/* * Copyright 2018 The Emscripten Authors. All rights reserved. * Emscripten is available under two separate licenses, the MIT license and the * University of Illinois/NCSA Open Source License. Both these licenses can be * found in the LICENSE file. * * Simple minimalistic but efficient sbrk()-based malloc/free that works in * singlethreaded and multithreaded builds. * * Assumptions: * * - sbrk() is used to claim new memory (sbrk handles geometric/linear * - overallocation growth) * - sbrk() can be used by other code outside emmalloc. * - sbrk() is very fast in most cases (internal wasm call). * - sbrk() returns pointers with an alignment of alignof(max_align_t) * * Invariants: * * - Per-allocation header overhead is 8 bytes, smallest allocated payload * amount is 8 bytes, and a multiple of 4 bytes. * - Acquired memory blocks are subdivided into disjoint regions that lie * next to each other. * - A region is either in used or free. * Used regions may be adjacent, and a used and unused region * may be adjacent, but not two unused ones - they would be * merged. * - Memory allocation takes constant time, unless the alloc needs to sbrk() * or memory is very close to being exhausted. * * Debugging: * * - If not NDEBUG, runtime assert()s are in use. * - If EMMALLOC_MEMVALIDATE is defined, a large amount of extra checks are done. * - If EMMALLOC_VERBOSE is defined, a lot of operations are logged * out, in addition to EMMALLOC_MEMVALIDATE. * - Debugging and logging directly uses console.log via uses EM_ASM, not * printf etc., to minimize any risk of debugging or logging depending on * malloc. */ #include #include #include #include #include #include #include #include #include #include #ifdef __EMSCRIPTEN_TRACING__ #include #endif // Defind by the linker to have the address of the start of the heap. extern unsigned char __heap_base; // Behavior of right shifting a signed integer is compiler implementation defined. static_assert((((int32_t)0x80000000U) >> 31) == -1, "This malloc implementation requires that right-shifting a signed integer produces a sign-extending (arithmetic) shift!"); // Configuration: specifies the minimum alignment that malloc()ed memory outputs. Allocation requests with smaller alignment // than this will yield an allocation with this much alignment. #define MALLOC_ALIGNMENT alignof(max_align_t) static_assert(alignof(max_align_t) == 16, "max_align_t must be correct"); #define EMMALLOC_EXPORT __attribute__((weak)) #define MIN(x, y) ((x) < (y) ? (x) : (y)) #define MAX(x, y) ((x) > (y) ? (x) : (y)) #define NUM_FREE_BUCKETS 64 #define BUCKET_BITMASK_T uint64_t // Dynamic memory is subdivided into regions, in the format // ..... | ..... | ..... | ..... // That is, at the bottom and top end of each memory region, the size of that region is stored. That allows traversing the // memory regions backwards and forwards. Because each allocation must be at least a multiple of 4 bytes, the lowest two bits of // each size field is unused. Free regions are distinguished by used regions by having the FREE_REGION_FLAG bit present // in the size field. I.e. for free regions, the size field is odd, and for used regions, the size field reads even. #define FREE_REGION_FLAG 0x1u // Attempts to malloc() more than this many bytes would cause an overflow when calculating the size of a region, // therefore allocations larger than this are short-circuited immediately on entry. #define MAX_ALLOC_SIZE 0xFFFFFFC7u // A free region has the following structure: // ... typedef struct Region { size_t size; // Use a circular doubly linked list to represent free region data. struct Region *prev, *next; // ... N bytes of free data size_t _at_the_end_of_this_struct_size; // do not dereference, this is present for convenient struct sizeof() computation only } Region; // Each memory block starts with a RootRegion at the beginning. // The RootRegion specifies the size of the region block, and forms a linked // list of all RootRegions in the program, starting with `listOfAllRegions` // below. typedef struct RootRegion { uint32_t size; struct RootRegion *next; uint8_t* endPtr; } RootRegion; #if defined(__EMSCRIPTEN_PTHREADS__) // In multithreaded builds, use a simple global spinlock strategy to acquire/release access to the memory allocator. static volatile uint8_t multithreadingLock = 0; #define MALLOC_ACQUIRE() while(__sync_lock_test_and_set(&multithreadingLock, 1)) { while(multithreadingLock) { /*nop*/ } } #define MALLOC_RELEASE() __sync_lock_release(&multithreadingLock) // Test code to ensure we have tight malloc acquire/release guards in place. #define ASSERT_MALLOC_IS_ACQUIRED() assert(multithreadingLock == 1) #else // In singlethreaded builds, no need for locking. #define MALLOC_ACQUIRE() ((void)0) #define MALLOC_RELEASE() ((void)0) #define ASSERT_MALLOC_IS_ACQUIRED() ((void)0) #endif #define IS_POWER_OF_2(val) (((val) & ((val)-1)) == 0) #define ALIGN_UP(ptr, alignment) ((uint8_t*)((((uintptr_t)(ptr)) + ((alignment)-1)) & ~((alignment)-1))) #define HAS_ALIGNMENT(ptr, alignment) ((((uintptr_t)(ptr)) & ((alignment)-1)) == 0) static_assert(IS_POWER_OF_2(MALLOC_ALIGNMENT), "MALLOC_ALIGNMENT must be a power of two value!"); static_assert(MALLOC_ALIGNMENT >= 4, "Smallest possible MALLOC_ALIGNMENT if 4!"); // A region that contains as payload a single forward linked list of pointers to // root regions of each disjoint region blocks. static RootRegion *listOfAllRegions = NULL; // For each of the buckets, maintain a linked list head node. The head node for each // free region is a sentinel node that does not actually represent any free space, but // the sentinel is used to avoid awkward testing against (if node == freeRegionHeadNode) // when adding and removing elements from the linked list, i.e. we are guaranteed that // the sentinel node is always fixed and there, and the actual free region list elements // start at freeRegionBuckets[i].next each. static Region freeRegionBuckets[NUM_FREE_BUCKETS] = { { .prev = &freeRegionBuckets[0], .next = &freeRegionBuckets[0] }, { .prev = &freeRegionBuckets[1], .next = &freeRegionBuckets[1] }, { .prev = &freeRegionBuckets[2], .next = &freeRegionBuckets[2] }, { .prev = &freeRegionBuckets[3], .next = &freeRegionBuckets[3] }, { .prev = &freeRegionBuckets[4], .next = &freeRegionBuckets[4] }, { .prev = &freeRegionBuckets[5], .next = &freeRegionBuckets[5] }, { .prev = &freeRegionBuckets[6], .next = &freeRegionBuckets[6] }, { .prev = &freeRegionBuckets[7], .next = &freeRegionBuckets[7] }, { .prev = &freeRegionBuckets[8], .next = &freeRegionBuckets[8] }, { .prev = &freeRegionBuckets[9], .next = &freeRegionBuckets[9] }, { .prev = &freeRegionBuckets[10], .next = &freeRegionBuckets[10] }, { .prev = &freeRegionBuckets[11], .next = &freeRegionBuckets[11] }, { .prev = &freeRegionBuckets[12], .next = &freeRegionBuckets[12] }, { .prev = &freeRegionBuckets[13], .next = &freeRegionBuckets[13] }, { .prev = &freeRegionBuckets[14], .next = &freeRegionBuckets[14] }, { .prev = &freeRegionBuckets[15], .next = &freeRegionBuckets[15] }, { .prev = &freeRegionBuckets[16], .next = &freeRegionBuckets[16] }, { .prev = &freeRegionBuckets[17], .next = &freeRegionBuckets[17] }, { .prev = &freeRegionBuckets[18], .next = &freeRegionBuckets[18] }, { .prev = &freeRegionBuckets[19], .next = &freeRegionBuckets[19] }, { .prev = &freeRegionBuckets[20], .next = &freeRegionBuckets[20] }, { .prev = &freeRegionBuckets[21], .next = &freeRegionBuckets[21] }, { .prev = &freeRegionBuckets[22], .next = &freeRegionBuckets[22] }, { .prev = &freeRegionBuckets[23], .next = &freeRegionBuckets[23] }, { .prev = &freeRegionBuckets[24], .next = &freeRegionBuckets[24] }, { .prev = &freeRegionBuckets[25], .next = &freeRegionBuckets[25] }, { .prev = &freeRegionBuckets[26], .next = &freeRegionBuckets[26] }, { .prev = &freeRegionBuckets[27], .next = &freeRegionBuckets[27] }, { .prev = &freeRegionBuckets[28], .next = &freeRegionBuckets[28] }, { .prev = &freeRegionBuckets[29], .next = &freeRegionBuckets[29] }, { .prev = &freeRegionBuckets[30], .next = &freeRegionBuckets[30] }, { .prev = &freeRegionBuckets[31], .next = &freeRegionBuckets[31] }, { .prev = &freeRegionBuckets[32], .next = &freeRegionBuckets[32] }, { .prev = &freeRegionBuckets[33], .next = &freeRegionBuckets[33] }, { .prev = &freeRegionBuckets[34], .next = &freeRegionBuckets[34] }, { .prev = &freeRegionBuckets[35], .next = &freeRegionBuckets[35] }, { .prev = &freeRegionBuckets[36], .next = &freeRegionBuckets[36] }, { .prev = &freeRegionBuckets[37], .next = &freeRegionBuckets[37] }, { .prev = &freeRegionBuckets[38], .next = &freeRegionBuckets[38] }, { .prev = &freeRegionBuckets[39], .next = &freeRegionBuckets[39] }, { .prev = &freeRegionBuckets[40], .next = &freeRegionBuckets[40] }, { .prev = &freeRegionBuckets[41], .next = &freeRegionBuckets[41] }, { .prev = &freeRegionBuckets[42], .next = &freeRegionBuckets[42] }, { .prev = &freeRegionBuckets[43], .next = &freeRegionBuckets[43] }, { .prev = &freeRegionBuckets[44], .next = &freeRegionBuckets[44] }, { .prev = &freeRegionBuckets[45], .next = &freeRegionBuckets[45] }, { .prev = &freeRegionBuckets[46], .next = &freeRegionBuckets[46] }, { .prev = &freeRegionBuckets[47], .next = &freeRegionBuckets[47] }, { .prev = &freeRegionBuckets[48], .next = &freeRegionBuckets[48] }, { .prev = &freeRegionBuckets[49], .next = &freeRegionBuckets[49] }, { .prev = &freeRegionBuckets[50], .next = &freeRegionBuckets[50] }, { .prev = &freeRegionBuckets[51], .next = &freeRegionBuckets[51] }, { .prev = &freeRegionBuckets[52], .next = &freeRegionBuckets[52] }, { .prev = &freeRegionBuckets[53], .next = &freeRegionBuckets[53] }, { .prev = &freeRegionBuckets[54], .next = &freeRegionBuckets[54] }, { .prev = &freeRegionBuckets[55], .next = &freeRegionBuckets[55] }, { .prev = &freeRegionBuckets[56], .next = &freeRegionBuckets[56] }, { .prev = &freeRegionBuckets[57], .next = &freeRegionBuckets[57] }, { .prev = &freeRegionBuckets[58], .next = &freeRegionBuckets[58] }, { .prev = &freeRegionBuckets[59], .next = &freeRegionBuckets[59] }, { .prev = &freeRegionBuckets[60], .next = &freeRegionBuckets[60] }, { .prev = &freeRegionBuckets[61], .next = &freeRegionBuckets[61] }, { .prev = &freeRegionBuckets[62], .next = &freeRegionBuckets[62] }, { .prev = &freeRegionBuckets[63], .next = &freeRegionBuckets[63] }, }; // A bitmask that tracks the population status for each of the 64 distinct memory regions: // a zero at bit position i means that the free list bucket i is empty. This bitmask is // used to avoid redundant scanning of the 64 different free region buckets: instead by // looking at the bitmask we can find in constant time an index to a free region bucket // that contains free memory of desired size. static BUCKET_BITMASK_T freeRegionBucketsUsed = 0; // Amount of bytes taken up by allocation header data #define REGION_HEADER_SIZE (2*sizeof(size_t)) // Smallest allocation size that is possible is 2*pointer size, since payload of each region must at least contain space // to store the free region linked list prev and next pointers. An allocation size smaller than this will be rounded up // to this size. #define SMALLEST_ALLOCATION_SIZE (2*sizeof(void*)) /* Subdivide regions of free space into distinct circular doubly linked lists, where each linked list represents a range of free space blocks. The following function compute_free_list_bucket() converts an allocation size to the bucket index that should be looked at. The buckets are grouped as follows: Bucket 0: [8, 15], range size=8 Bucket 1: [16, 23], range size=8 Bucket 2: [24, 31], range size=8 Bucket 3: [32, 39], range size=8 Bucket 4: [40, 47], range size=8 Bucket 5: [48, 55], range size=8 Bucket 6: [56, 63], range size=8 Bucket 7: [64, 71], range size=8 Bucket 8: [72, 79], range size=8 Bucket 9: [80, 87], range size=8 Bucket 10: [88, 95], range size=8 Bucket 11: [96, 103], range size=8 Bucket 12: [104, 111], range size=8 Bucket 13: [112, 119], range size=8 Bucket 14: [120, 159], range size=40 Bucket 15: [160, 191], range size=32 Bucket 16: [192, 223], range size=32 Bucket 17: [224, 255], range size=32 Bucket 18: [256, 319], range size=64 Bucket 19: [320, 383], range size=64 Bucket 20: [384, 447], range size=64 Bucket 21: [448, 511], range size=64 Bucket 22: [512, 639], range size=128 Bucket 23: [640, 767], range size=128 Bucket 24: [768, 895], range size=128 Bucket 25: [896, 1023], range size=128 Bucket 26: [1024, 1279], range size=256 Bucket 27: [1280, 1535], range size=256 Bucket 28: [1536, 1791], range size=256 Bucket 29: [1792, 2047], range size=256 Bucket 30: [2048, 2559], range size=512 Bucket 31: [2560, 3071], range size=512 Bucket 32: [3072, 3583], range size=512 Bucket 33: [3584, 6143], range size=2560 Bucket 34: [6144, 8191], range size=2048 Bucket 35: [8192, 12287], range size=4096 Bucket 36: [12288, 16383], range size=4096 Bucket 37: [16384, 24575], range size=8192 Bucket 38: [24576, 32767], range size=8192 Bucket 39: [32768, 49151], range size=16384 Bucket 40: [49152, 65535], range size=16384 Bucket 41: [65536, 98303], range size=32768 Bucket 42: [98304, 131071], range size=32768 Bucket 43: [131072, 196607], range size=65536 Bucket 44: [196608, 262143], range size=65536 Bucket 45: [262144, 393215], range size=131072 Bucket 46: [393216, 524287], range size=131072 Bucket 47: [524288, 786431], range size=262144 