summaryrefslogtreecommitdiffstats
path: root/emmalloc/emmalloc.c
blob: e97ef44dc058772c640a2be5889513dce73ef592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
/*
 * Copyright 2018 The Emscripten Authors.  All rights reserved.
 * Emscripten is available under two separate licenses, the MIT license and the
 * University of Illinois/NCSA Open Source License.  Both these licenses can be
 * found in the LICENSE file.
 *
 * Simple minimalistic but efficient sbrk()-based malloc/free that works in
 * singlethreaded and multithreaded builds.
 *
 * Assumptions:
 *
 *  - sbrk() is used to claim new memory (sbrk handles geometric/linear
 *  - overallocation growth)
 *  - sbrk() can be used by other code outside emmalloc.
 *  - sbrk() is very fast in most cases (internal wasm call).
 *  - sbrk() returns pointers with an alignment of alignof(max_align_t)
 *
 * Invariants:
 *
 *  - Per-allocation header overhead is 8 bytes, smallest allocated payload
 *    amount is 8 bytes, and a multiple of 4 bytes.
 *  - Acquired memory blocks are subdivided into disjoint regions that lie
 *    next to each other.
 *  - A region is either in used or free.
 *    Used regions may be adjacent, and a used and unused region
 *    may be adjacent, but not two unused ones - they would be
 *    merged.
 *  - Memory allocation takes constant time, unless the alloc needs to sbrk()
 *    or memory is very close to being exhausted.
 *
 * Debugging:
 *
 *  - If not NDEBUG, runtime assert()s are in use.
 *  - If EMMALLOC_MEMVALIDATE is defined, a large amount of extra checks are done.
 *  - If EMMALLOC_VERBOSE is defined, a lot of operations are logged
 *    out, in addition to EMMALLOC_MEMVALIDATE.
 *  - Debugging and logging directly uses console.log via uses EM_ASM, not
 *    printf etc., to minimize any risk of debugging or logging depending on
 *    malloc.
 */

#include <stdalign.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <unistd.h>
#include <memory.h>
#include <assert.h>
#include <malloc.h>
#include <limits.h>
#include <stdlib.h>

#ifdef __EMSCRIPTEN_TRACING__
#include <emscripten/trace.h>
#endif

// Defind by the linker to have the address of the start of the heap.
extern unsigned char __heap_base;
extern unsigned char __heap_end;

// Behavior of right shifting a signed integer is compiler implementation defined.
static_assert((((int32_t)0x80000000U) >> 31) == -1, "This malloc implementation requires that right-shifting a signed integer produces a sign-extending (arithmetic) shift!");

// Configuration: specifies the minimum alignment that malloc()ed memory outputs. Allocation requests with smaller alignment
// than this will yield an allocation with this much alignment.
#define MALLOC_ALIGNMENT alignof(max_align_t)
static_assert(alignof(max_align_t) == 16, "max_align_t must be correct");

#define EMMALLOC_EXPORT __attribute__((weak))

#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))

#define NUM_FREE_BUCKETS 64
#define BUCKET_BITMASK_T uint64_t

// Dynamic memory is subdivided into regions, in the format

// <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | <size:uint32_t> ..... <size:uint32_t> | .....

// That is, at the bottom and top end of each memory region, the size of that region is stored. That allows traversing the
// memory regions backwards and forwards. Because each allocation must be at least a multiple of 4 bytes, the lowest two bits of
// each size field is unused. Free regions are distinguished by used regions by having the FREE_REGION_FLAG bit present
// in the size field. I.e. for free regions, the size field is odd, and for used regions, the size field reads even.
#define FREE_REGION_FLAG 0x1u

// Attempts to malloc() more than this many bytes would cause an overflow when calculating the size of a region,
// therefore allocations larger than this are short-circuited immediately on entry.
#define MAX_ALLOC_SIZE 0xFFFFFFC7u

// A free region has the following structure:
// <size:size_t> <prevptr> <nextptr> ... <size:size_t>

typedef struct Region
{
  size_t size;
  // Use a circular doubly linked list to represent free region data.
  struct Region *prev, *next;
  // ... N bytes of free data
  size_t _at_the_end_of_this_struct_size; // do not dereference, this is present for convenient struct sizeof() computation only
} Region;

// Each memory block starts with a RootRegion at the beginning.
// The RootRegion specifies the size of the region block, and forms a linked
// list of all RootRegions in the program, starting with `listOfAllRegions`
// below.
typedef struct RootRegion
{
  uint32_t size;
  struct RootRegion *next;
  uint8_t* endPtr;
} RootRegion;

#if defined(__EMSCRIPTEN_PTHREADS__)
// In multithreaded builds, use a simple global spinlock strategy to acquire/release access to the memory allocator.
static volatile uint8_t multithreadingLock = 0;
#define MALLOC_ACQUIRE() while(__sync_lock_test_and_set(&multithreadingLock, 1)) { while(multithreadingLock) { /*nop*/ } }
#define MALLOC_RELEASE() __sync_lock_release(&multithreadingLock)
// Test code to ensure we have tight malloc acquire/release guards in place.
#define ASSERT_MALLOC_IS_ACQUIRED() assert(multithreadingLock == 1)
#else
// In singlethreaded builds, no need for locking.
#define MALLOC_ACQUIRE() ((void)0)
#define MALLOC_RELEASE() ((void)0)
#define ASSERT_MALLOC_IS_ACQUIRED() ((void)0)
#endif

#define IS_POWER_OF_2(val) (((val) & ((val)-1)) == 0)
#define ALIGN_UP(ptr, alignment) ((uint8_t*)((((uintptr_t)(ptr)) + ((alignment)-1)) & ~((alignment)-1)))
#define HAS_ALIGNMENT(ptr, alignment) ((((uintptr_t)(ptr)) & ((alignment)-1)) == 0)

static_assert(IS_POWER_OF_2(MALLOC_ALIGNMENT), "MALLOC_ALIGNMENT must be a power of two value!");
static_assert(MALLOC_ALIGNMENT >= 4, "Smallest possible MALLOC_ALIGNMENT if 4!");

// A region that contains as payload a single forward linked list of pointers to
// root regions of each disjoint region blocks.
static RootRegion *listOfAllRegions = NULL;

