diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 13:54:38 +0000 |
commit | 8c1ab65c0f548d20b7f177bdb736daaf603340e1 (patch) | |
tree | df55b7e75bf43f2bf500845b105afe3ac3a5157e /libc-top-half/musl/src/math/pow.c | |
parent | Initial commit. (diff) | |
download | wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.tar.xz wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.zip |
Adding upstream version 0.0~git20221206.8b7148f.upstream/0.0_git20221206.8b7148f
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'libc-top-half/musl/src/math/pow.c')
-rw-r--r-- | libc-top-half/musl/src/math/pow.c | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/pow.c b/libc-top-half/musl/src/math/pow.c new file mode 100644 index 0000000..694c2ef --- /dev/null +++ b/libc-top-half/musl/src/math/pow.c @@ -0,0 +1,343 @@ +/* + * Double-precision x^y function. + * + * Copyright (c) 2018, Arm Limited. + * SPDX-License-Identifier: MIT + */ + +#include <math.h> +#include <stdint.h> +#include "libm.h" +#include "exp_data.h" +#include "pow_data.h" + +/* +Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53) +relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma) +ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma) +*/ + +#define T __pow_log_data.tab +#define A __pow_log_data.poly +#define Ln2hi __pow_log_data.ln2hi +#define Ln2lo __pow_log_data.ln2lo +#define N (1 << POW_LOG_TABLE_BITS) +#define OFF 0x3fe6955500000000 + +/* Top 12 bits of a double (sign and exponent bits). */ +static inline uint32_t top12(double x) +{ + return asuint64(x) >> 52; +} + +/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about + additional 15 bits precision. IX is the bit representation of x, but + normalized in the subnormal range using the sign bit for the exponent. */ +static inline double_t log_inline(uint64_t ix, double_t *tail) +{ + /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ + double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p; + uint64_t iz, tmp; + int k, i; + + /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + tmp = ix - OFF; + i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N; + k = (int64_t)tmp >> 52; /* arithmetic shift */ + iz = ix - (tmp & 0xfffULL << 52); + z = asdouble(iz); + kd = (double_t)k; + + /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ + invc = T[i].invc; + logc = T[i].logc; + logctail = T[i].logctail; + + /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and + |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ +#if __FP_FAST_FMA + r = __builtin_fma(z, invc, -1.0); +#else + /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */ + double_t zhi = asdouble((iz + (1ULL << 31)) & (-1ULL << 32)); + double_t zlo = z - zhi; + double_t rhi = zhi * invc - 1.0; + double_t rlo = zlo * invc; + r = rhi + rlo; +#endif + + /* k*Ln2 + log(c) + r. */ + t1 = kd * Ln2hi + logc; + t2 = t1 + r; + lo1 = kd * Ln2lo + logctail; + lo2 = t1 - t2 + r; + + /* Evaluation is optimized assuming superscalar pipelined execution. */ + double_t ar, ar2, ar3, lo3, lo4; + ar = A[0] * r; /* A[0] = -0.5. */ + ar2 = r * ar; + ar3 = r * ar2; + /* k*Ln2 + log(c) + r + A[0]*r*r. */ +#if __FP_FAST_FMA + hi = t2 + ar2; + lo3 = __builtin_fma(ar, r, -ar2); + lo4 = t2 - hi + ar2; +#else + double_t arhi = A[0] * rhi; + double_t arhi2 = rhi * arhi; + hi = t2 + arhi2; + lo3 = rlo * (ar + arhi); + lo4 = t2 - hi + arhi2; +#endif + /* p = log1p(r) - r - A[0]*r*r. */ + p = (ar3 * (A[1] + r * A[2] + + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6])))); + lo = lo1 + lo2 + lo3 + lo4 + p; + y = hi + lo; + *tail = hi - y + lo; + return y; +} + +#undef N +#undef T +#define N (1 << EXP_TABLE_BITS) +#define InvLn2N __exp_data.invln2N +#define NegLn2hiN __exp_data.negln2hiN +#define NegLn2loN __exp_data.negln2loN +#define