Bucket 48: [786432, 1048575], range size=262144 Bucket 49: [1048576, 1572863], range size=524288 Bucket 50: [1572864, 2097151], range size=524288 Bucket 51: [2097152, 3145727], range size=1048576 Bucket 52: [3145728, 4194303], range size=1048576 Bucket 53: [4194304, 6291455], range size=2097152 Bucket 54: [6291456, 8388607], range size=2097152 Bucket 55: [8388608, 12582911], range size=4194304 Bucket 56: [12582912, 16777215], range size=4194304 Bucket 57: [16777216, 25165823], range size=8388608 Bucket 58: [25165824, 33554431], range size=8388608 Bucket 59: [33554432, 50331647], range size=16777216 Bucket 60: [50331648, 67108863], range size=16777216 Bucket 61: [67108864, 100663295], range size=33554432 Bucket 62: [100663296, 134217727], range size=33554432 Bucket 63: 134217728 bytes and larger. */ static_assert(NUM_FREE_BUCKETS == 64, "Following function is tailored specifically for NUM_FREE_BUCKETS == 64 case"); static int compute_free_list_bucket(size_t allocSize) { if (allocSize < 128) return (allocSize >> 3) - 1; int clz = __builtin_clz(allocSize); int bucketIndex = (clz > 19) ? 110 - (clz<<2) + ((allocSize >> (29-clz)) ^ 4) : MIN(71 - (clz<<1) + ((allocSize >> (30-clz)) ^ 2), NUM_FREE_BUCKETS-1); assert(bucketIndex >= 0); assert(bucketIndex < NUM_FREE_BUCKETS); return bucketIndex; } #define DECODE_CEILING_SIZE(size) ((size_t)((size) & ~FREE_REGION_FLAG)) static Region *prev_region(Region *region) { size_t prevRegionSize = ((size_t*)region)[-1]; prevRegionSize = DECODE_CEILING_SIZE(prevRegionSize); return (Region*)((uint8_t*)region - prevRegionSize); } static Region *next_region(Region *region) { return (Region*)((uint8_t*)region + region->size); } static size_t region_ceiling_size(Region *region) { return ((size_t*)((uint8_t*)region + region->size))[-1]; } static bool region_is_free(Region *r) { return region_ceiling_size(r) & FREE_REGION_FLAG; } static bool region_is_in_use(Region *r) { return r->size == region_ceiling_size(r); } static size_t size_of_region_from_ceiling(Region *r) { size_t size = region_ceiling_size(r); return DECODE_CEILING_SIZE(size); } static bool debug_region_is_consistent(Region *r) { assert(r); size_t sizeAtBottom = r->size; size_t sizeAtCeiling = size_of_region_from_ceiling(r); return sizeAtBottom == sizeAtCeiling; } static uint8_t *region_payload_start_ptr(Region *region) { return (uint8_t*)region + sizeof(size_t); } static uint8_t *region_payload_end_ptr(Region *region) { return (uint8_t*)region + region->size - sizeof(size_t); } static void create_used_region(void *ptr, size_t size) { assert(ptr); assert(HAS_ALIGNMENT(ptr, sizeof(size_t))); assert(HAS_ALIGNMENT(size, sizeof(size_t))); assert(size >= sizeof(Region)); *(size_t*)ptr = size; ((size_t*)ptr)[(size/sizeof(size_t))-1] = size; } static void create_free_region(void *ptr, size_t size) { assert(ptr); assert(HAS_ALIGNMENT(ptr, sizeof(size_t))); assert(HAS_ALIGNMENT(size, sizeof(size_t))); assert(size >= sizeof(Region)); Region *freeRegion = (Region*)ptr; freeRegion->size = size; ((size_t*)ptr)[(size/sizeof(size_t))-1] = size | FREE_REGION_FLAG; } static void prepend_to_free_list(Region *region, Region *prependTo) { assert(region); assert(prependTo); // N.b. the region we are prepending to is always the sentinel node, // which represents a dummy node that is technically not a free node, so // region_is_free(prependTo) does not hold. assert(region_is_free((Region*)region)); region->next = prependTo; region->prev = prependTo->prev; assert(region->prev); prependTo->prev = region; region->prev->next = region; } static void unlink_from_free_list(Region *region) { assert(region); assert(region_is_free((Region*)region)); assert(region->prev); assert(region->next); region->prev->next = region->next; region->next->prev = region->prev; } static void link_to_free_list(Region *freeRegion) { assert(freeRegion); assert(freeRegion->size >= sizeof(Region)); int bucketIndex = compute_free_list_bucket(freeRegion->size-REGION_HEADER_SIZE); Region *freeListHead = freeRegionBuckets + bucketIndex; freeRegion->prev = freeListHead; freeRegion->next = freeListHead->next; assert(freeRegion->next); freeListHead->next = freeRegion; freeRegion->next->prev = freeRegion; freeRegionBucketsUsed |= ((BUCKET_BITMASK_T)1) << bucketIndex; } #if 0 static void dump_memory_regions() { ASSERT_MALLOC_IS_ACQUIRED(); RootRegion *root = listOfAllRegions; MAIN_THREAD_ASYNC_EM_ASM(console.log('All memory regions:')); while(root) { Region *r = (Region*)root; assert(debug_region_is_consistent(r)); uint8_t *lastRegionEnd = root->endPtr; MAIN_THREAD_ASYNC_EM_ASM(console.log('Region block 0x'+($0>>>0).toString(16)+' - 0x'+($1>>>0).toString(16)+ ' ('+($2>>>0)+' bytes):'), r, lastRegionEnd, lastRegionEnd-(uint8_t*)r); while((uint8_t*)r < lastRegionEnd) { MAIN_THREAD_ASYNC_EM_ASM(console.log('Region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+')'), r, r->size, region_ceiling_size(r) == r->size); assert(debug_region_is_consistent(r)); size_t sizeFromCeiling = size_of_region_from_ceiling(r); if (sizeFromCeiling != r->size) MAIN_THREAD_ASYNC_EM_ASM(console.log('Corrupt region! Size marker at the end of the region does not match: '+($0>>>0)), sizeFromCeiling); if (r->size == 0) break; r = next_region(r); } root = root->next; MAIN_THREAD_ASYNC_EM_ASM(console.log("")); } MAIN_THREAD_ASYNC_EM_ASM(console.log('Free regions:')); for(int i = 0; i < NUM_FREE_BUCKETS; ++i) { Region *prev = &freeRegionBuckets[i]; Region *fr = freeRegionBuckets[i].next; while(fr != &freeRegionBuckets[i]) { MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16)), i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); assert(debug_region_is_consistent(fr)); assert(region_is_free(fr)); assert(fr->prev == prev); prev = fr; assert(fr->next != fr); assert(fr->prev != fr); fr = fr->next; } } MAIN_THREAD_ASYNC_EM_ASM(console.log('Free bucket index map: ' + ($0>>>0).toString(2) + ' ' + ($1>>>0).toString(2)), (uint32_t)(freeRegionBucketsUsed >> 32), (uint32_t)freeRegionBucketsUsed); MAIN_THREAD_ASYNC_EM_ASM(console.log("")); } void emmalloc_dump_memory_regions() { MALLOC_ACQUIRE(); dump_memory_regions(); MALLOC_RELEASE(); } static int validate_memory_regions() { ASSERT_MALLOC_IS_ACQUIRED(); RootRegion *root = listOfAllRegions; while(root) { Region *r = (Region*)root; if (!debug_region_is_consistent(r)) { MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'), r, r->size, region_ceiling_size(r) == r->size); return 1; } uint8_t *lastRegionEnd = root->endPtr; while((uint8_t*)r < lastRegionEnd) { if (!debug_region_is_consistent(r)) { MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'), r, r->size, region_ceiling_size(r) == r->size); return 