// For each of the buckets, maintain a linked list head node. The head node for each
// free region is a sentinel node that does not actually represent any free space, but
// the sentinel is used to avoid awkward testing against (if node == freeRegionHeadNode)
// when adding and removing elements from the linked list, i.e. we are guaranteed that
// the sentinel node is always fixed and there, and the actual free region list elements
// start at freeRegionBuckets[i].next each.
static Region freeRegionBuckets[NUM_FREE_BUCKETS] = {
	{ .prev = &freeRegionBuckets[0], .next = &freeRegionBuckets[0] },
	{ .prev = &freeRegionBuckets[1], .next = &freeRegionBuckets[1] },
	{ .prev = &freeRegionBuckets[2], .next = &freeRegionBuckets[2] },
	{ .prev = &freeRegionBuckets[3], .next = &freeRegionBuckets[3] },
	{ .prev = &freeRegionBuckets[4], .next = &freeRegionBuckets[4] },
	{ .prev = &freeRegionBuckets[5], .next = &freeRegionBuckets[5] },
	{ .prev = &freeRegionBuckets[6], .next = &freeRegionBuckets[6] },
	{ .prev = &freeRegionBuckets[7], .next = &freeRegionBuckets[7] },
	{ .prev = &freeRegionBuckets[8], .next = &freeRegionBuckets[8] },
	{ .prev = &freeRegionBuckets[9], .next = &freeRegionBuckets[9] },
	{ .prev = &freeRegionBuckets[10], .next = &freeRegionBuckets[10] },
	{ .prev = &freeRegionBuckets[11], .next = &freeRegionBuckets[11] },
	{ .prev = &freeRegionBuckets[12], .next = &freeRegionBuckets[12] },
	{ .prev = &freeRegionBuckets[13], .next = &freeRegionBuckets[13] },
	{ .prev = &freeRegionBuckets[14], .next = &freeRegionBuckets[14] },
	{ .prev = &freeRegionBuckets[15], .next = &freeRegionBuckets[15] },
	{ .prev = &freeRegionBuckets[16], .next = &freeRegionBuckets[16] },
	{ .prev = &freeRegionBuckets[17], .next = &freeRegionBuckets[17] },
	{ .prev = &freeRegionBuckets[18], .next = &freeRegionBuckets[18] },
	{ .prev = &freeRegionBuckets[19], .next = &freeRegionBuckets[19] },
	{ .prev = &freeRegionBuckets[20], .next = &freeRegionBuckets[20] },
	{ .prev = &freeRegionBuckets[21], .next = &freeRegionBuckets[21] },
	{ .prev = &freeRegionBuckets[22], .next = &freeRegionBuckets[22] },
	{ .prev = &freeRegionBuckets[23], .next = &freeRegionBuckets[23] },
	{ .prev = &freeRegionBuckets[24], .next = &freeRegionBuckets[24] },
	{ .prev = &freeRegionBuckets[25], .next = &freeRegionBuckets[25] },
	{ .prev = &freeRegionBuckets[26], .next = &freeRegionBuckets[26] },
	{ .prev = &freeRegionBuckets[27], .next = &freeRegionBuckets[27] },
	{ .prev = &freeRegionBuckets[28], .next = &freeRegionBuckets[28] },
	{ .prev = &freeRegionBuckets[29], .next = &freeRegionBuckets[29] },
	{ .prev = &freeRegionBuckets[30], .next = &freeRegionBuckets[30] },
	{ .prev = &freeRegionBuckets[31], .next = &freeRegionBuckets[31] },
	{ .prev = &freeRegionBuckets[32], .next = &freeRegionBuckets[32] },
	{ .prev = &freeRegionBuckets[33], .next = &freeRegionBuckets[33] },
	{ .prev = &freeRegionBuckets[34], .next = &freeRegionBuckets[34] },
	{ .prev = &freeRegionBuckets[35], .next = &freeRegionBuckets[35] },
	{ .prev = &freeRegionBuckets[36], .next = &freeRegionBuckets[36] },
	{ .prev = &freeRegionBuckets[37], .next = &freeRegionBuckets[37] },
	{ .prev = &freeRegionBuckets[38], .next = &freeRegionBuckets[38] },
	{ .prev = &freeRegionBuckets[39], .next = &freeRegionBuckets[39] },
	{ .prev = &freeRegionBuckets[40], .next = &freeRegionBuckets[40] },
	{ .prev = &freeRegionBuckets[41], .next = &freeRegionBuckets[41] },
	{ .prev = &freeRegionBuckets[42], .next = &freeRegionBuckets[42] },
	{ .prev = &freeRegionBuckets[43], .next = &freeRegionBuckets[43] },
	{ .prev = &freeRegionBuckets[44], .next = &freeRegionBuckets[44] },
	{ .prev = &freeRegionBuckets[45], .next = &freeRegionBuckets[45] },
	{ .prev = &freeRegionBuckets[46], .next = &freeRegionBuckets[46] },
	{ .prev = &freeRegionBuckets[47], .next = &freeRegionBuckets[47] },
	{ .prev = &freeRegionBuckets[48], .next = &freeRegionBuckets[48] },
	{ .prev = &freeRegionBuckets[49], .next = &freeRegionBuckets[49] },
	{ .prev = &freeRegionBuckets[50], .next = &freeRegionBuckets[50] },
	{ .prev = &freeRegionBuckets[51], .next = &freeRegionBuckets[51] },
	{ .prev = &freeRegionBuckets[52], .next = &freeRegionBuckets[52] },
	{ .prev = &freeRegionBuckets[53], .next = &freeRegionBuckets[53] },
	{ .prev = &freeRegionBuckets[54], .next = &freeRegionBuckets[54] },
	{ .prev = &freeRegionBuckets[55], .next = &freeRegionBuckets[55] },
	{ .prev = &freeRegionBuckets[56], .next = &freeRegionBuckets[56] },
	{ .prev = &freeRegionBuckets[57], .next = &freeRegionBuckets[57] },
	{ .prev = &freeRegionBuckets[58], .next = &freeRegionBuckets[58] },
	{ .prev = &freeRegionBuckets[59], .next = &freeRegionBuckets[59] },
	{ .prev = &freeRegionBuckets[60], .next = &freeRegionBuckets[60] },
	{ .prev = &freeRegionBuckets[61], .next = &freeRegionBuckets[61] },
	{ .prev = &freeRegionBuckets[62], .next = &freeRegionBuckets[62] },
	{ .prev = &freeRegionBuckets[63], .next = &freeRegionBuckets[63] },
};

// A bitmask that tracks the population status for each of the 64 distinct memory regions:
// a zero at bit position i means that the free list bucket i is empty. This bitmask is
// used to avoid redundant scanning of the 64 different free region buckets: instead by
// looking at the bitmask we can find in constant time an index to a free region bucket
// that contains free memory of desired size.
static BUCKET_BITMASK_T freeRegionBucketsUsed = 0;

// Amount of bytes taken up by allocation header data
#define REGION_HEADER_SIZE (2*sizeof(size_t))

// Smallest allocation size that is possible is 2*pointer size, since payload of each region must at least contain space
// to store the free region linked list prev and next pointers. An allocation size smaller than this will be rounded up
// to this size.
#define SMALLEST_ALLOCATION_SIZE (2*sizeof(void*))

/* Subdivide regions of free space into distinct circular doubly linked lists, where each linked list
represents a range of free space blocks. The following function compute_free_list_bucket() converts
an allocation size to the bucket index that should be looked at. The buckets are grouped as follows:

  Bucket 0: [8, 15], range size=8
  Bucket 1: [16, 23], range size=8
  Bucket 2: [24, 31], range size=8
  Bucket 3: [32, 39], range size=8
  Bucket 4: [40, 47], range size=8
  Bucket 5: [48, 55], range size=8
  Bucket 6: [56, 63], range size=8
  Bucket 7: [64, 71], range size=8
  Bucket 8: [72, 79], range size=8
  Bucket 9: [80, 87], range size=8
  Bucket 10: [88, 95], range size=8
  Bucket 11: [96, 103], range size=8
  Bucket 12: [104, 111], range size=8
  Bucket 13: [112, 119], range size=8
  Bucket 14: [120, 159], range size=40
  Bucket 15: [160, 191], range size=32
  Bucket 16: [192, 223], range size=32
  Bucket 17: [224, 255], range size=32
  Bucket 18: [256, 319], range size=64
  Bucket 19: [320, 383], range size=64
  Bucket 20: [384, 447], range size=64
  Bucket 21: [448, 511], range size=64
  Bucket 22: [512, 639], range size=128
  Bucket 23: [640, 767], range size=128
  Bucket 24: [768, 895], range size=128
  Bucket 25: [896, 1023], range size=128
  Bucket 26: [1024, 1279], range size=256
  Bucket 27: [1280, 1535], range size=256
  Bucket 28: [1536, 1791], range size=256
  Bucket 29: [1792, 2047], range size=256
  Bucket 30: [2048, 2559], range size=512
  Bucket 31: [2560, 3071], range size=512
  Bucket 32: [3072, 3583], range size=512
  Bucket 33: [3584, 6143], range size=2560
  Bucket 34: [6144, 8191], range size=2048
  Bucket 35: [8192, 12287], range size=4096
  Bucket 36: [12288, 16383], range size=4096
  Bucket 37: [16384, 24575], range size=8192
  Bucket 38: [24576, 32767], range size=8192
  Bucket 39: [32768, 49151], range size=16384
  Bucket 40: [49152, 65535], range size=16384
  Bucket 41: [65536, 98303], range size=32768
  Bucket 42: [98304, 131071], range size=32768
  Bucket 43: [131072, 196607], range size=65536
  Bucket 44: [196608, 262143], range size=65536
  Bucket 45: [262144, 393215], range size=131072
  Bucket 46: [393216, 524287], range size=131072
  Bucket 47: [524288, 786431], range size=262144
  Bucket 48: [786432, 1048575], range size=262144
  Bucket 49: [1048576, 1572863], range size=524288
  Bucket 50: [1572864, 2097151], range size=524288
  Bucket 51: [2097152, 3145727], range size=1048576
  Bucket 52: [3145728, 4194303], range size=1048576
  Bucket 53: [4194304, 6291455], range size=2097152
  Bucket 54: [6291456, 8388607], range size=2097152
  Bucket 55: [8388608, 12582911], range size=4194304
  Bucket 56: [12582912, 16777215], range size=4194304
  Bucket 57: [16777216, 25165823], range size=8388608
  Bucket 58: [25165824, 33554431], range size=8388608
  Bucket 59: [33554432, 50331647], range size=16777216
  Bucket 60: [50331648, 67108863], range size=16777216
  Bucket 61: [67108864, 100663295], range size=33554432
  Bucket 62: [100663296, 134217727], range size=33554432
  Bucket 63: 134217728 bytes and larger. */
static_assert(NUM_FREE_BUCKETS == 64, "Following function is tailored specifically for NUM_FREE_BUCKETS == 64 case");
static int compute_free_list_bucket(size_t allocSize)
{
  if (allocSize < 128) return (allocSize >> 3) - 1;
  int clz = __builtin_clz(allocSize);
  int bucketIndex = (clz > 19) ? 110 - (clz<<2) + ((allocSize >> (29-clz)) ^ 4) : MIN(71 - (clz<<1) + ((allocSize >> (30-clz)) ^ 2), NUM_FREE_BUCKETS-1);
  assert(bucketIndex >= 0);
  assert(bucketIndex < NUM_FREE_BUCKETS);
  return bucketIndex;
}

