summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/powf.c
blob: de8fab545545b4f2800cdb468fe99a07efea5487 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (c) 2017-2018, Arm Limited.
 * SPDX-License-Identifier: MIT
 */

#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "exp2f_data.h"
#include "powf_data.h"

/*
POWF_LOG2_POLY_ORDER = 5
EXP2F_TABLE_BITS = 5

ULP error: 0.82 (~ 0.5 + relerr*2^24)
relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
*/

#define N (1 << POWF_LOG2_TABLE_BITS)
#define T __powf_log2_data.tab
#define A __powf_log2_data.poly
#define OFF 0x3f330000

/* Subnormal input is normalized so ix has negative biased exponent.
   Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set.  */
static inline double_t log2_inline(uint32_t ix)
{
	double_t z, r, r2, r4, p, q, y, y0, invc, logc;
	uint32_t iz, top, tmp;
	int k, i;

	/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
	   The range is split into N subintervals.
	   The ith subinterval contains z and c is near its center.  */
	tmp = ix - OFF;
	i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
	top = tmp & 0xff800000;
	iz = ix - top;
	k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
	invc = T[i].invc;
	logc = T[i].logc;
	z = (double_t)asfloat(iz);

	/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
	r = z * invc - 1;
	y0 = logc + (double_t)k;

	/* Pipelined polynomial evaluation to approximate log1p(r)/ln2.  */
	r2 = r * r;
	y = A[0] * r + A[1];
	p = A[2] * r + A[3];
	r4 = r2 * r2;
	q = A[4] * r + y0;
	q = p * r2 + q;
	y = y * r4 + q;
	return y;
}

#undef N
#undef T
#define N (1 << EXP2F_TABLE_BITS)
#define T __exp2f_data.tab
#define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))

/* The output of log2 and thus the input of exp2 is either scaled by N
   (in case of fast toint intrinsics) or not.  The unscaled xd must be
   in [-1021,1023], sign_bias sets the sign of the result.  */
static inline float exp2_inline(double_t xd, uint32_t sign_bias)
{
	uint64_t ki, ski, t;
	double_t kd, z, r, r2, y, s;

#if TOINT_INTRINSICS
#define C __exp2f_data.poly_scaled
	/* N*x = k + r with r in [-1/2, 1/2] */
	kd = roundtoint(xd); /* k */
	ki = converttoint(xd);
#else
#define C __exp2f_data.poly
#define SHIFT __exp2f_data.shift_scaled
	/* x = k/N + r with r in [-1/(2N), 1/(2N)] */
	kd = eval_as_double(xd + SHIFT);
	ki = asuint64(kd);
	kd -= SHIFT; /* k/N */
#endif
	r = xd - kd;

	/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
	t = T[ki % N];
	ski = ki + sign_bias;
	t += ski << (52 - EXP2F_TABLE_BITS);
	s = asdouble(t);
	z = C[0] * r + C[1];
	r2 = r * r;
	y = C[2] * r + 1;
	y = z * r2 + y;
	y = y * s;
	return eval_as_float(y);
}

/* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
   the bit representation of a non-zero finite floating-point value.  */
static inline int checkint(uint32_t iy)
{
	int e = iy >> 23 & 0xff;
	if (e < 0x7f)
		return 0;
	if (e > 0x7f + 23)
		return 2;
	if (iy & ((1 << (0x7f + 23 - e)) - 1))
		return 0;
	if (iy & (1 << (0x7f + 23 - e)))
		return 1;
	return 2;
}

static inline int zeroinfnan(uint32_t ix)
{
	return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
}

float powf(float x, float y)
{
	uint32_t sign_bias = 0;
	uint32_t ix, iy;

	ix = asuint(x);
	iy = asuint(y);
	if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
			  zeroinfnan(iy))) {
		/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan).  */
		if (predict_false(zeroinfnan(iy))) {
			if (2 * iy == 0)
				return issignalingf_inline(x) ? x + y : 1.0f;
			if (ix == 0x3f800000)
				return issignalingf_inline(y) ? x + y : 1.0f;
			if (2 * ix > 2u * 0x7f800000 ||
			    2 * iy > 2u * 0x7f800000)
				return x + y;
			if (2 * ix == 2 * 0x3f800000)
				return 1.0f;
			if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
				return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
			return y * y;
		}
		if (predict_false(zeroinfnan(ix))) {
			float_t x2 = x * x;
			if (ix & 0x80000000 && checkint(iy) == 1)
				x2 = -x2;
			/* Without the barrier some versions of clang hoist the 1/x2 and
			   thus division by zero exception can be signaled spuriously.  */
			return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
		}
		/* x and y are non-zero finite.  */
		if (ix & 0x80000000) {
			/* Finite x < 0.  */
			int yint = checkint(iy);
			if (yint == 0)
				return __math_invalidf(x);
			if (yint == 1)
				sign_bias = SIGN_BIAS;
			ix &= 0x7fffffff;
		}
		if (ix < 0x00800000) {
			/* Normalize subnormal x so exponent becomes negative.  */
			ix = asuint(x * 0x1p23f);
			ix &= 0x7fffffff;
			ix -= 23 << 23;
		}
	}
	double_t logx = log2_inline(ix);
	double_t ylogx = y * logx; /* cannot overflow, y is single prec.  */
	if (predict_false((asuint64(ylogx) >> 47 & 0xffff) >=
			  asuint64(126.0 * POWF_SCALE) >> 47)) {
		/* |y*log(x)| >= 126.  */
		if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
			return __math_oflowf(sign_bias);
		if (ylogx <= -150.0 * POWF_SCALE)
			return __math_uflowf(sign_bias);
	}
	return exp2_inline(ylogx, sign_bias);
}