(pHostCpu);
}
/**
* Does per-VM VT-x initialization.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
{
AssertPtr(pVM);
LogFlowFunc(("pVM=%p\n", pVM));
hmR0VmxStructsInit(pVM);
int rc = hmR0VmxStructsAlloc(pVM);
if (RT_FAILURE(rc))
{
LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
return rc;
}
/* Setup the crash dump page. */
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
strcpy((char *)pVM->hmr0.s.vmx.pbScratch, "SCRATCH Magic");
*(uint64_t *)(pVM->hmr0.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
#endif
/*
* Copy out stuff that's for ring-3 and determin default configuration.
*/
pVM->hm.s.ForR3.vmx.u64HostDr6Zeroed = g_fDr6Zeroed;
/* Since we do not emulate RTM, make sure DR6.RTM cannot be cleared by the
guest and cause confusion there. It appears that the DR6.RTM bit can be
cleared even if TSX-NI is disabled (microcode update / system / whatever). */
#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
if (pVM->hm.s.vmx.fAlwaysInterceptMovDRxCfg == 0)
pVM->hmr0.s.vmx.fAlwaysInterceptMovDRx = g_fDr6Zeroed != X86_DR6_RA1_MASK;
else
#endif
pVM->hmr0.s.vmx.fAlwaysInterceptMovDRx = pVM->hm.s.vmx.fAlwaysInterceptMovDRxCfg > 0;
pVM->hm.s.ForR3.vmx.fAlwaysInterceptMovDRx = pVM->hmr0.s.vmx.fAlwaysInterceptMovDRx;
return VINF_SUCCESS;
}
/**
* Does per-VM VT-x termination.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
{
AssertPtr(pVM);
LogFlowFunc(("pVM=%p\n", pVM));
#ifdef VBOX_WITH_CRASHDUMP_MAGIC
if (pVM->hmr0.s.vmx.pbScratch)
RT_BZERO(pVM->hmr0.s.vmx.pbScratch, X86_PAGE_4K_SIZE);
#endif
hmR0VmxStructsFree(pVM);
return VINF_SUCCESS;
}
/**
* Sets up the VM for execution using hardware-assisted VMX.
* This function is only called once per-VM during initialization.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
{
AssertPtr(pVM);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
LogFlowFunc(("pVM=%p\n", pVM));
/*
* At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
* without causing a #GP.
*/
RTCCUINTREG const uHostCr4 = ASMGetCR4();
if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
{ /* likely */ }
else
return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
/*
* Check that nested paging is supported if enabled and copy over the flag to the
* ring-0 only structure.
*/
bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
AssertReturn( !fNestedPaging
|| (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT), /** @todo use a ring-0 copy of ProcCtls2.n.allowed1 */
VERR_INCOMPATIBLE_CONFIG);
pVM->hmr0.s.fNestedPaging = fNestedPaging;
pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
/*
* Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
* always be allocated. We no longer support the highly unlikely case of unrestricted guest
* without pRealModeTSS, see hmR3InitFinalizeR0Intel().
*/
bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuestCfg;
AssertReturn( !fUnrestrictedGuest
|| ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
&& fNestedPaging),
VERR_INCOMPATIBLE_CONFIG);
if ( !fUnrestrictedGuest
&& ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
|| !pVM->hm.s.vmx.pRealModeTSS))
{
LogRelFunc(("Invalid real-on-v86 state.\n"));
return VERR_INTERNAL_ERROR;
}
pVM->hmr0.s.vmx.fUnrestrictedGuest = fUnrestrictedGuest;
/* Initialize these always, see hmR3InitFinalizeR0().*/
pVM->hm.s.ForR3.vmx.enmTlbFlushEpt = pVM->hmr0.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
pVM->hm.s.ForR3.vmx.enmTlbFlushVpid = pVM->hmr0.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
/* Setup the tagged-TLB flush handlers. */
int rc = hmR0VmxSetupTaggedTlb(pVM);
if (RT_FAILURE(rc))
{
LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
return rc;
}
/* Determine LBR capabilities. */
pVM->hmr0.s.vmx.fLbr = pVM->hm.s.vmx.fLbrCfg;
if (pVM->hmr0.s.vmx.fLbr)
{
rc = hmR0VmxSetupLbrMsrRange(pVM);
if (RT_FAILURE(rc))
{
LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
return rc;
}
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
if (pVM->hmr0.s.vmx.fUseVmcsShadowing)
{
rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
if (RT_SUCCESS(rc))
hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
else
{
LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
return rc;
}
}
#endif
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
pVCpu->hmr0.s.vmx.pfnStartVm = hmR0VmxStartVmSelector;
rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
if (RT_SUCCESS(rc))
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if (pVM->cpum.ro.GuestFeatures.fVmx)
{
rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hmr0.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
{
LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
return rc;
}
}
#endif
}
else
{
LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
return rc;
}
}
return VINF_SUCCESS;
}
/**
* Saves the host control registers (CR0, CR3, CR4) into the host-state area in
* the VMCS.
* @returns CR4 for passing along to hmR0VmxExportHostSegmentRegs.
*/
static uint64_t hmR0VmxExportHostControlRegs(void)
{
int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
uint64_t uHostCr4 = ASMGetCR4();
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, uHostCr4); AssertRC(rc);
return uHostCr4;
}
/**
* Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
* the host-state area in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param uHostCr4 The host CR4 value.
*/
static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu, uint64_t uHostCr4)
{
/*
* If we've executed guest code using hardware-assisted VMX, the host-state bits
* will be messed up. We should -not- save the messed up state without restoring
* the original host-state, see @bugref{7240}.
*
* This apparently can happen (most likely the FPU changes), deal with it rather than
* asserting. Was observed booting Solaris 10u10 32-bit guest.
*/
if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
{
Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags,
pVCpu->idCpu));
VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
}
/*
* Get all the host info.
* ASSUME it is safe to use rdfsbase and friends if the CR4.FSGSBASE bit is set
* without also checking the cpuid bit.
*/
uint32_t fRestoreHostFlags;
#if RT_INLINE_ASM_EXTERNAL
if (uHostCr4 & X86_CR4_FSGSBASE)
{
hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, true /*fHaveFsGsBase*/);
fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
}
else
{
hmR0VmxExportHostSegmentRegsAsmHlp(&pVCpu->hmr0.s.vmx.RestoreHost, false /*fHaveFsGsBase*/);
fRestoreHostFlags = 0;
}
RTSEL uSelES = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES;
RTSEL uSelDS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS;
RTSEL uSelFS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS;
RTSEL uSelGS = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS;
#else
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR = ASMGetTR();
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS = ASMGetSS();
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS = ASMGetCS();
ASMGetGDTR((PRTGDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr);
ASMGetIDTR((PRTIDTR)&pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr);
if (uHostCr4 & X86_CR4_FSGSBASE)
{
pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMGetFSBase();
pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMGetGSBase();
fRestoreHostFlags = VMX_RESTORE_HOST_CAN_USE_WRFSBASE_AND_WRGSBASE;
}
else
{
pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase = ASMRdMsr(MSR_K8_FS_BASE);
pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase = ASMRdMsr(MSR_K8_GS_BASE);
fRestoreHostFlags = 0;
}
RTSEL uSelES, uSelDS, uSelFS, uSelGS;
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelDS = uSelDS = ASMGetDS();
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelES = uSelES = ASMGetES();
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelFS = uSelFS = ASMGetFS();
pVCpu->hmr0.s.vmx.RestoreHost.uHostSelGS = uSelGS = ASMGetGS();
#endif
/*
* Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
* gain VM-entry and restore them before we get preempted.
*
* See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
*/
RTSEL const uSelAll = uSelFS | uSelGS | uSelES | uSelDS;
if (uSelAll & (X86_SEL_RPL | X86_SEL_LDT))
{
if (!(uSelAll & X86_SEL_LDT))
{
#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
do { \
(a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
if ((a_uVmcsVar) & X86_SEL_RPL) \
{ \
fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
(a_uVmcsVar) = 0; \
} \
} while (0)
VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
#undef VMXLOCAL_ADJUST_HOST_SEG
}
else
{
#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_uVmcsVar) \
do { \
(a_uVmcsVar) = pVCpu->hmr0.s.vmx.RestoreHost.uHostSel##a_Seg; \
if ((a_uVmcsVar) & (X86_SEL_RPL | X86_SEL_LDT)) \
{ \
if (!((a_uVmcsVar) & X86_SEL_LDT)) \
fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
else \
{ \
uint32_t const fAttr = ASMGetSegAttr(a_uVmcsVar); \
if ((fAttr & X86_DESC_P) && fAttr != UINT32_MAX) \
fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
} \
(a_uVmcsVar) = 0; \
} \
} while (0)
VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
#undef VMXLOCAL_ADJUST_HOST_SEG
}
}
/* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR);
Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS & X86_SEL_LDT)); Assert(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS);
Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_RPL)); Assert(!(pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS & X86_SEL_LDT));
Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
/*
* Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
* them to the maximum limit (0xffff) on every VM-exit.
*/
if (pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb != 0xffff)
fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
/*
* IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
* Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
* as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
* However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
* uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
* alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
* at 0xffff on hosts where we are sure it won't cause trouble.
*/
#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb < 0x0fff)
#else
if (pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.cb != 0xffff)
#endif
fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
/*
* Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
* and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
* RPL should be too in most cases.
*/
RTSEL const uSelTR = pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR;
AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb,
("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb),
VERR_VMX_INVALID_HOST_STATE);
PCX86DESCHC pDesc = (PCX86DESCHC)(pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr + (uSelTR & X86_SEL_MASK));
uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
/*
* VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
* all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
* restoration if the host has something else. Task switching is not supported in 64-bit
* mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
* limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
*
* [1] See Intel spec. 3.5 "System Descriptor Types".
* [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
*/
Assert(pDesc->System.u4Type == 11);
if ( pDesc->System.u16LimitLow != 0x67
|| pDesc->System.u4LimitHigh)
{
fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
/* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
if (g_fHmHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
{
/* The GDT is read-only but the writable GDT is available. */
fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.cb = pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.cb;
int rc = SUPR0GetCurrentGdtRw(&pVCpu->hmr0.s.vmx.RestoreHost.HostGdtrRw.uAddr);
AssertRCReturn(rc, rc);
}
}
pVCpu->hmr0.s.vmx.fRestoreHostFlags = fRestoreHostFlags;
/*
* Do all the VMCS updates in one block to assist nested virtualization.