#define DECODE_CEILING_SIZE(size) ((size_t)((size) & ~FREE_REGION_FLAG))

static Region *prev_region(Region *region)
{
  size_t prevRegionSize = ((size_t*)region)[-1];
  prevRegionSize = DECODE_CEILING_SIZE(prevRegionSize);
  return (Region*)((uint8_t*)region - prevRegionSize);
}

static Region *next_region(Region *region)
{
  return (Region*)((uint8_t*)region + region->size);
}

static size_t region_ceiling_size(Region *region)
{
  return ((size_t*)((uint8_t*)region + region->size))[-1];
}

static bool region_is_free(Region *r)
{
  return region_ceiling_size(r) & FREE_REGION_FLAG;
}

static bool region_is_in_use(Region *r)
{
  return r->size == region_ceiling_size(r);
}

static size_t size_of_region_from_ceiling(Region *r)
{
  size_t size = region_ceiling_size(r);
  return DECODE_CEILING_SIZE(size);
}

static bool debug_region_is_consistent(Region *r)
{
  assert(r);
  size_t sizeAtBottom = r->size;
  size_t sizeAtCeiling = size_of_region_from_ceiling(r);
  return sizeAtBottom == sizeAtCeiling;
}

static uint8_t *region_payload_start_ptr(Region *region)
{
  return (uint8_t*)region + sizeof(size_t);
}

static uint8_t *region_payload_end_ptr(Region *region)
{
  return (uint8_t*)region + region->size - sizeof(size_t);
}

static void create_used_region(void *ptr, size_t size)
{
  assert(ptr);
  assert(HAS_ALIGNMENT(ptr, sizeof(size_t)));
  assert(HAS_ALIGNMENT(size, sizeof(size_t)));
  assert(size >= sizeof(Region));
  *(size_t*)ptr = size;
  ((size_t*)ptr)[(size/sizeof(size_t))-1] = size;
}

static void create_free_region(void *ptr, size_t size)
{
  assert(ptr);
  assert(HAS_ALIGNMENT(ptr, sizeof(size_t)));
  assert(HAS_ALIGNMENT(size, sizeof(size_t)));
  assert(size >= sizeof(Region));
  Region *freeRegion = (Region*)ptr;
  freeRegion->size = size;
  ((size_t*)ptr)[(size/sizeof(size_t))-1] = size | FREE_REGION_FLAG;
}

static void prepend_to_free_list(Region *region, Region *prependTo)
{
  assert(region);
  assert(prependTo);
  // N.b. the region we are prepending to is always the sentinel node,
  // which represents a dummy node that is technically not a free node, so
  // region_is_free(prependTo) does not hold.
  assert(region_is_free((Region*)region));
  region->next = prependTo;
  region->prev = prependTo->prev;
  assert(region->prev);
  prependTo->prev = region;
  region->prev->next = region;
}

static void unlink_from_free_list(Region *region)
{
  assert(region);
  assert(region_is_free((Region*)region));
  assert(region->prev);
  assert(region->next);
  region->prev->next = region->next;
  region->next->prev = region->prev;
}

static void link_to_free_list(Region *freeRegion)
{
  assert(freeRegion);
  assert(freeRegion->size >= sizeof(Region));
  int bucketIndex = compute_free_list_bucket(freeRegion->size-REGION_HEADER_SIZE);
  Region *freeListHead = freeRegionBuckets + bucketIndex;
  freeRegion->prev = freeListHead;
  freeRegion->next = freeListHead->next;
  assert(freeRegion->next);
  freeListHead->next = freeRegion;
  freeRegion->next->prev = freeRegion;
  freeRegionBucketsUsed |= ((BUCKET_BITMASK_T)1) << bucketIndex;
}

#if 0
static void dump_memory_regions()
{
  ASSERT_MALLOC_IS_ACQUIRED();
  RootRegion *root = listOfAllRegions;
  MAIN_THREAD_ASYNC_EM_ASM(console.log('All memory regions:'));
  while(root)
  {
    Region *r = (Region*)root;
    assert(debug_region_is_consistent(r));
    uint8_t *lastRegionEnd = root->endPtr;
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Region block 0x'+($0>>>0).toString(16)+' - 0x'+($1>>>0).toString(16)+ ' ('+($2>>>0)+' bytes):'),
      r, lastRegionEnd, lastRegionEnd-(uint8_t*)r);
    while((uint8_t*)r < lastRegionEnd)
    {
      MAIN_THREAD_ASYNC_EM_ASM(console.log('Region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+')'),
        r, r->size, region_ceiling_size(r) == r->size);

      assert(debug_region_is_consistent(r));
      size_t sizeFromCeiling = size_of_region_from_ceiling(r);
      if (sizeFromCeiling != r->size)
        MAIN_THREAD_ASYNC_EM_ASM(console.log('Corrupt region! Size marker at the end of the region does not match: '+($0>>>0)), sizeFromCeiling);
      if (r->size == 0)
        break;
      r = next_region(r);
    }
    root = root->next;
    MAIN_THREAD_ASYNC_EM_ASM(console.log(""));
  }
  MAIN_THREAD_ASYNC_EM_ASM(console.log('Free regions:'));
  for(int i = 0; i < NUM_FREE_BUCKETS; ++i)
  {
    Region *prev = &freeRegionBuckets[i];
    Region *fr = freeRegionBuckets[i].next;
    while(fr != &freeRegionBuckets[i])
    {
      MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16)),
        i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next);
      assert(debug_region_is_consistent(fr));
      assert(region_is_free(fr));
      assert(fr->prev == prev);
      prev = fr;
      assert(fr->next != fr);
      assert(fr->prev != fr);
      fr = fr->next;
    }
  }
  MAIN_THREAD_ASYNC_EM_ASM(console.log('Free bucket index map: ' + ($0>>>0).toString(2) + ' ' + ($1>>>0).toString(2)), (uint32_t)(freeRegionBucketsUsed >> 32), (uint32_t)freeRegionBucketsUsed);
  MAIN_THREAD_ASYNC_EM_ASM(console.log(""));
}

