summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/log2f.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc-top-half/musl/src/math/log2f.c')
-rw-r--r--libc-top-half/musl/src/math/log2f.c72
1 files changed, 72 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/log2f.c b/libc-top-half/musl/src/math/log2f.c
new file mode 100644
index 0000000..c368f88
--- /dev/null
+++ b/libc-top-half/musl/src/math/log2f.c
@@ -0,0 +1,72 @@
+/*
+ * Single-precision log2 function.
+ *
+ * Copyright (c) 2017-2018, Arm Limited.
+ * SPDX-License-Identifier: MIT
+ */
+
+#include <math.h>
+#include <stdint.h>
+#include "libm.h"
+#include "log2f_data.h"
+
+/*
+LOG2F_TABLE_BITS = 4
+LOG2F_POLY_ORDER = 4
+
+ULP error: 0.752 (nearest rounding.)
+Relative error: 1.9 * 2^-26 (before rounding.)
+*/
+
+#define N (1 << LOG2F_TABLE_BITS)
+#define T __log2f_data.tab
+#define A __log2f_data.poly
+#define OFF 0x3f330000
+
+float log2f(float x)
+{
+ double_t z, r, r2, p, y, y0, invc, logc;
+ uint32_t ix, iz, top, tmp;
+ int k, i;
+
+ ix = asuint(x);
+ /* Fix sign of zero with downward rounding when x==1. */
+ if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
+ return 0;
+ if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
+ /* x < 0x1p-126 or inf or nan. */
+ if (ix * 2 == 0)
+ return __math_divzerof(1);
+ if (ix == 0x7f800000) /* log2(inf) == inf. */
+ return x;
+ if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
+ return __math_invalidf(x);
+ /* x is subnormal, normalize it. */
+ ix = asuint(x * 0x1p23f);
+ ix -= 23 << 23;
+ }
+
+ /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
+ The range is split into N subintervals.
+ The ith subinterval contains z and c is near its center. */
+ tmp = ix - OFF;
+ i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
+ top = tmp & 0xff800000;
+ iz = ix - top;
+ k = (int32_t)tmp >> 23; /* arithmetic shift */
+ invc = T[i].invc;
+ logc = T[i].logc;
+ z = (double_t)asfloat(iz);
+
+ /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
+ r = z * invc - 1;
+ y0 = logc + (double_t)k;
+
+ /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
+ r2 = r * r;
+ y = A[1] * r + A[2];
+ y = A[0] * r2 + y;
+ p = A[3] * r + y0;
+ y = y * r2 + p;
+ return eval_as_float(y);
+}