Shift __exp_data.shift +#define T __exp_data.tab +#define C2 __exp_data.poly[5 - EXP_POLY_ORDER] +#define C3 __exp_data.poly[6 - EXP_POLY_ORDER] +#define C4 __exp_data.poly[7 - EXP_POLY_ORDER] +#define C5 __exp_data.poly[8 - EXP_POLY_ORDER] +#define C6 __exp_data.poly[9 - EXP_POLY_ORDER] + +/* Handle cases that may overflow or underflow when computing the result that + is scale*(1+TMP) without intermediate rounding. The bit representation of + scale is in SBITS, however it has a computed exponent that may have + overflown into the sign bit so that needs to be adjusted before using it as + a double. (int32_t)KI is the k used in the argument reduction and exponent + adjustment of scale, positive k here means the result may overflow and + negative k means the result may underflow. */ +static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki) +{ + double_t scale, y; + + if ((ki & 0x80000000) == 0) { + /* k > 0, the exponent of scale might have overflowed by <= 460. */ + sbits -= 1009ull << 52; + scale = asdouble(sbits); + y = 0x1p1009 * (scale + scale * tmp); + return eval_as_double(y); + } + /* k < 0, need special care in the subnormal range. */ + sbits += 1022ull << 52; + /* Note: sbits is signed scale. */ + scale = asdouble(sbits); + y = scale + scale * tmp; + if (fabs(y) < 1.0) { + /* Round y to the right precision before scaling it into the subnormal + range to avoid double rounding that can cause 0.5+E/2 ulp error where + E is the worst-case ulp error outside the subnormal range. So this + is only useful if the goal is better than 1 ulp worst-case error. */ + double_t hi, lo, one = 1.0; + if (y < 0.0) + one = -1.0; + lo = scale - y + scale * tmp; + hi = one + y; + lo = one - hi + y + lo; + y = eval_as_double(hi + lo) - one; + /* Fix the sign of 0. */ + if (y == 0.0) + y = asdouble(sbits & 0x8000000000000000); + /* The underflow exception needs to be signaled explicitly. */ + fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022); + } + y = 0x1p-1022 * y; + return eval_as_double(y); +} + +#define SIGN_BIAS (0x800 << EXP_TABLE_BITS) + +/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. + The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */ +static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias) +{ + uint32_t abstop; + uint64_t ki, idx, top, sbits; + /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ + double_t kd, z, r, r2, scale, tail, tmp; + + abstop = top12(x) & 0x7ff; + if (predict_false(abstop - top12(0x1p-54) >= + top12(512.0) - top12(0x1p-54))) { + if (abstop - top12(0x1p-54) >= 0x80000000) { + /* Avoid spurious underflow for tiny x. */ + /* Note: 0 is common input. */ + double_t one = WANT_ROUNDING ? 1.0 + x : 1.0; + return sign_bias ? -one : one; + } + if (abstop >= top12(1024.0)) { + /* Note: inf and nan are already handled. */ + if (asuint64(x) >> 63) + return __math_uflow(sign_bias); + else + return __math_oflow(sign_bias); + } + /* Large x is special cased below. */ + abstop = 0; + } + + /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ + /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ + z = InvLn2N * x; +#if TOINT_INTRINSICS + kd = roundtoint(z); + ki = converttoint(z); +#elif EXP_USE_TOINT_NARROW + /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ + kd = eval_as_double(z + Shift); + ki = asuint64(kd) >> 16; + kd = (double_t)(int32_t)ki; +#else + /* z - kd is in [-1, 1] in non-nearest rounding modes. */ + kd = eval_as_double(z + Shift); + ki = asuint64(kd); + kd -= Shift; +#endif + r = x + kd * NegLn2hiN + kd * NegLn2loN; + /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ + r += xtail; + /* 2^(k/N) ~= scale * (1 + tail). */ + idx = 2 * (ki % N); + top = (ki + sign_bias) << (52 - EXP_TABLE_BITS); + tail = asdouble(T[idx]); + /* This is only a valid scale