diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-10 20:34:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-10 20:34:10 +0000 |
commit | e4ba6dbc3f1e76890b22773807ea37fe8fa2b1bc (patch) | |
tree | 68cb5ef9081156392f1dd62a00c6ccc1451b93df /epan/dissectors/packet-null.c | |
parent | Initial commit. (diff) | |
download | wireshark-e4ba6dbc3f1e76890b22773807ea37fe8fa2b1bc.tar.xz wireshark-e4ba6dbc3f1e76890b22773807ea37fe8fa2b1bc.zip |
Adding upstream version 4.2.2.upstream/4.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'epan/dissectors/packet-null.c')
-rw-r--r-- | epan/dissectors/packet-null.c | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/epan/dissectors/packet-null.c b/epan/dissectors/packet-null.c new file mode 100644 index 00000000..0ff004c7 --- /dev/null +++ b/epan/dissectors/packet-null.c @@ -0,0 +1,525 @@ +/* packet-null.c + * Routines for null packet disassembly + * + * Wireshark - Network traffic analyzer + * By Gerald Combs <gerald@wireshark.org> + * + * This file created by Mike Hall <mlh@io.com> + * Copyright 1998 + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "config.h" + +#include <wsutil/pint.h> + +#include <epan/packet.h> +#include <epan/capture_dissectors.h> +#include "packet-ip.h" +#include "packet-ppp.h" +#include <epan/etypes.h> +#include <epan/aftypes.h> + +void proto_register_null(void); +void proto_reg_handoff_null(void); + +static dissector_table_t null_dissector_table; +static dissector_table_t ethertype_dissector_table; + +/* protocols and header fields */ +static int proto_null = -1; +static int hf_null_etype = -1; +static int hf_null_family = -1; + +static gint ett_null = -1; + +/* Null/loopback structs and definitions */ + +/* Family values. */ +static const value_string family_vals[] = { + {BSD_AF_INET, "IP" }, + {BSD_AF_ISO, "OSI" }, + {BSD_AF_APPLETALK, "Appletalk" }, + {BSD_AF_IPX, "Netware IPX/SPX"}, + {BSD_AF_INET6_BSD, "IPv6" }, + {BSD_AF_INET6_FREEBSD, "IPv6" }, + {BSD_AF_INET6_DARWIN, "IPv6" }, + {0, NULL } +}; + +static dissector_handle_t null_handle, loop_handle; +static capture_dissector_handle_t null_cap_handle; + +static dissector_handle_t ppp_hdlc_handle; +static capture_dissector_handle_t ppp_hdlc_cap_handle; + +static gboolean +capture_null( const guchar *pd, int offset _U_, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_ ) +{ + guint32 null_header; + + /* + * BSD drivers that use DLT_NULL - including the FreeBSD 3.2 ISDN-for-BSD + * drivers, as well as the 4.4-Lite and FreeBSD loopback drivers - + * stuff the AF_ value for the protocol, in *host* byte order, in the + * first four bytes. + * + * However, the IRIX and UNICOS/mp snoop socket mechanism supplies, + * on loopback devices, a 4-byte header that has a 2 byte (big-endian) + * AF_ value and 2 bytes of 0, so it's + * + * 0000AAAA + * + * when read on a little-endian machine and + * + * AAAA0000 + * + * when read on a big-endian machine. The current CVS version of libpcap + * compensates for this by converting it to standard 4-byte format before + * processing the packet, but snoop captures from IRIX or UNICOS/mp + * have the 2-byte+2-byte header, as might tcpdump or libpcap captures + * with older versions of libpcap. + * + * AF_ values are small integers, and probably fit in 8 bits (current + * values on the BSDs do), and have their upper 24 bits zero. + * This means that, in practice, if you look at the header as a 32-bit + * integer in host byte order: + * + * on a little-endian machine: + * + * a little-endian DLT_NULL header looks like + * + * 000000AA + * + * a big-endian