1; } if (r->size == 0) break; r = next_region(r); } root = root->next; } for(int i = 0; i < NUM_FREE_BUCKETS; ++i) { Region *prev = &freeRegionBuckets[i]; Region *fr = freeRegionBuckets[i].next; while(fr != &freeRegionBuckets[i]) { if (!debug_region_is_consistent(fr) || !region_is_free(fr) || fr->prev != prev || fr->next == fr || fr->prev == fr) { MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16) + ' is corrupt!'), i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next); return 1; } prev = fr; fr = fr->next; } } return 0; } int emmalloc_validate_memory_regions() { MALLOC_ACQUIRE(); int memoryError = validate_memory_regions(); MALLOC_RELEASE(); return memoryError; } #endif static bool claim_more_memory(size_t numBytes) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory(numBytes='+($0>>>0)+ ')'), numBytes); #endif #ifdef EMMALLOC_MEMVALIDATE validate_memory_regions(); #endif uint8_t *startPtr; uint8_t *endPtr; do { // If this is the first time we're called, see if we can use // the initial heap memory set up by wasm-ld. if (!listOfAllRegions) { unsigned char *heap_end = sbrk(0); if (numBytes <= (size_t)(heap_end - &__heap_base)) { startPtr = &__heap_base; endPtr = heap_end; break; } } // Round numBytes up to the nearest page size. numBytes = (numBytes + (PAGE_SIZE-1)) & -PAGE_SIZE; // Claim memory via sbrk startPtr = (uint8_t*)sbrk(numBytes); if ((intptr_t)startPtr == -1) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.error('claim_more_memory: sbrk failed!')); #endif return false; } #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory: claimed 0x' + ($0>>>0).toString(16) + ' - 0x' + ($1>>>0).toString(16) + ' (' + ($2>>>0) + ' bytes) via sbrk()'), startPtr, startPtr + numBytes, numBytes); #endif assert(HAS_ALIGNMENT(startPtr, alignof(size_t))); endPtr = startPtr + numBytes; } while (0); // Create a sentinel region at the end of the new heap block Region *endSentinelRegion = (Region*)(endPtr - sizeof(Region)); create_used_region(endSentinelRegion, sizeof(Region)); // If we are the sole user of sbrk(), it will feed us continuous/consecutive memory addresses - take advantage // of that if so: instead of creating two disjoint memory regions blocks, expand the previous one to a larger size. uint8_t *previousSbrkEndAddress = listOfAllRegions ? listOfAllRegions->endPtr : 0; if (startPtr == previousSbrkEndAddress) { Region *prevEndSentinel = prev_region((Region*)startPtr); assert(debug_region_is_consistent(prevEndSentinel)); assert(region_is_in_use(prevEndSentinel)); Region *prevRegion = prev_region(prevEndSentinel); assert(debug_region_is_consistent(prevRegion)); listOfAllRegions->endPtr = endPtr; // Two scenarios, either the last region of the previous block was in use, in which case we need to create // a new free region in the newly allocated space; or it was free, in which case we can extend that region // to cover a larger size. if (region_is_free(prevRegion)) { size_t newFreeRegionSize = (uint8_t*)endSentinelRegion - (uint8_t*)prevRegion; unlink_from_free_list(prevRegion); create_free_region(prevRegion, newFreeRegionSize); link_to_free_list(prevRegion); return true; } // else: last region of the previous block was in use. Since we are joining two consecutive sbrk() blocks, // we can swallow the end sentinel of the previous block away. startPtr -= sizeof(Region); } else { // Create a root region at the start of the heap block create_used_region(startPtr, sizeof(Region)); // Dynamic heap start region: RootRegion *newRegionBlock = (RootRegion*)startPtr; newRegionBlock->next = listOfAllRegions; // Pointer to next region block head newRegionBlock->endPtr = endPtr; // Pointer to the end address of this region block listOfAllRegions = newRegionBlock; startPtr += sizeof(Region); } // Create a new memory region for the new claimed free space. create_free_region(startPtr, (uint8_t*)endSentinelRegion - startPtr); link_to_free_list((Region*)startPtr); return true; } #if 0 // Initialize emmalloc during static initialization. // See system/lib/README.md for static constructor ordering. __attribute__((constructor(47))) static void initialize_emmalloc_heap() { // Initialize circular doubly linked lists representing free space // Never useful to unroll this for loop, just takes up code size. #pragma clang loop unroll(disable) for(int i = 0; i < NUM_FREE_BUCKETS; ++i) freeRegionBuckets[i].prev = freeRegionBuckets[i].next = &freeRegionBuckets[i]; #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('initialize_emmalloc_heap()')); #endif // Start with a tiny dynamic region. claim_more_memory(3*sizeof(Region)); } void emmalloc_blank_slate_from_orbit() { MALLOC_ACQUIRE(); listOfAllRegions = NULL; freeRegionBucketsUsed = 0; initialize_emmalloc_heap(); MALLOC_RELEASE(); } #endif static void *attempt_allocate(Region *freeRegion, size_t alignment, size_t size) { ASSERT_MALLOC_IS_ACQUIRED(); assert(freeRegion); // Look at the next potential free region to allocate into. // First, we should check if the free region has enough of payload bytes contained // in it to accommodate the new allocation. This check needs to take account the // requested allocation alignment, so the payload memory area needs to be rounded // upwards to the desired alignment. uint8_t *payloadStartPtr = region_payload_start_ptr(freeRegion); uint8_t *payloadStartPtrAligned = ALIGN_UP(payloadStartPtr, alignment); uint8_t *payloadEndPtr = region_payload_end_ptr(freeRegion); // Do we have enough free space, taking into account alignment? if (payloadStartPtrAligned + size > payloadEndPtr) return NULL; // We have enough free space, so the memory allocation will be made into this region. Remove this free region // from the list of free regions: whatever slop remains will be later added back to the free region pool. unlink_from_free_list(freeRegion); // Before we proceed further, fix up the boundary of this region and the region that precedes this one, // so that the boundary between the two regions happens at a right spot for the payload to be aligned. if (payloadStartPtr != payloadStartPtrAligned) { Region *prevRegion = prev_region((Region*)freeRegion); // We never have two free regions adjacent to each other, so the region before this free // region should be in use. assert(region_is_in_use(prevRegion)); size_t regionBoundaryBumpAmount = payloadStartPtrAligned - payloadStartPtr; size_t newThisRegionSize = freeRegion->size - regionBoundaryBumpAmount; create_used_region(prevRegion, prevRegion->size + regionBoundaryBumpAmount); freeRegion = (Region *)((uint8_t*)freeRegion + regionBoundaryBumpAmount); freeRegion->size = newThisRegionSize; } // Next, we need to decide whether this region