*/
int rc;
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelCS); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelSS); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, pVCpu->hmr0.s.vmx.RestoreHost.uHostSelTR); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostGdtr.uAddr); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, pVCpu->hmr0.s.vmx.RestoreHost.HostIdtr.uAddr); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostFSBase); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, pVCpu->hmr0.s.vmx.RestoreHost.uHostGSBase); AssertRC(rc);
return VINF_SUCCESS;
}
/**
* Exports certain host MSRs in the VM-exit MSR-load area and some in the
* host-state area of the VMCS.
*
* These MSRs will be automatically restored on the host after every successful
* VM-exit.
*
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
/*
* Save MSRs that we restore lazily (due to preemption or transition to ring-3)
* rather than swapping them on every VM-entry.
*/
hmR0VmxLazySaveHostMsrs(pVCpu);
/*
* Host Sysenter MSRs.
*/
int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
/*
* Host EFER MSR.
*
* If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
* done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
*/
if (g_fHmVmxSupportsVmcsEfer)
{
rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, g_uHmVmxHostMsrEfer);
AssertRC(rc);
}
/** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
* hmR0VmxExportGuestEntryExitCtls(). */
}
/**
* Figures out if we need to swap the EFER MSR which is particularly expensive.
*
* We check all relevant bits. For now, that's everything besides LMA/LME, as
* these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
*
* @returns true if we need to load guest EFER, false otherwise.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks Requires EFER, CR4.
* @remarks No-long-jump zone!!!
*/
static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
#ifdef HMVMX_ALWAYS_SWAP_EFER
RT_NOREF2(pVCpu, pVmxTransient);
return true;
#else
PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
uint64_t const u64HostEfer = g_uHmVmxHostMsrEfer;
uint64_t const u64GuestEfer = pCtx->msrEFER;
# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* For nested-guests, we shall honor swapping the EFER MSR when requested by
* the nested-guest.
*/
if ( pVmxTransient->fIsNestedGuest
&& ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|| CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
|| CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
return true;
# else
RT_NOREF(pVmxTransient);
#endif
/*
* For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
* to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
*/
if ( CPUMIsGuestInLongModeEx(pCtx)
&& (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
return true;
/*
* If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
* as it affects guest paging. 64-bit paging implies CR4.PAE as well.
*
* See Intel spec. 4.5 "IA-32e Paging".
* See Intel spec. 4.1.1 "Three Paging Modes".
*
* Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
* import CR4 and CR0 from the VMCS here as those bits are always up to date.
*/
Assert(vmxHCGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
Assert(vmxHCGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
if ( (pCtx->cr4 & X86_CR4_PAE)
&& (pCtx->cr0 & X86_CR0_PG))
{
/*
* If nested paging is not used, verify that the guest paging mode matches the
* shadow paging mode which is/will be placed in the VMCS (which is what will
* actually be used while executing the guest and not the CR4 shadow value).
*/
AssertMsg( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
|| pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
|| pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
|| pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
|| pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX,
("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
{
/* Verify that the host is NX capable. */
Assert(g_CpumHostFeatures.s.fNoExecute);
return true;
}
}
return false;
#endif
}
/**
* Exports the guest's RSP into the guest-state area in the VMCS.
*
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
{
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
{
HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
AssertRC(rc);
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
}
}
/**
* Exports the guest hardware-virtualization state.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* Check if the VMX feature is exposed to the guest and if the host CPU supports
* VMCS shadowing.
*/
if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUseVmcsShadowing)
{
/*
* If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
* copy the nested hypervisor's current VMCS into the shadow VMCS and enable
* VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
*
* We check for VMX root mode here in case the guest executes VMXOFF without
* clearing the current VMCS pointer and our VMXOFF instruction emulation does
* not clear the current VMCS pointer.
*/
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
&& !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
&& CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
{
/* Paranoia. */
Assert(!pVmxTransient->fIsNestedGuest);
/*
* For performance reasons, also check if the nested hypervisor's current VMCS
* was newly loaded or modified before copying it to the shadow VMCS.
*/
if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
{
int rc = vmxHCCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
AssertRCReturn(rc, rc);
pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
}
vmxHCEnableVmcsShadowing(pVCpu, pVmcsInfo);
}
else
vmxHCDisableVmcsShadowing(pVCpu, pVmcsInfo);
}
#else
NOREF(pVmxTransient);
#endif
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
}
return VINF_SUCCESS;
}
/**
* Exports the guest debug registers into the guest-state area in the VMCS.
* The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
*
* This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
* stepping. */
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
if (pVmxTransient->fIsNestedGuest)
{
int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
AssertRC(rc);
/*
* We don't want to always intercept MOV DRx for nested-guests as it causes
* problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
* Instead, they are strictly only requested when the nested hypervisor intercepts
* them -- handled while merging VMCS controls.
*
* If neither the outer nor the nested-hypervisor is intercepting MOV DRx,
* then the nested-guest debug state should be actively loaded on the host so that
* nested-guest reads its own debug registers without causing VM-exits.
*/
if ( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
&& !CPUMIsGuestDebugStateActive(pVCpu))
CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
return VINF_SUCCESS;
}
#ifdef VBOX_STRICT
/* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
{
/* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
}
#endif
bool fSteppingDB = false;
uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
if (pVCpu->hm.s.fSingleInstruction)
{
/* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
{
uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
Assert(fSteppingDB == false);
}
else
{
pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
pVCpu->hmr0.s.fClearTrapFlag = true;
fSteppingDB = true;
}
}
#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
bool fInterceptMovDRx = pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx;
#else
bool fInterceptMovDRx = false;
#endif
uint64_t u64GuestDr7;
if ( fSteppingDB
|| (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
{
/*
* Use the combined guest and host DRx values found in the hypervisor register set
* because the hypervisor debugger has breakpoints active or someone is single stepping
* on the host side without a monitor trap flag.
*
* Note! DBGF expects a clean DR6 state before executing guest code.
*/
if (!CPUMIsHyperDebugStateActive(pVCpu))
{
CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
Assert(CPUMIsHyperDebugStateActive(pVCpu));
Assert(!CPUMIsGuestDebugStateActive(pVCpu));
}
/* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
pVCpu->hmr0.s.fUsingHyperDR7 = true;
fInterceptMovDRx = true;
}
else
{
/*
* If the guest has enabled debug registers, we need to load them prior to
* executing guest code so they'll trigger at the right time.
*/
HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
{
if (!CPUMIsGuestDebugStateActive(pVCpu))
{
CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
Assert(CPUMIsGuestDebugStateActive(pVCpu));
Assert(!CPUMIsHyperDebugStateActive(pVCpu));
STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
}
#ifndef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
Assert(!fInterceptMovDRx);
#endif
}
else if (!CPUMIsGuestDebugStateActive(pVCpu))
{
/*
* If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
* must intercept #DB in order to maintain a correct DR6 guest value, and
* because we need to intercept it to prevent nested #DBs from hanging the
* CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
*/
fInterceptMovDRx = true;
}
/* Update DR7 with the actual guest value. */
u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
pVCpu->hmr0.s.fUsingHyperDR7 = false;
}
if (fInterceptMovDRx)
uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
else
uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
/*
* Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
* monitor-trap flag and update our cache.
*/
if (uProcCtls != pVmcsInfo->u32ProcCtls)
{
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
AssertRC(rc);
pVmcsInfo->u32ProcCtls = uProcCtls;
}
/*
* Update guest DR7.
*/
int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
AssertRC(rc);
/*
* If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
* we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
*
* See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
*/
if (fSteppingDB)
{
Assert(pVCpu->hm.s.fSingleInstruction);
Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
uint32_t fIntrState = 0;
rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
AssertRC(rc);
if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
{
fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
AssertRC(rc);
}
}
return VINF_SUCCESS;
}
/**
* Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
* areas.
*
* These MSRs will automatically be loaded to the host CPU on every successful
* VM-entry and stored from the host CPU on every successful VM-exit.
*
* We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
* actual host MSR values are not- updated here for performance reasons. See
* hmR0VmxExportHostMsrs().
*
* We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
AssertPtr(pVCpu);
AssertPtr(pVmxTransient);
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
/*
* MSRs that we use the auto-load/store MSR area in the VMCS.
* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
* nothing to do here. The host MSR values are updated when it's safe in
* hmR0VmxLazySaveHostMsrs().
*
* For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
* loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
* emulation. The merged MSR permission bitmap will ensure that we get VM-exits
* for any MSR that are not part of the lazy MSRs so we do not need to place
* those MSRs into the auto-load/store MSR area. Nothing to do here.
*/
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
{
/* No auto-load/store MSRs currently. */
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
}
/*
* Guest Sysenter MSRs.
*/
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
{
HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
{
int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
AssertRC(rc);
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
}
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
{
int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
AssertRC(rc);
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
}
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
{
int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
AssertRC(rc);
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
}
}
/*
* Guest/host EFER MSR.
*/
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
{
/* Whether we are using the VMCS to swap the EFER MSR must have been
determined earlier while exporting VM-entry/VM-exit controls. */
Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
{
/*
* EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
* This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
* VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
* and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
* must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
* the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
* during VM-entry.
*/
uint64_t uGuestEferMsr = pCtx->msrEFER;
if (!pVM->hmr0.s.vmx.fUnrestrictedGuest)
{
if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
uGuestEferMsr &= ~MSR_K6_EFER_LME;
else
Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
}
/*
* If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
* but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
*/
if (g_fHmVmxSupportsVmcsEfer)
{
int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
AssertRC(rc);
}
else
{
/*
* We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
* continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
*/
int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
false /* fSetReadWrite */, false /* fUpdateHostMsr */);
AssertRCReturn(rc, rc);
}
Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
}
else if (!g_fHmVmxSupportsVmcsEfer)
hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
}
/*
* Other MSRs.
*/
if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
{
/* Speculation Control (R/W). */
HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
if (pVM->cpum.ro.GuestFeatures.fIbrs)
{
int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
false /* fSetReadWrite */, false /* fUpdateHostMsr */);
AssertRCReturn(rc, rc);
}
/* Last Branch Record. */
if (pVM->hmr0.s.vmx.fLbr)
{
PVMXVMCSINFOSHARED const pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
uint32_t const idFromIpMsrStart = pVM->hmr0.s.vmx.idLbrFromIpMsrFirst;
uint32_t const idToIpMsrStart = pVM->hmr0.s.vmx.idLbrToIpMsrFirst;
uint32_t const cLbrStack = pVM->hmr0.s.vmx.idLbrFromIpMsrLast - pVM->hmr0.s.vmx.idLbrFromIpMsrFirst + 1;
Assert(cLbrStack <= 32);
for (uint32_t i = 0; i < cLbrStack; i++)
{
int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
pVmcsInfoShared->au64LbrFromIpMsr[i],
false /* fSetReadWrite */, false /* fUpdateHostMsr */);
AssertRCReturn(rc, rc);
/* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
if (idToIpMsrStart != 0)
{
rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
pVmcsInfoShared->au64LbrToIpMsr[i],
false /* fSetReadWrite */, false /* fUpdateHostMsr */);
AssertRCReturn(rc, rc);
}
}
/* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hmr0.s.vmx.idLbrTosMsr,
pVmcsInfoShared->u64LbrTosMsr, false /* fSetReadWrite */,
false /* fUpdateHostMsr */);
AssertRCReturn(rc, rc);
}
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
}
return VINF_SUCCESS;
}
/**
* Wrapper for running the guest code in VT-x.