void emmalloc_dump_memory_regions()
{
  MALLOC_ACQUIRE();
  dump_memory_regions();
  MALLOC_RELEASE();
}

static int validate_memory_regions()
{
  ASSERT_MALLOC_IS_ACQUIRED();
  RootRegion *root = listOfAllRegions;
  while(root)
  {
    Region *r = (Region*)root;
    if (!debug_region_is_consistent(r))
    {
      MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'),
        r, r->size, region_ceiling_size(r) == r->size);
      return 1;
    }
    uint8_t *lastRegionEnd = root->endPtr;
    while((uint8_t*)r < lastRegionEnd)
    {
      if (!debug_region_is_consistent(r))
      {
        MAIN_THREAD_ASYNC_EM_ASM(console.error('Used region 0x'+($0>>>0).toString(16)+', size: '+($1>>>0)+' ('+($2?"used":"--FREE--")+') is corrupt (size markers in the beginning and at the end of the region do not match!)'),
          r, r->size, region_ceiling_size(r) == r->size);
        return 1;
      }
      if (r->size == 0)
        break;
      r = next_region(r);
    }
    root = root->next;
  }
  for(int i = 0; i < NUM_FREE_BUCKETS; ++i)
  {
    Region *prev = &freeRegionBuckets[i];
    Region *fr = freeRegionBuckets[i].next;
    while(fr != &freeRegionBuckets[i])
    {
      if (!debug_region_is_consistent(fr) || !region_is_free(fr) || fr->prev != prev || fr->next == fr || fr->prev == fr)
      {
        MAIN_THREAD_ASYNC_EM_ASM(console.log('In bucket '+$0+', free region 0x'+($1>>>0).toString(16)+', size: ' + ($2>>>0) + ' (size at ceiling: '+($3>>>0)+'), prev: 0x' + ($4>>>0).toString(16) + ', next: 0x' + ($5>>>0).toString(16) + ' is corrupt!'),
          i, fr, fr->size, size_of_region_from_ceiling(fr), fr->prev, fr->next);
        return 1;
      }
      prev = fr;
      fr = fr->next;
    }
  }
  return 0;
}

int emmalloc_validate_memory_regions()
{
  MALLOC_ACQUIRE();
  int memoryError = validate_memory_regions();
  MALLOC_RELEASE();
  return memoryError;
}
#endif

static bool claim_more_memory(size_t numBytes)
{
#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory(numBytes='+($0>>>0)+ ')'), numBytes);
#endif

#ifdef EMMALLOC_MEMVALIDATE
  validate_memory_regions();
#endif

  uint8_t *startPtr;
  uint8_t *endPtr;
  do {
    // If this is the first time we're called, see if we can use
    // the initial heap memory set up by wasm-ld.
    if (!listOfAllRegions) {
      unsigned char *heap_base = &__heap_base;
      unsigned char *heap_end = &__heap_end;
      if (heap_end < heap_base) {
	__builtin_trap();
      }
      if (numBytes <= (size_t)(heap_end - heap_base)) {
        startPtr = heap_base;
        endPtr = heap_end;
	break;
      }
    }

    // Round numBytes up to the nearest page size.
    numBytes = (numBytes + (PAGE_SIZE-1)) & -PAGE_SIZE;

    // Claim memory via sbrk
    startPtr = (uint8_t*)sbrk(numBytes);
    if ((intptr_t)startPtr == -1)
    {
#ifdef EMMALLOC_VERBOSE
      MAIN_THREAD_ASYNC_EM_ASM(console.error('claim_more_memory: sbrk failed!'));
#endif
      return false;
    }
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('claim_more_memory: claimed 0x' + ($0>>>0).toString(16) + ' - 0x' + ($1>>>0).toString(16) + ' (' + ($2>>>0) + ' bytes) via sbrk()'), startPtr, startPtr + numBytes, numBytes);
#endif
    assert(HAS_ALIGNMENT(startPtr, alignof(size_t)));
    endPtr = startPtr + numBytes;
  } while (0);

  // Create a sentinel region at the end of the new heap block
  Region *endSentinelRegion = (Region*)(endPtr - sizeof(Region));
  create_used_region(endSentinelRegion, sizeof(Region));

  // If we are the sole user of sbrk(), it will feed us continuous/consecutive memory addresses - take advantage
  // of that if so: instead of creating two disjoint memory regions blocks, expand the previous one to a larger size.
  uint8_t *previousSbrkEndAddress = listOfAllRegions ? listOfAllRegions->endPtr : 0;
  if (startPtr == previousSbrkEndAddress)
  {
    Region *prevEndSentinel = prev_region((Region*)startPtr);
    assert(debug_region_is_consistent(prevEndSentinel));
    assert(region_is_in_use(prevEndSentinel));
    Region *prevRegion = prev_region(prevEndSentinel);
    assert(debug_region_is_consistent(prevRegion));

    listOfAllRegions->endPtr = endPtr;

    // Two scenarios, either the last region of the previous block was in use, in which case we need to create
    // a new free region in the newly allocated space; or it was free, in which case we can extend that region
    // to cover a larger size.
    if (region_is_free(prevRegion))
    {
      size_t newFreeRegionSize = (uint8_t*)endSentinelRegion - (uint8_t*)prevRegion;
      unlink_from_free_list(prevRegion);
      create_free_region(prevRegion, newFreeRegionSize);
      link_to_free_list(prevRegion);
      return true;
    }
    // else: last region of the previous block was in use. Since we are joining two consecutive sbrk() blocks,
    // we can swallow the end sentinel of the previous block away.
    startPtr -= sizeof(Region);
  }
  else
  {
    // Create a root region at the start of the heap block
    create_used_region(startPtr, sizeof(Region));

    // Dynamic heap start region:
    RootRegion *newRegionBlock = (RootRegion*)startPtr;
    newRegionBlock->next = listOfAllRegions; // Pointer to next region block head
    newRegionBlock->endPtr = endPtr; // Pointer to the end address of this region block
    listOfAllRegions = newRegionBlock;
    startPtr += sizeof(Region);
  }

  // Create a new memory region for the new claimed free space.
  create_free_region(startPtr, (uint8_t*)endSentinelRegion - startPtr);
  link_to_free_list((Region*)startPtr);
  return true;
}

#if 0
// Initialize emmalloc during static initialization.
// See system/lib/README.md for static constructor ordering.
__attribute__((constructor(47)))
static void initialize_emmalloc_heap()
{
  // Initialize circular doubly linked lists representing free space
  // Never useful to unroll this for loop, just takes up code size.
#pragma clang loop unroll(disable)
  for(int i = 0; i < NUM_FREE_BUCKETS; ++i)
    freeRegionBuckets[i].prev = freeRegionBuckets[i].next = &freeRegionBuckets[i];

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('initialize_emmalloc_heap()'));
#endif

  // Start with a tiny dynamic region.
  claim_more_memory(3*sizeof(Region));
}

void emmalloc_blank_slate_from_orbit()
{
  MALLOC_ACQUIRE();
  listOfAllRegions = NULL;
  freeRegionBucketsUsed = 0;
  initialize_emmalloc_heap();
  MALLOC_RELEASE();
}
#endif

static void *attempt_allocate(Region *freeRegion, size_t alignment, size_t size)
{
  ASSERT_MALLOC_IS_ACQUIRED();
  assert(freeRegion);
  // Look at the next potential free region to allocate into.
  // First, we should check if the free region has enough of payload bytes contained
  // in it to accommodate the new allocation. This check needs to take account the
  // requested allocation alignment, so the payload memory area needs to be rounded
  // upwards to the desired alignment.
  uint8_t *payloadStartPtr = region_payload_start_ptr(freeRegion);
  uint8_t *payloadStartPtrAligned = ALIGN_UP(payloadStartPtr, alignment);
  uint8_t *payloadEndPtr = region_payload_end_ptr(freeRegion);

