diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
commit | 8c1ab65c0f548d20b7f177bdb736daaf603340e1 (patch) | |
tree | df55b7e75bf43f2bf500845b105afe3ac3a5157e /libc-top-half/musl/src/math/logf.c | |
parent | Initial commit. (diff) | |
download | wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.tar.xz wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.zip |
Adding upstream version 0.0~git20221206.8b7148f.upstream/0.0_git20221206.8b7148f
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | libc-top-half/musl/src/math/logf.c | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/logf.c b/libc-top-half/musl/src/math/logf.c new file mode 100644 index 0000000..7ee5d7f --- /dev/null +++ b/libc-top-half/musl/src/math/logf.c @@ -0,0 +1,71 @@ +/* + * Single-precision log function. + * + * Copyright (c) 2017-2018, Arm Limited. + * SPDX-License-Identifier: MIT + */ + +#include <math.h> +#include <stdint.h> +#include "libm.h" +#include "logf_data.h" + +/* +LOGF_TABLE_BITS = 4 +LOGF_POLY_ORDER = 4 + +ULP error: 0.818 (nearest rounding.) +Relative error: 1.957 * 2^-26 (before rounding.) +*/ + +#define T __logf_data.tab +#define A __logf_data.poly +#define Ln2 __logf_data.ln2 +#define N (1 << LOGF_TABLE_BITS) +#define OFF 0x3f330000 + +float logf(float x) +{ + double_t z, r, r2, y, y0, invc, logc; + uint32_t ix, iz, tmp; + int k, i; + + ix = asuint(x); + /* Fix sign of zero with downward rounding when x==1. */ + if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) + return 0; + if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { + /* x < 0x1p-126 or inf or nan. */ + if (ix * 2 == 0) + return __math_divzerof(1); + if (ix == 0x7f800000) /* log(inf) == inf. */ + return x; + if ((ix & 0x80000000) || ix * 2 >= 0xff000000) + return __math_invalidf(x); + /* x is subnormal, normalize it. */ + ix = asuint(x * 0x1p23f); + ix -= 23 << 23; + } + + /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + tmp = ix - OFF; + i = (tmp >> (23 - LOGF_TABLE_BITS)) % N; + k = (int32_t)tmp >> 23; /* arithmetic shift */ + iz = ix - (tmp & 0x1ff << 23); + invc = T[i].invc; + logc = T[i].logc; + z = (double_t)asfloat(iz); + + /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */ + r = z * invc - 1; + y0 = logc + (double_t)k * Ln2; + + /* Pipelined polynomial evaluation to approximate log1p(r). */ + r2 = r * r; + y = A[1] * r + A[2]; + y = A[0] * r2 + y; + y = y * r2 + (y0 + r); + return eval_as_float(y); +} |