*
* @returns VBox status code, no informational status codes.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
{
/* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
pVCpu->cpum.GstCtx.fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
#ifdef VBOX_WITH_STATISTICS
if (fResumeVM)
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmResume);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxVmLaunch);
#endif
int rc = pVCpu->hmr0.s.vmx.pfnStartVm(pVmcsInfo, pVCpu, fResumeVM);
AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
return rc;
}
/**
* Reports world-switch error and dumps some useful debug info.
*
* @param pVCpu The cross context virtual CPU structure.
* @param rcVMRun The return code from VMLAUNCH/VMRESUME.
* @param pVmxTransient The VMX-transient structure (only
* exitReason updated).
*/
static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
{
Assert(pVCpu);
Assert(pVmxTransient);
HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
switch (rcVMRun)
{
case VERR_VMX_INVALID_VMXON_PTR:
AssertFailed();
break;
case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
{
int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
AssertRC(rc);
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
/* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
Cannot do it here as we may have been long preempted. */
#ifdef VBOX_STRICT
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
pVmxTransient->uExitReason));
Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
else
Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
static struct
{
/** Name of the field to log. */
const char *pszName;
/** The VMCS field. */
uint32_t uVmcsField;
/** Whether host support of this field needs to be checked. */
bool fCheckSupport;
} const s_aVmcsFields[] =
{
{ "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
{ "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
{ "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
{ "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
{ "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
{ "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
{ "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
{ "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
{ "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
{ "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
{ "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
{ "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
{ "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
{ "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
{ "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
{ "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
{ "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
{ "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
{ "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
{ "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
{ "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
{ "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
{ "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
{ "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
{ "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
{ "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
{ "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
{ "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
/* The order of selector fields below are fixed! */
{ "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
{ "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
{ "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
{ "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
{ "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
{ "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
{ "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
/* End of ordered selector fields. */
{ "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
{ "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
{ "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
{ "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
{ "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
{ "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
{ "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
{ "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
};
RTGDTR HostGdtr;
ASMGetGDTR(&HostGdtr);
uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
for (uint32_t i = 0; i < cVmcsFields; i++)
{
uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
bool fSupported;
if (!s_aVmcsFields[i].fCheckSupport)
fSupported = true;
else
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
switch (uVmcsField)
{
case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hmr0.s.fNestedPaging; break;
case VMX_VMCS16_VPID: fSupported = pVM->hmr0.s.vmx.fVpid; break;
case VMX_VMCS32_CTRL_PROC_EXEC2:
fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
break;
default:
AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
}
}
if (fSupported)
{
uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
switch (uWidth)
{
case VMX_VMCSFIELD_WIDTH_16BIT:
{
uint16_t u16Val;
rc = VMXReadVmcs16(uVmcsField, &u16Val);
AssertRC(rc);
Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
&& uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
{
if (u16Val < HostGdtr.cbGdt)
{
/* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
"Host FS", "Host GS", "Host TR" };
uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
Assert(idxSel < RT_ELEMENTS(s_apszSel));
PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
}
else
Log4((" Selector value exceeds GDT limit!\n"));
}
break;
}
case VMX_VMCSFIELD_WIDTH_32BIT:
{
uint32_t u32Val;
rc = VMXReadVmcs32(uVmcsField, &u32Val);
AssertRC(rc);
Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
break;
}
case VMX_VMCSFIELD_WIDTH_64BIT:
case VMX_VMCSFIELD_WIDTH_NATURAL:
{
uint64_t u64Val;
rc = VMXReadVmcs64(uVmcsField, &u64Val);
AssertRC(rc);
Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
break;
}
}
}
}
Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
#endif /* VBOX_STRICT */
break;
}
default:
/* Impossible */
AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
break;
}
}
/**
* Sets up the usage of TSC-offsetting and updates the VMCS.
*
* If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
* VMX-preemption timer.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param idCurrentCpu The current CPU number.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, RTCPUID idCurrentCpu)
{
bool fOffsettedTsc;
bool fParavirtTsc;
uint64_t uTscOffset;
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
if (pVM->hmr0.s.vmx.fUsePreemptTimer)
{
/* The TMCpuTickGetDeadlineAndTscOffset function is expensive (calling it on
every entry slowed down the bs2-test1 CPUID testcase by ~33% (on an 10980xe). */
uint64_t cTicksToDeadline;
if ( idCurrentCpu == pVCpu->hmr0.s.idLastCpu
&& TMVirtualSyncIsCurrentDeadlineVersion(pVM, pVCpu->hmr0.s.vmx.uTscDeadlineVersion))
{
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadline);
fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
cTicksToDeadline = pVCpu->hmr0.s.vmx.uTscDeadline - SUPReadTsc();
if ((int64_t)cTicksToDeadline > 0)
{ /* hopefully */ }
else
{
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionReusingDeadlineExpired);
cTicksToDeadline = 0;
}
}
else
{
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadline);
cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc,
&pVCpu->hmr0.s.vmx.uTscDeadline,
&pVCpu->hmr0.s.vmx.uTscDeadlineVersion);
pVCpu->hmr0.s.vmx.uTscDeadline += cTicksToDeadline;
if (cTicksToDeadline >= 128)
{ /* hopefully */ }
else
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatVmxPreemptionRecalcingDeadlineExpired);
}
/* Make sure the returned values have sane upper and lower boundaries. */
uint64_t const u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second, 15.625ms. */ /** @todo r=bird: Once real+virtual timers move to separate thread, we can raise the upper limit (16ms isn't much). ASSUMES working poke cpu function. */
cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 32678); /* 1/32768th of a second, ~30us. */
cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
/** @todo r=ramshankar: We need to find a way to integrate nested-guest
* preemption timers here. We probably need to clamp the preemption timer,
* after converting the timer value to the host. */
uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
AssertRC(rc);
}
else
fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
if (fParavirtTsc)
{
/* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
information before every VM-entry, hence disable it for performance sake. */
#if 0
int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
AssertRC(rc);
#endif
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
}
if ( fOffsettedTsc
&& RT_LIKELY(!pVCpu->hmr0.s.fDebugWantRdTscExit))
{
if (pVmxTransient->fIsNestedGuest)
uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
}
else
{
/* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
}
}
/**
* Saves the guest state from the VMCS into the guest-CPU context.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param fWhat What to import, CPUMCTX_EXTRN_XXX.
*/
VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
{
AssertPtr(pVCpu);
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
return vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, fWhat);
}
/**
* Gets VMX VM-exit auxiliary information.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxExitAux Where to store the VM-exit auxiliary info.
* @param fWhat What to fetch, HMVMX_READ_XXX.
*/
VMMR0DECL(int) VMXR0GetExitAuxInfo(PVMCPUCC pVCpu, PVMXEXITAUX pVmxExitAux, uint32_t fWhat)
{
PVMXTRANSIENT pVmxTransient = pVCpu->hmr0.s.vmx.pVmxTransient;
if (RT_LIKELY(pVmxTransient))
{
AssertCompile(sizeof(fWhat) == sizeof(pVmxTransient->fVmcsFieldsRead));
/* The exit reason is always available. */
pVmxExitAux->uReason = pVmxTransient->uExitReason;
if (fWhat & HMVMX_READ_EXIT_QUALIFICATION)
{
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient);
pVmxExitAux->u64Qual = pVmxTransient->uExitQual;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_EXIT_QUALIFICATION;
#endif
}
if (fWhat & HMVMX_READ_IDT_VECTORING_INFO)
{
vmxHCReadToTransientSlow<HMVMX_READ_IDT_VECTORING_INFO>(pVCpu, pVmxTransient);
pVmxExitAux->uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_IDT_VECTORING_INFO;
#endif
}
if (fWhat & HMVMX_READ_IDT_VECTORING_ERROR_CODE)
{
vmxHCReadToTransientSlow<HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient);
pVmxExitAux->uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_IDT_VECTORING_ERROR_CODE;
#endif
}
if (fWhat & HMVMX_READ_EXIT_INSTR_LEN)
{
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient);
pVmxExitAux->cbInstr = pVmxTransient->cbExitInstr;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_EXIT_INSTR_LEN;
#endif
}
if (fWhat & HMVMX_READ_EXIT_INTERRUPTION_INFO)
{
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient);
pVmxExitAux->uExitIntInfo = pVmxTransient->uExitIntInfo;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_EXIT_INTERRUPTION_INFO;
#endif
}
if (fWhat & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE)
{
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE>(pVCpu, pVmxTransient);
pVmxExitAux->uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
#endif
}
if (fWhat & HMVMX_READ_EXIT_INSTR_INFO)
{
vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient);
pVmxExitAux->InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_EXIT_INSTR_INFO;
#endif
}
if (fWhat & HMVMX_READ_GUEST_LINEAR_ADDR)
{
vmxHCReadToTransientSlow<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient);
pVmxExitAux->u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_GUEST_LINEAR_ADDR;
#endif
}
if (fWhat & HMVMX_READ_GUEST_PHYSICAL_ADDR)
{
vmxHCReadToTransientSlow<HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient);
pVmxExitAux->u64GuestPhysAddr = pVmxTransient->uGuestPhysicalAddr;
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_GUEST_PHYSICAL_ADDR;
#endif
}
if (fWhat & HMVMX_READ_GUEST_PENDING_DBG_XCPTS)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
vmxHCReadToTransientSlow<HMVMX_READ_GUEST_PENDING_DBG_XCPTS>(pVCpu, pVmxTransient);
pVmxExitAux->u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
#else
pVmxExitAux->u64GuestPendingDbgXcpts = 0;
#endif
#ifdef VBOX_STRICT
fWhat &= ~HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
#endif
}
AssertMsg(!fWhat, ("fWhat=%#RX32 fVmcsFieldsRead=%#RX32\n", fWhat, pVmxTransient->fVmcsFieldsRead));
return VINF_SUCCESS;
}
return VERR_NOT_AVAILABLE;
}
/**
* Does the necessary state syncing before returning to ring-3 for any reason
* (longjmp, preemption, voluntary exits to ring-3) from VT-x.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param fImportState Whether to import the guest state from the VMCS back
* to the guest-CPU context.