  // Do we have enough free space, taking into account alignment?
  if (payloadStartPtrAligned + size > payloadEndPtr)
    return NULL;

  // We have enough free space, so the memory allocation will be made into this region. Remove this free region
  // from the list of free regions: whatever slop remains will be later added back to the free region pool.
  unlink_from_free_list(freeRegion);

  // Before we proceed further, fix up the boundary of this region and the region that precedes this one,
  // so that the boundary between the two regions happens at a right spot for the payload to be aligned.
  if (payloadStartPtr != payloadStartPtrAligned)
  {
    Region *prevRegion = prev_region((Region*)freeRegion);
    // We never have two free regions adjacent to each other, so the region before this free
    // region should be in use.
    assert(region_is_in_use(prevRegion));
    size_t regionBoundaryBumpAmount = payloadStartPtrAligned - payloadStartPtr;
    size_t newThisRegionSize = freeRegion->size - regionBoundaryBumpAmount;
    create_used_region(prevRegion, prevRegion->size + regionBoundaryBumpAmount);
    freeRegion = (Region *)((uint8_t*)freeRegion + regionBoundaryBumpAmount);
    freeRegion->size = newThisRegionSize;
  }
  // Next, we need to decide whether this region is so large that it should be split into two regions,
  // one representing the newly used memory area, and at the high end a remaining leftover free area.
  // This splitting to two is done always if there is enough space for the high end to fit a region.
  // Carve 'size' bytes of payload off this region. So,
  // [sz prev next sz]
  // becomes
  // [sz payload sz] [sz prev next sz]
  if (sizeof(Region) + REGION_HEADER_SIZE + size <= freeRegion->size)
  {
    // There is enough space to keep a free region at the end of the carved out block
    // -> construct the new block
    Region *newFreeRegion = (Region *)((uint8_t*)freeRegion + REGION_HEADER_SIZE + size);
    create_free_region(newFreeRegion, freeRegion->size - size - REGION_HEADER_SIZE);
    link_to_free_list(newFreeRegion);

    // Recreate the resized Region under its new size.
    create_used_region(freeRegion, size + REGION_HEADER_SIZE);
  }
  else
  {
    // There is not enough space to split the free memory region into used+free parts, so consume the whole
    // region as used memory, not leaving a free memory region behind.
    // Initialize the free region as used by resetting the ceiling size to the same value as the size at bottom.
    ((size_t*)((uint8_t*)freeRegion + freeRegion->size))[-1] = freeRegion->size;
  }

#ifdef __EMSCRIPTEN_TRACING__
  emscripten_trace_record_allocation(freeRegion, freeRegion->size);
#endif

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_allocate - succeeded allocating memory, region ptr=0x' + ($0>>>0).toString(16) + ', align=' + $1 + ', payload size=' + ($2>>>0) + ' bytes)'), freeRegion, alignment, size);
#endif

  return (uint8_t*)freeRegion + sizeof(size_t);
}

static size_t validate_alloc_alignment(size_t alignment)
{
  // Cannot perform allocations that are less than 4 byte aligned, because the Region
  // control structures need to be aligned. Also round up to minimum outputted alignment.
  alignment = MAX(alignment, MALLOC_ALIGNMENT);
  // Arbitrary upper limit on alignment - very likely a programming bug if alignment is higher than this.
  assert(alignment <= 1024*1024);
  return alignment;
}

static size_t validate_alloc_size(size_t size)
{
  assert(size + REGION_HEADER_SIZE > size);

  // Allocation sizes must be a multiple of pointer sizes, and at least 2*sizeof(pointer).
  size_t validatedSize = size > SMALLEST_ALLOCATION_SIZE ? (size_t)ALIGN_UP(size, sizeof(Region*)) : SMALLEST_ALLOCATION_SIZE;
  assert(validatedSize >= size); // 32-bit wraparound should not occur, too large sizes should be stopped before

  return validatedSize;
}

static void *allocate_memory(size_t alignment, size_t size)
{
  ASSERT_MALLOC_IS_ACQUIRED();

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('allocate_memory(align=' + $0 + ', size=' + ($1>>>0) + ' bytes)'), alignment, size);
#endif

#ifdef EMMALLOC_MEMVALIDATE
  validate_memory_regions();
#endif

  if (!IS_POWER_OF_2(alignment))
  {
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: alignment not power of 2!'));
#endif
    return 0;
  }

  if (size > MAX_ALLOC_SIZE)
  {
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size);
#endif
    return 0;
  }

  alignment = validate_alloc_alignment(alignment);
  size = validate_alloc_size(size);

  // Attempt to allocate memory starting from smallest bucket that can contain the required amount of memory.
  // Under normal alignment conditions this should always be the first or second bucket we look at, but if
  // performing an allocation with complex alignment, we may need to look at multiple buckets.
  int bucketIndex = compute_free_list_bucket(size);
  BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed >> bucketIndex;

  // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
  while(bucketMask)
  {
    BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
    bucketIndex += indexAdd;
    bucketMask >>= indexAdd;
    assert(bucketIndex >= 0);
    assert(bucketIndex <= NUM_FREE_BUCKETS-1);
    assert(freeRegionBucketsUsed & (((BUCKET_BITMASK_T)1) << bucketIndex));

    Region *freeRegion = freeRegionBuckets[bucketIndex].next;
    assert(freeRegion);
    if (freeRegion != &freeRegionBuckets[bucketIndex])
    {
      void *ptr = attempt_allocate(freeRegion, alignment, size);
      if (ptr)
        return ptr;

      // We were not able to allocate from the first region found in this bucket, so penalize
      // the region by cycling it to the end of the doubly circular linked list. (constant time)
      // This provides a randomized guarantee that when performing allocations of size k to a
      // bucket of [k-something, k+something] range, we will not always attempt to satisfy the
      // allocation from the same available region at the front of the list, but we try each
      // region in turn.
      unlink_from_free_list(freeRegion);
      prepend_to_free_list(freeRegion, &freeRegionBuckets[bucketIndex]);
      // But do not stick around to attempt to look at other regions in this bucket - move
      // to search the next populated bucket index if this did not fit. This gives a practical
      // "allocation in constant time" guarantee, since the next higher bucket will only have
      // regions that are all of strictly larger size than the requested allocation. Only if
      // there is a difficult alignment requirement we may fail to perform the allocation from
      // a region in the next bucket, and if so, we keep trying higher buckets until one of them
      // works.
      ++bucketIndex;
      bucketMask >>= 1;
    }
    else
    {
      // This bucket was not populated after all with any regions,
      // but we just had a stale bit set to mark a populated bucket.
      // Reset the bit to update latest status so that we do not
      // redundantly look at this bucket again.
      freeRegionBucketsUsed &= ~(((BUCKET_BITMASK_T)1) << bucketIndex);
      bucketMask ^= 1;
    }
    // Instead of recomputing bucketMask from scratch at the end of each loop, it is updated as we go,
    // to avoid undefined behavior with (x >> 32)/(x >> 64) when bucketIndex reaches 32/64, (the shift would comes out as a no-op instead of 0).

    assert((bucketIndex == NUM_FREE_BUCKETS && bucketMask == 0) || (bucketMask == freeRegionBucketsUsed >> bucketIndex));
  }

  // None of the buckets were able to accommodate an allocation. If this happens we are almost out of memory.
  // The largest bucket might contain some suitable regions, but we only looked at one region in that bucket, so
  // as a last resort, loop through more free regions in the bucket that represents the largest allocations available.
  // But only if the bucket representing largest allocations available is not any of the first thirty buckets,
  // these represent allocatable areas less than <1024 bytes - which could be a lot of scrap.
  // In such case, prefer to sbrk() in more memory right away.
  int largestBucketIndex = NUM_FREE_BUCKETS - 1 - __builtin_clzll(freeRegionBucketsUsed);
  // freeRegion will be null if there is absolutely no memory left. (all buckets are 100% used)
  Region *freeRegion = freeRegionBucketsUsed ? freeRegionBuckets[largestBucketIndex].next : 0;
  if (freeRegionBucketsUsed >> 30)
  {
    // Look only at a constant number of regions in this bucket max, to avoid bad worst case behavior.
    // If this many regions cannot find free space, we give up and prefer to sbrk() more instead.
    const int maxRegionsToTryBeforeGivingUp = 99;
    int numTriesLeft = maxRegionsToTryBeforeGivingUp;
    while(freeRegion != &freeRegionBuckets[largestBucketIndex] && numTriesLeft-- > 0)
    {
      void *ptr = attempt_allocate(freeRegion, alignment, size);
      if (ptr)
        return ptr;
      freeRegion = freeRegion->next;
    }
  }