is so large that it should be split into two regions, // one representing the newly used memory area, and at the high end a remaining leftover free area. // This splitting to two is done always if there is enough space for the high end to fit a region. // Carve 'size' bytes of payload off this region. So, // [sz prev next sz] // becomes // [sz payload sz] [sz prev next sz] if (sizeof(Region) + REGION_HEADER_SIZE + size <= freeRegion->size) { // There is enough space to keep a free region at the end of the carved out block // -> construct the new block Region *newFreeRegion = (Region *)((uint8_t*)freeRegion + REGION_HEADER_SIZE + size); create_free_region(newFreeRegion, freeRegion->size - size - REGION_HEADER_SIZE); link_to_free_list(newFreeRegion); // Recreate the resized Region under its new size. create_used_region(freeRegion, size + REGION_HEADER_SIZE); } else { // There is not enough space to split the free memory region into used+free parts, so consume the whole // region as used memory, not leaving a free memory region behind. // Initialize the free region as used by resetting the ceiling size to the same value as the size at bottom. ((size_t*)((uint8_t*)freeRegion + freeRegion->size))[-1] = freeRegion->size; } #ifdef __EMSCRIPTEN_TRACING__ emscripten_trace_record_allocation(freeRegion, freeRegion->size); #endif #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_allocate - succeeded allocating memory, region ptr=0x' + ($0>>>0).toString(16) + ', align=' + $1 + ', payload size=' + ($2>>>0) + ' bytes)'), freeRegion, alignment, size); #endif return (uint8_t*)freeRegion + sizeof(size_t); } static size_t validate_alloc_alignment(size_t alignment) { // Cannot perform allocations that are less than 4 byte aligned, because the Region // control structures need to be aligned. Also round up to minimum outputted alignment. alignment = MAX(alignment, MALLOC_ALIGNMENT); // Arbitrary upper limit on alignment - very likely a programming bug if alignment is higher than this. assert(alignment <= 1024*1024); return alignment; } static size_t validate_alloc_size(size_t size) { assert(size + REGION_HEADER_SIZE > size); // Allocation sizes must be a multiple of pointer sizes, and at least 2*sizeof(pointer). size_t validatedSize = size > SMALLEST_ALLOCATION_SIZE ? (size_t)ALIGN_UP(size, sizeof(Region*)) : SMALLEST_ALLOCATION_SIZE; assert(validatedSize >= size); // 32-bit wraparound should not occur, too large sizes should be stopped before return validatedSize; } static void *allocate_memory(size_t alignment, size_t size) { ASSERT_MALLOC_IS_ACQUIRED(); #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('allocate_memory(align=' + $0 + ', size=' + ($1>>>0) + ' bytes)'), alignment, size); #endif #ifdef EMMALLOC_MEMVALIDATE validate_memory_regions(); #endif if (!IS_POWER_OF_2(alignment)) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: alignment not power of 2!')); #endif return 0; } if (size > MAX_ALLOC_SIZE) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); #endif return 0; } alignment = validate_alloc_alignment(alignment); size = validate_alloc_size(size); // Attempt to allocate memory starting from smallest bucket that can contain the required amount of memory. // Under normal alignment conditions this should always be the first or second bucket we look at, but if // performing an allocation with complex alignment, we may need to look at multiple buckets. int bucketIndex = compute_free_list_bucket(size); BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed >> bucketIndex; // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. while(bucketMask) { BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); bucketIndex += indexAdd; bucketMask >>= indexAdd; assert(bucketIndex >= 0); assert(bucketIndex <= NUM_FREE_BUCKETS-1); assert(freeRegionBucketsUsed & (((BUCKET_BITMASK_T)1) << bucketIndex)); Region *freeRegion = freeRegionBuckets[bucketIndex].next; assert(freeRegion); if (freeRegion != &freeRegionBuckets[bucketIndex]) { void *ptr = attempt_allocate(freeRegion, alignment, size); if (ptr) return ptr; // We were not able to allocate from the first region found in this bucket, so penalize // the region by cycling it to the end of the doubly circular linked list. (constant time) // This provides a randomized guarantee that when performing allocations of size k to a // bucket of [k-something, k+something] range, we will not always attempt to satisfy the // allocation from the same available region at the front of the list, but we try each // region in turn. unlink_from_free_list(freeRegion); prepend_to_free_list(freeRegion, &freeRegionBuckets[bucketIndex]); // But do not stick around to attempt to look at other regions in this bucket - move // to search the next populated bucket index if this did not fit. This gives a practical // "allocation in constant time" guarantee, since the next higher bucket will only have // regions that are all of strictly larger size than the requested allocation. Only if // there is a difficult alignment requirement we may fail to perform the allocation from // a region in the next bucket, and if so, we keep trying higher buckets until one of them // works. ++bucketIndex; bucketMask >>= 1; } else { // This bucket was not populated after all with any regions, // but we just had a stale bit set to mark a populated bucket. // Reset the bit to update latest status so that we do not // redundantly look at this bucket again. freeRegionBucketsUsed &= ~(((BUCKET_BITMASK_T)1) << bucketIndex); bucketMask ^= 1; } // Instead of recomputing bucketMask from scratch at the end of each loop, it is updated as we go, // to avoid undefined behavior with (x >> 32)/(x >> 64) when bucketIndex reaches 32/64, (the shift would comes out as a no-op instead of 0). assert((bucketIndex == NUM_FREE_BUCKETS && bucketMask == 0) || (bucketMask == freeRegionBucketsUsed >> bucketIndex)); } // None of the buckets were able to accommodate an allocation. If this happens we are almost out of memory. // The largest bucket might contain some suitable regions, but we only looked at one region in that bucket, so // as a last resort, loop through more free regions in the bucket that represents the largest allocations available. // But only if the bucket representing largest allocations available is not any of the first thirty buckets, // these represent allocatable areas less than <1024 bytes - which could be a lot of scrap. // In such case, prefer to sbrk() in more memory right away. int largestBucketIndex = NUM_FREE_BUCKETS - 1 - __builtin_clzll(freeRegionBucketsUsed); // freeRegion will be null if there is absolutely no memory left. (all buckets are 