*
* @remarks No-long-jmp zone!!!
*/
static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
RTCPUID const idCpu = RTMpCpuId();
Log4Func(("HostCpuId=%u\n", idCpu));
/*
* !!! IMPORTANT !!!
* If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
*/
/* Save the guest state if necessary. */
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
if (fImportState)
{
int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
AssertRCReturn(rc, rc);
}
/* Restore host FPU state if necessary. We will resync on next R0 reentry. */
CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
Assert(!CPUMIsGuestFPUStateActive(pVCpu));
/* Restore host debug registers if necessary. We will resync on next R0 reentry. */
#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX
Assert( (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
|| pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs
|| (!CPUMIsHyperDebugStateActive(pVCpu) && !pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx));
#else
Assert( (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
|| pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs
|| !CPUMIsHyperDebugStateActive(pVCpu));
#endif
CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
Assert(!CPUMIsGuestDebugStateActive(pVCpu));
Assert(!CPUMIsHyperDebugStateActive(pVCpu));
/* Restore host-state bits that VT-x only restores partially. */
if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
{
Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hmr0.s.vmx.fRestoreHostFlags, idCpu));
VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
}
pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
/* Restore the lazy host MSRs as we're leaving VT-x context. */
if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
{
/* We shouldn't restore the host MSRs without saving the guest MSRs first. */
if (!fImportState)
{
int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
AssertRCReturn(rc, rc);
}
hmR0VmxLazyRestoreHostMsrs(pVCpu);
Assert(!pVCpu->hmr0.s.vmx.fLazyMsrs);
}
else
pVCpu->hmr0.s.vmx.fLazyMsrs = 0;
/* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
/** @todo This partially defeats the purpose of having preemption hooks.
* The problem is, deregistering the hooks should be moved to a place that
* lasts until the EMT is about to be destroyed not everytime while leaving HM
* context.
*/
int rc = hmR0VmxClearVmcs(pVmcsInfo);
AssertRCReturn(rc, rc);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* A valid shadow VMCS is made active as part of VM-entry. It is necessary to
* clear a shadow VMCS before allowing that VMCS to become active on another
* logical processor. We may or may not be importing guest state which clears
* it, so cover for it here.
*
* See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
*/
if ( pVmcsInfo->pvShadowVmcs
&& pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
{
rc = vmxHCClearShadowVmcs(pVmcsInfo);
AssertRCReturn(rc, rc);
}
/*
* Flag that we need to re-export the host state if we switch to this VMCS before
* executing guest or nested-guest code.
*/
pVmcsInfo->idHostCpuState = NIL_RTCPUID;
#endif
Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
NOREF(idCpu);
return VINF_SUCCESS;
}
/**
* Leaves the VT-x session.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jmp zone!!!
*/
static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
{
HM_DISABLE_PREEMPT(pVCpu);
HMVMX_ASSERT_CPU_SAFE(pVCpu);
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
and done this from the VMXR0ThreadCtxCallback(). */
if (!pVCpu->hmr0.s.fLeaveDone)
{
int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
pVCpu->hmr0.s.fLeaveDone = true;
}
Assert(!pVCpu->cpum.GstCtx.fExtrn);
/*
* !!! IMPORTANT !!!
* If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
*/
/* Deregister hook now that we've left HM context before re-enabling preemption. */
/** @todo Deregistering here means we need to VMCLEAR always
* (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
* for calling VMMR0ThreadCtxHookDisable here! */
VMMR0ThreadCtxHookDisable(pVCpu);
/* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
int rc = HMR0LeaveCpu(pVCpu);
HM_RESTORE_PREEMPT();
return rc;
}
/**
* Take necessary actions before going back to ring-3.
*
* An action requires us to go back to ring-3. This function does the necessary
* steps before we can safely return to ring-3. This is not the same as longjmps
* to ring-3, this is voluntary and prepares the guest so it may continue
* executing outside HM (recompiler/IEM).
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param rcExit The reason for exiting to ring-3. Can be
* VINF_VMM_UNKNOWN_RING3_CALL.
*/
static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
{
HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
{
VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hmr0.s.idEnteredCpu;
/* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
}
/* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
VMMRZCallRing3Disable(pVCpu);
Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
/*
* Convert any pending HM events back to TRPM due to premature exits to ring-3.
* We need to do this only on returns to ring-3 and not for longjmps to ring3.
*
* This is because execution may continue from ring-3 and we would need to inject
* the event from there (hence place it back in TRPM).
*/
if (pVCpu->hm.s.Event.fPending)
{
vmxHCPendingEventToTrpmTrap(pVCpu);
Assert(!pVCpu->hm.s.Event.fPending);
/* Clear the events from the VMCS. */
int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
}
#ifdef VBOX_STRICT
/*
* We check for rcExit here since for errors like VERR_VMX_UNABLE_TO_START_VM (which are
* fatal), we don't care about verifying duplicate injection of events. Errors like
* VERR_EM_INTERPRET are converted to their VINF_* counterparts -prior- to calling this
* function so those should and will be checked below.
*/
else if (RT_SUCCESS(rcExit))
{
/*
* Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
* This can be pretty hard to debug otherwise, interrupts might get injected twice
* occasionally, see @bugref{9180#c42}.
*
* However, if the VM-entry failed, any VM entry-interruption info. field would
* be left unmodified as the event would not have been injected to the guest. In
* such cases, don't assert, we're not going to continue guest execution anyway.
*/
uint32_t uExitReason;
uint32_t uEntryIntInfo;
int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
AssertRC(rc);
AssertMsg(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo),
("uExitReason=%#RX32 uEntryIntInfo=%#RX32 rcExit=%d\n", uExitReason, uEntryIntInfo, VBOXSTRICTRC_VAL(rcExit)));
}
#endif
/*
* Clear the interrupt-window and NMI-window VMCS controls as we could have got
* a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
* (e.g. TPR below threshold).
*/
if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
{
vmxHCClearIntWindowExitVmcs(pVCpu, pVmcsInfo);
vmxHCClearNmiWindowExitVmcs(pVCpu, pVmcsInfo);
}
/* If we're emulating an instruction, we shouldn't have any TRPM traps pending
and if we're injecting an event we should have a TRPM trap pending. */
AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
#endif
/* Save guest state and restore host state bits. */
int rc = hmR0VmxLeaveSession(pVCpu);
AssertRCReturn(rc, rc);
STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
/* Thread-context hooks are unregistered at this point!!! */
/* Ring-3 callback notifications are unregistered at this point!!! */
/* Sync recompiler state. */
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
| CPUM_CHANGED_LDTR
| CPUM_CHANGED_GDTR
| CPUM_CHANGED_IDTR
| CPUM_CHANGED_TR
| CPUM_CHANGED_HIDDEN_SEL_REGS);
if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
&& CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
Assert(!pVCpu->hmr0.s.fClearTrapFlag);
/* Update the exit-to-ring 3 reason. */
pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
/* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
if ( rcExit != VINF_EM_RAW_INTERRUPT
|| CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
{
Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
VMMRZCallRing3Enable(pVCpu);
return rc;
}
/**
* VMMRZCallRing3() callback wrapper which saves the guest state before we
* longjump due to a ring-0 assertion.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMR0DECL(int) VMXR0AssertionCallback(PVMCPUCC pVCpu)
{
/*
* !!! IMPORTANT !!!
* If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
* This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
*/
VMMR0AssertionRemoveNotification(pVCpu);
VMMRZCallRing3Disable(pVCpu);
HM_DISABLE_PREEMPT(pVCpu);
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
/* Restore host-state bits that VT-x only restores partially. */
if (pVCpu->hmr0.s.vmx.fRestoreHostFlags > VMX_RESTORE_HOST_REQUIRED)
VMXRestoreHostState(pVCpu->hmr0.s.vmx.fRestoreHostFlags, &pVCpu->hmr0.s.vmx.RestoreHost);
pVCpu->hmr0.s.vmx.fRestoreHostFlags = 0;
/* Restore the lazy host MSRs as we're leaving VT-x context. */
if (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
hmR0VmxLazyRestoreHostMsrs(pVCpu);
/* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
/* Clear the current VMCS data back to memory (shadow VMCS if any would have been
cleared as part of importing the guest state above. */
hmR0VmxClearVmcs(pVmcsInfo);
/** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
VMMR0ThreadCtxHookDisable(pVCpu);
/* Leave HM context. This takes care of local init (term). */
HMR0LeaveCpu(pVCpu);
HM_RESTORE_PREEMPT();
return VINF_SUCCESS;
}
/**
* Enters the VT-x session.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
LogFlowFunc(("pVCpu=%p\n", pVCpu));
Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
== (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
#ifdef VBOX_STRICT
/* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
RTCCUINTREG uHostCr4 = ASMGetCR4();
if (!(uHostCr4 & X86_CR4_VMXE))
{
LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
return VERR_VMX_X86_CR4_VMXE_CLEARED;
}
#endif
/*
* Do the EMT scheduled L1D and MDS flush here if needed.
*/
if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
hmR0MdsClear();
/*
* Load the appropriate VMCS as the current and active one.
*/
PVMXVMCSINFO pVmcsInfo;
bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
if (!fInNestedGuestMode)
pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfo;
else
pVmcsInfo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
int rc = hmR0VmxLoadVmcs(pVmcsInfo);
if (RT_SUCCESS(rc))
{
pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fInNestedGuestMode;
pVCpu->hmr0.s.fLeaveDone = false;
Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
}
return rc;
}
/**
* The thread-context callback.
*
* This is used together with RTThreadCtxHookCreate() on platforms which
* supports it, and directly from VMMR0EmtPrepareForBlocking() and
* VMMR0EmtResumeAfterBlocking() on platforms which don't.
*
* @param enmEvent The thread-context event.
* @param pVCpu The cross context virtual CPU structure.
* @param fGlobalInit Whether global VT-x/AMD-V init. was used.
* @thread EMT(pVCpu)
*/
VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
{
AssertPtr(pVCpu);
RT_NOREF1(fGlobalInit);
switch (enmEvent)
{
case RTTHREADCTXEVENT_OUT:
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
VMCPU_ASSERT_EMT(pVCpu);
/* No longjmps (logger flushes, locks) in this fragile context. */
VMMRZCallRing3Disable(pVCpu);
Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
/* Restore host-state (FPU, debug etc.) */
if (!pVCpu->hmr0.s.fLeaveDone)
{
/*
* Do -not- import the guest-state here as we might already be in the middle of importing
* it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
*/
hmR0VmxLeave(pVCpu, false /* fImportState */);
pVCpu->hmr0.s.fLeaveDone = true;
}
/* Leave HM context, takes care of local init (term). */
int rc = HMR0LeaveCpu(pVCpu);
AssertRC(rc);
/* Restore longjmp state. */
VMMRZCallRing3Enable(pVCpu);
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
break;
}
case RTTHREADCTXEVENT_IN:
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
VMCPU_ASSERT_EMT(pVCpu);
/* Do the EMT scheduled L1D and MDS flush here if needed. */
if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_L1D_SCHED)
ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
else if (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_MDS_SCHED)
hmR0MdsClear();
/* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
VMMRZCallRing3Disable(pVCpu);
Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
/* Initialize the bare minimum state required for HM. This takes care of
initializing VT-x if necessary (onlined CPUs, local init etc.) */
int rc = hmR0EnterCpu(pVCpu);
AssertRC(rc);
Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
== (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
/* Load the active VMCS as the current one. */
PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
rc = hmR0VmxLoadVmcs(pVmcsInfo);
AssertRC(rc);
Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
pVCpu->hmr0.s.fLeaveDone = false;
/* Restore longjmp state. */
VMMRZCallRing3Enable(pVCpu);
break;
}
default:
break;
}
}
/**
* Exports the host state into the VMCS host-state area.
* Sets up the VM-exit MSR-load area.
*
* The CPU state will be loaded from these fields on every successful VM-exit.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
int rc = VINF_SUCCESS;
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
{
uint64_t uHostCr4 = hmR0VmxExportHostControlRegs();
rc = hmR0VmxExportHostSegmentRegs(pVCpu, uHostCr4);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
hmR0VmxExportHostMsrs(pVCpu);
pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
}
return rc;
}
/**
* Saves the host state in the VMCS host-state.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*
* @remarks No-long-jump zone!!!
*/
VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
/*
* Export the host state here while entering HM context.
* When thread-context hooks are used, we might get preempted and have to re-save the host
* state but most of the time we won't be, so do it here before we disable interrupts.
*/
return hmR0VmxExportHostState(pVCpu);
}
/**
* Exports the guest state into the VMCS guest-state area.
*
* The will typically be done before VM-entry when the guest-CPU state and the
* VMCS state may potentially be out of sync.
*
* Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
* VM-entry controls.
* Sets up the appropriate VMX non-root function to execute guest code based on
* the guest CPU mode.
*
* @returns VBox strict status code.
* @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
* without unrestricted guest execution and the VMMDev is not presently
* mapped (e.g. EFI32).
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
AssertPtr(pVCpu);
HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
LogFlowFunc(("pVCpu=%p\n", pVCpu));
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
/*
* Determine real-on-v86 mode.
* Used when the guest is in real-mode and unrestricted guest execution is not used.
*/
PVMXVMCSINFOSHARED pVmcsInfoShared = pVmxTransient->pVmcsInfo->pShared;
if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest
|| !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
pVmcsInfoShared->RealMode.fRealOnV86Active = false;
else
{
Assert(!pVmxTransient->fIsNestedGuest);
pVmcsInfoShared->RealMode.fRealOnV86Active = true;
}
/*
* Any ordering dependency among the sub-functions below must be explicitly stated using comments.
* Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
*/
int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
if (rcStrict == VINF_SUCCESS)
{ /* likely */ }
else
{
Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
return rcStrict;
}
rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
vmxHCExportGuestRip(pVCpu);
hmR0VmxExportGuestRsp(pVCpu);
vmxHCExportGuestRflags(pVCpu, pVmxTransient);
rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
/* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
| HM_CHANGED_GUEST_CR2
| (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
| HM_CHANGED_GUEST_X87
| HM_CHANGED_GUEST_SSE_AVX
| HM_CHANGED_GUEST_OTHER_XSAVE
| HM_CHANGED_GUEST_XCRx
| HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
| HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
| HM_CHANGED_GUEST_TSC_AUX
| HM_CHANGED_GUEST_OTHER_MSRS
| (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
return rc;
}
/**
* Exports the state shared between the host and guest into the VMCS.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
{
int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
AssertRC(rc);
pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
/* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
vmxHCExportGuestRflags(pVCpu, pVmxTransient);
}
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
{
hmR0VmxLazyLoadGuestMsrs(pVCpu);
pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
}
AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
}
/**
* Worker for loading the guest-state bits in the inner VT-x execution loop.
*
* @returns Strict VBox status code (i.e. informational status codes too).
* @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
* without unrestricted guest execution and the VMMDev is not presently
* mapped (e.g. EFI32).
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks No-long-jump zone!!!
*/
static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
#endif
/*
* For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
* changes. First try to export only these without going through all other changed-flag checks.
*/
VBOXSTRICTRC rcStrict;
uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
/* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
if ( (fCtxChanged & fMinimalMask)
&& !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
{
vmxHCExportGuestRip(pVCpu);
hmR0VmxExportGuestRsp(pVCpu);
vmxHCExportGuestRflags(pVCpu, pVmxTransient);
rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
}
/* If anything else also changed, go through the full export routine and export as required. */
else if (fCtxChanged & fCtxMask)
{
rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
if (RT_LIKELY(rcStrict == VINF_SUCCESS))
{ /* likely */}
else
{
AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
VBOXSTRICTRC_VAL(rcStrict)));
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
return rcStrict;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
}
/* Nothing changed, nothing to load here. */
else
rcStrict = VINF_SUCCESS;
#ifdef VBOX_STRICT
/* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
#endif
return rcStrict;
}
/**
* Map the APIC-access page for virtualizing APIC accesses.
*
* This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
* this not done as part of exporting guest state, see @bugref{8721}.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param GCPhysApicBase The guest-physical address of the APIC access page.
*/
static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu, RTGCPHYS GCPhysApicBase)
{
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
Assert(GCPhysApicBase);
LogFunc(("Mapping HC APIC-access page at %#RGp\n", GCPhysApicBase));
/* Unalias the existing mapping. */
int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
AssertRCReturn(rc, rc);
/* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
Assert(pVM->hmr0.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hmr0.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
AssertRCReturn(rc, rc);
return VINF_SUCCESS;
}
/**
* Worker function passed to RTMpOnSpecific() that is to be called on the target
* CPU.
*
* @param idCpu The ID for the CPU the function is called on.
* @param pvUser1 Null, not used.
* @param pvUser2 Null, not used.
*/
static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
RT_NOREF3(idCpu, pvUser1, pvUser2);
VMXDispatchHostNmi();
}
/**
* Dispatching an NMI on the host CPU that received it.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
* executing when receiving the host NMI in VMX non-root
* operation.
*/
static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
{
RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
Assert(idCpu != NIL_RTCPUID);
/*
* We don't want to delay dispatching the NMI any more than we have to. However,
* we have already chosen -not- to dispatch NMIs when interrupts were still disabled
* after executing guest or nested-guest code for the following reasons:
*
* - We would need to perform VMREADs with interrupts disabled and is orders of
* magnitude worse when we run as a nested hypervisor without VMCS shadowing
* supported by the host hypervisor.
*
* - It affects the common VM-exit scenario and keeps interrupts disabled for a
* longer period of time just for handling an edge case like host NMIs which do
* not occur nearly as frequently as other VM-exits.
*
* Let's cover the most likely scenario first. Check if we are on the target CPU
* and dispatch the NMI right away. This should be much faster than calling into
* RTMpOnSpecific() machinery.
*/
bool fDispatched = false;
RTCCUINTREG const fEFlags = ASMIntDisableFlags();
if (idCpu == RTMpCpuId())
{
VMXDispatchHostNmi();
fDispatched = true;
}
ASMSetFlags(fEFlags);
if (fDispatched)
{
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
return VINF_SUCCESS;
}
/*
* RTMpOnSpecific() waits until the worker function has run on the target CPU. So
* there should be no race or recursion even if we are unlucky enough to be preempted
* (to the target CPU) without dispatching the host NMI above.
*/
STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Merges the guest with the nested-guest MSR bitmap in preparation of executing the
* nested-guest using hardware-assisted VMX.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmcsInfoNstGst The nested-guest VMCS info. object.
* @param pVmcsInfoGst The guest VMCS info. object.
*/
static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
{
uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
Assert(pu64MsrBitmap);
/*
* We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
* MSR that is intercepted by the guest is also intercepted while executing the
* nested-guest using hardware-assisted VMX.
*
* Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
* nested-guest VM-exit even if the outer guest is not intercepting some
* MSRs. We cannot assume the caller has initialized the nested-guest
* MSR bitmap in this case.
*
* The nested hypervisor may also switch whether it uses MSR bitmaps for
* each of its VM-entry, hence initializing it once per-VM while setting
* up the nested-guest VMCS is not sufficient.
*/
PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
{
uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0];
uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
Assert(pu64MsrBitmapNstGst);
Assert(pu64MsrBitmapGst);
/** @todo Detect and use EVEX.POR? */
uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
for (uint32_t i = 0; i < cFrags; i++)
pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
}
else
ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
}
/**
* Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
* hardware-assisted VMX execution of the nested-guest.
*
* For a guest, we don't modify these controls once we set up the VMCS and hence
* this function is never called.
*
* For nested-guests since the nested hypervisor provides these controls on every
* nested-guest VM-entry and could potentially change them everytime we need to
* merge them before every nested-guest VM-entry.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
*/
static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
{
PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
/*
* Merge the controls with the requirements of the guest VMCS.
*
* We do not need to validate the nested-guest VMX features specified in the nested-guest
* VMCS with the features supported by the physical CPU as it's already done by the
* VMLAUNCH/VMRESUME instruction emulation.
*
* This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
* derived from the VMX features supported by the physical CPU.
*/
/* Pin-based VM-execution controls. */
uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
/* Processor-based VM-execution controls. */
uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
| (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
| VMX_PROC_CTLS_NMI_WINDOW_EXIT
| VMX_PROC_CTLS_MOV_DR_EXIT /* hmR0VmxExportSharedDebugState makes
sure guest DRx regs are loaded. */
| VMX_PROC_CTLS_USE_TPR_SHADOW
| VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
/* Secondary processor-based VM-execution controls. */
uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
| (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
| VMX_PROC_CTLS2_INVPCID
| VMX_PROC_CTLS2_VMCS_SHADOWING
| VMX_PROC_CTLS2_RDTSCP
| VMX_PROC_CTLS2_XSAVES_XRSTORS
| VMX_PROC_CTLS2_APIC_REG_VIRT
| VMX_PROC_CTLS2_VIRT_INT_DELIVERY
| VMX_PROC_CTLS2_VMFUNC));
/*
* VM-entry controls:
* These controls contains state that depends on the nested-guest state (primarily
* EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
* VM-exit. Although the nested hypervisor cannot change it, we need to in order to
* properly continue executing the nested-guest if the EFER MSR changes but does not
* cause a nested-guest VM-exits.
