summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/tgamma.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 13:54:38 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 13:54:38 +0000
commit8c1ab65c0f548d20b7f177bdb736daaf603340e1 (patch)
treedf55b7e75bf43f2bf500845b105afe3ac3a5157e /libc-top-half/musl/src/math/tgamma.c
parentInitial commit. (diff)
downloadwasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.tar.xz
wasi-libc-8c1ab65c0f548d20b7f177bdb736daaf603340e1.zip
Adding upstream version 0.0~git20221206.8b7148f.upstream/0.0_git20221206.8b7148f
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'libc-top-half/musl/src/math/tgamma.c')
-rw-r--r--libc-top-half/musl/src/math/tgamma.c222
1 files changed, 222 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/tgamma.c b/libc-top-half/musl/src/math/tgamma.c
new file mode 100644
index 0000000..28f6e0f
--- /dev/null
+++ b/libc-top-half/musl/src/math/tgamma.c
@@ -0,0 +1,222 @@
+/*
+"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
+"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
+"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
+
+approximation method:
+
+ (x - 0.5) S(x)
+Gamma(x) = (x + g - 0.5) * ----------------
+ exp(x + g - 0.5)
+
+with
+ a1 a2 a3 aN
+S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
+ x + 1 x + 2 x + 3 x + N
+
+with a0, a1, a2, a3,.. aN constants which depend on g.
+
+for x < 0 the following reflection formula is used:
+
+Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
+
+most ideas and constants are from boost and python
+*/
+#include "libm.h"
+
+static const double pi = 3.141592653589793238462643383279502884;
+
+/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
+static double sinpi(double x)
+{
+ int n;
+
+ /* argument reduction: x = |x| mod 2 */
+ /* spurious inexact when x is odd int */
+ x = x * 0.5;
+ x = 2 * (x - floor(x));
+
+ /* reduce x into [-.25,.25] */
+ n = 4 * x;
+ n = (n+1)/2;
+ x -= n * 0.5;
+
+ x *= pi;
+ switch (n) {
+ default: /* case 4 */
+ case 0:
+ return __sin(x, 0, 0);
+ case 1:
+ return __cos(x, 0);
+ case 2:
+ return __sin(-x, 0, 0);
+ case 3:
+ return -__cos(x, 0);
+ }
+}
+
+#define N 12
+//static const double g = 6.024680040776729583740234375;
+static const double gmhalf = 5.524680040776729583740234375;
+static const double Snum[N+1] = {
+ 23531376880.410759688572007674451636754734846804940,
+ 42919803642.649098768957899047001988850926355848959,
+ 35711959237.355668049440185451547166705960488635843,
+ 17921034426.037209699919755754458931112671403265390,
+ 6039542586.3520280050642916443072979210699388420708,
+ 1439720407.3117216736632230727949123939715485786772,
+ 248874557.86205415651146038641322942321632125127801,
+ 31426415.585400194380614231628318205362874684987640,
+ 2876370.6289353724412254090516208496135991145378768,
+ 186056.26539522349504029498971604569928220784236328,
+ 8071.6720023658162106380029022722506138218516325024,
+ 210.82427775157934587250973392071336271166969580291,
+ 2.5066282746310002701649081771338373386264310793408,
+};
+static const double Sden[N+1] = {
+ 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
+ 2637558, 357423, 32670, 1925, 66, 1,
+};
+/* n! for small integer n */
+static const double fact[] = {
+ 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
+ 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
+ 355687428096000.0, 6402373705728000.0, 121645100408832000.0,
+ 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
+};
+
+/* S(x) rational function for positive x */
+static double S(double x)
+{
+ double_t num = 0, den = 0;
+ int i;
+
+ /* to avoid overflow handle large x differently */
+ if (x < 8)
+ for (i = N; i >= 0; i--) {
+ num = num * x + Snum[i];
+ den = den * x + Sden[i];
+ }
+ else
+ for (i = 0; i <= N; i++) {
+ num = num / x + Snum[i];
+ den = den / x + Sden[i];
+ }
+ return num/den;
+}
+
+double tgamma(double x)
+{
+ union {double f; uint64_t i;} u = {x};
+ double absx, y;
+ double_t dy, z, r;
+ uint32_t ix = u.i>>32 & 0x7fffffff;
+ int sign = u.i>>63;
+
+ /* special cases */
+ if (ix >= 0x7ff00000)
+ /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+ return x + INFINITY;
+ if (ix < (0x3ff-54)<<20)
+ /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
+ return 1/x;
+
+ /* integer arguments */
+ /* raise inexact when non-integer */
+ if (x == floor(x)) {
+ if (sign)
+ return 0/0.0;
+ if (x <= sizeof fact/sizeof *fact)
+ return fact[(int)x - 1];
+ }
+
+ /* x >= 172: tgamma(x)=inf with overflow */
+ /* x =< -184: tgamma(x)=+-0 with underflow */
+ if (ix >= 0x40670000) { /* |x| >= 184 */
+ if (sign) {
+ FORCE_EVAL((float)(0x1p-126/x));
+ if (floor(x) * 0.5 == floor(x * 0.5))
+ return 0;
+ return -0.0;
+ }
+ x *= 0x1p1023;
+ return x;
+ }
+
+ absx = sign ? -x : x;
+
+ /* handle the error of x + g - 0.5 */
+ y = absx + gmhalf;
+ if (absx > gmhalf) {
+ dy = y - absx;
+ dy -= gmhalf;
+ } else {
+ dy = y - gmhalf;
+ dy -= absx;
+ }
+
+ z = absx - 0.5;
+ r = S(absx) * exp(-y);
+ if (x < 0) {
+ /* reflection formula for negative x */
+ /* sinpi(absx) is not 0, integers are already handled */
+ r = -pi / (sinpi(absx) * absx * r);
+ dy = -dy;
+ z = -z;
+ }
+ r += dy * (gmhalf+0.5) * r / y;
+ z = pow(y, 0.5*z);
+ y = r * z * z;
+ return y;
+}
+
+#if 0
+double __lgamma_r(double x, int *sign)
+{
+ double r, absx;
+
+ *sign = 1;
+
+ /* special cases */
+ if (!isfinite(x))
+ /* lgamma(nan)=nan, lgamma(+-inf)=inf */
+ return x*x;
+
+ /* integer arguments */
+ if (x == floor(x) && x <= 2) {
+ /* n <= 0: lgamma(n)=inf with divbyzero */
+ /* n == 1,2: lgamma(n)=0 */
+ if (x <= 0)
+ return 1/0.0;
+ return 0;
+ }
+
+ absx = fabs(x);
+
+ /* lgamma(x) ~ -log(|x|) for tiny |x| */
+ if (absx < 0x1p-54) {
+ *sign = 1 - 2*!!signbit(x);
+ return -log(absx);
+ }
+
+ /* use tgamma for smaller |x| */
+ if (absx < 128) {
+ x = tgamma(x);
+ *sign = 1 - 2*!!signbit(x);
+ return log(fabs(x));
+ }
+
+ /* second term (log(S)-g) could be more precise here.. */
+ /* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */
+ r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5));
+ if (x < 0) {
+ /* reflection formula for negative x */
+ x = sinpi(absx);
+ *sign = 2*!!signbit(x) - 1;
+ r = log(pi/(fabs(x)*absx)) - r;
+ }
+ return r;
+}
+
+weak_alias(__lgamma_r, lgamma_r);
+#endif