DLT_NULL header, or a DLT_LOOP header, looks + * like + * + * AA000000 + * + * an IRIX or UNICOS/mp DLT_NULL header looks like + * + * 0000AA00 + * + * on a big-endian machine: + * + * a big-endian DLT_NULL header, or a DLT_LOOP header, looks + * like + * + * 000000AA + * + * a little-endian DLT_NULL header looks like + * + * AA000000 + * + * an IRIX or UNICOS/mp DLT_NULL header looks like + * + * 00AA0000 + * + * However, according to Gerald Combs, a FreeBSD ISDN PPP dump that + * Andreas Klemm sent to wireshark-dev has a packet type of DLT_NULL, + * and the family bits look like PPP's protocol field. (Was this an + * older, or different, ISDN driver?) Looking at what appears to be + * that capture file, it appears that it's using PPP in HDLC framing, + * RFC 1549, wherein the first two octets of the frame are 0xFF + * (address) and 0x03 (control), so the header bytes are, in order: + * + * 0xFF + * 0x03 + * high-order byte of a PPP protocol field + * low-order byte of a PPP protocol field + * + * If we treat that as a 32-bit host-byte-order value, it looks like + * + * PPPP03FF + * + * where PPPP is a byte-swapped PPP protocol type if we read it on + * a little-endian machine and + * + * FF03PPPP + * + * where PPPP is a PPP protocol type if we read it on a big-endian + * machine. 0x0000 does not appear to be a valid PPP protocol type + * value, so at least one of those hex digits is guaranteed not to + * be 0. + * + * Old versions of libpcap for Linux used DLT_NULL for loopback devices, + * but not any other devices. (Current versions use DLT_EN10MB for it.) + * The Linux loopback driver puts an *Ethernet* header at the beginning + * of loopback packets, with fake source and destination addresses and + * the appropriate Ethernet type value; however, those older versions of + * libpcap for Linux compensated for this by skipping the source and + * destination MAC addresses, replacing them with 2 bytes of 0. + * This means that if we're reading the capture on a little-endian + * machine, the header, treated as a 32-bit integer, looks like + * + * EEEE0000 + * + * where EEEE is a byte-swapped Ethernet type, and if we're reading it + * on a big-endian machine, it looks like + * + * 0000EEEE + * + * where EEEE is an Ethernet type. + * + * If the first 2 bytes of the header are FF 03: + * + * it can't be a big-endian BSD DLT_NULL header, or a DLT_LOOP + * header, as AF_ values are small so the first 2 bytes of the + * header would be 0; + * + * it can't be a little-endian BSD DLT_NULL header, as the + * resulting AF_ value would be >= 0x03FF, which is too big + * for an AF_ value; + * + * it can't be an IRIX or UNICOS/mp DLT_NULL header, as the + * resulting AF_ value with be 0x03FF. + * + * So the first thing we do is check the first two bytes of the + * header; if it's FF 03, we treat the packet as a PPP frame. + * + * Otherwise, if the upper 16 bits are non-zero, either: + * + * it's a BSD DLT_NULL header whose AF_ value is not in our + * byte order; + * + * it's an IRIX or UNICOS/mp DLT_NULL header being read on + * a big-endian machine; + * + * it's a Linux DLT_NULL header being read on a little-endian + * machine. + * + * In all those cases except for the IRIX or UNICOS/mp DLT_NULL header, + * we should byte-swap it (if it's a Linux DLT_NULL header, that'll + * put the Ethernet type in the right byte order). In the case + * of the IRIX or UNICOS/mp DLT_NULL header, we should just get + * the upper 16 bits as an AF_ value. + * + * If it's a BSD DLT_NULL header whose AF_ value is not in our byte + * order, then the upper 