*
* VM-exit controls:
* These controls specify the host state on return. We cannot use the controls from
* the nested hypervisor state as is as it would contain the guest state rather than
* the host state. Since the host state is subject to change (e.g. preemption, trips
* to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
* through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
*
* VM-entry MSR-load:
* The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
* context by the VMLAUNCH/VMRESUME instruction emulation.
*
* VM-exit MSR-store:
* The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
* back into the VM-exit MSR-store area.
*
* VM-exit MSR-load areas:
* This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
* can entirely ignore what the nested hypervisor wants to load here.
*/
/*
* Exception bitmap.
*
* We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
* here (and avoid doing anything while exporting nested-guest state), but to keep the
* code more flexible if intercepting exceptions become more dynamic in the future we do
* it as part of exporting the nested-guest state.
*/
uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
/*
* CR0/CR4 guest/host mask.
*
* Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
* cause VM-exits, so we need to merge them here.
*/
uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
/*
* Page-fault error-code mask and match.
*
* Although we require unrestricted guest execution (and thereby nested-paging) for
* hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
* normally intercept #PFs, it might intercept them for debugging purposes.
*
* If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
* If the outer guest is intercepting #PFs, we must intercept all #PFs.
*/
uint32_t u32XcptPFMask;
uint32_t u32XcptPFMatch;
if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
{
u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
}
else
{
u32XcptPFMask = 0;
u32XcptPFMatch = 0;
}
/*
* Pause-Loop exiting.
*/
/** @todo r=bird: given that both pVM->hm.s.vmx.cPleGapTicks and
* pVM->hm.s.vmx.cPleWindowTicks defaults to zero, I cannot see how
* this will work... */
uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
/*
* Pending debug exceptions.
* Currently just copy whatever the nested-guest provides us.
*/
uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
/*
* I/O Bitmap.
*
* We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
* intercept all I/O port accesses.
*/
Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
/*
* VMCS shadowing.
*
* We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
* enabled while executing the nested-guest.
*/
Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
/*
* APIC-access page.
*/
RTHCPHYS HCPhysApicAccess;
if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
{
Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
void *pvPage;
PGMPAGEMAPLOCK PgLockApicAccess;
int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
if (RT_SUCCESS(rc))
{
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
/** @todo Handle proper releasing of page-mapping lock later. */
PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
}
else
return rc;
}
else
HCPhysApicAccess = 0;
/*
* Virtual-APIC page and TPR threshold.
*/
RTHCPHYS HCPhysVirtApic;
uint32_t u32TprThreshold;
if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
{
Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
void *pvPage;
PGMPAGEMAPLOCK PgLockVirtApic;
int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
if (RT_SUCCESS(rc))
{
rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
/** @todo Handle proper releasing of page-mapping lock later. */
PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
}
else
return rc;
u32TprThreshold = pVmcsNstGst->u32TprThreshold;
}
else
{
HCPhysVirtApic = 0;
u32TprThreshold = 0;
/*
* We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
* used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
* be taken care of by EPT/shadow paging.
*/
if (pVM->hmr0.s.fAllow64BitGuests)
u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
| VMX_PROC_CTLS_CR8_LOAD_EXIT;
}
/*
* Validate basic assumptions.
*/
PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
Assert(pVM->hmr0.s.vmx.fUnrestrictedGuest);
Assert(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
/*
* Commit it to the nested-guest VMCS.
*/
int rc = VINF_SUCCESS;
if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
&& (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
{
Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
}
if (pVmcsInfoNstGst->HCPhysVirtApic != HCPhysVirtApic)
rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
AssertRC(rc);
/*
* Update the nested-guest VMCS cache.
*/
pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
/*
* We need to flush the TLB if we are switching the APIC-access page address.
* See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
*/
if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
/*
* MSR bitmap.
*
* The MSR bitmap address has already been initialized while setting up the nested-guest
* VMCS, here we need to merge the MSR bitmaps.
*/
if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
return VINF_SUCCESS;
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
/**
* Does the preparations before executing guest code in VT-x.
*
* This may cause longjmps to ring-3 and may even result in rescheduling to the
* recompiler/IEM. We must be cautious what we do here regarding committing
* guest-state information into the VMCS assuming we assuredly execute the
* guest in VT-x mode.
*
* If we fall back to the recompiler/IEM after updating the VMCS and clearing
* the common-state (TRPM/forceflags), we must undo those changes so that the
* recompiler/IEM can (and should) use them when it resumes guest execution.
* Otherwise such operations must be done when we can no longer exit to ring-3.
*
* @returns Strict VBox status code (i.e. informational status codes too).
* @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
* have been disabled.
* @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
* pending events).
* @retval VINF_EM_RESET if a triple-fault occurs while injecting a
* double-fault into the guest.
* @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
* dispatched directly.
* @retval VINF_* scheduling changes, we have to go back to ring-3.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param fStepping Whether we are single-stepping the guest in the
* hypervisor debugger. Makes us ignore some of the reasons
* for returning to ring-3, and return VINF_EM_DBG_STEPPED
* if event dispatching took place.
*/
static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
{
Assert(VMMRZCallRing3IsEnabled(pVCpu));
Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
if (pVmxTransient->fIsNestedGuest)
{
RT_NOREF2(pVCpu, fStepping);
Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
return VINF_EM_RESCHEDULE_REM;
}
#endif
/*
* Check and process force flag actions, some of which might require us to go back to ring-3.
*/
VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, pVmxTransient->fIsNestedGuest, fStepping);
if (rcStrict == VINF_SUCCESS)
{
/* FFs don't get set all the time. */
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
if ( pVmxTransient->fIsNestedGuest
&& !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
return VINF_VMX_VMEXIT;
}
#endif
}
else
return rcStrict;
/*
* Virtualize memory-mapped accesses to the physical APIC (may take locks).
*/
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
&& (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
&& PDMHasApic(pVM))
{
/* Get the APIC base MSR from the virtual APIC device. */
uint64_t const uApicBaseMsr = APICGetBaseMsrNoCheck(pVCpu);
/* Map the APIC access page. */
int rc = hmR0VmxMapHCApicAccessPage(pVCpu, uApicBaseMsr & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
AssertRCReturn(rc, rc);
/* Update the per-VCPU cache of the APIC base MSR corresponding to the mapped APIC access page. */
pVCpu->hm.s.vmx.u64GstMsrApicBase = uApicBaseMsr;
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* Merge guest VMCS controls with the nested-guest VMCS controls.
*
* Even if we have not executed the guest prior to this (e.g. when resuming from a
* saved state), we should be okay with merging controls as we initialize the
* guest VMCS controls as part of VM setup phase.
*/
if ( pVmxTransient->fIsNestedGuest
&& !pVCpu->hm.s.vmx.fMergedNstGstCtls)
{
int rc = hmR0VmxMergeVmcsNested(pVCpu);
AssertRCReturn(rc, rc);
pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
}
#endif
/*
* Evaluate events to be injected into the guest.
*
* Events in TRPM can be injected without inspecting the guest state.
* If any new events (interrupts/NMI) are pending currently, we try to set up the
* guest to cause a VM-exit the next time they are ready to receive the event.
*/
if (TRPMHasTrap(pVCpu))
vmxHCTrpmTrapToPendingEvent(pVCpu);
uint32_t fIntrState;
rcStrict = vmxHCEvaluatePendingEvent(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->fIsNestedGuest,
&fIntrState);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* While evaluating pending events if something failed (unlikely) or if we were
* preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
*/
if (rcStrict != VINF_SUCCESS)
return rcStrict;
if ( pVmxTransient->fIsNestedGuest
&& !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
return VINF_VMX_VMEXIT;
}
#else
Assert(rcStrict == VINF_SUCCESS);
#endif
/*
* Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
* needs to be done with longjmps or interrupts + preemption enabled. Event injection might
* also result in triple-faulting the VM.
*
* With nested-guests, the above does not apply since unrestricted guest execution is a
* requirement. Regardless, we do this here to avoid duplicating code elsewhere.
*/
rcStrict = vmxHCInjectPendingEvent(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->fIsNestedGuest,
fIntrState, fStepping);
if (RT_LIKELY(rcStrict == VINF_SUCCESS))
{ /* likely */ }
else
{
AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
return rcStrict;
}
/*
* A longjump might result in importing CR3 even for VM-exits that don't necessarily
* import CR3 themselves. We will need to update them here, as even as late as the above
* hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
* the below force flags to be set.
*/
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
{
Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/* Paranoia. */
Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
#endif
/*
* No longjmps to ring-3 from this point on!!!
* Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
* This also disables flushing of the R0-logger instance (if any).
*/
VMMRZCallRing3Disable(pVCpu);
/*
* Export the guest state bits.
*
* We cannot perform longjmps while loading the guest state because we do not preserve the
* host/guest state (although the VMCS will be preserved) across longjmps which can cause
* CPU migration.
*
* If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
* registers. Hence, exporting of the guest state needs to be done -after- injection of events.
*/
rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
if (RT_LIKELY(rcStrict == VINF_SUCCESS))
{ /* likely */ }
else
{
VMMRZCallRing3Enable(pVCpu);
return rcStrict;
}
/*
* We disable interrupts so that we don't miss any interrupts that would flag preemption
* (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
* preemption disabled for a while. Since this is purely to aid the
* RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
* disable interrupt on NT.
*
* We need to check for force-flags that could've possible been altered since we last
* checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
* see @bugref{6398}).
*
* We also check a couple of other force-flags as a last opportunity to get the EMT back
* to ring-3 before executing guest code.
*/
pVmxTransient->fEFlags = ASMIntDisableFlags();
if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
&& !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|| ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
&& !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
{
if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* If we are executing a nested-guest make sure that we should intercept subsequent
* events. The one we are injecting might be part of VM-entry. This is mainly to keep
* the VM-exit instruction emulation happy.
*/
if (pVmxTransient->fIsNestedGuest)
CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
#endif
/*
* We've injected any pending events. This is really the point of no return (to ring-3).
*
* Note! The caller expects to continue with interrupts & longjmps disabled on successful
* returns from this function, so do -not- enable them here.
*/
pVCpu->hm.s.Event.fPending = false;
return VINF_SUCCESS;
}
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
rcStrict = VINF_EM_RAW_INTERRUPT;
}
else
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
rcStrict = VINF_EM_RAW_TO_R3;
}
ASMSetFlags(pVmxTransient->fEFlags);
VMMRZCallRing3Enable(pVCpu);
return rcStrict;
}
/**
* Final preparations before executing guest code using hardware-assisted VMX.
*
* We can no longer get preempted to a different host CPU and there are no returns
* to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
* failures), this function is not intended to fail sans unrecoverable hardware
* errors.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
*
* @remarks Called with preemption disabled.