100% used) Region *freeRegion = freeRegionBucketsUsed ? freeRegionBuckets[largestBucketIndex].next : 0; if (freeRegionBucketsUsed >> 30) { // Look only at a constant number of regions in this bucket max, to avoid bad worst case behavior. // If this many regions cannot find free space, we give up and prefer to sbrk() more instead. const int maxRegionsToTryBeforeGivingUp = 99; int numTriesLeft = maxRegionsToTryBeforeGivingUp; while(freeRegion != &freeRegionBuckets[largestBucketIndex] && numTriesLeft-- > 0) { void *ptr = attempt_allocate(freeRegion, alignment, size); if (ptr) return ptr; freeRegion = freeRegion->next; } } // We were unable to find a free memory region. Must sbrk() in more memory! size_t numBytesToClaim = size+sizeof(Region)*3; assert(numBytesToClaim > size); // 32-bit wraparound should not happen here, allocation size has been validated above! bool success = claim_more_memory(numBytesToClaim); if (success) return allocate_memory(alignment, size); // Recurse back to itself to try again // also sbrk() failed, we are really really constrained :( As a last resort, go back to looking at the // bucket we already looked at above, continuing where the above search left off - perhaps there are // regions we overlooked the first time that might be able to satisfy the allocation. if (freeRegion) { while(freeRegion != &freeRegionBuckets[largestBucketIndex]) { void *ptr = attempt_allocate(freeRegion, alignment, size); if (ptr) return ptr; freeRegion = freeRegion->next; } } #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Could not find a free memory block!')); #endif return 0; } static void *emmalloc_memalign(size_t alignment, size_t size) { MALLOC_ACQUIRE(); void *ptr = allocate_memory(alignment, size); MALLOC_RELEASE(); return ptr; } #if 0 void * EMMALLOC_EXPORT memalign(size_t alignment, size_t size) { return emmalloc_memalign(alignment, size); } #endif void * EMMALLOC_EXPORT aligned_alloc(size_t alignment, size_t size) { if ((alignment % sizeof(void *) != 0) || (size % alignment) != 0) return 0; return emmalloc_memalign(alignment, size); } static void *emmalloc_malloc(size_t size) { return emmalloc_memalign(MALLOC_ALIGNMENT, size); } void * EMMALLOC_EXPORT malloc(size_t size) { return emmalloc_malloc(size); } static size_t emmalloc_usable_size(void *ptr) { if (!ptr) return 0; uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t); Region *region = (Region*)(regionStartPtr); assert(HAS_ALIGNMENT(region, sizeof(size_t))); MALLOC_ACQUIRE(); size_t size = region->size; assert(size >= sizeof(Region)); assert(region_is_in_use(region)); MALLOC_RELEASE(); return size - REGION_HEADER_SIZE; } size_t EMMALLOC_EXPORT malloc_usable_size(void *ptr) { return emmalloc_usable_size(ptr); } static void emmalloc_free(void *ptr) { #ifdef EMMALLOC_MEMVALIDATE emmalloc_validate_memory_regions(); #endif if (!ptr) return; #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('free(ptr=0x'+($0>>>0).toString(16)+')'), ptr); #endif uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t); Region *region = (Region*)(regionStartPtr); assert(HAS_ALIGNMENT(region, sizeof(size_t))); MALLOC_ACQUIRE(); size_t size = region->size; #ifdef EMMALLOC_VERBOSE if (size < sizeof(Region) || !region_is_in_use(region)) { if (debug_region_is_consistent(region)) // LLVM wasm backend bug: cannot use MAIN_THREAD_ASYNC_EM_ASM() here, that generates internal compiler error // Reproducible by running e.g. other.test_alloc_3GB EM_ASM(console.error('Double free at region ptr 0x' + ($0>>>0).toString(16) + ', region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region)); else MAIN_THREAD_ASYNC_EM_ASM(console.error('Corrupt region at region ptr 0x' + ($0>>>0).toString(16) + ' region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region)); } #endif assert(size >= sizeof(Region)); assert(region_is_in_use(region)); #ifdef __EMSCRIPTEN_TRACING__ emscripten_trace_record_free(region); #endif // Check merging with left side size_t prevRegionSizeField = ((size_t*)region)[-1]; size_t prevRegionSize = prevRegionSizeField & ~FREE_REGION_FLAG; if (prevRegionSizeField != prevRegionSize) // Previous region is free? { Region *prevRegion = (Region*)((uint8_t*)region - prevRegionSize); assert(debug_region_is_consistent(prevRegion)); unlink_from_free_list(prevRegion); regionStartPtr = (uint8_t*)prevRegion; size += prevRegionSize; } // Check merging with right side Region *nextRegion = next_region(region); assert(debug_region_is_consistent(nextRegion)); size_t sizeAtEnd = *(size_t*)region_payload_end_ptr(nextRegion); if (nextRegion->size != sizeAtEnd) { unlink_from_free_list(nextRegion); size += nextRegion->size; } create_free_region(regionStartPtr, size); link_to_free_list((Region*)regionStartPtr); MALLOC_RELEASE(); #ifdef EMMALLOC_MEMVALIDATE emmalloc_validate_memory_regions(); #endif } void EMMALLOC_EXPORT free(void *ptr) { emmalloc_free(ptr); } // Can be called to attempt to increase or decrease the size of the given region // to a new size (in-place). Returns 1 if resize succeeds, and 0 on failure. static int attempt_region_resize(Region *region, size_t size) { ASSERT_MALLOC_IS_ACQUIRED(); assert(size > 0); assert(HAS_ALIGNMENT(size, sizeof(size_t))); #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize(region=0x' + ($0>>>0).toString(16) + ', size=' + ($1>>>0) + ' bytes)'), region, size); #endif // First attempt to resize this region, if the next region that follows this one // is a free region. Region *nextRegion = next_region(region); uint8_t *nextRegionEndPtr = (uint8_t*)nextRegion + nextRegion->size; size_t sizeAtCeiling = ((size_t*)nextRegionEndPtr)[-1]; if (nextRegion->size != sizeAtCeiling) // Next region is free? { assert(region_is_free(nextRegion)); uint8_t *newNextRegionStartPtr = (uint8_t*)region + size; assert(HAS_ALIGNMENT(newNextRegionStartPtr, sizeof(size_t))); // Next region does not shrink to too small size? if (newNextRegionStartPtr + sizeof(Region) <= nextRegionEndPtr) { unlink_from_free_list(nextRegion); create_free_region(newNextRegionStartPtr, nextRegionEndPtr - newNextRegionStartPtr); link_to_free_list((Region*)newNextRegionStartPtr); create_used_region(region, newNextRegionStartPtr - (uint8_t*)region); return 1; } // If we remove the next region altogether, allocation is satisfied? if (newNextRegionStartPtr <= nextRegionEndPtr) { unlink_from_free_list(nextRegion); create_used_region(region, region->size + nextRegion->size); return 1; } } else { // Next region is an used region - we cannot change its starting address. However if we are shrinking the // size of this region, we can create a new free region between this and the next used region. if (size + sizeof(Region) <= region->size) { size_t