summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/jnf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc-top-half/musl/src/math/jnf.c')
-rw-r--r--libc-top-half/musl/src/math/jnf.c202
1 files changed, 202 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/jnf.c b/libc-top-half/musl/src/math/jnf.c
new file mode 100644
index 0000000..f63c062
--- /dev/null
+++ b/libc-top-half/musl/src/math/jnf.c
@@ -0,0 +1,202 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#define _GNU_SOURCE
+#include "libm.h"
+
+float jnf(int n, float x)
+{
+ uint32_t ix;
+ int nm1, sign, i;
+ float a, b, temp;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix > 0x7f800000) /* nan */
+ return x;
+
+ /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+ if (n == 0)
+ return j0f(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ x = -x;
+ sign ^= 1;
+ } else
+ nm1 = n-1;
+ if (nm1 == 0)
+ return j1f(x);
+
+ sign &= n; /* even n: 0, odd n: signbit(x) */
+ x = fabsf(x);
+ if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
+ b = 0.0f;
+ else if (nm1 < x) {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ a = j0f(x);
+ b = j1f(x);
+ for (i=0; i<nm1; ){
+ i++;
+ temp = b;
+ b = b*(2.0f*i/x) - a;
+ a = temp;
+ }
+ } else {
+ if (ix < 0x35800000) { /* x < 2**-20 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if (nm1 > 8) /* underflow */
+ nm1 = 8;
+ temp = 0.5f * x;
+ b = temp;
+ a = 1.0f;
+ for (i=2; i<=nm1+1; i++) {
+ a *= (float)i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b/a;
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ float t,q0,q1,w,h,z,tmp,nf;
+ int k;
+
+ nf = nm1+1.0f;
+ w = 2*nf/x;
+ h = 2/x;
+ z = w+h;
+ q0 = w;
+ q1 = w*z - 1.0f;
+ k = 1;
+ while (q1 < 1.0e4f) {
+ k += 1;
+ z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ for (t=0.0f, i=k; i>=0; i--)
+ t = 1.0f/(2*(i+nf)/x-t);
+ a = t;
+ b = 1.0f;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf*logf(fabsf(w));
+ if (tmp < 88.721679688f) {
+ for (i=nm1; i>0; i--) {
+ temp = b;
+ b = 2.0f*i*b/x - a;
+ a = temp;
+ }
+ } else {
+ for (i=nm1; i>0; i--){
+ temp = b;
+ b = 2.0f*i*b/x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ if (b > 0x1p60f) {
+ a /= b;
+ t /= b;
+ b = 1.0f;
+ }
+ }
+ }
+ z = j0f(x);
+ w = j1f(x);
+ if (fabsf(z) >= fabsf(w))
+ b = t*z/b;
+ else
+ b = t*w/a;
+ }
+ }
+ return sign ? -b : b;
+}
+
+float ynf(int n, float x)
+{
+ uint32_t ix, ib;
+ int nm1, sign, i;
+ float a, b, temp;
+
+ GET_FLOAT_WORD(ix, x);
+ sign = ix>>31;
+ ix &= 0x7fffffff;
+ if (ix > 0x7f800000) /* nan */
+ return x;
+ if (sign && ix != 0) /* x < 0 */
+ return 0/0.0f;
+ if (ix == 0x7f800000)
+ return 0.0f;
+
+ if (n == 0)
+ return y0f(x);
+ if (n < 0) {
+ nm1 = -(n+1);
+ sign = n&1;
+ } else {
+ nm1 = n-1;
+ sign = 0;
+ }
+ if (nm1 == 0)
+ return sign ? -y1f(x) : y1f(x);
+
+ a = y0f(x);
+ b = y1f(x);
+ /* quit if b is -inf */
+ GET_FLOAT_WORD(ib,b);
+ for (i = 0; i < nm1 && ib != 0xff800000; ) {
+ i++;
+ temp = b;
+ b = (2.0f*i/x)*b - a;
+ GET_FLOAT_WORD(ib, b);
+ a = temp;
+ }
+ return sign ? -b : b;
+}