* @remarks No-long-jump zone!!!
*/
static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
Assert(!pVCpu->hm.s.Event.fPending);
/*
* Indicate start of guest execution and where poking EMT out of guest-context is recognized.
*/
VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
PVMCC pVM = pVCpu->CTX_SUFF(pVM);
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
RTCPUID const idCurrentCpu = pHostCpu->idCpu;
if (!CPUMIsGuestFPUStateActive(pVCpu))
{
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
}
/*
* Re-export the host state bits as we may've been preempted (only happens when
* thread-context hooks are used or when the VM start function changes) or if
* the host CR0 is modified while loading the guest FPU state above.
*
* The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
* changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
* see @bugref{8432}.
*
* This may also happen when switching to/from a nested-guest VMCS without leaving
* ring-0.
*/
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
{
hmR0VmxExportHostState(pVCpu);
STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
}
Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
/*
* Export the state shared between host and guest (FPU, debug, lazy MSRs).
*/
if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
hmR0VmxExportSharedState(pVCpu, pVmxTransient);
AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
/*
* Store status of the shared guest/host debug state at the time of VM-entry.
*/
pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
/*
* Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
* more than one conditional check. The post-run side of our code shall determine
* if it needs to sync. the virtual APIC TPR with the TPR-shadow.
*/
if (pVmcsInfo->pbVirtApic)
pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
/*
* Update the host MSRs values in the VM-exit MSR-load area.
*/
if (!pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs)
{
if (pVmcsInfo->cExitMsrLoad > 0)
hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = true;
}
/*
* Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
* VMX-preemption timer based on the next virtual sync clock deadline.
*/
if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
|| idCurrentCpu != pVCpu->hmr0.s.idLastCpu)
{
hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient, idCurrentCpu);
pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
}
/* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
if (!fIsRdtscIntercepted)
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
else
STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
Assert(idCurrentCpu == pVCpu->hmr0.s.idLastCpu);
pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
as we're about to start executing the guest. */
/*
* Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
*
* This is done this late as updating the TSC offsetting/preemption timer above
* figures out if we can skip intercepting RDTSCP by calculating the number of
* host CPU ticks till the next virtual sync deadline (for the dynamic case).
*/
if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
&& !fIsRdtscIntercepted)
{
vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
/* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
true /* fSetReadWrite */, true /* fUpdateHostMsr */);
AssertRC(rc);
Assert(!pVmxTransient->fRemoveTscAuxMsr);
pVmxTransient->fRemoveTscAuxMsr = true;
}
#ifdef VBOX_STRICT
Assert(pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs);
hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
hmR0VmxCheckHostEferMsr(pVmcsInfo);
AssertRC(vmxHCCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
#endif
#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
/** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
* Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
* see @bugref{9180#c54}. */
uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
#endif
}
/**
* First C routine invoked after running guest code using hardware-assisted VMX.
*
* @param pVCpu The cross context virtual CPU structure.
* @param pVmxTransient The VMX-transient structure.
* @param rcVMRun Return code of VMLAUNCH/VMRESUME.
*
* @remarks Called with interrupts disabled, and returns with interrupts enabled!
*
* @remarks No-long-jump zone!!! This function will however re-enable longjmps
* unconditionally when it is safe to do so.
*/
static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
{
ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
{
uint64_t uGstTsc;
if (!pVmxTransient->fIsNestedGuest)
uGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
else
{
uint64_t const uNstGstTsc = pVCpu->hmr0.s.uTscExit + pVmcsInfo->u64TscOffset;
uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
}
TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
}
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
pVCpu->hmr0.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
#ifdef VBOX_STRICT
hmR0VmxCheckHostEferMsr(pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
#endif
Assert(!ASMIntAreEnabled());
ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
Assert(!VMMRZCallRing3IsEnabled(pVCpu));
#ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
/*
* Clean all the VMCS fields in the transient structure before reading
* anything from the VMCS.
*/
pVmxTransient->uExitReason = 0;
pVmxTransient->uExitIntErrorCode = 0;
pVmxTransient->uExitQual = 0;
pVmxTransient->uGuestLinearAddr = 0;
pVmxTransient->uExitIntInfo = 0;
pVmxTransient->cbExitInstr = 0;
pVmxTransient->ExitInstrInfo.u = 0;
pVmxTransient->uEntryIntInfo = 0;
pVmxTransient->uEntryXcptErrorCode = 0;
pVmxTransient->cbEntryInstr = 0;
pVmxTransient->uIdtVectoringInfo = 0;
pVmxTransient->uIdtVectoringErrorCode = 0;
#endif
/*
* Save the basic VM-exit reason and check if the VM-entry failed.
* See Intel spec. 24.9.1 "Basic VM-exit Information".
*/
uint32_t uExitReason;
int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
AssertRC(rc);
pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
/*
* Log the VM-exit before logging anything else as otherwise it might be a
* tad confusing what happens before and after the world-switch.
*/
HMVMX_LOG_EXIT(pVCpu, uExitReason);
/*
* Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
* bitmap permissions, if it was added before VM-entry.
*/
if (pVmxTransient->fRemoveTscAuxMsr)
{
hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
pVmxTransient->fRemoveTscAuxMsr = false;
}
/*
* Check if VMLAUNCH/VMRESUME succeeded.
* If this failed, we cause a guru meditation and cease further execution.
*/
if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
{
/*
* Update the VM-exit history array here even if the VM-entry failed due to:
* - Invalid guest state.
* - MSR loading.
* - Machine-check event.
*
* In any of the above cases we will still have a "valid" VM-exit reason
* despite @a fVMEntryFailed being false.
*
* See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
*
* Note! We don't have CS or RIP at this point. Will probably address that later
* by amending the history entry added here.
*/
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
UINT64_MAX, pVCpu->hmr0.s.uTscExit);
if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
{
VMMRZCallRing3Enable(pVCpu);
Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
vmxHCReadAllRoFieldsVmcs(pVCpu, pVmxTransient);
#endif
/*
* Always import the guest-interruptibility state as we need it while evaluating
* injecting events on re-entry. We could in *theory* postpone reading it for
* exits that does not involve instruction emulation, but since most exits are
* for instruction emulation (exceptions being external interrupts, shadow
* paging building page faults and EPT violations, and interrupt window stuff)
* this is a reasonable simplification.
*
* We don't import CR0 (when unrestricted guest execution is unavailable) despite
* checking for real-mode while exporting the state because all bits that cause
* mode changes wrt CR0 are intercepted.
*
* Note! This mask _must_ match the default value for the default a_fDonePostExit
* value for the vmxHCImportGuestState template!
*/
/** @todo r=bird: consider dropping the INHIBIT_XXX and fetch the state
* explicitly in the exit handlers and injection function. That way we have
* fewer clusters of vmread spread around the code, because the EM history
* executor won't execute very many non-exiting instructions before stopping. */
rc = vmxHCImportGuestState< CPUMCTX_EXTRN_INHIBIT_INT
| CPUMCTX_EXTRN_INHIBIT_NMI
#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
| HMVMX_CPUMCTX_EXTRN_ALL
#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
| CPUMCTX_EXTRN_RFLAGS
#endif
, 0 /*a_fDoneLocal*/, 0 /*a_fDonePostExit*/>(pVCpu, pVmcsInfo, __FUNCTION__);
AssertRC(rc);
/*
* Sync the TPR shadow with our APIC state.
*/
if ( !pVmxTransient->fIsNestedGuest
&& (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
{
Assert(pVmcsInfo->pbVirtApic);
if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
{
rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
AssertRC(rc);
ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
}
}
Assert(VMMRZCallRing3IsEnabled(pVCpu));
Assert( pVmxTransient->fWasGuestDebugStateActive == false
|| pVmxTransient->fWasHyperDebugStateActive == false);
return;
}
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
else if (pVmxTransient->fIsNestedGuest)
AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
#endif
else
Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
VMMRZCallRing3Enable(pVCpu);
}
/**
* Runs the guest code using hardware-assisted VMX the normal way.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pcLoops Pointer to the number of executed loops.
*/
static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
{
uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
Assert(pcLoops);
Assert(*pcLoops <= cMaxResumeLoops);
Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/*
* Switch to the guest VMCS as we may have transitioned from executing the nested-guest
* without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
* guest VMCS while entering the VMX ring-0 session.
*/
if (pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
{
int rc = vmxHCSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
{
LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
return rc;
}
}
#endif
VMXTRANSIENT VmxTransient;
RT_ZERO(VmxTransient);
VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
/* Paranoia. */
Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfo);
VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
for (;;)
{
Assert(!HMR0SuspendPending());
HMVMX_ASSERT_CPU_SAFE(pVCpu);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
/*
* Preparatory work for running nested-guest code, this may force us to
* return to ring-3.
*
* Warning! This bugger disables interrupts on VINF_SUCCESS!
*/
rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
if (rcStrict != VINF_SUCCESS)
break;
/* Interrupts are disabled at this point! */
hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
/* Interrupts are re-enabled at this point! */
/*
* Check for errors with running the VM (VMLAUNCH/VMRESUME).
*/
if (RT_SUCCESS(rcRun))
{ /* very likely */ }
else
{
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
return rcRun;
}
/*
* Profile the VM-exit.
*/
AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
HMVMX_START_EXIT_DISPATCH_PROF();
VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
/*
* Handle the VM-exit.
*/
#ifdef HMVMX_USE_FUNCTION_TABLE
rcStrict = g_aVMExitHandlers[VmxTransient.uExitReason].pfn(pVCpu, &VmxTransient);
#else
rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
#endif
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
if (rcStrict == VINF_SUCCESS)
{
if (++(*pcLoops) <= cMaxResumeLoops)
continue;
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
rcStrict = VINF_EM_RAW_INTERRUPT;
}
break;
}
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
return rcStrict;
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
/**
* Runs the nested-guest code using hardware-assisted VMX.
*
* @returns VBox status code.
* @param pVCpu The cross context virtual CPU structure.
* @param pcLoops Pointer to the number of executed loops.
*
* @sa hmR0VmxRunGuestCodeNormal.
*/
static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
{
uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
Assert(pcLoops);
Assert(*pcLoops <= cMaxResumeLoops);
Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
/*
* Switch to the nested-guest VMCS as we may have transitioned from executing the
* guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
* loaded the nested-guest VMCS while entering the VMX ring-0 session.