freeRegionSize = region->size - size; create_used_region(region, size); Region *freeRegion = (Region *)((uint8_t*)region + size); create_free_region(freeRegion, freeRegionSize); link_to_free_list(freeRegion); return 1; } else if (size <= region->size) { // Caller was asking to shrink the size, but due to not being able to fit a full Region in the shrunk // area, we cannot actually do anything. This occurs if the shrink amount is really small. In such case, // just call it success without doing any work. return 1; } } #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize failed.')); #endif return 0; } static int acquire_and_attempt_region_resize(Region *region, size_t size) { MALLOC_ACQUIRE(); int success = attempt_region_resize(region, size); MALLOC_RELEASE(); return success; } static void *emmalloc_aligned_realloc(void *ptr, size_t alignment, size_t size) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('aligned_realloc(ptr=0x' + ($0>>>0).toString(16) + ', alignment=' + $1 + ', size=' + ($2>>>0)), ptr, alignment, size); #endif if (!ptr) return emmalloc_memalign(alignment, size); if (size == 0) { free(ptr); return 0; } if (size > MAX_ALLOC_SIZE) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); #endif return 0; } assert(IS_POWER_OF_2(alignment)); // aligned_realloc() cannot be used to ask to change the alignment of a pointer. assert(HAS_ALIGNMENT(ptr, alignment)); size = validate_alloc_size(size); // Calculate the region start address of the original allocation Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); // First attempt to resize the given region to avoid having to copy memory around if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) { #ifdef __EMSCRIPTEN_TRACING__ emscripten_trace_record_reallocation(ptr, ptr, size); #endif return ptr; } // If resize failed, we must allocate a new region, copy the data over, and then // free the old region. void *newptr = emmalloc_memalign(alignment, size); if (newptr) { memcpy(newptr, ptr, MIN(size, region->size - REGION_HEADER_SIZE)); free(ptr); } // N.B. If there is not enough memory, the old memory block should not be freed and // null pointer is returned. return newptr; } #if 0 void * EMMALLOC_EXPORT aligned_realloc(void *ptr, size_t alignment, size_t size) { return emmalloc_aligned_realloc(ptr, alignment, size); } #endif #if 0 // realloc_try() is like realloc(), but only attempts to try to resize the existing memory // area. If resizing the existing memory area fails, then realloc_try() will return 0 // (the original memory block is not freed or modified). If resizing succeeds, previous // memory contents will be valid up to min(old length, new length) bytes. void *emmalloc_realloc_try(void *ptr, size_t size) { if (!ptr) return 0; if (size == 0) { free(ptr); return 0; } if (size > MAX_ALLOC_SIZE) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); #endif return 0; } size = validate_alloc_size(size); // Calculate the region start address of the original allocation Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); // Attempt to resize the given region to avoid having to copy memory around int success = acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE); #ifdef __EMSCRIPTEN_TRACING__ if (success) emscripten_trace_record_reallocation(ptr, ptr, size); #endif return success ? ptr : 0; } // emmalloc_aligned_realloc_uninitialized() is like aligned_realloc(), but old memory contents // will be undefined after reallocation. (old memory is not preserved in any case) void *emmalloc_aligned_realloc_uninitialized(void *ptr, size_t alignment, size_t size) { if (!ptr) return emmalloc_memalign(alignment, size); if (size == 0) { free(ptr); return 0; } if (size > MAX_ALLOC_SIZE) { #ifdef EMMALLOC_VERBOSE MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size); #endif return 0; } size = validate_alloc_size(size); // Calculate the region start address of the original allocation Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t)); // First attempt to resize the given region to avoid having to copy memory around if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE)) { #ifdef __EMSCRIPTEN_TRACING__ emscripten_trace_record_reallocation(ptr, ptr, size); #endif return ptr; } // If resize failed, drop the old region and allocate a new region. Memory is not // copied over free(ptr); return emmalloc_memalign(alignment, size); } #endif static void *emmalloc_realloc(void *ptr, size_t size) { return emmalloc_aligned_realloc(ptr, MALLOC_ALIGNMENT, size); } void * EMMALLOC_EXPORT realloc(void *ptr, size_t size) { return emmalloc_realloc(ptr, size); } #if 0 // realloc_uninitialized() is like realloc(), but old memory contents // will be undefined after reallocation. (old memory is not preserved in any case) void *emmalloc_realloc_uninitialized(void *ptr, size_t size) { return emmalloc_aligned_realloc_uninitialized(ptr, MALLOC_ALIGNMENT, size); } #endif static int emmalloc_posix_memalign(void **memptr, size_t alignment, size_t size) { assert(memptr); if (alignment % sizeof(void *) != 0) return 22/* EINVAL*/; *memptr = emmalloc_memalign(alignment, size); return *memptr ? 0 : 12/*ENOMEM*/; } int EMMALLOC_EXPORT posix_memalign(void **memptr, size_t alignment, size_t size) { return emmalloc_posix_memalign(memptr, alignment, size); } static void *emmalloc_calloc(size_t num, size_t size) { size_t bytes = num*size; void *ptr = emmalloc_memalign(MALLOC_ALIGNMENT, bytes); if (ptr) memset(ptr, 0, bytes); return ptr; } void * EMMALLOC_EXPORT calloc(size_t num, size_t size) { return emmalloc_calloc(num, size); } #if 0 static int count_linked_list_size(Region *list) { int size = 1; for(Region *i = list->next; i != list; list = list->next) ++size; return size; } static size_t count_linked_list_space(Region *list) { size_t space = 0; for(Region *i = list->next; i != list; list = list->next) space += region_payload_end_ptr(i) - region_payload_start_ptr(i); return space; } struct mallinfo emmalloc_mallinfo() { MALLOC_ACQUIRE(); struct mallinfo info; // Non-mmapped space allocated (bytes): For emmalloc, // let's define this as the difference between heap size and dynamic top end. info.arena = emscripten_get_heap_size() - (size_t)sbrk(0); // Number of "ordinary" blocks. Let's define this as the number of highest // size blocks. (subtract one from each, since there is a sentinel node in each list) info.ordblks = count_linked_list_size(&freeRegionBuckets[NUM_FREE_BUCKETS-1])-1; // Number of free "fastbin" blocks. For emmalloc, define this as the number // of blocks that are not in the largest pristine block. info.smblks = 0; // The total number of bytes in free "fastbin" blocks. info.fsmblks = 0; for(int i = 0; i < NUM_FREE_BUCKETS-1; ++i) { info.smblks += count_linked_list_size(&freeRegionBuckets[i])-1; info.fsmblks += count_linked_list_space(&freeRegionBuckets[i]); } info.hblks = 0; // Number of mmapped regions: always 0. (no mmap support) info.hblkhd = 0; // Amount of bytes in mmapped regions: always 0. (no mmap support) // Walk through all the heap blocks to report the following data: // The "highwater mark" for allocated space—that is, the maximum amount of // space that was ever allocated. Emmalloc does not want to pay code to // track this, so this is only reported from current allocation data, and // may not be accurate. info.usmblks = 0; info.uordblks = 0; // The total number of bytes used by in-use allocations. info.fordblks = 0; // The total number of bytes in free blocks. // The total amount of releasable free space at the top of the heap. // This is the maximum number of bytes that could ideally be released by malloc_trim(3). Region *lastActualRegion = prev_region((Region*)(listOfAllRegions->endPtr - sizeof(Region))); info.keepcost = region_is_free(lastActualRegion) ? lastActualRegion->size : 0; RootRegion *root = listOfAllRegions; while(root) { Region *r = (Region*)root; assert(debug_region_is_consistent(r)); uint8_t *lastRegionEnd = root->endPtr; while((uint8_t*)r < lastRegionEnd) { assert(debug_region_is_consistent(r)); if (region_is_free(r)) { // Count only the payload of the free block towards free memory. info.fordblks += region_payload_end_ptr(r) - region_payload_start_ptr(r); // But the header data of the free block goes towards used memory. info.uordblks += REGION_HEADER_SIZE; } else { info.uordblks += r->size; } // Update approximate watermark data info.usmblks = MAX(info.usmblks, (intptr_t)r + r->size); if (r->size == 0) break; r = next_region(r); } root = root->next; } MALLOC_RELEASE(); return info; } struct mallinfo EMMALLOC_EXPORT mallinfo() { return emmalloc_mallinfo(); } // Note! This function is not fully multithreadin safe: while this function is running, other threads should not be // allowed to call sbrk()! static int trim_dynamic_heap_reservation(size_t pad) { ASSERT_MALLOC_IS_ACQUIRED(); if (!listOfAllRegions) return 0; // emmalloc is not controlling any dynamic memory at all - cannot release memory. uint8_t *previousSbrkEndAddress = listOfAllRegions->endPtr; assert(sbrk(0) == previousSbrkEndAddress); size_t lastMemoryRegionSize = ((size_t*)previousSbrkEndAddress)[-1]; assert(lastMemoryRegionSize == 16); // // The last memory region should be a sentinel node of exactly 16 bytes in size. Region *endSentinelRegion = (Region*)(previousSbrkEndAddress - sizeof(Region)); Region *lastActualRegion = prev_region(endSentinelRegion); // Round padding up to multiple of 4 bytes to keep sbrk() and memory region alignment intact. // Also have at least 8 bytes of payload so that we can form a full free region. size_t newRegionSize = (size_t)ALIGN_UP(pad, 4); if (pad > 0) newRegionSize += sizeof(Region) - (newRegionSize - pad); if (!region_is_free(lastActualRegion) || lastActualRegion->size <= newRegionSize) return 0; // Last actual region is in use, or caller desired to leave more free memory intact than there is. // This many bytes will be shrunk away. size_t shrinkAmount = lastActualRegion->size - newRegionSize; assert(HAS_ALIGNMENT(shrinkAmount, 4)); unlink_from_free_list(lastActualRegion); // If pad == 0, we should delete the last free region altogether. If pad > 0, // shrink the last free region to the desired size. if (newRegionSize > 0) { create_free_region(lastActualRegion, newRegionSize); link_to_free_list(lastActualRegion); } // Recreate the sentinel region at the end of the last free region endSentinelRegion = (Region*)((uint8_t*)lastActualRegion + newRegionSize); create_used_region(endSentinelRegion, sizeof(Region)); // And update the size field of the whole region block. listOfAllRegions->endPtr = (uint8_t*)endSentinelRegion + sizeof(Region); // Finally call sbrk() to shrink the memory area. void *oldSbrk = sbrk(-(intptr_t)shrinkAmount); assert((intptr_t)oldSbrk != -1); // Shrinking with sbrk() should never fail. assert(oldSbrk == previousSbrkEndAddress); // Another thread should not have raced to increase sbrk() on us! // All successful, and we actually trimmed memory! return 1; } int emmalloc_trim(size_t pad) { MALLOC_ACQUIRE(); int success = trim_dynamic_heap_reservation(pad); MALLOC_RELEASE(); return success; } int EMMALLOC_EXPORT malloc_trim(size_t pad) { return emmalloc_trim(pad); } size_t emmalloc_dynamic_heap_size() { size_t dynamicHeapSize = 0; MALLOC_ACQUIRE(); RootRegion *root = listOfAllRegions; while(root) { dynamicHeapSize += root->endPtr - (uint8_t*)root; root = root->next; } MALLOC_RELEASE(); return dynamicHeapSize; } size_t emmalloc_free_dynamic_memory() { size_t freeDynamicMemory = 0; int bucketIndex = 0; MALLOC_ACQUIRE(); BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed; // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. while(bucketMask) { BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); bucketIndex += indexAdd; bucketMask >>= indexAdd; for(Region *freeRegion = freeRegionBuckets[bucketIndex].next; freeRegion != &freeRegionBuckets[bucketIndex]; freeRegion = freeRegion->next) { freeDynamicMemory += freeRegion->size - REGION_HEADER_SIZE; } ++bucketIndex; bucketMask >>= 1; } MALLOC_RELEASE(); return freeDynamicMemory; } size_t emmalloc_compute_free_dynamic_memory_fragmentation_map(size_t freeMemorySizeMap[32]) { memset((void*)freeMemorySizeMap, 0, sizeof(freeMemorySizeMap[0])*32); size_t numFreeMemoryRegions = 0; int bucketIndex = 0; MALLOC_ACQUIRE(); BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed; // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap. while(bucketMask) { BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask); bucketIndex += indexAdd; bucketMask >>= indexAdd; for(Region *freeRegion = freeRegionBuckets[bucketIndex].next; freeRegion != &freeRegionBuckets[bucketIndex]; freeRegion = freeRegion->next) { ++numFreeMemoryRegions; size_t freeDynamicMemory = freeRegion->size - REGION_HEADER_SIZE; if (freeDynamicMemory > 0) ++freeMemorySizeMap[31-__builtin_clz(freeDynamicMemory)]; else ++freeMemorySizeMap[0]; } ++bucketIndex; bucketMask >>= 1; } MALLOC_RELEASE(); return numFreeMemoryRegions; } size_t emmalloc_unclaimed_heap_memory(void) { return emscripten_get_heap_max() - (size_t)sbrk(0); } #endif // Define these to satisfy musl references. void *__libc_malloc(size_t) __attribute__((alias("malloc"))); void __libc_free(void *) __attribute__((alias("free"))); void *__libc_calloc(size_t nmemb, size_t size) __attribute__((alias("calloc")));