summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/logl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc-top-half/musl/src/math/logl.c')
-rw-r--r--libc-top-half/musl/src/math/logl.c175
1 files changed, 175 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/logl.c b/libc-top-half/musl/src/math/logl.c
new file mode 100644
index 0000000..5d53659
--- /dev/null
+++ b/libc-top-half/musl/src/math/logl.c
@@ -0,0 +1,175 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Natural logarithm, long double precision
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, logl();
+ *
+ * y = logl( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the base e (2.718...) logarithm of x.
+ *
+ * The argument is separated into its exponent and fractional
+ * parts. If the exponent is between -1 and +1, the logarithm
+ * of the fraction is approximated by
+ *
+ * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
+ *
+ * Otherwise, setting z = 2(x-1)/(x+1),
+ *
+ * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
+ * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
+ *
+ * In the tests over the interval exp(+-10000), the logarithms
+ * of the random arguments were uniformly distributed over
+ * [-10000, +10000].
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double logl(long double x)
+{
+ return log(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 2.32e-20
+ */
+static const long double P[] = {
+ 4.5270000862445199635215E-5L,
+ 4.9854102823193375972212E-1L,
+ 6.5787325942061044846969E0L,
+ 2.9911919328553073277375E1L,
+ 6.0949667980987787057556E1L,
+ 5.7112963590585538103336E1L,
+ 2.0039553499201281259648E1L,
+};
+static const long double Q[] = {
+/* 1.0000000000000000000000E0,*/
+ 1.5062909083469192043167E1L,
+ 8.3047565967967209469434E1L,
+ 2.2176239823732856465394E2L,
+ 3.0909872225312059774938E2L,
+ 2.1642788614495947685003E2L,
+ 6.0118660497603843919306E1L,
+};
+
+/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
+ * where z = 2(x-1)/(x+1)
+ * 1/sqrt(2) <= x < sqrt(2)
+ * Theoretical peak relative error = 6.16e-22
+ */
+static const long double R[4] = {
+ 1.9757429581415468984296E-3L,
+-7.1990767473014147232598E-1L,
+ 1.0777257190312272158094E1L,
+-3.5717684488096787370998E1L,
+};
+static const long double S[4] = {
+/* 1.00000000000000000000E0L,*/
+-2.6201045551331104417768E1L,
+ 1.9361891836232102174846E2L,
+-4.2861221385716144629696E2L,
+};
+static const long double C1 = 6.9314575195312500000000E-1L;
+static const long double C2 = 1.4286068203094172321215E-6L;
+
+#define SQRTH 0.70710678118654752440L
+
+long double logl(long double x)
+{
+ long double y, z;
+ int e;
+
+ if (isnan(x))
+ return x;
+ if (x == INFINITY)
+ return x;
+ if (x <= 0.0) {
+ if (x == 0.0)
+ return -1/(x*x); /* -inf with divbyzero */
+ return 0/0.0f; /* nan with invalid */
+ }
+
+ /* separate mantissa from exponent */
+ /* Note, frexp is used so that denormal numbers
+ * will be handled properly.
+ */
+ x = frexpl(x, &e);
+
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+ * where z = 2(x-1)/(x+1)
+ */
+ if (e > 2 || e < -2) {
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+ e -= 1;
+ z = x - 0.5;
+ y = 0.5 * z + 0.5;
+ } else { /* 2 (x-1)/(x+1) */
+ z = x - 0.5;
+ z -= 0.5;
+ y = 0.5 * x + 0.5;
+ }
+ x = z / y;
+ z = x*x;
+ z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+ z = z + e * C2;
+ z = z + x;
+ z = z + e * C1;
+ return z;
+ }
+
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+ if (x < SQRTH) {
+ e -= 1;
+ x = 2.0*x - 1.0;
+ } else {
+ x = x - 1.0;
+ }
+ z = x*x;
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
+ y = y + e * C2;
+ z = y - 0.5*z;
+ /* Note, the sum of above terms does not exceed x/4,
+ * so it contributes at most about 1/4 lsb to the error.
+ */
+ z = z + x;
+ z = z + e * C1; /* This sum has an error of 1/2 lsb. */
+ return z;
+}
+#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
+// TODO: broken implementation to make things compile
+long double logl(long double x)
+{
+ return log(x);
+}
+#endif