*/
if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs)
{
int rc = vmxHCSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
if (RT_SUCCESS(rc))
{ /* likely */ }
else
{
LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
return rc;
}
}
VMXTRANSIENT VmxTransient;
RT_ZERO(VmxTransient);
VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
VmxTransient.fIsNestedGuest = true;
/* Paranoia. */
Assert(VmxTransient.pVmcsInfo == &pVCpu->hmr0.s.vmx.VmcsInfoNstGst);
/* Setup pointer so PGM/IEM can query VM-exit auxiliary info on demand in ring-0. */
pVCpu->hmr0.s.vmx.pVmxTransient = &VmxTransient;
VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
for (;;)
{
Assert(!HMR0SuspendPending());
HMVMX_ASSERT_CPU_SAFE(pVCpu);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
/*
* Preparatory work for running guest code, this may force us to
* return to ring-3.
*
* Warning! This bugger disables interrupts on VINF_SUCCESS!
*/
rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
if (rcStrict != VINF_SUCCESS)
break;
/* Interrupts are disabled at this point! */
hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
/* Interrupts are re-enabled at this point! */
/*
* Check for errors with running the VM (VMLAUNCH/VMRESUME).
*/
if (RT_SUCCESS(rcRun))
{ /* very likely */ }
else
{
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
rcStrict = rcRun;
break;
}
/*
* Profile the VM-exit.
*/
AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
HMVMX_START_EXIT_DISPATCH_PROF();
VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
/*
* Handle the VM-exit.
*/
rcStrict = vmxHCHandleExitNested(pVCpu, &VmxTransient);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
if (rcStrict == VINF_SUCCESS)
{
if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
rcStrict = VINF_VMX_VMEXIT;
}
else
{
if (++(*pcLoops) <= cMaxResumeLoops)
continue;
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
rcStrict = VINF_EM_RAW_INTERRUPT;
}
}
else
Assert(rcStrict != VINF_VMX_VMEXIT);
break;
}
/* Ensure VM-exit auxiliary info. is no longer available. */
pVCpu->hmr0.s.vmx.pVmxTransient = NULL;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
return rcStrict;
}
#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
* probes.
*
* The following few functions and associated structure contains the bloat
* necessary for providing detailed debug events and dtrace probes as well as
* reliable host side single stepping. This works on the principle of
* "subclassing" the normal execution loop and workers. We replace the loop
* method completely and override selected helpers to add necessary adjustments
* to their core operation.
*
* The goal is to keep the "parent" code lean and mean, so as not to sacrifice
* any performance for debug and analysis features.
*
* @{
*/
/**
* Single steps guest code using hardware-assisted VMX.
*
* This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
* but single-stepping through the hypervisor debugger.
*
* @returns Strict VBox status code (i.e. informational status codes too).
* @param pVCpu The cross context virtual CPU structure.
* @param pcLoops Pointer to the number of executed loops.
*
* @note Mostly the same as hmR0VmxRunGuestCodeNormal().
*/
static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
{
uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
Assert(pcLoops);
Assert(*pcLoops <= cMaxResumeLoops);
VMXTRANSIENT VmxTransient;
RT_ZERO(VmxTransient);
VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
/* Set HMCPU indicators. */
bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
pVCpu->hmr0.s.fDebugWantRdTscExit = false;
pVCpu->hmr0.s.fUsingDebugLoop = true;
/* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
VMXRUNDBGSTATE DbgState;
vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
/*
* The loop.
*/
VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
for (;;)
{
Assert(!HMR0SuspendPending());
HMVMX_ASSERT_CPU_SAFE(pVCpu);
STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
bool fStepping = pVCpu->hm.s.fSingleInstruction;
/* Set up VM-execution controls the next two can respond to. */
vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
/*
* Preparatory work for running guest code, this may force us to
* return to ring-3.
*
* Warning! This bugger disables interrupts on VINF_SUCCESS!
*/
rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
if (rcStrict != VINF_SUCCESS)
break;
/* Interrupts are disabled at this point! */
hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
/* Override any obnoxious code in the above two calls. */
vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
/*
* Finally execute the guest.
*/
int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
/* Interrupts are re-enabled at this point! */
/* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
if (RT_SUCCESS(rcRun))
{ /* very likely */ }
else
{
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
return rcRun;
}
/* Profile the VM-exit. */
AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
STAM_COUNTER_INC(&pVCpu->hm.s.StatDebugExitAll);
STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
HMVMX_START_EXIT_DISPATCH_PROF();
VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
/*
* Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
*/
rcStrict = vmxHCRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
if (rcStrict != VINF_SUCCESS)
break;
if (++(*pcLoops) > cMaxResumeLoops)
{
STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
rcStrict = VINF_EM_RAW_INTERRUPT;
break;
}
/*
* Stepping: Did the RIP change, if so, consider it a single step.
* Otherwise, make sure one of the TFs gets set.
*/
if (fStepping)
{
int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
AssertRC(rc);
if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
|| pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
{
rcStrict = VINF_EM_DBG_STEPPED;
break;
}
ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
}
/*
* Update when dtrace settings changes (DBGF kicks us, so no need to check).
*/
if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
/* Restore all controls applied by hmR0VmxPreRunGuestDebugStateApply above. */
rcStrict = vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
Assert(rcStrict == VINF_SUCCESS);
}
/*
* Clear the X86_EFL_TF if necessary.
*/
if (pVCpu->hmr0.s.fClearTrapFlag)
{
int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
AssertRC(rc);
pVCpu->hmr0.s.fClearTrapFlag = false;
pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
}
/** @todo there seems to be issues with the resume flag when the monitor trap
* flag is pending without being used. Seen early in bios init when
* accessing APIC page in protected mode. */
/** @todo we need to do hmR0VmxRunDebugStateRevert here too, in case we broke
* out of the above loop. */
/* Restore HMCPU indicators. */
pVCpu->hmr0.s.fUsingDebugLoop = false;
pVCpu->hmr0.s.fDebugWantRdTscExit = false;
pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
return rcStrict;
}
/** @} */
/**
* Checks if any expensive dtrace probes are enabled and we should go to the
* debug loop.
*
* @returns true if we should use debug loop, false if not.
*/
static bool hmR0VmxAnyExpensiveProbesEnabled(void)
{
/* It's probably faster to OR the raw 32-bit counter variables together.
Since the variables are in an array and the probes are next to one
another (more or less), we have good locality. So, better read
eight-nine cache lines ever time and only have one conditional, than
128+ conditionals, right? */
return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
| VBOXVMM_XCPT_DE_ENABLED_RAW()
| VBOXVMM_XCPT_DB_ENABLED_RAW()
| VBOXVMM_XCPT_BP_ENABLED_RAW()
| VBOXVMM_XCPT_OF_ENABLED_RAW()
| VBOXVMM_XCPT_BR_ENABLED_RAW()
| VBOXVMM_XCPT_UD_ENABLED_RAW()
| VBOXVMM_XCPT_NM_ENABLED_RAW()
| VBOXVMM_XCPT_DF_ENABLED_RAW()
| VBOXVMM_XCPT_TS_ENABLED_RAW()
| VBOXVMM_XCPT_NP_ENABLED_RAW()
| VBOXVMM_XCPT_SS_ENABLED_RAW()
| VBOXVMM_XCPT_GP_ENABLED_RAW()
| VBOXVMM_XCPT_PF_ENABLED_RAW()
| VBOXVMM_XCPT_MF_ENABLED_RAW()
| VBOXVMM_XCPT_AC_ENABLED_RAW()
| VBOXVMM_XCPT_XF_ENABLED_RAW()
| VBOXVMM_XCPT_VE_ENABLED_RAW()
| VBOXVMM_XCPT_SX_ENABLED_RAW()
| VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
| VBOXVMM_INT_HARDWARE_ENABLED_RAW()
) != 0
|| ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
| VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
| VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
| VBOXVMM_INSTR_CPUID_ENABLED_RAW()
| VBOXVMM_INSTR_INVD_ENABLED_RAW()
| VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
| VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
| VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
| VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
| VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
| VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
| VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
| VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
| VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
| VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
| VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
| VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
| VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
| VBOXVMM_INSTR_SIDT_ENABLED_RAW()
| VBOXVMM_INSTR_LIDT_ENABLED_RAW()
| VBOXVMM_INSTR_SGDT_ENABLED_RAW()
| VBOXVMM_INSTR_LGDT_ENABLED_RAW()
| VBOXVMM_INSTR_SLDT_ENABLED_RAW()
| VBOXVMM_INSTR_LLDT_ENABLED_RAW()
| VBOXVMM_INSTR_STR_ENABLED_RAW()
| VBOXVMM_INSTR_LTR_ENABLED_RAW()
| VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
| VBOXVMM_INSTR_RSM_ENABLED_RAW()
| VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
| VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
| VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
| VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
| VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
| VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
) != 0
|| ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
| VBOXVMM_EXIT_HALT_ENABLED_RAW()
| VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
| VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
| VBOXVMM_EXIT_CPUID_ENABLED_RAW()
| VBOXVMM_EXIT_INVD_ENABLED_RAW()
| VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
| VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
| VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
| VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
| VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
| VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
| VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
| VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
| VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
| VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
| VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
| VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
| VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
| VBOXVMM_EXIT_SIDT_ENABLED_RAW()
| VBOXVMM_EXIT_LIDT_ENABLED_RAW()
| VBOXVMM_EXIT_SGDT_ENABLED_RAW()
| VBOXVMM_EXIT_LGDT_ENABLED_RAW()
| VBOXVMM_EXIT_SLDT_ENABLED_RAW()
| VBOXVMM_EXIT_LLDT_ENABLED_RAW()
| VBOXVMM_EXIT_STR_ENABLED_RAW()
| VBOXVMM_EXIT_LTR_ENABLED_RAW()
| VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
| VBOXVMM_EXIT_RSM_ENABLED_RAW()
| VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
| VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
| VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
| VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
| VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
| VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
) != 0;
}
/**
* Runs the guest using hardware-assisted VMX.
*
* @returns Strict VBox status code (i.e. informational status codes too).
* @param pVCpu The cross context virtual CPU structure.
*/
VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
{
AssertPtr(pVCpu);
PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
Assert(VMMRZCallRing3IsEnabled(pVCpu));
Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
VBOXSTRICTRC rcStrict;
uint32_t cLoops = 0;
for (;;)
{
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
#else
NOREF(pCtx);
bool const fInNestedGuestMode = false;
#endif
if (!fInNestedGuestMode)
{
if ( !pVCpu->hm.s.fUseDebugLoop
&& (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
&& !DBGFIsStepping(pVCpu)
&& !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
else
rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
}
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
else
rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
{
Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
continue;
}
if (rcStrict == VINF_VMX_VMEXIT)
{
Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
continue;
}
#endif
break;
}
int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
switch (rcLoop)
{
case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
}
int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
if (RT_FAILURE(rc2))
{
pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
rcStrict = rc2;
}
Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
return rcStrict;
}
|