1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/*
* This file provides a global hashtable for tracking `wasi-libc`-managed file
* descriptors.
*
* WASI Preview 2 has no notion of file descriptors and instead uses unforgeable
* resource handles (which are currently represented as integers at the ABI
* level, used as indices into per-component tables managed by the host).
* Moreover, there's not necessarily a one-to-one correspondence between POSIX
* file descriptors and resource handles (e.g. a TCP connection may require
* separate handles for reading, writing, and polling the same connection). We
* use this table to map each POSIX descriptor to a set of one or more handles.
*
* As of this writing, we still rely on the WASI Preview 1 adapter
* (https://github.com/bytecodealliance/wasmtime/tree/main/crates/wasi-preview1-component-adapter)
* to manage non-socket descriptors, so currently this table only tracks TCP and
* UDP sockets. We use the adapter's `adapter_open_badfd` and
* `adapter_close_badfd` functions to reserve and later close descriptors to
* avoid confusion (e.g. if an application tries to use Preview 1 host functions
* directly for socket operations rather than go through `wasi-libc`).
* Eventually, we'll switch `wasi-libc` over to Preview 2 entirely, at which
* point we'll no longer need the adapter. At that point, all file descriptors
* will be managed exclusively in this table.
*/
#include <wasi/descriptor_table.h>
__attribute__((__import_module__("wasi_snapshot_preview1"),
__import_name__("adapter_open_badfd"))) extern int32_t
__wasi_preview1_adapter_open_badfd(int32_t);
static bool wasi_preview1_adapter_open_badfd(int *fd)
{
return __wasi_preview1_adapter_open_badfd((int32_t)fd) == 0;
}
__attribute__((__import_module__("wasi_snapshot_preview1"),
__import_name__("adapter_close_badfd"))) extern int32_t
__wasi_preview1_adapter_close_badfd(int32_t);
static bool wasi_preview1_adapter_close_badfd(int fd)
{
return __wasi_preview1_adapter_close_badfd(fd) == 0;
}
/*
* This hash table is based on the one in musl/src/search/hsearch.c, but uses
* integer keys and supports a `remove` operation. Note that I've switched from
* quadratic to linear probing in order to make `remove` simple and efficient,
* with the tradeoff that clustering is more likely. See also
* https://en.wikipedia.org/wiki/Open_addressing.
*/
#define MINSIZE 8
#define MAXSIZE ((size_t)-1 / 2 + 1)
typedef struct {
bool occupied;
int key;
descriptor_table_entry_t entry;
} descriptor_table_item_t;
typedef struct {
descriptor_table_item_t *entries;
size_t mask;
size_t used;
} descriptor_table_t;
static descriptor_table_t global_table = { .entries = NULL,
.mask = 0,
.used = 0 };
static size_t keyhash(int key)
{
// TODO: use a hash function here
return key;
}
static int resize(size_t nel, descriptor_table_t *table)
{
size_t newsize;
size_t i;
descriptor_table_item_t *e, *newe;
descriptor_table_item_t *oldtab = table->entries;
descriptor_table_item_t *oldend = table->entries + table->mask + 1;
if (nel > MAXSIZE)
nel = MAXSIZE;
for (newsize = MINSIZE; newsize < nel; newsize *= 2)
;
table->entries = calloc(newsize, sizeof *table->entries);
if (!table->entries) {
table->entries = oldtab;
return 0;
}
table->mask = newsize - 1;
if (!oldtab)
return 1;
for (e = oldtab; e < oldend; e++)
if (e->occupied) {
for (i = keyhash(e->key);; ++i) {
newe = table->entries + (i & table->mask);
if (!newe->occupied)
break;
}
*newe = *e;
}
free(oldtab);
return 1;
}
static descriptor_table_item_t *lookup(int key, size_t hash,
descriptor_table_t *table)
{
size_t i;
descriptor_table_item_t *e;
for (i = hash;; ++i) {
e = table->entries + (i & table->mask);
if (!e->occupied || e->key == key)
break;
}
return e;
}
static bool insert(descriptor_table_entry_t entry, int fd,
descriptor_table_t *table)
{
if (!table->entries) {
if (!resize(MINSIZE, table)) {
return false;
}
}
size_t hash = keyhash(fd);
descriptor_table_item_t *e = lookup(fd, hash, table);
e->entry = entry;
if (!e->occupied) {
e->key = fd;
e->occupied = true;
if (++table->used > table->mask - table->mask / 4) {
if (!resize(2 * table->used, table)) {
table->used--;
e->occupied = false;
return false;
}
}
}
return true;
}
static bool get(int fd, descriptor_table_entry_t **entry,
descriptor_table_t *table)
{
if (!table->entries) {
return false;
}
size_t hash = keyhash(fd);
descriptor_table_item_t *e = lookup(fd, hash, table);
if (e->occupied) {
*entry = &e->entry;
return true;
} else {
return false;
}
}
static bool remove(int fd, descriptor_table_entry_t *entry,
descriptor_table_t *table)
{
if (!table->entries) {
return false;
}
size_t hash = keyhash(fd);
size_t i;
descriptor_table_item_t *e;
for (i = hash;; ++i) {
e = table->entries + (i & table->mask);
if (!e->occupied || e->key == fd)
break;
}
if (e->occupied) {
*entry = e->entry;
e->occupied = false;
// Search for any occupied entries which would be lost (due to
// an interrupted linear probe) if we left this one unoccupied
// and move them as necessary.
i = i & table->mask;
size_t j = i;
while (true) {
j = (j + 1) & table->mask;
e = table->entries + j;
if (!e->occupied)
break;
size_t k = keyhash(e->key) & table->mask;
if (i <= j) {
if ((i < k) && (k <= j))
continue;
} else if ((i < k) || (k <= j)) {
continue;
}
table->entries[i] = *e;
e->occupied = false;
i = j;
}
// If the load factor has dropped below 25%, shrink the table to
// reduce memory footprint.
if (--table->used < table->mask / 4) {
resize(table->mask / 2, table);
}
return true;
} else {
return false;
}
}
bool descriptor_table_insert(descriptor_table_entry_t entry, int *fd)
{
if (wasi_preview1_adapter_open_badfd(fd)) {
if (insert(entry, *fd, &global_table)) {
return true;
} else {
if (!wasi_preview1_adapter_close_badfd(*fd)) {
abort();
}
*fd = -1;
return false;
}
} else {
return false;
}
}
bool descriptor_table_get_ref(int fd, descriptor_table_entry_t **entry)
{
return get(fd, entry, &global_table);
}
bool descriptor_table_remove(int fd, descriptor_table_entry_t *entry)
{
if (remove(fd, entry, &global_table)) {
if (!wasi_preview1_adapter_close_badfd(fd)) {
abort();
}
return true;
} else {
return false;
}
}
|