when -1023*N < k < 1024*N. */ + sbits = T[idx + 1] + top; + /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ + /* Evaluation is optimized assuming superscalar pipelined execution. */ + r2 = r * r; + /* Without fma the worst case error is 0.25/N ulp larger. */ + /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ + tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); + if (predict_false(abstop == 0)) + return specialcase(tmp, sbits, ki); + scale = asdouble(sbits); + /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there + is no spurious underflow here even without fma. */ + return eval_as_double(scale + scale * tmp); +} + +/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is + the bit representation of a non-zero finite floating-point value. */ +static inline int checkint(uint64_t iy) +{ + int e = iy >> 52 & 0x7ff; + if (e < 0x3ff) + return 0; + if (e > 0x3ff + 52) + return 2; + if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) + return 0; + if (iy & (1ULL << (0x3ff + 52 - e))) + return 1; + return 2; +} + +/* Returns 1 if input is the bit representation of 0, infinity or nan. */ +static inline int zeroinfnan(uint64_t i) +{ + return 2 * i - 1 >= 2 * asuint64(INFINITY) - 1; +} + +double pow(double x, double y) +{ + uint32_t sign_bias = 0; + uint64_t ix, iy; + uint32_t topx, topy; + + ix = asuint64(x); + iy = asuint64(y); + topx = top12(x); + topy = top12(y); + if (predict_false(topx - 0x001 >= 0x7ff - 0x001 || + (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) { + /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 + and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ + /* Special cases: (x < 0x1p-126 or inf or nan) or + (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ + if (predict_false(zeroinfnan(iy))) { + if (2 * iy == 0) + return issignaling_inline(x) ? x + y : 1.0; + if (ix == asuint64(1.0)) + return issignaling_inline(y) ? x + y : 1.0; + if (2 * ix > 2 * asuint64(INFINITY) || + 2 * iy > 2 * asuint64(INFINITY)) + return x + y; + if (2 * ix == 2 * asuint64(1.0)) + return 1.0; + if ((2 * ix < 2 * asuint64(1.0)) == !(iy >> 63)) + return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ + return y * y; + } + if (predict_false(zeroinfnan(ix))) { + double_t x2 = x * x; + if (ix >> 63 && checkint(iy) == 1) + x2 = -x2; + /* Without the barrier some versions of clang hoist the 1/x2 and + thus division by zero exception can be signaled spuriously. */ + return iy >> 63 ? fp_barrier(1 / x2) : x2; + } + /* Here x and y are non-zero finite. */ + if (ix >> 63) { + /* Finite x < 0. */ + int yint = checkint(iy); + if (yint == 0) + return __math_invalid(x); + if (yint == 1) + sign_bias = SIGN_BIAS; + ix &= 0x7fffffffffffffff; + topx &= 0x7ff; + } + if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) { + /* Note: sign_bias == 0 here because y is not odd. */ + if (ix == asuint64(1.0)) + return 1.0; + if ((topy & 0x7ff) < 0x3be) { + /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ + if (WANT_ROUNDING) + return ix > asuint64(1.0) ? 1.0 + y : + 1.0 - y; + else + return 1.0; + } + return (ix > asuint64(1.0)) == (topy < 0x800) ? + __math_oflow(0) : + __math_uflow(0); + } + if (topx == 0) { + /* Normalize subnormal x so exponent becomes negative. */ + ix = asuint64(x * 0x1p52); + ix &= 0x7fffffffffffffff; + ix -= 52ULL << 52; + } + } + + double_t lo; + double_t hi = log_inline(ix, &lo); + double_t ehi, elo; +#if __FP_FAST_FMA + ehi = y * hi; + elo = y * lo + __builtin_fma(y, hi, -ehi); +#else + double_t yhi = asdouble(iy & -1ULL << 27); + double_t ylo = y - yhi; + double_t lhi = asdouble(asuint64(hi) & -1ULL << 27); + double_t llo = hi - lhi + lo; + ehi = yhi * lhi; + elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */ +#endif + return exp_inline(ehi, elo, sign_bias); +} |