diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
commit | 8c1ab65c0f548d20b7f177bdb736daaf603340e1 (patch) | |
tree | df55b7e75bf43f2bf500845b105afe3ac3a5157e /libc-top-half/musl/src/math/log2.c | |
parent | Initial commit. (diff) | |
download | wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.tar.xz wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.zip |
Adding upstream version 0.0~git20221206.8b7148f.upstream/0.0_git20221206.8b7148f
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'libc-top-half/musl/src/math/log2.c')
-rw-r--r-- | libc-top-half/musl/src/math/log2.c | 122 |
1 files changed, 122 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/log2.c b/libc-top-half/musl/src/math/log2.c new file mode 100644 index 0000000..1276ed4 --- /dev/null +++ b/libc-top-half/musl/src/math/log2.c @@ -0,0 +1,122 @@ +/* + * Double-precision log2(x) function. + * + * Copyright (c) 2018, Arm Limited. + * SPDX-License-Identifier: MIT + */ + +#include <math.h> +#include <stdint.h> +#include "libm.h" +#include "log2_data.h" + +#define T __log2_data.tab +#define T2 __log2_data.tab2 +#define B __log2_data.poly1 +#define A __log2_data.poly +#define InvLn2hi __log2_data.invln2hi +#define InvLn2lo __log2_data.invln2lo +#define N (1 << LOG2_TABLE_BITS) +#define OFF 0x3fe6000000000000 + +/* Top 16 bits of a double. */ +static inline uint32_t top16(double x) +{ + return asuint64(x) >> 48; +} + +double log2(double x) +{ + double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; + uint64_t ix, iz, tmp; + uint32_t top; + int k, i; + + ix = asuint64(x); + top = top16(x); +#define LO asuint64(1.0 - 0x1.5b51p-5) +#define HI asuint64(1.0 + 0x1.6ab2p-5) + if (predict_false(ix - LO < HI - LO)) { + /* Handle close to 1.0 inputs separately. */ + /* Fix sign of zero with downward rounding when x==1. */ + if (WANT_ROUNDING && predict_false(ix == asuint64(1.0))) + return 0; + r = x - 1.0; +#if __FP_FAST_FMA + hi = r * InvLn2hi; + lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi); +#else + double_t rhi, rlo; + rhi = asdouble(asuint64(r) & -1ULL << 32); + rlo = r - rhi; + hi = rhi * InvLn2hi; + lo = rlo * InvLn2hi + r * InvLn2lo; +#endif + r2 = r * r; /* rounding error: 0x1p-62. */ + r4 = r2 * r2; + /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ + p = r2 * (B[0] + r * B[1]); + y = hi + p; + lo += hi - y + p; + lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) + + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); + y += lo; + return eval_as_double(y); + } + if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) { + /* x < 0x1p-1022 or inf or nan. */ + if (ix * 2 == 0) + return __math_divzero(1); + if (ix == asuint64(INFINITY)) /* log(inf) == inf. */ + return x; + if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) + return __math_invalid(x); + /* x is subnormal, normalize it. */ + ix = asuint64(x * 0x1p52); + ix -= 52ULL << 52; + } + + /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + tmp = ix - OFF; + i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; + k = (int64_t)tmp >> 52; /* arithmetic shift */ + iz = ix - (tmp & 0xfffULL << 52); + invc = T[i].invc; + logc = T[i].logc; + z = asdouble(iz); + kd = (double_t)k; + + /* log2(x) = log2(z/c) + log2(c) + k. */ + /* r ~= z/c - 1, |r| < 1/(2*N). */ +#if __FP_FAST_FMA + /* rounding error: 0x1p-55/N. */ + r = __builtin_fma(z, invc, -1.0); + t1 = r * InvLn2hi; + t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1); +#else + double_t rhi, rlo; + /* rounding error: 0x1p-55/N + 0x1p-65. */ + r = (z - T2[i].chi - T2[i].clo) * invc; + rhi = asdouble(asuint64(r) & -1ULL << 32); + rlo = r - rhi; + t1 = rhi * InvLn2hi; + t2 = rlo * InvLn2hi + r * InvLn2lo; +#endif + + /* hi + lo = r/ln2 + log2(c) + k. */ + t3 = kd + logc; + hi = t3 + t1; + lo = t3 - hi + t1 + t2; + + /* log2(r+1) = r/ln2 + r^2*poly(r). */ + /* Evaluation is optimized assuming superscalar pipelined execution. */ + r2 = r * r; /* rounding error: 0x1p-54/N^2. */ + r4 = r2 * r2; + /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). + ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ + p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); + y = lo + r2 * p + hi; + return eval_as_double(y); +} |