2 hex digits would be non-zero and the next + * 2 hex digits down would be zero, as AF_ values fit in 8 bits, and + * the upper 2 hex digits are the *lower* 8 bits of the value. + * + * If it's an IRIX or UNICOS/mp DLT_NULL header, the upper 2 hex digits + * would be zero and the next 2 hex digits down would be non-zero, as + * the upper 16 bits are a big-endian AF_ value. Furthermore, the + * next 2 hex digits down are likely to be < 0x60, as 0x60 is 96, + * and, so far, we're far from requiring AF_ values that high. + * + * If it's a Linux DLT_NULL header, the third hex digit from the top + * will be >= 6, as Ethernet types are >= 1536, or 0x0600, and + * it's byte-swapped, so the second 2 hex digits from the top are + * >= 0x60. + * + * So, if the upper 16 bits are non-zero: + * + * if the upper 2 hex digits are 0 and the next 2 hex digits are + * in the range 0x00-0x5F, we treat it as a big-endian IRIX or + * UNICOS/mp DLT_NULL header; + * + * otherwise, we byte-swap it and do the next stage. + * + * If the upper 16 bits are zero, either: + * + * it's a BSD DLT_NULL header whose AF_ value is in our byte + * order; + * + * it's an IRIX or UNICOS/mp DLT_NULL header being read on + * a little-endian machine; + * + * it's a Linux DLT_NULL header being read on a big-endian + * machine. + * + * In all of those cases except for the IRIX or UNICOS/mp DLT_NULL header, + * we should *not* byte-swap it. In the case of the IRIX or UNICOS/mp + * DLT_NULL header, we should extract the AF_ value and byte-swap it. + * + * If it's a BSD DLT_NULL header whose AF_ value is in our byte order, + * the upper 6 hex digits would all be zero. + * + * If it's an IRIX or UNICOS/mp DLT_NULL header, the upper 4 hex + * digits would be zero and the next 2 hex digits would not be zero. + * Furthermore, the third hex digit from the bottom would be < + */ + if (!BYTES_ARE_IN_FRAME(0, len, 2)) + return FALSE; + + if (pd[0] == 0xFF && pd[1] == 0x03) { + /* + * Hand it to PPP. + */ + return call_capture_dissector(ppp_hdlc_cap_handle, pd, 0, len, cpinfo, pseudo_header); + } else { + /* + * Treat it as a normal DLT_NULL header. + */ + if (!BYTES_ARE_IN_FRAME(0, len, (int)sizeof(null_header))) + return FALSE; + + memcpy((char *)&null_header, (const char *)&pd[0], sizeof(null_header)); + + if ((null_header & 0xFFFF0000) != 0) { + /* + * It is possible that the AF_ type was only a 16 bit value. + * IRIX and UNICOS/mp loopback snoop use a 4 byte header with + * AF_ type in the first 2 bytes! + * BSD AF_ types will always have the upper 8 bits as 0. + */ + if ((null_header & 0xFF000000) == 0 && + (null_header & 0x00FF0000) < 0x00060000) { + /* + * Looks like a IRIX or UNICOS/mp loopback header, in the + * correct byte order. Set the null header value to the + * AF_ type, which is in the upper 16 bits of "null_header". + */ + null_header >>= 16; + } else { + /* Byte-swap it. */ + null_header = GUINT32_SWAP_LE_BE(null_header); + } + } else { + /* + * Check for an IRIX or UNICOS/mp snoop header. + */ + if ((null_header & 0x000000FF) == 0 && + (null_header & 0x0000FF00) < 0x00000600) { + /* + * Looks like a IRIX or UNICOS/mp loopback header, in the + * wrong byte order. Set the null header value to the AF_ + * type; that's in the lower 16 bits of "null_header", but + * is byte-swapped. + */ + null_header = GUINT16_SWAP_LE_BE(null_header & 0xFFFF); + } + } + + /* + * The null header value must be greater than the IEEE 802.3 maximum + * frame length to be a valid Ethernet type; if it is, hand it + * to "capture_ethertype()", otherwise treat it as a BSD AF_type (we + * wire in the values of the BSD AF_ types, because the values + * in the file will be BSD values, and the OS on which + * we're building this might not have the same values or + * might not have them defined at all; XXX - what if different + * BSD derivatives have different values?). + */ + if (null_header > IEEE_802_3_MAX_LEN) + return try_capture_dissector("ethertype", null_header, pd, 4, len, cpinfo, pseudo_header); + else + return try_capture_dissector("null.bsd", null_header, pd, 4, len, cpinfo, pseudo_header); + } + + return FALSE; +} + +static int +dissect_null(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) +{ + guint32 null_header; + proto_tree *fh_tree; + proto_item *ti; + tvbuff_t *next_tvb; + + /* + * See comment in "capture_null()" for an explanation of what we're + * doing. + */ + if (tvb_get_ntohs(tvb, 0) == 0xFF03) { + /* + * Hand it to PPP. + */ + call_dissector(ppp_hdlc_handle, tvb, pinfo, tree); + } else { + + /* load the top pane info. This should be overwritten by + the next protocol in the stack */ + col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "N/A"); + col_set_str(pinfo->cinfo, COL_RES_DL_DST, "N/A"); + col_set_str(pinfo->cinfo, COL_PROTOCOL, "N/A"); + col_set_str(pinfo->cinfo, COL_INFO, "Null/Loopback"); + + /* + * Treat it as a normal DLT_NULL header. Fetch it in host + * byte order. + */ + null_header = tvb_get_h_guint32(tvb, 0); + + if ((null_header & 0xFFFF0000) != 0) { + /* + * It is possible that the AF_ type was only a 16 bit value. + * IRIX and UNICOS/mp loopback snoop use a 4 byte header with + * AF_ type in the first 2 bytes! + * BSD AF_ types will always have the upper 8 bits as 0. + */ + if ((null_header & 0xFF000000) == 0 && + (null_header & 0x00FF0000) < 0x00060000) { + /* + * Looks like a IRIX or UNICOS/mp loopback header, in the + * correct byte order. Set the null header value to the + * AF_ type, which is in the upper 16 bits of "null_header". + */ + null_header >>= 16; + } else { + /* Byte-swap it. */ + null_header = GUINT32_SWAP_LE_BE(null_header); + } + } else { + /* + * Check for an IRIX or UNICOS/mp snoop header. + */ + if ((null_header & 0x000000FF) == 0 && + (null_header & 0x0000FF00) < 0x00000600) { + /* + * Looks like a IRIX or UNICOS/mp loopback header, in the + * wrong byte order. Set the null header value to the AF_ + * type; that's in the lower 16 bits of "null_header", but + * is byte-swapped. + */ + null_header = GUINT16_SWAP_LE_BE(null_header & 0xFFFF); + } + } + + /* + * The null header value must be greater than the IEEE 802.3 maximum + * frame length to be a valid Ethernet type; if it is, dissect it + * as one, otherwise treat it as a BSD AF_type (we wire in the values + * of the BSD AF_ types, because the values in the file will be BSD + * values, and the OS on which we're building this might not have the + * same values or might not have them defined at all; XXX - what if + * different BSD derivatives have different values?). + */ + if (null_header > IEEE_802_3_MAX_LEN) { + if (tree) { + ti = proto_tree_add_item(tree, proto_null, tvb, 0, 4, ENC_NA); + fh_tree = proto_item_add_subtree(ti, ett_null); + proto_tree_add_uint(fh_tree, hf_null_etype, tvb, 0, 4, + (guint16) null_header); + } + + next_tvb = tvb_new_subset_remaining(tvb, 4); + if (!dissector_try_uint(ethertype_dissector_table, + (guint16) null_header, next_tvb, pinfo, tree)) + call_data_dissector(next_tvb, pinfo, tree); + } else { + /* populate a tree in the second pane with the status of the link + layer (ie none) */ + if (tree) { + ti = proto_tree_add_item(tree, proto_null, tvb, 