  // We were unable to find a free memory region. Must sbrk() in more memory!
  size_t numBytesToClaim = size+sizeof(Region)*3;
  assert(numBytesToClaim > size); // 32-bit wraparound should not happen here, allocation size has been validated above!
  bool success = claim_more_memory(numBytesToClaim);
  if (success)
    return allocate_memory(alignment, size); // Recurse back to itself to try again

  // also sbrk() failed, we are really really constrained :( As a last resort, go back to looking at the
  // bucket we already looked at above, continuing where the above search left off - perhaps there are
  // regions we overlooked the first time that might be able to satisfy the allocation.
  if (freeRegion)
  {
    while(freeRegion != &freeRegionBuckets[largestBucketIndex])
    {
      void *ptr = attempt_allocate(freeRegion, alignment, size);
      if (ptr)
        return ptr;
      freeRegion = freeRegion->next;
    }
  }

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('Could not find a free memory block!'));
#endif

  return 0;
}

static
void *emmalloc_memalign(size_t alignment, size_t size)
{
  MALLOC_ACQUIRE();
  void *ptr = allocate_memory(alignment, size);
  MALLOC_RELEASE();
  return ptr;
}

#if 0
void * EMMALLOC_EXPORT memalign(size_t alignment, size_t size)
{
  return emmalloc_memalign(alignment, size);
}
#endif

void * EMMALLOC_EXPORT aligned_alloc(size_t alignment, size_t size)
{
  if ((alignment % sizeof(void *) != 0) || (size % alignment) != 0)
    return 0;
  return emmalloc_memalign(alignment, size);
}

static
void *emmalloc_malloc(size_t size)
{
  return emmalloc_memalign(MALLOC_ALIGNMENT, size);
}

void * EMMALLOC_EXPORT malloc(size_t size)
{
  return emmalloc_malloc(size);
}

static
size_t emmalloc_usable_size(void *ptr)
{
  if (!ptr)
    return 0;

  uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t);
  Region *region = (Region*)(regionStartPtr);
  assert(HAS_ALIGNMENT(region, sizeof(size_t)));

  MALLOC_ACQUIRE();

  size_t size = region->size;
  assert(size >= sizeof(Region));
  assert(region_is_in_use(region));

  MALLOC_RELEASE();

  return size - REGION_HEADER_SIZE;
}

size_t EMMALLOC_EXPORT malloc_usable_size(void *ptr)
{
  return emmalloc_usable_size(ptr);
}

static
void emmalloc_free(void *ptr)
{
#ifdef EMMALLOC_MEMVALIDATE
  emmalloc_validate_memory_regions();
#endif

  if (!ptr)
    return;

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('free(ptr=0x'+($0>>>0).toString(16)+')'), ptr);
#endif

  uint8_t *regionStartPtr = (uint8_t*)ptr - sizeof(size_t);
  Region *region = (Region*)(regionStartPtr);
  assert(HAS_ALIGNMENT(region, sizeof(size_t)));

  MALLOC_ACQUIRE();

  size_t size = region->size;
#ifdef EMMALLOC_VERBOSE
  if (size < sizeof(Region) || !region_is_in_use(region))
  {
    if (debug_region_is_consistent(region))
      // LLVM wasm backend bug: cannot use MAIN_THREAD_ASYNC_EM_ASM() here, that generates internal compiler error
      // Reproducible by running e.g. other.test_alloc_3GB
      EM_ASM(console.error('Double free at region ptr 0x' + ($0>>>0).toString(16) + ', region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region));
    else
      MAIN_THREAD_ASYNC_EM_ASM(console.error('Corrupt region at region ptr 0x' + ($0>>>0).toString(16) + ' region->size: 0x' + ($1>>>0).toString(16) + ', region->sizeAtCeiling: 0x' + ($2>>>0).toString(16) + ')'), region, size, region_ceiling_size(region));
  }
#endif
  assert(size >= sizeof(Region));
  assert(region_is_in_use(region));

#ifdef __EMSCRIPTEN_TRACING__
  emscripten_trace_record_free(region);
#endif

  // Check merging with left side
  size_t prevRegionSizeField = ((size_t*)region)[-1];
  size_t prevRegionSize = prevRegionSizeField & ~FREE_REGION_FLAG;
  if (prevRegionSizeField != prevRegionSize) // Previous region is free?
  {
    Region *prevRegion = (Region*)((uint8_t*)region - prevRegionSize);
    assert(debug_region_is_consistent(prevRegion));
    unlink_from_free_list(prevRegion);
    regionStartPtr = (uint8_t*)prevRegion;
    size += prevRegionSize;
  }

  // Check merging with right side
  Region *nextRegion = next_region(region);
  assert(debug_region_is_consistent(nextRegion));
  size_t sizeAtEnd = *(size_t*)region_payload_end_ptr(nextRegion);
  if (nextRegion->size != sizeAtEnd)
  {
    unlink_from_free_list(nextRegion);
    size += nextRegion->size;
  }

  create_free_region(regionStartPtr, size);
  link_to_free_list((Region*)regionStartPtr);

  MALLOC_RELEASE();

#ifdef EMMALLOC_MEMVALIDATE
  emmalloc_validate_memory_regions();
#endif
}

void EMMALLOC_EXPORT free(void *ptr)
{
  emmalloc_free(ptr);
}

// Can be called to attempt to increase or decrease the size of the given region
// to a new size (in-place). Returns 1 if resize succeeds, and 0 on failure.
static int attempt_region_resize(Region *region, size_t size)
{
  ASSERT_MALLOC_IS_ACQUIRED();
  assert(size > 0);
  assert(HAS_ALIGNMENT(size, sizeof(size_t)));

#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize(region=0x' + ($0>>>0).toString(16) + ', size=' + ($1>>>0) + ' bytes)'), region, size);
#endif

  // First attempt to resize this region, if the next region that follows this one
  // is a free region.
  Region *nextRegion = next_region(region);
  uint8_t *nextRegionEndPtr = (uint8_t*)nextRegion + nextRegion->size;
  size_t sizeAtCeiling = ((size_t*)nextRegionEndPtr)[-1];
  if (nextRegion->size != sizeAtCeiling) // Next region is free?
  {
    assert(region_is_free(nextRegion));
    uint8_t *newNextRegionStartPtr = (uint8_t*)region + size;
    assert(HAS_ALIGNMENT(newNextRegionStartPtr, sizeof(size_t)));
    // Next region does not shrink to too small size?
    if (newNextRegionStartPtr + sizeof(Region) <= nextRegionEndPtr)
    {
      unlink_from_free_list(nextRegion);
      create_free_region(newNextRegionStartPtr, nextRegionEndPtr - newNextRegionStartPtr);
      link_to_free_list((Region*)newNextRegionStartPtr);
      create_used_region(region, newNextRegionStartPtr - (uint8_t*)region);
      return 1;
    }
    // If we remove the next region altogether, allocation is satisfied?
    if (newNextRegionStartPtr <= nextRegionEndPtr)
    {
      unlink_from_free_list(nextRegion);
      create_used_region(region, region->size + nextRegion->size);
      return 1;
    }
  }
  else
  {
    // Next region is an used region - we cannot change its starting address. However if we are shrinking the
    // size of this region, we can create a new free region between this and the next used region.
    if (size + sizeof(Region) <= region->size)
    {
      size_t freeRegionSize = region->size - size;
      create_used_region(region, size);
      Region *freeRegion = (Region *)((uint8_t*)region + size);
      create_free_region(freeRegion, freeRegionSize);
      link_to_free_list(freeRegion);
      return 1;
    }
    else if (size <= region->size)
    {
      // Caller was asking to shrink the size, but due to not being able to fit a full Region in the shrunk
      // area, we cannot actually do anything. This occurs if the shrink amount is really small. In such case,
      // just call it success without doing any work.
      return 1;
    }
  }
#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('attempt_region_resize failed.'));
#endif
  return 0;
}

static int acquire_and_attempt_region_resize(Region *region, size_t size)
{
  MALLOC_ACQUIRE();
  int success = attempt_region_resize(region, size);
  MALLOC_RELEASE();
  return success;
}

static
void *emmalloc_aligned_realloc(void *ptr, size_t alignment, size_t size)
{
#ifdef EMMALLOC_VERBOSE
  MAIN_THREAD_ASYNC_EM_ASM(console.log('aligned_realloc(ptr=0x' + ($0>>>0).toString(16) + ', alignment=' + $1 + ', size=' + ($2>>>0)), ptr, alignment, size);
#endif

  if (!ptr)
    return emmalloc_memalign(alignment, size);

  if (size == 0)
  {
    free(ptr);
    return 0;
  }

  if (size > MAX_ALLOC_SIZE)
  {
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size);
#endif
    return 0;
  }

  assert(IS_POWER_OF_2(alignment));
  // aligned_realloc() cannot be used to ask to change the alignment of a pointer.
  assert(HAS_ALIGNMENT(ptr, alignment));
  size = validate_alloc_size(size);

  // Calculate the region start address of the original allocation
  Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));

  // First attempt to resize the given region to avoid having to copy memory around
  if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE))
  {
#ifdef __EMSCRIPTEN_TRACING__
    emscripten_trace_record_reallocation(ptr, ptr, size);
#endif
    return ptr;
  }

  // If resize failed, we must allocate a new region, copy the data over, and then
  // free the old region.
  void *newptr = emmalloc_memalign(alignment, size);
  if (newptr)
  {
    memcpy(newptr, ptr, MIN(size, region->size - REGION_HEADER_SIZE));
    free(ptr);
  }
  // N.B. If there is not enough memory, the old memory block should not be freed and
  // null pointer is returned.
  return newptr;
}

#if 0
void * EMMALLOC_EXPORT aligned_realloc(void *ptr, size_t alignment, size_t size)
{
  return emmalloc_aligned_realloc(ptr, alignment, size);
}
#endif

#if 0
// realloc_try() is like realloc(), but only attempts to try to resize the existing memory
// area. If resizing the existing memory area fails, then realloc_try() will return 0
// (the original memory block is not freed or modified). If resizing succeeds, previous
// memory contents will be valid up to min(old length, new length) bytes.
void *emmalloc_realloc_try(void *ptr, size_t size)
{
  if (!ptr)
    return 0;

  if (size == 0)
  {
    free(ptr);
    return 0;
  }

  if (size > MAX_ALLOC_SIZE)
  {
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size);
#endif
    return 0;
  }

  size = validate_alloc_size(size);

  // Calculate the region start address of the original allocation
  Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));

  // Attempt to resize the given region to avoid having to copy memory around
  int success = acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE);
#ifdef __EMSCRIPTEN_TRACING__
  if (success)
    emscripten_trace_record_reallocation(ptr, ptr, size);
#endif
  return success ? ptr : 0;
}

// emmalloc_aligned_realloc_uninitialized() is like aligned_realloc(), but old memory contents
// will be undefined after reallocation. (old memory is not preserved in any case)
void *emmalloc_aligned_realloc_uninitialized(void *ptr, size_t alignment, size_t size)
{
  if (!ptr)
    return emmalloc_memalign(alignment, size);

  if (size == 0)
  {
    free(ptr);
    return 0;
  }

  if (size > MAX_ALLOC_SIZE)
  {
#ifdef EMMALLOC_VERBOSE
    MAIN_THREAD_ASYNC_EM_ASM(console.log('Allocation failed: attempted allocation size is too large: ' + ($0 >>> 0) + 'bytes! (negative integer wraparound?)'), size);
#endif
    return 0;
  }

  size = validate_alloc_size(size);

  // Calculate the region start address of the original allocation
  Region *region = (Region*)((uint8_t*)ptr - sizeof(size_t));

  // First attempt to resize the given region to avoid having to copy memory around
  if (acquire_and_attempt_region_resize(region, size + REGION_HEADER_SIZE))
  {
#ifdef __EMSCRIPTEN_TRACING__
    emscripten_trace_record_reallocation(ptr, ptr, size);
#endif
    return ptr;
  }

  // If resize failed, drop the old region and allocate a new region. Memory is not
  // copied over
  free(ptr);
  return emmalloc_memalign(alignment, size);
}
#endif

static
void *emmalloc_realloc(void *ptr, size_t size)
{
  return emmalloc_aligned_realloc(ptr, MALLOC_ALIGNMENT, size);
}

void * EMMALLOC_EXPORT realloc(void *ptr, size_t size)
{
  return emmalloc_realloc(ptr, size);
}

#if 0
// realloc_uninitialized() is like realloc(), but old memory contents
// will be undefined after reallocation. (old memory is not preserved in any case)
void *emmalloc_realloc_uninitialized(void *ptr, size_t size)
{
  return emmalloc_aligned_realloc_uninitialized(ptr, MALLOC_ALIGNMENT, size);
}
#endif

static
int emmalloc_posix_memalign(void **memptr, size_t alignment, size_t size)
{
  assert(memptr);
  if (alignment % sizeof(void *) != 0)
    return 22/* EINVAL*/;
  *memptr = emmalloc_memalign(alignment, size);
  return *memptr ?  0 : 12/*ENOMEM*/;
}

int EMMALLOC_EXPORT posix_memalign(void **memptr, size_t alignment, size_t size)
{
  return emmalloc_posix_memalign(memptr, alignment, size);
}

static
void *emmalloc_calloc(size_t num, size_t size)
{
  size_t bytes = num*size;
  void *ptr = emmalloc_memalign(MALLOC_ALIGNMENT, bytes);
  if (ptr)
    memset(ptr, 0, bytes);
  return ptr;
}

void * EMMALLOC_EXPORT calloc(size_t num, size_t size)
{
  return emmalloc_calloc(num, size);
}

#if 0
static int count_linked_list_size(Region *list)
{
  int size = 1;
  for(Region *i = list->next; i != list; list = list->next)
    ++size;
  return size;
}

static size_t count_linked_list_space(Region *list)
{
  size_t space = 0;
  for(Region *i = list->next; i != list; list = list->next)
    space += region_payload_end_ptr(i) - region_payload_start_ptr(i);
  return space;
}

struct mallinfo emmalloc_mallinfo()
{
  MALLOC_ACQUIRE();

  struct mallinfo info;
  // Non-mmapped space allocated (bytes): For emmalloc,
  // let's define this as the difference between heap size and dynamic top end.
  info.arena = emscripten_get_heap_size() - (size_t)sbrk(0);
  // Number of "ordinary" blocks. Let's define this as the number of highest
  // size blocks. (subtract one from each, since there is a sentinel node in each list)
  info.ordblks = count_linked_list_size(&freeRegionBuckets[NUM_FREE_BUCKETS-1])-1;
  // Number of free "fastbin" blocks. For emmalloc, define this as the number
  // of blocks that are not in the largest pristine block.
  info.smblks = 0;
  // The total number of bytes in free "fastbin" blocks.
  info.fsmblks = 0;
  for(int i = 0; i < NUM_FREE_BUCKETS-1; ++i)
  {
    info.smblks += count_linked_list_size(&freeRegionBuckets[i])-1;
    info.fsmblks += count_linked_list_space(&freeRegionBuckets[i]);
  }

  info.hblks = 0; // Number of mmapped regions: always 0. (no mmap support)
  info.hblkhd = 0; // Amount of bytes in mmapped regions: always 0. (no mmap support)

