diff options
Diffstat (limited to '')
-rw-r--r-- | libc-top-half/musl/src/math/sqrt.c | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/libc-top-half/musl/src/math/sqrt.c b/libc-top-half/musl/src/math/sqrt.c new file mode 100644 index 0000000..5ba2655 --- /dev/null +++ b/libc-top-half/musl/src/math/sqrt.c @@ -0,0 +1,158 @@ +#include <stdint.h> +#include <math.h> +#include "libm.h" +#include "sqrt_data.h" + +#define FENV_SUPPORT 1 + +/* returns a*b*2^-32 - e, with error 0 <= e < 1. */ +static inline uint32_t mul32(uint32_t a, uint32_t b) +{ + return (uint64_t)a*b >> 32; +} + +/* returns a*b*2^-64 - e, with error 0 <= e < 3. */ +static inline uint64_t mul64(uint64_t a, uint64_t b) +{ + uint64_t ahi = a>>32; + uint64_t alo = a&0xffffffff; + uint64_t bhi = b>>32; + uint64_t blo = b&0xffffffff; + return ahi*bhi + (ahi*blo >> 32) + (alo*bhi >> 32); +} + +double sqrt(double x) +{ + uint64_t ix, top, m; + + /* special case handling. */ + ix = asuint64(x); + top = ix >> 52; + if (predict_false(top - 0x001 >= 0x7ff - 0x001)) { + /* x < 0x1p-1022 or inf or nan. */ + if (ix * 2 == 0) + return x; + if (ix == 0x7ff0000000000000) + return x; + if (ix > 0x7ff0000000000000) + return __math_invalid(x); + /* x is subnormal, normalize it. */ + ix = asuint64(x * 0x1p52); + top = ix >> 52; + top -= 52; + } + + /* argument reduction: + x = 4^e m; with integer e, and m in [1, 4) + m: fixed point representation [2.62] + 2^e is the exponent part of the result. */ + int even = top & 1; + m = (ix << 11) | 0x8000000000000000; + if (even) m >>= 1; + top = (top + 0x3ff) >> 1; + + /* approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) + + initial estimate: + 7bit table lookup (1bit exponent and 6bit significand). + + iterative approximation: + using 2 goldschmidt iterations with 32bit int arithmetics + and a final iteration with 64bit int arithmetics. + + details: + + the relative error (e = r0 sqrt(m)-1) of a linear estimate + (r0 = a m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best, + a table lookup is faster and needs one less iteration + 6 bit lookup table (128b) gives |e| < 0x1.f9p-8 + 7 bit lookup table (256b) gives |e| < 0x1.fdp-9 + for single and double prec 6bit is enough but for quad + prec 7bit is needed (or modified iterations). to avoid + one more iteration >=13bit table would be needed (16k). + + a newton-raphson iteration for r is + w = r*r + u = 3 - m*w + r = r*u/2 + can use a goldschmidt iteration for s at the end or + s = m*r + + first goldschmidt iteration is + s = m*r + u = 3 - s*r + r = r*u/2 + s = s*u/2 + next goldschmidt iteration is + u = 3 - s*r + r = r*u/2 + s = s*u/2 + and at the end r is not computed only s. + + they use the same amount of operations and converge at the + same quadratic rate, i.e. if + r1 sqrt(m) - 1 = e, then + r2 sqrt(m) - 1 = -3/2 e^2 - 1/2 e^3 + the advantage of goldschmidt is that the mul for s and r + are independent (computed in parallel), however it is not + "self synchronizing": it only uses the input m in the + first iteration so rounding errors accumulate. at the end + or when switching to larger precision arithmetics rounding + errors dominate so the first iteration should be used. + + the fixed point representations are + m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30 + and after switching to 64 bit + m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 */ + + static const uint64_t three = 0xc0000000; + uint64_t r, s, d, u, i; + + i = (ix >> 46) % 128; + r = (uint32_t)__rsqrt_tab[i] << 16; + /* |r sqrt(m) - 1| < 0x1.fdp-9 */ + s = mul32(m>>32, r); + /* |s/sqrt(m) - 1| < 0x1.fdp-9 */ + d = mul32(s, r); + u = three - d; + r = mul32(r, u) << 1; + /* |r sqrt(m) - 1| < 0x1.7bp-16 */ + s = mul32(s, u) << 1; + /* |s/sqrt(m) - 1| < 0x1.7bp-16 */ + d = mul32(s, r); + u = three - d; + r = mul32(r, u) << 1; + /* |r sqrt(m) - 1| < 0x1.3704p-29 (measured worst-case) */ + r = r << 32; + s = mul64(m, r); + d = mul64(s, r); + u = (three<<32) - d; + s = mul64(s, u); /* repr: 3.61 */ + /* -0x1p-57 < s - sqrt(m) < 0x1.8001p-61 */ + s = (s - 2) >> 9; /* repr: 12.52 */ + /* -0x1.09p-52 < s - sqrt(m) < -0x1.fffcp-63 */ + + /* s < sqrt(m) < s + 0x1.09p-52, + compute nearest rounded result: + the nearest result to 52 bits is either s or s+0x1p-52, + we can decide by comparing (2^52 s + 0.5)^2 to 2^104 m. */ + uint64_t d0, d1, d2; + double y, t; + d0 = (m << 42) - s*s; + d1 = s - d0; + d2 = d1 + s + 1; + s += d1 >> 63; + s &= 0x000fffffffffffff; + s |= top << 52; + y = asdouble(s); + if (FENV_SUPPORT) { + /* handle rounding modes and inexact exception: + only (s+1)^2 == 2^42 m case is exact otherwise + add a tiny value to cause the fenv effects. */ + uint64_t tiny = predict_false(d2==0) ? 0 : 0x0010000000000000; + tiny |= (d1^d2) & 0x8000000000000000; + t = asdouble(tiny); + y = eval_as_double(y + t); + } + return y; +} |