0, 4, ENC_NA); + fh_tree = proto_item_add_subtree(ti, ett_null); + proto_tree_add_uint(fh_tree, hf_null_family, tvb, 0, 4, null_header); + } + + next_tvb = tvb_new_subset_remaining(tvb, 4); + if (!dissector_try_uint(null_dissector_table, null_header, + next_tvb, pinfo, tree)) { + /* No sub-dissector found. Label rest of packet as "Data" */ + call_data_dissector(next_tvb, pinfo, tree); + } + } + } + return tvb_captured_length(tvb); +} + +/* + * OpenBSD DLT_LOOP; like DLT_NULL, but with the first 4 byte *always* + * being a *big-endian* type. + */ +static int +dissect_loop(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) +{ + guint32 loop_family; + proto_tree *fh_tree; + proto_item *ti; + tvbuff_t *next_tvb; + + /* load the top pane info. This should be overwritten by + the next protocol in the stack */ + col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "N/A"); + col_set_str(pinfo->cinfo, COL_RES_DL_DST, "N/A"); + col_set_str(pinfo->cinfo, COL_PROTOCOL, "N/A"); + col_set_str(pinfo->cinfo, COL_INFO, "Null/Loopback"); + + /* populate a tree in the second pane with the status of the link + layer (ie none) */ + loop_family = tvb_get_ntohl(tvb, 0); + if (tree) { + ti = proto_tree_add_item(tree, proto_null, tvb, 0, 4, ENC_NA); + fh_tree = proto_item_add_subtree(ti, ett_null); + proto_tree_add_uint(fh_tree, hf_null_family, tvb, 0, 4, loop_family); + } + + next_tvb = tvb_new_subset_remaining(tvb, 4); + if (!dissector_try_uint(null_dissector_table, loop_family, + next_tvb, pinfo, tree)) { + /* No sub-dissector found. Label rest of packet as "Data" */ + call_data_dissector(next_tvb, pinfo, tree); + } + return tvb_captured_length(tvb); +} + +void +proto_register_null(void) +{ + static hf_register_info hf[] = { + + /* registered here but handled in ethertype.c */ + { &hf_null_etype, + { "Type", "null.type", FT_UINT16, BASE_HEX, VALS(etype_vals), 0x0, + NULL, HFILL }}, + + { &hf_null_family, + { "Family", "null.family", FT_UINT32, BASE_DEC, VALS(family_vals), 0x0, + NULL, HFILL }} + }; + static gint *ett[] = { + &ett_null, + }; + + proto_null = proto_register_protocol("Null/Loopback", "Null", "null"); + proto_register_field_array(proto_null, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + + /* subdissector code */ + null_dissector_table = register_dissector_table("null.type", + "Null type", proto_null, FT_UINT32, BASE_DEC); + + register_capture_dissector_table("null.bsd", "Null/Loopback BSD AF"); + + null_handle = register_dissector("null", dissect_null, proto_null); + loop_handle = register_dissector("null.loop", dissect_loop, proto_null); + null_cap_handle = register_capture_dissector("null", capture_null, proto_null); +} + +void +proto_reg_handoff_null(void) +{ + /* + * Get a handle for the PPP-in-HDLC-like-framing dissector and + * the "I don't know what this is" dissector. + */ + ppp_hdlc_handle = find_dissector_add_dependency("ppp_hdlc", proto_null); + + ethertype_dissector_table = find_dissector_table("ethertype"); + + dissector_add_uint("wtap_encap", WTAP_ENCAP_NULL, null_handle); + + dissector_add_uint("wtap_encap", WTAP_ENCAP_LOOP, loop_handle); + + capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_NULL, null_cap_handle); + capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_LOOP, null_cap_handle); + + ppp_hdlc_cap_handle = find_capture_dissector("ppp_hdlc"); +} + +/* + * Editor modelines + * + * Local Variables: + * c-basic-offset: 2 + * tab-width: 8 + * indent-tabs-mode: nil + * End: + * + * ex: set shiftwidth=2 tabstop=8 expandtab: + * :indentSize=2:tabSize=8:noTabs=true: + */ |