  // Walk through all the heap blocks to report the following data:
  // The "highwater mark" for allocated space—that is, the maximum amount of
  // space that was ever allocated. Emmalloc does not want to pay code to
  // track this, so this is only reported from current allocation data, and
  // may not be accurate.
  info.usmblks = 0;
  info.uordblks = 0; // The total number of bytes used by in-use allocations.
  info.fordblks = 0; // The total number of bytes in free blocks.
  // The total amount of releasable free space at the top of the heap.
  // This is the maximum number of bytes that could ideally be released by malloc_trim(3).
  Region *lastActualRegion = prev_region((Region*)(listOfAllRegions->endPtr - sizeof(Region)));
  info.keepcost = region_is_free(lastActualRegion) ? lastActualRegion->size : 0;

  RootRegion *root = listOfAllRegions;
  while(root)
  {
    Region *r = (Region*)root;
    assert(debug_region_is_consistent(r));
    uint8_t *lastRegionEnd = root->endPtr;
    while((uint8_t*)r < lastRegionEnd)
    {
      assert(debug_region_is_consistent(r));

      if (region_is_free(r))
      {
        // Count only the payload of the free block towards free memory.
        info.fordblks += region_payload_end_ptr(r) - region_payload_start_ptr(r);
        // But the header data of the free block goes towards used memory.
        info.uordblks += REGION_HEADER_SIZE;
      }
      else
      {
        info.uordblks += r->size;
      }
      // Update approximate watermark data
      info.usmblks = MAX(info.usmblks, (intptr_t)r + r->size);

      if (r->size == 0)
        break;
      r = next_region(r);
    }
    root = root->next;
  }

  MALLOC_RELEASE();
  return info;
}

struct mallinfo EMMALLOC_EXPORT mallinfo()
{
  return emmalloc_mallinfo();
}

// Note! This function is not fully multithreadin safe: while this function is running, other threads should not be
// allowed to call sbrk()!
static int trim_dynamic_heap_reservation(size_t pad)
{
  ASSERT_MALLOC_IS_ACQUIRED();

  if (!listOfAllRegions)
    return 0; // emmalloc is not controlling any dynamic memory at all - cannot release memory.
  uint8_t *previousSbrkEndAddress = listOfAllRegions->endPtr;
  assert(sbrk(0) == previousSbrkEndAddress);
  size_t lastMemoryRegionSize = ((size_t*)previousSbrkEndAddress)[-1];
  assert(lastMemoryRegionSize == 16); // // The last memory region should be a sentinel node of exactly 16 bytes in size.
  Region *endSentinelRegion = (Region*)(previousSbrkEndAddress - sizeof(Region));
  Region *lastActualRegion = prev_region(endSentinelRegion);

  // Round padding up to multiple of 4 bytes to keep sbrk() and memory region alignment intact.
  // Also have at least 8 bytes of payload so that we can form a full free region.
  size_t newRegionSize = (size_t)ALIGN_UP(pad, 4);
  if (pad > 0)
    newRegionSize += sizeof(Region) - (newRegionSize - pad);

  if (!region_is_free(lastActualRegion) || lastActualRegion->size <= newRegionSize)
    return 0; // Last actual region is in use, or caller desired to leave more free memory intact than there is.

  // This many bytes will be shrunk away.
  size_t shrinkAmount = lastActualRegion->size - newRegionSize;
  assert(HAS_ALIGNMENT(shrinkAmount, 4));

  unlink_from_free_list(lastActualRegion);
  // If pad == 0, we should delete the last free region altogether. If pad > 0,
  // shrink the last free region to the desired size.
  if (newRegionSize > 0)
  {
    create_free_region(lastActualRegion, newRegionSize);
    link_to_free_list(lastActualRegion);
  }

  // Recreate the sentinel region at the end of the last free region
  endSentinelRegion = (Region*)((uint8_t*)lastActualRegion + newRegionSize);
  create_used_region(endSentinelRegion, sizeof(Region));

  // And update the size field of the whole region block.
  listOfAllRegions->endPtr = (uint8_t*)endSentinelRegion + sizeof(Region);

  // Finally call sbrk() to shrink the memory area.
  void *oldSbrk = sbrk(-(intptr_t)shrinkAmount);
  assert((intptr_t)oldSbrk != -1); // Shrinking with sbrk() should never fail.
  assert(oldSbrk == previousSbrkEndAddress); // Another thread should not have raced to increase sbrk() on us!

  // All successful, and we actually trimmed memory!
  return 1;
}

int emmalloc_trim(size_t pad)
{
  MALLOC_ACQUIRE();
  int success = trim_dynamic_heap_reservation(pad);
  MALLOC_RELEASE();
  return success;
}

int EMMALLOC_EXPORT malloc_trim(size_t pad)
{
  return emmalloc_trim(pad);
}

size_t emmalloc_dynamic_heap_size()
{
  size_t dynamicHeapSize = 0;

  MALLOC_ACQUIRE();
  RootRegion *root = listOfAllRegions;
  while(root)
  {
    dynamicHeapSize += root->endPtr - (uint8_t*)root;
    root = root->next;
  }
  MALLOC_RELEASE();
  return dynamicHeapSize;
}

size_t emmalloc_free_dynamic_memory()
{
  size_t freeDynamicMemory = 0;

  int bucketIndex = 0;

  MALLOC_ACQUIRE();
  BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed;

  // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
  while(bucketMask)
  {
    BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
    bucketIndex += indexAdd;
    bucketMask >>= indexAdd;
    for(Region *freeRegion = freeRegionBuckets[bucketIndex].next;
      freeRegion != &freeRegionBuckets[bucketIndex];
      freeRegion = freeRegion->next)
    {
      freeDynamicMemory += freeRegion->size - REGION_HEADER_SIZE;
    }
    ++bucketIndex;
    bucketMask >>= 1;
  }
  MALLOC_RELEASE();
  return freeDynamicMemory;
}

size_t emmalloc_compute_free_dynamic_memory_fragmentation_map(size_t freeMemorySizeMap[32])
{
  memset((void*)freeMemorySizeMap, 0, sizeof(freeMemorySizeMap[0])*32);

  size_t numFreeMemoryRegions = 0;
  int bucketIndex = 0;
  MALLOC_ACQUIRE();
  BUCKET_BITMASK_T bucketMask = freeRegionBucketsUsed;

  // Loop through each bucket that has free regions in it, based on bits set in freeRegionBucketsUsed bitmap.
  while(bucketMask)
  {
    BUCKET_BITMASK_T indexAdd = __builtin_ctzll(bucketMask);
    bucketIndex += indexAdd;
    bucketMask >>= indexAdd;
    for(Region *freeRegion = freeRegionBuckets[bucketIndex].next;
      freeRegion != &freeRegionBuckets[bucketIndex];
      freeRegion = freeRegion->next)
    {
      ++numFreeMemoryRegions;
      size_t freeDynamicMemory = freeRegion->size - REGION_HEADER_SIZE;
      if (freeDynamicMemory > 0)
        ++freeMemorySizeMap[31-__builtin_clz(freeDynamicMemory)];
      else
        ++freeMemorySizeMap[0];
    }
    ++bucketIndex;
    bucketMask >>= 1;
  }
  MALLOC_RELEASE();
  return numFreeMemoryRegions;
}

size_t emmalloc_unclaimed_heap_memory(void) {
  return emscripten_get_heap_max() - (size_t)sbrk(0);
}
#endif

// Define these to satisfy musl references.
void *__libc_malloc(size_t) __attribute__((alias("malloc")));
void __libc_free(void *) __attribute__((alias("free")));
void *__libc_calloc(size_t nmemb, size_t size) __attribute__((alias("calloc")));