/* packet-hdcp.c * Routines for HDCP dissection * Copyright 2011-2014, Martin Kaiser * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ /* * This dissector supports HDCP (version 1) over I2C. For now, only the * most common protocol messages are recognized. * * The specification of the version 1 protocol can be found at * http://www.digital-cp.com/files/static_page_files/5C3DC13B-9F6B-D82E-D77D8ACA08A448BF/HDCP Specification Rev1_4.pdf */ #include "config.h" #include #include void proto_register_hdcp(void); static int proto_hdcp; static wmem_tree_t *transactions; static int ett_hdcp; static int hf_hdcp_reg; static int hf_hdcp_resp_in; static int hf_hdcp_resp_to; static int hf_hdcp_a_ksv; static int hf_hdcp_b_ksv; static int hf_hdcp_an; static int hf_hdcp_hdmi_reserved; static int hf_hdcp_repeater; static int hf_hdcp_ksv_fifo; static int hf_hdcp_fast_trans; static int hf_hdcp_features; static int hf_hdcp_fast_reauth; static int hf_hdcp_hdmi_mode; static int hf_hdcp_max_casc_exc; static int hf_hdcp_depth; static int hf_hdcp_max_devs_exc; static int hf_hdcp_downstream; static int hf_hdcp_link_vfy; #define REG_BKSV 0x0 #define REG_AKSV 0x10 #define REG_AN 0x18 #define REG_BCAPS 0x40 #define REG_BSTATUS 0x41 typedef struct _hdcp_transaction_t { uint32_t rqst_frame; uint32_t resp_frame; uint8_t rqst_type; } hdcp_transaction_t; static const value_string hdcp_reg[] = { { REG_BKSV, "B_ksv" }, { REG_AKSV, "A_ksv" }, { REG_AN, "An" }, { REG_BCAPS, "B_caps"}, { REG_BSTATUS, "B_status"}, { 0, NULL } }; /* the input tvb contains an HDCP message without the leading address byte (the address byte is handled by the HDMI dissector) the caller must set the direction in pinfo */ static int dissect_hdcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { uint8_t reg; proto_item *pi; ptvcursor_t *cursor; proto_tree *hdcp_tree; hdcp_transaction_t *hdcp_trans; proto_item *it; uint64_t a_ksv, b_ksv; /* XXX check if the packet is really HDCP? */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "HDCP"); col_clear(pinfo->cinfo, COL_INFO); pi = proto_tree_add_protocol_format(tree, proto_hdcp, tvb, 0, tvb_reported_length(tvb), "HDCP"); hdcp_tree = proto_item_add_subtree(pi, ett_hdcp); cursor = ptvcursor_new(pinfo->pool, hdcp_tree, tvb, 0); if (pinfo->p2p_dir==P2P_DIR_SENT) { /* transmitter sends data to the receiver */ reg = tvb_get_uint8(tvb, ptvcursor_current_offset(cursor)); /* all values in HDCP are little endian */ ptvcursor_add(cursor, hf_hdcp_reg, 1, ENC_LITTLE_ENDIAN); if (tvb_reported_length_remaining(tvb, ptvcursor_current_offset(cursor)) == 0) { /* transmitter requests the content of a register */ col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "request %s", val_to_str(reg, hdcp_reg, "unknown (0x%x)")); if (PINFO_FD_VISITED(pinfo)) { /* we've already dissected the receiver's response */ hdcp_trans = (hdcp_transaction_t *)wmem_tree_lookup32( transactions, pinfo->num); if (hdcp_trans && hdcp_trans->rqst_frame==pinfo->num && hdcp_trans->resp_frame!=0) { it = proto_tree_add_uint_format(hdcp_tree, hf_hdcp_resp_in, NULL, 0, 0, hdcp_trans->resp_frame, "Request to get the content of register %s, " "response in frame %d", val_to_str_const(hdcp_trans->rqst_type, hdcp_reg, "unknown (0x%x)"), hdcp_trans->resp_frame); proto_item_set_generated(it); } } else { /* we've not yet dissected the response */ hdcp_trans = wmem_new(wmem_file_scope(), hdcp_transaction_t); hdcp_trans->rqst_frame = pinfo->num; hdcp_trans->resp_frame = 0; hdcp_trans->rqst_type = reg; wmem_tree_insert32(transactions, hdcp_trans->rqst_frame, (void *)hdcp_trans); } } else { /* transmitter actually sends protocol data */ col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "send %s", val_to_str(reg, hdcp_reg, "unknown (0x%x)")); switch (reg) { case REG_AKSV: a_ksv = tvb_get_letoh40(tvb, ptvcursor_current_offset(cursor)); proto_tree_add_uint64_format(hdcp_tree, hf_hdcp_a_ksv, tvb, ptvcursor_current_offset(cursor), 5, a_ksv, "A_ksv 0x%010" PRIx64, a_ksv); ptvcursor_advance(cursor, 5); break; case REG_AN: ptvcursor_add(cursor, hf_hdcp_an, 8, ENC_LITTLE_ENDIAN); break; default: break; } } } else { /* transmitter reads from receiver */ hdcp_trans = (hdcp_transaction_t *)wmem_tree_lookup32_le( transactions, pinfo->num); if (hdcp_trans) { if (hdcp_trans->resp_frame==0) { /* there's a pending request, this packet is the response */ hdcp_trans->resp_frame = pinfo->num; } if (hdcp_trans->resp_frame== pinfo->num) { /* we found the request that corresponds to our response */ col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "send %s", val_to_str_const(hdcp_trans->rqst_type, hdcp_reg, "unknown (0x%x)")); it = proto_tree_add_uint_format(hdcp_tree, hf_hdcp_resp_to, NULL, 0, 0, hdcp_trans->rqst_frame, "Response to frame %d (content of register %s)", hdcp_trans->rqst_frame, val_to_str_const(hdcp_trans->rqst_type, hdcp_reg, "unknown (0x%x)")); proto_item_set_generated(it); switch (hdcp_trans->rqst_type) { case REG_BKSV: b_ksv = tvb_get_letoh40(tvb, ptvcursor_current_offset(cursor)); proto_tree_add_uint64_format(hdcp_tree, hf_hdcp_b_ksv, tvb, ptvcursor_current_offset(cursor), 5, b_ksv, "B_ksv 0x%010" PRIx64, b_ksv); ptvcursor_advance(cursor, 5); break; case REG_BCAPS: ptvcursor_add_no_advance(cursor, hf_hdcp_hdmi_reserved, 1, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_repeater, 1, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_ksv_fifo, 1, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_fast_trans, 1, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_features, 1, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_fast_reauth, 1, ENC_LITTLE_ENDIAN); break; case REG_BSTATUS: ptvcursor_add_no_advance(cursor, hf_hdcp_hdmi_mode, 2, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_max_casc_exc, 2, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_depth, 2, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_max_devs_exc, 2, ENC_LITTLE_ENDIAN); ptvcursor_add_no_advance(cursor, hf_hdcp_downstream, 2, ENC_LITTLE_ENDIAN); break; } } } if (!hdcp_trans || hdcp_trans->resp_frame!=pinfo->num) { /* the packet isn't a response to a request from the * transmitter; it must be a link verification */ if (tvb_reported_length_remaining( tvb, ptvcursor_current_offset(cursor)) == 2) { col_append_sep_str(pinfo->cinfo, COL_INFO, NULL, "send link verification Ri'"); ptvcursor_add_no_advance(cursor, hf_hdcp_link_vfy, 2, ENC_LITTLE_ENDIAN); } } } ptvcursor_free(cursor); return tvb_reported_length(tvb); } void proto_register_hdcp(void) { static hf_register_info hf[] = { { &hf_hdcp_reg, { "Register offset", "hdcp.reg", FT_UINT8, BASE_HEX, VALS(hdcp_reg), 0, NULL, HFILL } }, { &hf_hdcp_resp_in, { "Response In", "hdcp.resp_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "The response to this request is in this frame", HFILL }}, { &hf_hdcp_resp_to, { "Response To", "hdcp.resp_to", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This is the response to the request in this frame", HFILL }}, { &hf_hdcp_a_ksv, { "Transmitter's key selection vector", "hdcp.a_ksv", FT_UINT40, BASE_HEX, NULL, 0, NULL, HFILL } }, { &hf_hdcp_b_ksv, { "Receiver's key selection vector", "hdcp.b_ksv", FT_UINT64, BASE_HEX, NULL, 0, NULL, HFILL } }, { &hf_hdcp_an, { "Random number for the session", "hdcp.an", FT_UINT64, BASE_HEX, NULL, 0, NULL, HFILL } }, { &hf_hdcp_hdmi_reserved, { "HDMI reserved", "hdcp.hdmi_reserved", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } }, { &hf_hdcp_repeater, { "Repeater", "hdcp.repeater", FT_UINT8, BASE_DEC, NULL, 0x40, NULL, HFILL } }, { &hf_hdcp_ksv_fifo, { "KSV fifo ready", "hdcp.ksv_fifo", FT_UINT8, BASE_DEC, NULL, 0x20, NULL, HFILL } }, { &hf_hdcp_fast_trans, { "Support for 400KHz transfers", "hdcp.fast_trans", FT_UINT8, BASE_DEC, NULL, 0x10, NULL, HFILL } }, { &hf_hdcp_features, { "Support for additional features", "hdcp.features", FT_UINT8, BASE_DEC, NULL, 0x02, NULL, HFILL } }, { &hf_hdcp_fast_reauth, { "Support for fast re-authentication", "hdcp.fast_reauth", FT_UINT8, BASE_DEC, NULL, 0x01, NULL, HFILL } }, { &hf_hdcp_hdmi_mode, { "HDMI mode", "hdcp.hdmi_mode", FT_UINT16, BASE_DEC, NULL, 0x1000, NULL, HFILL } }, { &hf_hdcp_max_casc_exc, { "Maximum cascading depth exceeded", "hdcp.max_casc_exc", FT_UINT16, BASE_DEC, NULL, 0x0800, NULL, HFILL } }, { &hf_hdcp_depth, { "Repeater cascade depth", "hdcp.depth", FT_UINT16, BASE_DEC, NULL, 0x0700, NULL, HFILL } }, { &hf_hdcp_max_devs_exc, { "Maximum number of devices exceeded", "hdcp.max_devs_exc", FT_UINT16, BASE_DEC, NULL, 0x0080, NULL, HFILL } }, { &hf_hdcp_downstream, { "Number of downstream receivers", "hdcp.downstream", FT_UINT16, BASE_DEC, NULL, 0x007F, NULL, HFILL } }, { &hf_hdcp_link_vfy, { "Link verification response Ri'", "hdcp.link_vfy", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL } } }; static int *ett[] = { &ett_hdcp }; proto_hdcp = proto_register_protocol("High bandwidth Digital Content Protection", "HDCP", "hdcp"); proto_register_field_array(proto_hdcp, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); register_dissector("hdcp", dissect_hdcp, proto_hdcp); transactions = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope()); } /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */